103539 A2

0 02

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

27 December 2002 (27.12.2002) PCT WO 02/1 03539 Az
(51) International Patent Classification’: GO6F 15/16 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(21) International Application Number: PCT/US02/17944 LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
(22) International Filing Date: 6 June 2002 (06.06.2002) SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, 7ZM, ZW.
(25) Filing Language: English
L . (84) Designated States (regional): ARIPO patent (GH, GM,
(26) Publication Language: English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
L. Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(30) Priority Data: European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
60/298,313 14 June 2001 (14.06.2001) US GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
10/068,157 6 February 2002 (06.02.2002) US

(71) Applicant: HALLENBECK, Peter, D [US/US]; 3500
Jordan Oaks Drive, Efland, NC 27243 (US).

(74) Agent: PHILLIPS, Steven, B.; Moore & Van Allen
PLLC, 2200 West Main Street, Suite 800, Durham, NC
27705 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DISTRIBUTED, PACKET-BASED PREMISES AUTOMATION SYSTEM

104 105
Control Control
Processor Processor
(Security) (Lights, IR)
106 107
Timekeeping Home
Al
pparatus PC /108
(Network L Internet
Gatew:
100 101 (Ethemet, Serial, RF) - &
Packet PUE _|Peripheral
/0 Unit Unit

Digital Inputs —ll |other Network (Serial, Ethernet) |

Analog tnputs 110 | |

Infrared In |Peripheral Peripheral

Digital Qut Unit Unit

Analog Out

Infrared Out 102 I/lg o

X-10 InfQut

Serial Port(s)

Other Devices

(57) Abstract: Distributed, packet-based premises automation system. The system can include, multiple, distributed, input/output
(I/O) units (100, 101, 102, 103). Changes in inputs can be broadcast using one or more protocols onto a home or other premises
~ network, and/or the Internet. I/O units can receive commands from the network and effect control of the premises equipment based
on those commands. Input and output identifiers (701, 704) have a format that allows them to uniquely identify any input and output
in the distributed system, regardless of how large the system is. Any computer or controller on the network can see the changes
in the inputs and any computer or controller can effect changes in an output, providing for true, distributed control. Virtual inputs
are provided, each allowing a standard meaning to be applied to a storage bit (603) that represents some state or condition of the

premises.

10

15

20

25

30

WO 02/103539 PCT/US02/17944

DISTRIBUTED, PACKET-BASED PREMISES AUTOMATION SYSTEM

DESCRIPTION
Background Art

Since the invention of the microprocessor the dream of automating various

parts of the home, business, or other building environment has been pursued. A
variety of systems have been proposed or implemented by companies, trade as-
sociations, and individuals. However, despite high growth and the standardization
of technologies such as the Internet, personal computers, media storage, audio
processing and video storage, premises automation technology has suffered from
poor definition, and therefore limited growth.

While computer networks are now in wide use both in industry and the
home, premises automation systems have not fully adopted a standardized form
of networking for communication between all devices. Some known standards for
low-level signaling.- have found acceptance, such as “X-10,” “1-Wire,” and “CE
Bus.” However, a problem with computer networks used in premises automation
results from the fact that they are used primarily to model direct wired connections
between sensors, actuators, and a control combuter. Interoperability and ex-
pandability is limited, and typically, a system must be customized extensively for
each home or office environment.

Another problem with most systems is that many premises automation
functions are exercised by a centralized controller with a microprocessor that han-
dles all of the automating tasks. The concept of a distributed system utilizing a
home network has not been fully applied. The reliability of today’s systems de-
pends on the reliability of the central controller, and any change in the number or
type of devices being controlled or providing input necessitates reprogramming
the central controller. Furthermore the programmer or software developer re-
sponsible for the controller in many cases needs detailed knowledge of the con-

figuration of the premises involved.

10

15

20

25

30

WO 02/103539 PCT/US02/17944

Disclosure of Invention

The present invention provides for a premises automation system that is
truly distributed in nature, resulting in enhanced reliability and expandability. The
system can include, multiple, distributed input/output (I/O) units. An input to the
system can be an actual physical input, an internal stored variable or semaphore,
or a virtual input, which corresponds to a logical relationship between other inputs,
variables, or semaphores. Changes in inputs can be broadcast using one or more
protocols onto a home network, and/or the Internet. 1/0O units can receive com-
mands from the network and effect control of the premises based on those com-
mands. Any computer or controller on the network can see the changes in the
inputs and any computer or controller can effect changes in an output, because
inputs and outputs are referred to in all protocols using a scheme of input and
output identifiers that is known to all devices. These input and output identifiers
uniquely identify any input and output in the distributed system, regardless of how
large the system is or how many I/O units the system has.

The invention is implemented through various methods, data structures and .
apparatus. In one embodiment, an input event is detected by reference to a scan
table stored in memory specifying the event in association with an input identifier.
An action is performed based on a description of the action which is stored in the
scan table in association with the input event and the input identifier. If necessary,
internal variables are updated. The action taken may include the sending of a
packet, either broadcast, or directed to specific node, on a network wherein the
packet is formatted to communicate the occurrence of the event. Input and output
identifiers may be included in the packet. Input and output identifiers, either in
packets, or in scan tables or data structures, are of a format that allow them to
designate or specify any input or output from among distributed inputs and outputs
in the system.

If the input event as discussed above is a premises related event, that is,
an event that is related to a real change in the state of the premises as detected
by a sensor or by automated equipment, it may be imperative that some action is
taken. In such cases, the responsible /O unit can, after sending a notification

packet, set a timer, which is associated with an input. [f the timer counts down

-2-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

indicating that a pre-determined amount of time has elapsed prior to receiving a
response, a default action, which is specified in a scan table or data structure, is
taken. The ability of an I/O unit according to the invention to intervene if a con-
troller, software process, or computer does not respond as expected enhances
the reliability of the premises automation system.

An |/O unit according to the invention, can receive a packet that is format-
ted to direct a change in a state of the output. If the output is connected to prem-
ises-based apparatus, such as a heating system, appliance, or security system,
the change in state of the output might be effected to communicate with the
premises-based apparatus. The packet uniquely identifies the output with an out-
put identifier, and also communicates the change in state. The same type of
packet can also be used to modify internal variables, clear semaphores and per-
form other, similar functions. Such packets can be originated from various proc-
essor-controlled -apparatus, including input devices (keypads for example),
controllers, and personal computers and workstations. The processor, memory,
and program code in such apparatus serves as the means for sending these
packets to the system. '

Various data structures stored in machine readable memory, are used to
enable embodiments of the invention. In some cases it is useful to think of these
data structures as tables of information that are scanned by a processor and so
these data structures are sometimes referred to as scan tables. For example, the
data structure that directs the response to an input event includes a plurality of in-
put identifiers with associated event descriptions. Each input identifier has at least
one associated event description. At least one action description is associated
with each input event description. If the action includes sending a notification
packet, a second data structure may contain a timer value or other variables that
that are updated enable a default action if no response to the notification packet is
received. The default action may be changing an output, either directly or by
sending a packet to another device.

Another data structure serves as a means for providing for a “virtual input”
when combined with appropriate processing hardware or software. The structure

includes a description of a logical relationship, and a plurality of entries to which

-3-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

the logical relationship applies. Each entry produces a Boolean result on which
the logical relationship operates to produée the virtual input. A storage bit stored
in memory indicates the state of the virtual input. Each entry in the data structure
includes at least an input identifier serving as a first operand, an operator, and a
second operand. The provision of a virtual input with such a structure is herein
called “input aliasing” and allows a standard meaning to be applied to a virtual in-
put that represents some state of the premises, such as whether any outside
doors are open.

An 1/O unit according to the invention includes a processor for controlling
the operation of the unit, and a plurality of local inputs and outputs operatively
connected to the processor. The inputs and outputs can send and receive data or
control signals in various formats, but at least somé of the local inputs and outputs
are typically operable to communicate with premises-based apparatus. The unit
also includes at Ieast‘ one network connection, and a memory encoded with pro-
gram code to enable the processor to control the operation of the unit. The
‘memory” is typically some form of semiconductor memory, but can also be a me-
dia device, a network file system, a database, or a network database, or a combi-
nation thereof. The hardware and program code inside the I/O units in premises

automation system form the means to carry out various aspects of the invention.

Brief Description of Drawinas

FIG. 1 is a network diagram of a premises automation system according to
an embodiment of the invention.

FIG. 2 illustrates a variable definition table, a type of data structure that is
used with one embodiment of the invention.

FIG. 3 shows an “input scan table” data structure that is used with some
embodiments of the invention.

FIG. 4 shows a configuration scan table that can be used with the inven-
tion.

FIG. 5 shows an “output scan table” data structure that is used with some

embodiments of the invention.

10

15

20

25

30

WO 02/103539 PCT/US02/17944

FIG. 6 illustrates both the data structure and flow aspects of the input
aliasing mechanism that is used in some embodiments of the invention.

FIG. 7 illustrates the format of an output packet according to some em-
bodiments of the invention.

FIG. 8 is a flowchart that illustrates some aspects of the invention.

FIG. 9 is a flowchart that illustrates further aspects of the invention.

FIG. 10 is a flowchart that illustrates additional aspects of the invention.

FIG. 11 is a flowchart that illustrates additional aspects of the invention.

FIG. 12 is a hardware block diagram of an example I/O unit according to
the invention.

FIG. 13 is a hardware block diagram of an example processor-based de-
vice that can be used with the system of the invention for sending output packets
like that shown in FIG. 7.

FIG. 14 is a block diagram of a programmed personal computer system or
workstation, which can send output packets like that illustrated in FIG. 7.

Best Mode(s) for Carrying Out the Invention

FIG. 1 is a network level block diagram showing a premises automation
system according to the invention. The system of FIG. 1 is fairly large; however, it
is shown by way of example only. A system incorporating the invention can be
much smaller, even consisting of one I/O unit. This system is comprised of multi-
ple I/O units, 100, 101, 102, and 103. An example of the connective topology,
used by this example implementation, is packet I/0 unit 100 that is connected to a
home network including control processor or software program 104 for a security
system, cdntrol processor or software program 105 which provides lighting and
infrared device control, and control processor or software program 106, which is
user-defined. A home personal computer, 107, and Internet gateway 108 can
also be connected to this network, and are shown in this example. The home
network, 109, is often an Ethernet, but can also be a radio frequency (RF) wire-
less network, a serial network, or any other type of network. The gateway to the

Internet, 108 of FIG. 1 is included for facilitating transmission of Email or other

10

15

20

25

30

WO 02/103539 PCT/US02/17944

types of messages or packets over the Internet if a notification of an event needs
to be communicated outside the premises.

The additional 1/0 units are connected to unit 100 via a specialized type of
serial port on units 100 and 101, which is called herein a “peripheral unit expan-
sion” (PUE) interface, to be described in detail later. The PUE electrical interface
in the example embodiments shown is similar to an “RS-485" port, but may take
other forms. Additional units 102 and 103 are connected to unit 101 through a
second home network in this example, although they could also be connected
through the PUE interface. Units connected through the PUE interface are typi-
cally smaller in size, cost, and capability, and are thus referred to as “peripheral
I/O units” or simply “peripheral units,” not to be confused with the term “peripheral”
as applied to computer peripherals. The serial type PUE interface is slower than
many types of network connections, such as Ethernet, but this slower speed is
acceptable because of the smaller data bandwidths of the peripheral units.

Each 1/0O unit has a number of different devices that can connect to it’s in-
puts and outputs. Some devices, such as switches and relay contact closures,
require little processing. Others, such as analog voltages that represent tem-
peratures, will require a little more processing. And some, such as serial ports
and infrared 1/0 will require still more processing. Some of these inputs and out-
puts are illustrated in FIG. 1 as connected to packet I/O unit 100. These include
digital inputs and outputs, analog inputs and outputs, infrared inputs and outputs,
X-10 ports, and serial ports. The peripheral I/O units have similar types of /O, but
specific inputs and outputs are not shown for clarity.

At this point, it is useful to discuss the input and output identifier system or
addressing scheme. This scheme enables inputs and outputs throughout the
premises automation system to be treated as a large collection of what is referred
to herein as distributed inputs and outputs, meaning inputs and outputs that are
spread across multiple I/O units. Each /O unit in the system has a unique unit
number so that all the /O in the system can be uniquely addressed. Furthermore
each input on an /O unit with a particular unit number has a unique input number
within that 1/O unit. Likewise, each output on an /O unit with a particular unit

number has a unique output number within that 1/0 unit. In this way, an input can

-6-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

be addressed with a combination of unit number/input number, and an output can
be addressed with a combination unit number/output number. Thus, all “things”
manipulated by the system have a unique identifier. The unique identifier has a
format that consists of at least two pieces, a unit humber and an input/output
number. The unit number is used much like a subnet mask in Internet protocol
during routing. It assists in the routing of packets to 1/0 units. One or more 1/O
units will typically contain routing tables making use of the unit number, so that an
I/0 unit can determine which interface (Ethernet, serial, etc.) to forward a packet
over if the packet is destined for another I/O unit. The input/output number refers
to the “thing” being manipulated, be it a physical input, physical output, or internal
variable, as discussed below. These numbers are unique system wide. The con-
trol of a collection of units can be executed via multiple pieces of software that
may reside on multiple processing platforms and that use these unique numbers.
It should be noted that the implementation of the inventive concepts discussed
herein is not limited to the specific format for the unique identifiers disclosed. All
that is required is that the format allow an input or output to be distinguished within
plurality of distributed inputs or outputs, as the case may be. The identifier can
also contain more information than just a unit number and input or output number.

With FIG. 1 and the discussion of input and output addressing in mind,
various definitions as used in this disclosure can be discussed. The word “input”
is used to refer to anything that can provide a value for an equation or computa-
tion or other function. Of course, physical inputs are inputs. Internal variables are
also provided. These are stored in memory and can be manipulated and used for
computations. An internal variable can be as simple as a storage bit that can take
one of two values, 0 and 1. Any internal variables that have been assigned
unique identifiers in accordance with the identifier scheme discussed are special
inputs, which are referred to herein as “internal inputs.” Even physical outputs can
be treated as inputs because their current state can be read back and used in the
making of decisions. A specific type of internal input is referred to as a “virtual in-
put.” Virtual inputs represent physical status information of the premises that can-
not be simply represented by a single physical input. They are managed by an

input aliasing scheme to be fully discussed later. The word “output” is used to re-

7

10

15

20

25

30

WO 02/103539 PCT/US02/17944

fer to anything than can accept a value or values from a packet or internally driven
decision result. Physical inputs cannot be outputs. Internal variables can be out-
puts if their value can be set. And of course, physical outputs are outputs.

All the inputs, outputs, and variables that are manipulated in the system are
objects more than they are simple bytes or bits. The concept of a “type” is used to
classify these objects. For example, the “type” of form “digital input” refers to a
physical, single bit input into an I/O unit. An internal variable has a type just like a
physical entity. Inputs, both internal and external, can have associated variables,
which are also uniquely identified by the input identifier and their type. The soft-
ware for a unit creates whatever internal variables are needed. The software in
the packet 1/0 units refers to data structures stored in memory to make decisions.
These data structures can also be referred to as decision tables or scan tables.
When parsing and evaluating decision tables, a unit's software takes a unique
identifier and determines what object is being addressed, be it a physical input,
output, or internal variable, and then returns or sets it's value.

All of the I/O units, or simply “units” shown in FIG. 1 contain /O, at least in
the example embodiments disclosed. As previously discussed, there are two
kinds of I1/0O units shown. The larger unit with more processing power is referred
to herein as a “packet I/O unit” whereas each of the smaller units is referred to
herein as a “peripheral /O unit” or a “peripheral unit’. In practice, the packet /O
unit might be thought of as a “basement box” which might reside together with or
inside central wiring cabinets, where as the peripheral units would be scattered
about the premises. In the specific example embodiments disclosed herein, either
or both might contain internal variables and/or input aliasing mechanisms and the
data structures that define these; however, only the larger packet 1/0 unit would
typically include the decision table structures to be discussed in detail below. Of
course, a system could be devised where there is more than one packet 1/0 unit
on a premises able to communicate with each other, each being connected to pe-
ripheral 1/0 units.

The word “semaphore” refers to an associated variable of a type. It might
also be called a “flag”. It is a bit value. While an internal storage bit variable may

be used generically as a semaphore by the software, it is called a storage bit so

-8-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

as not to be confused with the associated variable “semaphore”. In addition to
being associated with an input, semaphores, at least in one embodiment of the
invention are atomic, where as storage bits are not. Semaphores are referred to
as atomic because when a task running in an I/O unit accesses a semaphore, no
other tasks can access it until the first task is complete allowing for atomic read-
modify-write access.

The word “timer” refers to an associated variable which is an entity (typi-
cally 16 bits) that counts down monotonically to zero with time and remains or
“sticks” at a value of zero until reset. In some embodiments, there is also an in-
ternal input called a “timer_count” which behaves the same way, and has it's own
associated variables of a semaphore and timer. In software terminology, all
names of structures (types) and their elements (associated variables) have unique
names. The ability to provide unique names for everything in a system with mulii-
ple I/O units provides in part for the distributed nature of a premises automation
system according to the invention.

For convenience, several other terms are used generally to refer to events
and equipment that affect a premises automation system according to the inven-
tion. An “input event” is a change in state at, the setting of, or reception of infor-
mation or data at an input, be it physical, or internal. A “local input’ or “local
output” is an input or an output at an 1/0O unit presently being discussed. Distrib-
uted inputs or outputs are those that are spread across the premises automation
system, and include local inputs and outputs, and remote inputs and outputs,
which are those on other I/O units. Premises-based apparatus is any physical
equipment that connects with the 1/O units, other than other, independent 1/O
units. Premises-based apparatus, however, could be physically combined with an
I/O unit. Examples of premises-based apparatus include personal computers,
Internet gateways, security, HVAC, or lighting controllers, and even sensors,
switches, keypads, and the like. Note that some devices might connect either di-
rectly to a packet I/O unit, or be connected through another controller depending
on how the user or installer designed the system. Thus, to use lighting as an ex-
ample, either a lighting controller, or a remotely activated light switch by itself can

be “premises-based apparatus. A premises-based event is an input event that

-0-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

results from communication from premises-based apparatus, and is often a real,
physical event that is sensed at a physical input.

FIG. 2 is a more detailed look at the elements in the object for a type
whose class is input. FIG. 2 is illustrated as a table and can be thought of as a
data structure. Elsewhere herein it is referred to as an input definition table. In-
puts shown in FIG. 2 correspond to both physical and internal inputs. Physical
inputs represent real, physical samples or measurements. These measurements
may have been processed by software on an /O unit. Such processing could re-
move some of the details of the physical device, or provide for correction of values
based on calibration data entered for an individual sensor. Other examples in-
clude the extraction of a data field from a serial protocol, or the conversion of an
infrared (IR) stream into a specific key press event. Internal inputs either mimic
physical inputs or are representative of data that is typically stored on a micro-
processor.

Each unique input identifier consists in this example of the unit number and
input number, shown in the columns labeled “UNIT #’ and “INPUT #” respectively.
For each input identifier, there are associated variables that exist. In the example
of FIG. 2, the sections of the table shown illustrate digital inputs, or internal inputs
that mimic digital inputs. Those shown are Inputs 1 and 2 of Unit 1, and Input 10
of Unit 2. Associated variables for a digital input include its last value, used to
determine if the input has changed and a semaphore that can be set by a scan of
a decision table data structure (explained later). There is a timer, which can be
set. The timer variable has a value written into it. The timer variable decrements
monotonically with time, with a constant period of time between decrements, until
it reaches a value of zero. Once the timer reaches zero, it is not decremented any
more. A timer that is hon-linearly decremented could also be used. For example,
a timer could be decremented logarithmically, or in a table-driven fashion. There
is also a task number. The task number allows the unit to activate a task (or pro-
gram) which knows how to deal with the input. For example, when an IR bit-
stream transitions, a timer can be started. When the timer reaches zero, a task
that knows how to interpret the IR stream could be notified. The task would ex-

amine the raw IR stream and then determine which key on the remote control was

-10-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

pressed. All of these examples are shown in FIG. 2 in the columns labeled “AS-
SOCIATED VARIABLES.” There are different types of associated variables for
other types of inputs, and the table can be much larger than the example here.
Note that a table stored in a packet I/O unit, can define inputs in other I/O units.
Assuming this table is stored in Unit 1, it can be observed that the last entry in this
table identifies an input in Unit 2. [t should be noted that the fields for associated
variable shown in FIG. 2 are optional, and are shown here merely as part of the
illustrative embodiment being described.

FIG. 3 illustrates a data structure which is called an input scan table or in-
put decision table. The purpose of the entries in the table is as follows. Periodi-
cally, a program on a packet I/O unit scans the table in a first entry to last entry
basis, and performs a test based on information in an entry to see if there has
been a change in an input. The program may need to refer to the input definition
table to determine when there has been a change. If the input has changed, then
the specified type of action is taken, again based on items stored in the entry in
the list. If the scan order of the list is in a specific sequence, such as first to last,
there are some advantages in the software knowing that the test for the indicated
types of changes are done in a specific order. In particular, it is possible to test for
a condition and set some variable, and then later on when going through the list,
that result can itself be used as part of a test. If the scan is done in a non-
specified order (say, one where other mechanisms caused the list fo be scanned
in a random or event driven fashion), this advantage is lost but the structure still
performs it's intended function. A specified order of scanning the table also pro-
vides for the concept of priority. When an input or event could result in more than
one action, a priority can be established regarding which action should be taken
first. The columns of data in the table give the unique input identifier, including a
UNIT # and INPUT # as before. Each input in this table also has a type, such as
digital, analog, etc. The type is not shown in FIG. 3. In the example embodiment
described here, it is stored once in a separate look-up file to be described later,
but it can be added to this scan table instead.

The next column of data in an entry is a specification of the TYPE OF

CHANGE that the input has to have seen in order to have a specified action oc-

11~

10

15

20

25

30

WO 02/103539 PCT/US02/17944

cur. The exact manner in which the type of change that has occurred is deter-
mined is dependent on what type the data is. The number of comparisons that
can occur is pre-determined by an /O unit's software, which has specific and
unique codes for each type of comparisons. Each type has certain operators that
it supports, which may be unary or binary in nature, and may or may not have ad-
dition arguments.

The last column of data is the ACTION TO BE TAKEN if it is determined
that the specified input has changed as specified. There are a variety of packet-
based actions which can be taken, representing all the different physical means
and protocols than can be used by the packet I/O unit to communicate with one or
more programs or processors on the network. It is also possible to take actions
on internal variables, these actions being primarily assignment of values to other
variables. These variables include both actual internal variables and the associ-
ated variables of any input identifier. Thus, following the example of FIG. 3, if a
certain serial string is received at Input 1 of Unit 3, a broadcast packet is sent. Ifa
certain percent change in the analog value at Input 2 of Unit 3 is recorded, a di-
rected packet to a specific address is sent. If a digital value decreases a specified
amount at Input 3 of Unit 3, a semaphore (an associated variable of some input) is
set. Finally, a bit input change at Input 10 of Unit 4 again results in a directed
packet.

It is a software implementation decision as to how many actions are al-
lowed in an entry in the scan table data structure. In this example, there is only
one, and if multiple actions are to be taken (such as sending a uniform data proto-
col packet, sending an Email, and setting a timer) there are multiple entries with
identical input identifiers and TYPE OF CHANGE descriptions. It should be noted
that in the example embodiment of FIG. 1, the input scan table is only present in
the packet I/O unit, which processes inputs for itself and its associated peripheral
units, as though each peripheral unit was an extension of the packet I/O unit.
Thus, it can be assumed for purposes of these example embodiments that any
unit numbers not corresponding to the packet I/O unit containing the table corre-

spond to peripheral 1/O units. However, the invention is not limited to this archi-

-12-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

tecture. It would almost certainly be possible to devise a system in which periph-
eral units contained decision scan tables.

FIG. 4 illustrates the concept of including in an I/O unit a file or files which
includes a table in which each entry has multiple fields. In this embodiment, each
entry has three fields. The first field is the input or output identifier, as before.
The second field is the type of the input or output of an entry, with samples of the
types shown on in the column under “TYPE OF I/O.” This is where types can be
stored once for use throughout the system, including when decisions are made
based on the input scan table previously discussed. Note that the type field could
be omitted if the type were always stored with the identifier. The types of inputs
shown in FIG. 4 are, respectively, a digital input, an analog input that can take on
a specific range of values, a semaphore, and another analog input.

An optional third field in each entry is shown under the STRING NAME col-
umn, an alphanumeric string identifier for the input. In one embodiment of the in-
vention, a similar table or file exists for inputs and outputs, although, these could
be combined into one file with appropriate additional fields. The alphanumeric
character strings provide the ability for outside systems or maintenance personnel
to discover information about the inputs and outputs in the system electronically.
A designers or installer of a system will presumably store in the file intelligent
names that help explain the precise function, location, and type of an input. As
such, it is not necessary to have cumbersome numeric tables. Maintenance and
debugging time for a premises automation system is reduced using a file of this
sort, because, for example, Input 1 on Unit 4 represents that an outside door is
open. Likewise, it is known that Input 2 on Unit 4 receives temperature readings
for the downstairs, and Input 11 on Unit 5 receives outside temperature readings.
In this example, an internal variable serves as an internal input, Input 3 of Unit 4,
representing the home or away status of a house. The file of FIG. 4 can be cre-
ated locally via a local connection (serial port) with software resident on the unit,
or the Internet via a file transfer mechanism such as the file transfer protocol or
secure file transfer protocol (FTP or SFTP).

FIG. 5 infroduces a data structure herein referred to as an output scan ta-

ble or output decision table. The decision process implemented by this structure

13-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

is similar to the process discussed with respect to FIG. 3, and in fact may be im-
plemented by the same body of software. In this embodiment, the unique input
identifier shown in the first two columns always refers to an internal input, al-
though this internal input can be an internal variable that is an associated variable
of a physical input. The purpose of this scan table, in part, is to specify output
changes based on changes in internal inputs. In this embodiment, a physical in-
put never directly affects a physical output. This is important to maintaining the
distributed nature of a premises automation system according to the invention.
Changes to physical inputs must always be seen by processors on the network,
outside of the I/O units, without being acted on, at least initially, by any /O unit. It
should be noted that systems which use some elements of the invention and
some elements of a more ftraditional, centralized processor-based automation
system could be devised. In such a case, at least some outputs could not be
changed directly through a change at an input.

The next field in each entry is shown in the column labeled “TYPE OF
CHANGE" and is the type of variable change being tested. As with the input scan
table of FIG. 3, the comparison made and operator used is dependent on the type
of input. There can optionally be two checks done instead of just one. The next
columns specify the output action to take if the indicated type of change has oc-
curred. Recalling that an output identifier refers to anything that can be written
including both physical outputs and any settable internal variable, therefore the
output action can effect real changes or just change variables. The “UNIT #" and
“OUTPUT #” columns form an output identifier for each entry. The next field,‘ la-
beled “VALUE” in FIG. 5 gives the value that is to be stored in or sent by the out-
put.

There are also optional fields shown in FIG. 5 for changing a specified in-
put's associated variables. These inputs can be physical or internal. These op-
tional fields are shown in the third column to be labeled “UNIT # that is for an
input identifier, and in the columns labeled “ANY INPUT #”, “VAR." for the associ-
ated variable, and “ACTION” which describes how to change the associated vari-
able. In a manner similar to the input scan table, the entries in the output scan

table are processed one after another. If the type of change has occurred, the

-14-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

specified output action occurs. The order of processing could be random, but
again if the order is specified there are certain advantages with regard to factoring
complex output actions and establishing priorities of execution. As before, there
could be additional fields to specify compound actions. Also, as before, the output
scan table would typically, though not necessarily, be resident only on a packet
I/0 unit, and not on any peripheral units.

The entries shown in FIG. 5, from top to bottom, direct the premises auto-
mation system as follows. In the first entry, when a time string at input 17 of unit 1
reaches a certain value (at a specific time of day), output 4 of unit 2 is set to a
value of “256.” In the second entry, if a counter that serves as input 18 of unit 1
reads zero (or negative), output 2 of unit 3 is set to 0, and the semaphore associ-
ated variable at input 5 of unit 2 is cleared. In the third entry, if bit input 19 on unit
1 is “1” then output 12 of unit 2 is also set to “1.” Finally, if bit input 20 on unit 3 is
a “0” then output 15 on unit 1 is set to a value of “256,” and a timer associated
variable of that same input, input 15 of unit 1, is set to 30 seconds.

FIG. 6 illustrates an example of the. previously mentioned “input aliasing”
mechanism that generates a special type of internal variable called a “virtual in-
put.” This mechanism might be used, for example, to take single bit, physical in-
puts that represent the status of each of the outside doors in a home, as
determined from magnetic reed switches on the doors, and combine them into
one virtual input which represents whether any outside door is open. This func-
tionality is achieved via a number of variable length entries, 601, in a table, which
is part of the data structure that implements this feature in some embodiments of
the invention. Each entry has at least one, and up to some finite number
(bounded by the processor constraints of memory and speed) of entries. Each
entry consists of a unique input identifier, which serves as the first operand in the
entry, an operator, which can have object-oriented properties, and a second oper-
and which can be either another unique identifier or a fixed value.

The entries in table 601 are all evaluated, producing a Boolean result of
one or zero (or “True or False”) for each. Then, all the results are combined using
a logical relationship specified and stored at 602. Typical logical relationships are

“All are True”, “Any is True”, and “None are True.” Other logical relationships,

-15-

10

15

-20

25

30

WO 02/103539 PCT/US02/17944

embodying concepts like “most are true” can be added as needed. The end result
of the entire list of entries is a single Boolean outcome, which is the virtual input,
and which is stored at storage bit 603. [f the resultant single Boolean outcome is
true, then a variable designated by a unique output identifier can be directly modi-
fied. Specifically, the identifier can be of a type of storage bit or semaphore asso-
ciated with an internal variable. The bit can be set, toggled or cleared.

Note that this aliasing mechanism is a more complex set of logical relation-
ships than those supported solely by the decision table structures previously dis-
cussed. Note also that the result is a single bit, which potentially changes if any of
the operands in table 601 change. Note also again that outputs are not changed
with this mechanism in the embodiment described here, for the same reasons as
previously discussed in connection with physical inputs and physical outputs. The
order in which the table entries are evaluated could be random. If the entries are
evaluated in a specified order, however, some benefits are realized. For example,
if the order is from first entry to last, then the software, which creates table 601 -
can take into account compound and complex expressions with specific prece-
dences (such as parenthetical expressions). A “higher priority” can be placed on
relationships “inside the parenthesis” and internal variables of a temporary nature
can be initially set, followed by computing the remainder of the expression. Such
a “compiling” phase of creating this table, analogous to a C-language compiler
analyzing an expression and producing a linear set of computations in the correct
order, allows the aliasing mechanism to handle very complex “IF” type statements.
In this embodiment, there is no “THEN" function or field in this mechanism. All
that can be done is to note the outcome of an “IF”. Once the internal variable is
set, other pieces of the system, most notably the decision table structures previ-
ously discussed, can detect a change and then effect an action. An input aliasing
mechanism in this example embodiment could be present on the packet I/O unit,
on one or more peripheral units, or on both.

In the specific example of FIG. 6, the value at input 5 of unit 1 is combined
with the fixed value 256" according to an operator. The value at input 6 of unit 1
is combined with the value at input 2 of unit 1 according to an operator. The value

at input 15 of unit 2 is combined with the value at input 15 of unit 3 according to an

~16-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

operator. Finally, the value at input 16 of unit 2 is combined with a fixed value of
“32.” Although the operators can have object-oriented properties, they can be as
simple as “=", “<”, “>" and the like. An additional “action to be taken” field can be
added to the input aliasing mechanism. Adding this field is simply a convenience
and avoids an entry in the decision scan table data structures. One could add
multiple action fields to optimize the table based on knowledge of a specific type
of configuration that is found frequently enough to warrant additional action fields.

FIG. 7 illustrates the format for packets received by an I/O unit for the pur-
pose of effecting a change in an output in an example embodiment of the inven-
tion. The packet has a unique output identifier, 701, that has a specific type.
Field 702 contains instructions for the desired change for the output specified by
the unit number and output number in field 701. The change can be applied to
physical outputs, or internal variables, if the internal variables are assigned a
unique output identifier. Field 703 can include instructions to change an associ-
ated variable for an output if associated variables are allocated to an output, since
the type designations are consistent for inputs and outputs.

In setting a variable, one can set a parameter for a software program resi-
dent on the I/O unit, such as a desired temperature for a room. Software on the
I/0 unit may then control a variety of outputs, and sample a variety of inputs to
achieve the temperature setting. A task can be enabled for running, 6r disabled
from running. In this fashion, tasks may be stopped, variables for the task set,
and then the task can be enabled for running again. This is the inverse situation
to that in which inputs are scaled, adjusted for calibration factors, and processed
in software prior to the value being read for processing by the main I/O unit archi-
tecture (such as an analog input being sampled to reduce noise). An I/O unit ac-
cording to the example embodiments of the invention communicates with the
various controlling tasks being executed within it in specific data types. The unit is
responsible for translating, adjusting or controlling the actual inputs and outputs to
achieve this communication. In much the same way that a computer on a network
passes an IP packet to the lower layers in an open system interconnect (OSlI)

model, an /O unit according {o the invention can take the variety of different sen-

-17-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

sors, output relays, inputs, and the like, and create hardware independent values
associated with each type.

The output packet command format as shown in FIG. 7 provides for an op-
tional ability to change the associated variables of a specified input. Optional
fields 703 include a unique input identifier 704, as well as the name of the vari-
able, 705, and a new value to which to set the variable, 706. Fields for muitiple
variables can be added. Note that two packets could have been sent: one to ef-
fect the output and one to modify the associated variables of an input. For rea-
sons of network efficiency to simplified timing constraints on managing
semaphores, the illustrated format allows both outputs and input variables to be
specified in the same packet. A system would most likely be designed so that
output packets are received and processed by a packet I/O unit. In this case, the
packet 1/0O unit might direct the setting of an output on a peripheral /0 unit. But, a
system could be designed so that other I/O units could also receive and process
output packets directly.

With the above descriptions of the overall system architecture and data
structures in mind, the software which runs in each I/O unit to operate the unit and
manage tasks can be described. In the example embodiments shown in this dis-
closure, software in a unit resides in electronic memory, that is, a combination of
types of read-only memory (ROM) and random access memory (RAM). Other
types of memory devices can be used. For example, a fixed disc drive or optical
memory device could be included in some or all of the units. In any case, each
unit includes an operating system. The operating system in this exampie em-
bodiment is a non-preemptive, multitasking operating system with good real time
characteristics. The operating system architecture should allow a response time
to events in the millisecond range. Other operating systems, or a large, single
control program can be used.

If no media devices are used in the operating system, the operating system
does not require any file system. All that is required is I/O functions and schedul-
ing. Each task running in the operating system is responsible for establishing the
conditions under which it can be run. Therefore, each task controls its own

scheduling. Scheduling is performed by the task, not the operating system.

18-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

Scheduling is non-preemptive and system calls are made to access registers and
I/0. In the example embodiments shown in this disclosure, the operating system
software resides in flash ROM. The operating system can be written and updated
on a personal computer or workstation. The personal computer or workstation
can interface to an 1/O unit in diagnostic mode via a serial port, network, or other
suitable interface.

Figures 8 through 12 illustrate many of the software processes imple-
mented by a combination of operating system and task software running in a
premises automation system according to an embodiment of the invention. Figure
8 is flow chart that illustrates the process of scanning decision tables and re-
sponding to events using the previously described data structures. At step 801, a
packet I/O unit is initialized and begins to continuously scan input and output scan
tables. If an input scan table action is detected, it is detected at 802. If an output
scan table action is detected, it is detected at 803. If neither is detected, the ta-
bles are scanned until an event occurs. In case of an input scan table action, the
action specified in the table is performed at step 804. It should be noted that this
action could be “no action” otherwise known as a null. For example, this might be
the case if the table entry was insérted simply to set internal variables. In any
case, the packet /O unit involved makes a determination based on the table en-
tries as to whether internal variables need to be set at step 805. If so, the vari-
ables are set at step 806. As previously discussed, these variables might include
timers and semaphores in the output scan table. If an output scan table action is
detected at step 803, the appropriate output is set at step 807. In this case, it may
also be necessary to update variables in one or both of the tables. This update
occurs at step 808. Processing continues with the further scanning of the tables
until another change is detected that requires action.

There is a useful algorithm that can be implemented with the process of
FIG. 8 and the data structures previously discussed. This algorithm is illustrated
in FIG. 9. While in this example, the algorithm is implemented with the data
structures illustrated in this disclosure, the same algorithm could be implemented
by other means, in premises automation systems that work on different principles

than those discussed in this disclosure. At 901 a packet I/O unit according to the

-10-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

invention or other premises automation device is waiting and as of yet has not
detected any changes. At step 902 a change in an input occurs. At step 903 a
packet is sent over the network in response to the event. With the system of the
invention, this packet would most likely be a broadcast uniform datagram protocol
(UDP) packet to all units on an Ethernet network. Depending on the particular
system design, however, other types of packets or communication messages
could be sent as a response. In the particular embodiment of the invention that
has been illustrated, the sending of this packet would be dictated by the input
scan table. At step 904 a determination is made as to whether a reply to the
packet is expected. If so, at step 905 a timer is set. If the particular embodiments
previously described are employed, the timer and semaphore variables specified
in an input scan table are set. The chain of events thus far constitutes a logical
sequence as follows. All systems on the network have been notified that a spe-
cific input has transitioned. An expected reply is noted, and a timer has been set
into motion.

There are now two possible scenarios. These scenarios correspond to two
possible outcomes that are significant to the operation of the premises automation
system. The first outcome is that one or more programs running on one or more
processors on the network sends a reply that is designed to direct the unit which
detected the input to handle the event. With the specific embodiments discussed
thus far, this reply would most likely be an output command packet as illustrated in
FIG. 7. Such a packet would initiate a change in an output, designed to commu-
nicate to premises-based apparatus to cause the event to be handled. With the
particular embodiments of the invention described thus far, this packet would also
clear the semaphore and may also clear the timer. This process would, in effect,
consume the input event that occurred when the physical input transitioned. In
the flowchart at FIG. 9, the response is received at step 906 and the semaphore is
cleared at step 907. As just discussed, the timer might also be cleared at step
907.

The other possible outcome is that no process on the network deals with

the event, either due to having no ability to deal with it, or due to a failure in the

software, processor, or network. In this case, the timer times out at step 908. The

-20-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

controller or unit which is processing the event would then take a default action at
step 909, if the semaphore was still set, as it would be in this example. The algo-
rithm illustrated in FIG. 9 therefore enhances the reliability of a premises automa-
tion system, by allowing certain default actions to take place in the event of a
failure. Using the specific embodiments of the invention previously discussed, the
default action would be caused when a packet /O unit made its next pass of the
output scan table data structure. An entry would specify the unique input identifier
associated with the input that transitioned, and would also specify the semaphore
being set and the timer at zero to both be true in order to change an output. The
timer and semaphore could both optionally be cleared at fchat time. Also note that
the timer can serve as the semaphore. In such a case, the semaphore would be
considered to be set to one state when the time reads zero, and to another state
when the timer has a non-zero value.

It should be noted that the “default action” as described above can take
many forms other than setting an output. It can include sending Email or other
packets on the Internet. It can even be the sending of the original packet re-
sponse again after a specified time interval, or the initializing or setting into motion
of a process whereby the packet is re-sent or “retried” repeatedly at regular inter-
vals. This process can continue until a reply is finally received or until a timer
measuring some longer time prior times out. Another possibility would be to set a
process into motion that continually “pings” the unresponsive device until it is de-
termined that the device is available and can handle an event again.

Returning to the specific embodiments of the invention, it is important to
note that there can be multiple processes on multiple platforms on the network
exercising control. These processors can effect different actions depending on
their function, for example security, lighting, or HVAC. Any of the processes may
clear a semaphore bit. Because the processes are independent, changes can be
made in the event driven response/reply without changing any other processes on
the system. This type of distributed control greatly enhances the versatility, and
upgradability of a premises automation system using the invention. It is important
however for a person setting up a system based on the invention to account for

possible negative affects of the independence of the various processors on the

21-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

network. For example, one process or can turn a light on, while another turns the
same light off. One of ordinary skill in the art can easily manage and take into ac-
count these potential conflict situations so that they do not cause problems.

There could be another entry in an associated variable section of a scan
table that stores the average time it takes for an external process to respond to
the specified input change. A timer variable could then be intelligently and adap-
tively set. This would help ensure response times to events that would be accept-
able to the average user of the automated premises.

The disclosed premises automation system not only continues to operate
without intervention from control processors if necessary, but can do so with a
reasonable degree of features and functionality. An installer can add programs on
a variety of platforms to the network that add additional, enhanced, or new func-
tionality. In effect, when these programs consume events, they override the base
level of fall-back programming in the 1/0 units. In addition, a variety of programs
can be used to control the premises. In much the same way that a personal com-
puter has special programs for word processing, financial analysis, web browsing,
etc., a premises that is automated with the present invention can have specialty
programs for different aspects of premises automation, and those programs can
be executing on the same or different platforms or on the network, including the
global Internet.

Turning to FIG. 10, a flowchart is shown which illustrates how an /O unit in
a premises automation system according to the invention responds to an output
packet. At 1001 the unit is waiting for either an input change or a packet to be re- |
ceived over the network. At 1002 an output packet is received. At step 1003 the
output packet is parsed, and a determination is made as to whether an output
needs to be changed in response to the packet. An output may not need to be
changed if, for example, the packet was only sent to effect a change in associated
variables. At step 1004 the output state of the specified output is changed as
specified. An output identifier corresponding to the output is present in the packet
when received, and can be read by the /O unit. The specific change in state re-

quired is also encoded in the packet. The output is set in accordance with the

-22-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

output identifier and the change of state indicated in the packet typically in order to
communfcate with premises based apparatus.

As previously discussed, an output packet like that shown in FIG. 7 can
also direct changes to an internal variable or variables associated with an input.
At step 1006 of FIG. 10, such a change is made if it is determined that such a
change is specified in the packet at step 1005. In either case, the appropriate
output to be changed, and the appropriate associated variables to be changed,
are determined by the presence of the corresponding unique identifiers within the
output packet.

Of course, processor controlled apparatus which may be connected to the
premises automation system can generate output packets to be sent to I/O units
over the network. The processor controlled apparatus can be a home automation
input device such as a keypad or infrared transmitter, or even a personal com-
puter or work station connected to the premises automation system. In the latter
case, the computer system of interest is running home automation software, which
serves to direct the computer system to generate output packets as well as per-
form other functions related to premises automation. FIG. 11 illustrates a software
flowchart for the output packet creation and sending process according to an em-
bodiment of the invention. At step 1101, an event occurs which requires a change
in the system status, such as a change in an output or the setting of a process in
motion which involves manipulation or changes to internal variables in one of the
I/0 units. Often, such a change in status will be the result of human intervention,
such as making an entry on a keypad, or selecting a particular function on a per-
sonal computer software application. The change might simply be that a certain
time-of-day (TOD) has been reached. At step 1102 the apparatus which is to
send the packet determines, most likely through the use of software or program
code, which output needs to be changed and exactly what the change in state of
the output should be. If associated variables at an input need to be changed, that
determination is made also. As before, inputs and outputs are specified by their
unique identifiers that are known to the software involved. At step 1103 the output
packet is assembled, including the appropriate output identifier corresponding to

the output which is to be changed and a description of the appropriate change in

203

10

15

20

25

30

WO 02/103539 PCT/US02/17944

state. The optional associated variable change fields in the packet will be popu-
lated as necessary at this step. Finally, at step 1104 the output packet is sent
over the network, addressed and formatted to direct the change of state as re-
quired. In many cases this change of state is designed to effect communication
with premises based apparatus such as security systems, lighting systems, or
HVAC controllers.

FIG. 12 is a hardware block diagram of an 1/O unit according to one em-
bodiment of the invention. FIG. 12, by way of example, shows the design of a
packet /O unit. However, a peripheral unit’'s design is similar, except possibly for
reduced amounts of memory, inputs and outputs. A peripheral unit might aiso not
have the telephone interface components and may not have an Ethernet interface,
communicating instead solely through the PUE bus with its packet /O unit. It
cannot be over-emphasized that the hardware description shown here is shown
as an illustrative example only. An /O unit that implements the inventive concepts
described herein can be built according to any of many possible hardware de-
signs. Also,.a system could be designed so that any particular. interface unit con-
tains only inputs, or only outputs. In either or each case, the inputs or outputs or
both can still be addressed using a unique identifier systems discussed herein.
The 1/O unit of FIG. 12 includes a central processing unit (CPU), 1201, ROM or
flash ROM memory 1202, RAM 1203, and non-volatile storage. In the example of
FIG. 12, the non-volatile storage is an electrically erasable programmable read-
only memory (EEPROM). The unit illustrated in FIG. 12 also includes a clock with
a power backup system, 1205, and a power supply with an optional internal or
external backup battery, 1206. The unit of FIG. 12 essentially consists of a proc-
essor system including the CPU and memory and a plurality of local inputs and
outputs operatively connected to the processor. At least one network interface
capable of communicating with internet protocol (IP) based equipment is desir-
able. Inthe example in FIG. 12, Ethernet interface, 1207, provides this function.

Special, bi-directional 1/O interfaces include serial interface 1208, interface
1209 to specialized networks of the user’s or implementer's choosing, and the in-
terfaces to more traditional home automation type low level signaling networks,

1210 and 1211. Bi-directional /O interfaces are treated as inputs within the

Ly

10

15

20

25

30

WO 02/103539 PCT/US02/17944

unique identifier designation scheme of the invention in this embodiment. How-
ever, these could be treated as both inputs and outputs by applying a unique
identifier to them for each function. A modem interface (dial-up, cable, DSL, etc.),
1212, can be optionally provided if Internet access is needed. The plurality of lo-
cal inputs in the unit of FIG. 12 includes digital inputs 1213, analog inputs 1214,
and infrared (IR) receivers 1215. The plurality of local outputs for the unit of FIG.

12 includes digital outputs 1216, analog outputs 1217, and an infrared transmitter

or infrared output 1218.

Peripheral unit expansion bus interface 1219 is also shown. As previously
discussed, the PUE bus runs a protocol that is used to communicate with other,
usually smaller, peripheral /O units. In this embodiment, the PUE bus runs on
two pairs of conductors; a power pair and an RS-485 type communications pair.
Sar%ple rates of less than 60 hertz are generally adequate for this interface. The
protocol for the PUE bus is half-duplex. Frames of information sent over the bus
include source and destination addresses, length information, payload informa-
tion, and check sums. The payload can be used to encapsulate data or packets
from other parts of the system. For example the payload can be an output packet
as described in FIG. 7. Frames of information exchanged on the PUE bus can
also include a simple payload designed to directly control a very small microproc-
essor, which may be all that is required on some low function peripheral /O units.

X10 interface 1210 is used to interface to an X10 system. X10 is a well-
known system for controlling devices via a signal superimposed over existing 120
volt wiring. In this embodiment, the X10 interface can connect directly to a mod-
ule that injects a carrier on the power line to implement X10 control. Software or
hardware in the 1/0O unit can also derive a raw bit stream from X10 commands re-
ceived over interface 1210.

Interface 1211 is used to connect to a family of devices manufactured and
marketed by the Dallas Semiconductor Corporation known as 1-Wire™ devices.
These devices use a signal wire carrying both power and signaling. Interface
1211 performs parallel to serial conversion and ensures correct timing of signals

received from a 1-Wire system.

-25-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

It is convenient to provide for the generation of multiple different voltages
by power supply 1206. Power should be provided for relay drivers, audio circuits,
and digital logic. The power supply is also designed to trickle charge a backup
battery. The power supply in the embodiment of FIG. 12 also includes connec-
tions to an analog-to-digital (A/D) converter on the main microprocessor for the
unit. The A/D converter is used to monitor for failures. The power supply also in-
cludes a temperature sensor that can be read by the CPU to ensure that the unit's
power supply is not running too hot.

Connections for telephone equipment are provided by telephone interface
1220. The interface includes circuitry for detecting ringing, detecting an off-hook
condition, effecting line pickup, reading dual tone multifrequency (DTMF) signal-
ing, and routing baseband audio. The unit can also provide for caller-ID. When a
call comes in, the ID of the caller can be reported on the network. Programs can
be run on the network that can determine if the call should be allowed to ring in-
side the premises. This function could be used for call screening, or to provide a
“do not disturb” function.

The digital inputs and outputs, 1213 and 1216 in FIG. 12, respectively, can
each include multiple discrete inputs or outputs. Each input and output has two
wires. One wire is ground, and the other is the signal. These inputs and outputs
may include over voltage and reverse voltage protection, as well as filtering for
radio frequency (RF) interference. Software processes inputs using user or in-
staller provided information regarding transition rates. User or installer supplied
information is also provided to dictate whether a digital output is connected to a
relay. If a particular output is to be connected to a relay, there is a small manda-
tory delay imposed when’ switching occurs. This delay prevents excessive relay
wear if the I/0 unit attempts to switch the relay at an excessive rate due to a mal-
function.

Analog inputs 1214 are addressable through the unique identifier system
discussed. These inputs are connected to an A/D converter. The converter has
twelve bits of resolution in this embodiment. The reference voltage is four volts.
The reference voltage is measured at the time a unit is manufactured and entered

into non-volatile memory. Software can then correct readings from the analog to

-26-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

digital converter in order to calibrate the unit. The analog inputs can be used for a
variety of analog input data, including temperature measurements.

Analog outputs 1217 are connected to a digital-to-analog (D/A) converter
which also has twelve bits of resolution in this embodiment. Among other things,
the analog outputs can be used for the audio output of synthesized speech.
Speech can be stored in the unit in a variety of file formats depending on the soft-
ware. If personal computer “wave” files are employed, it is advantageous to store
the speech in the I/O unit at approximately 1/4 of the audio compact disc rate, or
11.025k samples per second. This allows speech to be digitally mixed in with CD
audio.

Infrared (I/R) receive interface 1215 is designed to connect to standard in-
frared receivers. Infrared outputs 1218 can drive IR LED’s directly. The IR out-
puts can be activated directly by software. These are also considered inputs and
outputs that can be addressed by the unique identifier scheme previously dis-
cussed. Using IR capabilities, multiple units could be connected together and a
virtual IR crosspoint switch could be created. A receiver or separate logic can be
programmed to oversample an IR bit stream received. This would allow the com-
putation of the carrier frequency. Therefore, an /O unit could determine the IR
code it received and broadcast the code in a packet over the Ethernet to all other
units. The other units could then determine if it was necessary to route the IR
code to a specific output.

The memory in an /O unit of the present embodiment is organized as fol-
lows. The flash memory, 1202, is used for the operating system, speech, field
programmable gate array (FPGA) images, and scan table data structures.
FPGA'’s are used to implement some of the functions of the unit in some embodi-
ments. An “image” or program for an FPGA is loaded into the FPGA at power-up
as part of a boot-up sequence. RAM 1203 is used for storing task information and
buffer data. EEPROM 1204 stores system information, configuration information,
and calibration data. The sizes of memory used in an 1/O unit, even the packet
I/O unit, are not required to be particularly large. Two megabytes of flash mem-
ory, 128 kilobytes of RAM, and 4 kilobytes of EEPROM has been found to be

adequate. Of course, additional memory could be used to provide additional

-27-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

function and features. Initial routing tables using unit numbers can be stored in

. either EEPROM or flash memory. These can optionally be loaded into RAM after

boot-up and modified by software for more current or complex routing.

FIG. 13 is a hardware block diagram of an example processor controlled
apparatus for connection to a system including the 1/O units described herein.
This particular apparatus is enabled to send output packets into the system to ex-
ercise control over premises automation functions. The apparatus contains a
processor or CPU, 1301. Storage devices, in this case various types of hardware
memory, are included, and are operatively interfaced to the processor. The mem-
ory includes flash ROM 1302, RAM 1303, and EEPROM 1304. These memory
devices perform a function for the apparatus of FIG. 13 similar to the function they
provide for the packet 1/O unit as discussed with reference to FIG. 12. Flash ROM
1302 typically stores programming information. RAM 1303 is used for buffering.
EEPROM 1304 is used to store configuration and similar information. Power for
the device is provided by power supply 1305. A network connection, 1308, is pro-
vided to communicate with the premises automation system. In this example, an
Ethernet connection is provided.

Application specific hardware 1307 is provided. This hardware varies
greatly depending on the particular function of the device. For example, if the de-
vice is a keypad entry unit for providing human input to the system, the application
specific hardware might include a keypad, a liquid crystal display, and accompa-
nying, supporting circuitry. It should be noted that the hardware platforms de-
scribed herein can be combined with other, well known, traditional apparatus to
produce intelligent devices for the home. For example, an 1/O unit could be com-
bined with an Ethernet hub. An 1/O unit could also be combined with a home en-
tertainment device such as a satellite receiver, cable box, audio/video server,
database server, or a digital video recorder. Processor controlled apparatus like
that shown in FIG. 13 could be combined with any of the above. It would also be
particularly suitable to be combined with or included in a home appliance. A con-
troller such as an HVAC controller or lighting controller can be combined with a
peripheral 1/O unit so that the inputs and outputs of the controller are effectively

treated as distributed inputs and outputs of the premises automation system.

28

10

15

20

25

30

WO 02/103539 PCT/US02/17944

FIG. 14 illustrates another type of processor controlled apparatus that can
interface with an I/O unit over a network to issue output packets and exercise
other control over the system. FIG. 14 illustrates the detail of the computer sys-
tem that is programmed with application software to implement these functions.
System bus 1401 interconnects the major components. The system is controlled
by microprocessor 1402, which serves as the central processing unit (CPU) for
the system. System memory 1405 is typically divided into multiple types of mem-
ory or memory areas such as read-only memory (ROM), and random access
memory (RAM). A plurality of general-purpose adapters or devices, 1406, is pre-
sent. Only two are shown for clarity. These connect to various devices including
a fixed disc drive, 1407, a diskette drive, 1408, and a display, 1409. Computer
program code instructions for implementing the appropriate functions are stored
on the fixed disc, 1407. When the system is operating, the instructions are par-
tially loaded into memory, 1405, and executed by microprocessor 1402. An addi-
tional adapter device, network adapter 1403, connects to the premises network, -
1410. The network in turn connects to one or more /O units according to the in-
vention, 1411. It should be noted that the system of FIG. 14 is meant as an illus-
trative example only. Numerous types of general purpose computer systems and
workstations are available and can be used. Available systems include those that
run operating systems such as Windows™ by Microsoft, various versions of
UNIX™, various versions of Linux™, and various versions of Apple’'s Mac™ OS.

In any case, a computer program which implements parts of the invention
through the use of a system like that illustrated in FIG. 14 can take the form of a
computer program product residing on a computer usable or computer readable
storage medium. Such a medium, a diskette, is illustrated graphically in FIG. 14
to represent the diskette drive. The medium may also be a stream of information
being retrieved when the computer program product is “downloaded” through a
network such as the Internet. Indeed, as previously discussed, many of the appa-
ratus involved in carrying out the inventive concepts presented herein would rely
in at least some embodiments on program code or microcode of some type. Any
or all of this code can reside on any medium that can contain, store, communi-

cate, propagate, or transport the program for use by or in connection with an in-

-29-

10

15

WO 02/103539 PCT/US02/17944

struction execution system, apparatus, or device. The computer-usable or com-
puter-readable medium may be, for example but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
device, or propagation medium. Other examples of the computer-readable me-
dium would include an electrical connection having one or more wires, a portable
computer diskette or portable fixed disk, an optical fiber, a compact disc read-only
memory (CD-ROM), and a digital versatile disc read-only memory (DVD-ROM). |
Note that the computer-usable or computer-readable medium could even be pa-
per or another suitable medium upon which the program is printed, as the pro-
gram can be electronically captured, via, for instance, optical scanning of the
paper or other medium, then compiled, interpreted, or otherwise processed in a
suitable manner, if necessary, and then stored in a computer memory.

Specific embodiments of an invention are described herein. One of ordi-
nary skill in the computing and networking arts will quickly recognize that the in-
vention has other applications in other environments. In fact, many embodiments
and implementations are possible. The following claims are in no way intended to
limit the scope of the invention to the specific embodiments described above.

What is claimed is:

-30-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

CLAIMS

1. A method for providing a virtual input in a premises automation system,
the method comprising:

producing a plurality of Boolean results, one Boolean result for each of a
plurality of entries, each entry further comprising at least a first input identifier
serving as a first operand, at least one operator, and at least a second oper-
and;

applying a logical relationship to the plurality of Boolean results to pro-
duce the virtual input; and

setting a storage bit to correspond the virtual input.

2. The method of claim 1 wherein the second operand in at least one of the
plurality of entries is a second input identifier.

3. The method of claim 1 wherein the second operand in at least one of the
plurality of entries is a stored value.

4. The method of claim 2 wherein the second operand in at least one of the
plurality of entries is a stored value.
5. Apparatus for providing a virtual input in a premises automation system,
the apparatus comprising:
means for producing a plurality of Boolean results, one Boolean result
for each of a plurality of entries, each entry further comprising at least a first
input identifier serving as a first operand, at least one operator, and at least a
second operand:; “
means for applying a logical relationship to the plurality of Boolean re-
sults to produce the virtual input; and

means for setting a storage bit corresponding to the virtual input.

31-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

6. The apparatus of claim 5 wherein the second operand in at least one of

the plurality of entries is a second input identifier.

7. The apparatus of claim 5 wherein the second operand in at least one of

the plurality of entries is a stored value.

8. The apparatus of claim 6 wherein the second operand in at least one of
the plurality of entries is a stored value.

9. A method of responding to an input event in a packet-based premises
automation system, the method comprising:

detecting the input event by reference to a scan table stored in memory
specifying the event in association with an input identifier;

performing an action based on a description of the action which is stored
in the scan table in association with the input event and the input identifier;

determining if any internal variables need to be updated in conjunction
with the action performed; and

updating at least one internal variable if the at least one internal variable
needs to be updated.

10. The method of claim 9 wherein the input event is a change at an external
input and wherein the action comprises the sending of a packet on a network

wherein the packet is formatted to communicate the occurrence of the event.

11. The method of claim 9 wherein the input identifier is of a format that can

designate any of a plurality of distributed inputs.

12. The method of claim 10 wherein the input identifier is of a format that can

designate any of a plurality of distributed inputs.

13. Apparatus for responding to an input event in a packet-based premises

automation system, the apparatus comprising:

-32-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

means for detecting the input event by reference to a scan table stored

- in memory specifying the event in association with an input identifier;

means for performing an action based on a description of the action
which is stored in the scan table in association with the input event and the
input identifier; and

means for updating at least one internal variable in conjunction with
performing the action.

14. The apparatus of claim 13 wherein the means for performing further

comprises means for sending a packet on a network, the packet being formatted

to communicate the occurrence of the event.

15. A method of responding to a premises-rélated event in a premises auto-

mation system, the method comprising:

detecting the premises-related event by reference to at least one data
structure stored in memory specifying the premises-related event in associa- .
tion with an input identifier;

sending a packet over a network in response to the premises-related
event, the packet being formatted to communicate the premises-related
event;

if a reply to the packet is expected, a pre-determined time period has
elapsed, and the reply has not been received, performing a default action

specified in the at least one data structure.

16. The method of claim 15 wherein the at least one data structure com-

prises:

a first data structure including the input identifier associated with the
event, wherein the input identifier is of a format that can designate any of a
plurality of distributed inputs; and

a second data structure defining the default action.

-33-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

17. The method of claim 15 wherein performing the default action further

comprises setting an output.

18. The method of claim 16 wherein performing the default action further
comprises setting an output, the output being described by an output identifier of a
format that can designate any of a plurality of distributed outputs, the output iden-
tifier being stored in the second data structure in association with the default ac-
tion.

19. Apparatus for responding to a premises-related event in a premises
automation system, the apparatus comprising:

means for detecting the premises-related event in association with an
input identifier;

means for sending a packet over a network in response to the premises-
related event, the packet being formatted to communicate the premises-
related event;

means for waiting a pre-determined time period during which a reply is
expected;

means for performing a default action specified if the reply is not re-

ceived during the pre-determined time period.

20. The apparatus of claim 19 further comprising:
a first data structure including the input identifier associated with the
premises-related event; and

a second data structure defining the default action.

21. A method of setting an output in a premises automation system, the
method comprising:

receiving a packet over a network, the packet formatted to direct a

change in a state of the output, the output being interfaced to premises-

based apparatus;

-34-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

determining, at least in part from the packet, an output identifier corre-
sponding to the output, as well as the change in the state; and

setting the output in accordance with the output identifier and the change
in the state indicated in the packet in order to communicate with the prem-
ises-based apparatus.

22. The method of claim 21 wherein the packet is also formatted to direct a
change in an internal variable associated with an input, and further comprising

updating the internal variable in accordance with an input identifier in the packet.

23. The method of claim 21 wherein the output identifier is of a format that
can designate any of a plurality of distributed outputs in the premises automation
system.

24. The method of claim 22 wherein the output identifier is of a format that
can designate any of a plurality of distributed outputs and the input identifier is of a
format that can designate any of a plurality of distributed inputs in the premises

automation system.

25. Apparatus for setting an output in a premises automation system, the
apparatus comprising:

at least one output, the output operable to interface with premises-based
apparatus;

means for receiving a packet over a network, the packet formatted to di-
rect a change in a state of the output;

means for determining, at least in part from the packet, an output identi-
fier corresponding to the output, as well as the change in the state; and

means for setting the output in accordance with the output identifier and
the change in the state indicated in the packet in order to communicate with

the premises-based apparatus.

-35-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

26. The apparatus of claim 25 wherein the packet is also formatted to direct
a change in an internal variable associated with an input, and further comprising
means for updating the internal variable in accordance with an input identifier in
the packet.

27. The apparatus of claim 25 wherein the output identifier is of a format that
can designate any of a plurality of distributed outputs in the premises automation
system.

28. The apparatus of claim 26 wherein the output identifier is of a format that
can designate any of a plurality of distributed outputs and the input identifier is of a
format that can designate any of a plurality of distributed inputs in the premises
automation system.

29. An input/ou;cput (I/0O) unit for use in premises automation, the input/output
unit comprising:

a processor for controlling the operation of the 1/O unit;

a plurality of inputs and outputs operatively connected to the processor,
at least some of the inputs and outputs operable to communicate with prem-
ises-based apparatus;

a network connection; and

a memory connected to the processor, the memory encoded with pro-
gram code to enable the processor to control the operation of the 1/O unit to
send a packet over the network connection in response to a premises-related
event, the packet being formatted to communicate the premises-related

event.

30. The I/O unit of claim 29 wherein the memory device is further encoded
with program code that enables the I/O unit to wait for a pre-determined time pe-
riod during which a reply to the packet is expected, and perform a default action if

the reply is not received during the pre-determined time period.

-36-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

31. The I/O unit of claim 30 wherein the memory device is further encoded
with:

a first data structure including an input identifier associated with the
premises-related event, wherein the input identifier is of a format that can
designate any of a plurality of distributed inputs in a premises automation
system with multiple 1/0 units; and

a second data structure defining the default action.

32. The /O unit of claim 29 wherein the memory device is further encoded
with program code to enable the I/O unit to receive an output packet formatted to
direct a change in a state of a specific output and set the output in accordance

with an output identifier and the change in the state specified in the output packet.

33. The /O unit of claim 30 wherein the memory device is further encoded
with program code to enable the I/O unit to receive an output packet formatted to
direct a change in a state of a specific output and set the output in accordance
with an output identifier and the change in the state specified in the output packet.

34. The I/O unit of claim 31 wherein the memory device is further encoded
with program code to enable the I/0O unit to receive an output packet formatted to
direct a change in a state of a specific output and set the output in accordance

with an output identifier and the change in the state specified in the output packet.

35. An input/output (I/O) unit for use in premises automation, the input/output
unit comprising:

a processor for controlling the operation of the I/O unit;

a plurality of inputs and outputs operatively connected to the processor,
at least some of the inputs and outputs operable to communicate with prem-
ises-based apparatus;

a network connection operable to communicate with the processor; and

a memory connected to the processor, the memory encoded with at

least one data structure defining input events, and further encoded with pro-

-37-

5

10

15

20

25

30

WO 02/103539 PCT/US02/17944

gram code to enable the processor to control the operation of the 1/0 unit to
detect a specific input event by reference to the data structure and to

perform an action associated with the input event.

36. The I/0O unit of claim 35 wherein the input event is a change at a specific
external input and wherein the action comprises the sending of a packet over the
network connection and wherein the packet further comprises an input identifier
corresponding to the input event which is of a format that can designate any of a
plurality of distributed inputs in a premises automation system having multiple 1/0
units.

37. The 1/O unit of claim 35 wherein the input event is a change in a specific
internal input and wherein the action comprises the setting of a specific output in a

premises automation system which can have multiple I/O units.

38. An input/output (I/0) unit for use in premises automation, the input/output
unit comprising:

a processor for controlling the operation of the 1/O unit;

a plurality of outputs operatively connected to the processor, at least
some of the outputs operable to communicate with premises-based appara-
tus;

a network connection; and

a memory connected to the processor, the memory encoded with pro-
gram code to enable the processor to control the operation of the 1/O unit to
receive, over the network connection, a packet formatted to direct a change
in a state of a specific output that is operable to communicate with premises-
based apparatus and set the specific output in accordance with an output
identifier and the change in the state indicated in the packet in order to com-

municate with the premises-based apparatus.

-38-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

39. The /O unit of claim 38 wherein the wherein the output identifier is of a
format that can designate any of a plurality of distributed outputs in a premises
automation system containing multiple, interconnected 1/O units.

40. The /O unit of claim 38 wherein the packet also comprises an input
identifier and is further formatted to direct a change in a variable associated with a
specific input corresponding to the input identifier.

41. The V/O unit of claim 39 wherein the packet also comprises an input
identifier and is further formatted to direct a change in a variable associated with a
specific input corresponding to the input identifier, and further wherein the input
identifier is of a format that can designate any of a plurality of distributed inputs in

a premises automation system including multiple, interconnected 1/O units.

42. A method of controlling an output in a premises automation system, the
method comprising:

determining the output and that the output needs to change state in or-
der to communicate with premises-based apparatus;

assembling a packet including an output identifier corresponding to the
output, as well as the change in the state, wherein the output identifier is of a
format that can specify any of a plurality of distributed outputs in the premises
automation system; and

sending the packet over a network, the packet formatted to direct the
change in the state of the output to communicate with the premises-based

apparatus.

43. The method of claim 42 further comprising determining that a variable
associated with an input needs to change state, and wherein assembling the
packet further comprises the inclusion of an input identifier in the packet, wherein
the input identifier is of a format that can specify any of a plurality of distributed

inputs in the premises automation system.

-39-

10

15

20

25

30

WO 02/103539 PCT/US02/17944

44. Apparatus for controlling an output in a premises automation system,

the apparatus comprising:

means for determining the output and that the output needs to change
state in order to communicate with premises-based apparatus;

means for assembling a packet including an output identifier corre-
sponding to the output, as well as the change in the state, wherein the output
identifier is of a format that can specify any of a plurality of distributed outputs
in the premises automation system; and

means for sending the packet over a network, the packet formatted to di-
rect the change in the state of the output to communicate with the premises-
based apparatus.

45. The apparatus of claim 44 further comprising:

means for determining that a variable associated with an input needs to
change state; and

means for inclusion in the packet of an input identifier, wherein the input
identifier is of a format that can specify any of a plurality of distributed inputs
in the premises automation system.

46. Processor-controlled apparatus for connection to a premises automation

system, the processor-controlled apparatus comprising:

a processor for controlling the operation of the apparatus;

a network connection;

at least one storage device operatively connected to the processor, the
at least one storage device including program code to direct the processor-
controlled apparatus to determine that an output needs to change state, to
assemble and send over the network connection a packet including an output
identifier corresponding to the output, as well as the change in the state,
wherein the output identifier is of a format that can specify any of a plurality of

distributed outputs in the premises automation system.

-40-

10 -

15

20

25

30

WO 02/103539 PCT/US02/17944

47. The processor controlled apparatus of claim 46 wherein the packet fur-
ther comprises an input identifier corresponding to an input for which associated
variables are to be updated, and further wherein the input identifier is of a format
that can specify any of a plurality of distributed inputs in the premises automation
system.

48. An input/output (1/0) unit for use in premises automation, the input/output
unit comprising:

a processor for controlling the operation of the 1/O unit;

a plurality of inputs operatively connected to the processor, at least
some of the inputs operable receive communication from premises-based
apparatus; and

a memory connected to the processor, the memory encoded with pro-
gram code to enable the processor to control the operation of the /O unit to
provide virtual inputs through a data structure further comprising:

a description of a logical relationship;

a plurality of entries to which the logical relationship applies, each entry
producing a Boolean result on which the logical relationship operates to pro-
duce the virtual input, each entry further comprising:

at least a first input identifier serving as a first operand;
at least one operator; and
at least a second operand; and

a storage bit which corresponds to the virtual input.

49. The /O unit of claim 48 wherein the second operand in at least one of

the plurality of entries is a second input identifier.

50. The I/O unit of claim 48 wherein the second operand in at least one of

the plurality of entries is a stored value.

51. The /O unit of claim 49 wherein the second operand in at least one of

the plurality of entries is a stored value.

-41-

WO 02/103539 PCT/US02/17944

52. An input/output (1/O) unit for use in premises automation, the input/output
unit comprising:
a processor for controlling the operation of the 1/O unit;

5 a plurality of inputs operatively connected to the processor, at least
some of the inputs operable to receive communication from premises-based
apparatus; and

a memory connected to the processor, the memory encoded with pro-
gram code to enable the processor to control the operation of the 1/O unit to
10 provide virtual inputs by producing a plurality of Boolean results, one Boolean
result for each of a plurality of entries, each entry further comprising at least a
first input identifier and applying a logical relationship to the plurality of Boo-
lean results to produce the virtual input.

15 53. The I/O unit of claim 52 wherein at least one of the plurality of entries

further comprises a second input identifier.

54. The /O unit of claim 52 wherein at least one of the plurality of entries
further comprises a stored value.
20

55. The I/O unit of claim 53 wherein at least one of the plurality of entries

further comprises a stored value.

-42-

PCT/US02/17944

WO 02/103539

1/11

e—————————

=S821A3(J 18410
(s)uod [enes

ol ol —— INQO/U| 0}-X
201 ——= 1IN paleyuy|
H_M _H £ —= 1IN Bojeuy
uun uun — InQ [eubig
[esayduad [esoyduad , u| patesuj
4 o/l sinduj Bojeuy
€0t (1suiaylg ‘[elss) yiomiaN I8yl H,_“ m sinduj feubig
\AA
nin uun o/l
jerlsydued| 3INd 1e%0ed
N AN
> 80F (ay ‘reves towieuia) 00}
RECEIUEN] EMBIED E
801 od snieleddy
SWoH BuidesyawiL
7 7
L0l 901
(b1 ‘swbr) (Aynoeg)
10Ss8201d 10Ss8200.d
. |0JIU0D [0)U0D
1 'Ol \ \
g0l POl

WO 02/10
/103539 PCT/US02/17944

2/11

FIG. 2

UNIT # [INPUT # ASSOCIATED VARIABLES
LAST | SEMA-
1 1 VALUE | PHORE TIMER | TASK #
LAST | SEMA-
1 2 VALUE | PHORE TIMER | TASK #
o
®
®
LAST | SEMA-
2 10 VALUE | PHORE TIMER | TASK #
FIG. 3
UNIT# INPUT # TYPE OF CHANGE ACTION TO BE TAKEN
3 1 RECEIVE BROADCAST PACKET
SERIAL STRING |(network #, message)
3 o X % CHANGE IN | DIRECTED PACKET
ANALOG VALUE (node, message)
3 3 X INCREASE IN SET SEMAPHORE
DIGITAL VALUE (int. variable, value)
°
®
L
4 10 BIT INPUT DIRECTED PACKET
CHANGE (node, message)

WO 02/103539

3/11

PCT/US02/17944

FIG. 4
INPUT/
UNIT # OUTPUT # TYPE OF I/O STRING NAME
DIGITAL INPUT :
4 1 (1/0) Outside_Door
; ANALOG INPUT .
4 2 (range) Downstairs_Temp
4 3 SEMAPHORE Home/Away_Status
o
¢
{
ANALOG INPUT .
5 11 (range) Outside_Temp
FIG. 7
701 704
1 702 1 705 706
s / (1 / /
Desired NEW

UNIT |OUTPUT|Change and| UNIT | INPUT |VARIABLE| \,a UE

New Value

703

PCT/US02/17944

411

WO 02/103539

O3S 0¢)
oL i3s| HINL| S L | es2 | st ! o=lg | 02 g
@
®
®
Lo oe 2 i=lg | 61 L
Hv310 m._m_mm_m S 2 0 2 ¢ |o0swnog| s8I !
wwyy
a5z | v 2 | ooy | 4 !
NOILOV ‘HVA # # 3INVA # # JONVHO # #
1NdNI LINN 1nd LINN 40 IndNI LNn
ANY -1N0 3dAL CHVA
"INI

S 'Old

WO 02/103539 PCT/US02/17944

5/11

FIG. 6
601
Unit1 | Inputd Operator 256 ’/
Unit1 | Input6 Operator Unit1 | Input?2
Unit2 |Input 15| |Operator Unit3 | Input 15
o
@
[
Unit2 |Input 16| |Operator 32
602
/
Logical
Relationship
603

Storage Bit

WO 02/103539

6/11

FIG. 8

-804
\
PERFORM ACTION

SPECIFIED
(CAN BE NULL)

Yes

PCT/US02/17944

801
/

CONTINUOUSLY -
SCAN INPUT AND
OUTPUT TABLES -

802

INPUT SCAN

TABLE ACTION
?

No

805

VARIABLES
TO SET

SET VARILABLES
(L.E. TIMERS AND

SEMAPHORES IN
OUTPUT TABLE)

803

OUTPUT SCAN
TABLE ACTION

&

807

CHANGE OUTPUT
AS SPECIFIED

808
] ya

UPDATE TABLE

VARIABLE ENTRIES
AS REQUIRED

WO 02/103539 PCT/US02/17944

7/11

901 FIG. 9
N

(Ay
WAIT
[y A

902

No |

903 Yes

SEND PACKET

904

RESPONSE
EXPECTED

907
/
SET TIMER - CLEAR SEMAPHORE
BEGIN WAITING (AND TIMER)
FOR RESPONSE
3
J 906
RESPONSE Yes
RECEIVED
909
/
TAKE DEFAULT

ACTION

WO 02/103539 PCT/US02/17944

8/11

1001 FIG. 10

1002
OUTPUT
PACKET

RECEIVED
?

1004
1003 4
OUTPUT
CHANGE Yes CHANGE OUTPUT
SPECIFIED STATE AS SPECIFIED

?

1005

INPUT
VARIABLE CH.
SPECIFIED

Yes

1006
i ya

UPDATE INPUT
VARIABLES
AS SPECIFIED

WO 02/103539

9/11

FIG. 11

PCT/US02/17944

1101 1103
N] /
EVENT REQUIRING CHANGE
IN SYSTEM STATUS (HUMAN ou{\rﬁﬁ?giLciET
INPUT, TOD, ETC))
1102 1104
\ /
DETERMINE UNIT #, SEND OUTPUT
OUTPUT # OR INPUT # PACKET ADDRESSED
AND VARIABLES TO /O UNIT #
1301 1302 1303 1304
FIG. 13 S S s J
ROM
cpru || o8 || Ram | |EEPROM
7 1306
/
ETHERNET
APPLICATION
SPECIFIC
HARDWARE 1305
POWER

SUPPLY

WO 02/103539

10/11

PCT/US02/17944

FIG. 12

1201 1202 1203 1204
/ / / /
1213 FOM
N DIGITAL CPU | |, asH RAM | |EEPROM
INPUTS
1214
N ANALOG
| IN 1207
1215
N A ETHERNET
RECEIVE 1219
1208 e
PUE
SERIAL I/O
1212
1210 MODEM L~
~N x10 INTERFACE
CONTROL 1205
1211 CLOCK WITHY”
N ONE-WIRE BACKUP
NETWORKS 1916
1209 DiGITAL |~
N OTHER OUT
NETWORKS 1217
TELEPHONE ANALOG }~
ouT
TOUCH TONE 1206
REC. AND XM - 1218
> POWER <
1220
VOICE OUTPUT SUPPLY IR OUT
SWITCHING

WO 02/103539

11/11

PCT/US02/17944

FIG. 14
1401
/
SYSTEM BUS
o 00
MICRO- NETWORK SYSTEM /o /O
PROCESSOR| | ADAPTER MEMORY
ROM
7 < e <<
1402 1403 RAM 11406 1406
1410 Vv
N 1405
1407
1411 :
N — 1408
1409
110

UNIT

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

