Title: HIGH DENSITY CAPACITORS FORMED FROM THIN VERTICAL SEMICONDUCTOR STRUCTURES SUCH AS FINFETs

Abstract: A vertical structure may be manufactured in a substrate of an integrated circuit, and that vertical structure used to form a high density capacitance for the integrated circuit. These thin vertical structures can be configured to operate as an insulator in a capacitor. The vertical structures may be manufactured using three-dimensional semiconductor manufacturing technology, such as FinFET (fin field effect transistor) technology and manufacturing processes. The capacitors based on thin vertical structures may be integrated with other circuitry that can utilize the thin vertical structures, such as FinFET transistors.
HIGH DENSITY CAPACITORS FORMED FROM THIN VERTICAL SEMICONDUCTOR STRUCTURES SUCH AS FINFETS

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

[0001] This application claims the benefit of priority of U.S. Provisional Patent Application No. 62/158,892 to Zhonghai Shi et al. filed May 8, 2015, and entitled "Methods and Implementations for using FinFET Technology to Make High Density Capacitors," which is incorporated by reference herein.

FIELD OF THE DISCLOSURE

[0002] The instant disclosure relates to manufacturing integrated circuits. More specifically, portions of this disclosure relate to manufacturing capacitors integrated with integrated circuits.

BACKGROUND

[0003] Capacitors are important components of many electronic devices, and in particular mixed-signal circuits that process both analog and digital circuitry. Capacitors can be manufactured separate from and then coupled to integrated circuits (ICs) as external capacitors. Capacitors can also be integrated into the ICs. Compared to external capacitors, integrated capacitors consume less space, have lower profiles, and generally are easier to include in low-profile electronic devices such as mobile phones.

[0004] A conventional capacitor structure is a planar metal-insulator-metal (MIM) structure, and one such structure is shown in FIGURE 1. FIGURE 1 is a cross-sectional view of a metal-insulator-metal (MIM) capacitor according to the prior art. A capacitor 100 includes an insulator layer 104 surrounded by metal layers 102 and 106. A capacitance of a MIM structure is related to the lateral area (L*W) of the MIM capacitor and the thickness (T) of the insulator layer 104. The capacitance provided by conventional planar MIM capacitors, such as that of FIGURE 1, limits the density of circuitry on a substrate that includes integrated capacitors.
[0005] Shortcomings mentioned here are only representative and are included simply to highlight that a need exists for improved electrical components, particularly for capacitors employed in consumer-level devices, such as mobile phones. Embodiments described herein address certain shortcomings but not necessarily each and every one described here or known in the art.

SUMMARY

[0006] One manner of increasing a density of capacitance in an integrated circuit (IC) is to construct vertical structures, rather than planar structures. Substrates are often much thicker than needed for integrated circuits because thin substrates are difficult to handle, and even thick substrates are still very thin in comparison to the electronic devices that house the substrates. For example, thicknesses of substrates are often measured in micrometers, whereas the thicknesses of electronic devices are often measured in millimeters. That is, the electronic devices are often thousands of times thicker than the substrates used to make the ICs. Even though the substrates may be hundreds of micrometers thick, the circuitry constructed on the substrates only occupies a very small portion of the top of the substrate. Thus, capacitors constructed vertically into the substrate can make use of previously unused space in an integrated circuit to provide higher density capacitance than conventionally available.

[0007] One embodiment of a vertical structure can include thin vertical semiconductor structures manufactured on the substrate. These thin vertical structures can be configured to operate as an insulator in a capacitor. The capacitance of such a structure is proportional to the height of the structure. The height of the structure can be increased without largely affecting the lateral dimensions of such a structure. Thus, higher densities of capacitors may be manufactured when the capacitors are manufactured from thin vertical structures than the conventional planar transistors. Further, in some embodiments, the thin vertical structure can be manufactured into the substrate. This may allow for manufacturing of high density capacitors without significantly increasing a height of the IC. In one embodiment, the vertical structures may be manufactured using three-dimensional semiconductor manufacturing technology, such as FinFET (fin field effect transistor) technology and manufacturing processes.
In accordance with the prior art, the fins provided by FinFET technology have been used as Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) channels. The fin in modern 3D technologies can be manufactured very thin such that it can be used as dielectrics for integrated capacitors. In embodiments of the disclosure, the layout efficiency for fin capacitors can be much greater than one to provide a much more efficient layout because the fin height to fin pitch ratio can be increased to be much greater than one.

The capacitors based on thin vertical structures may be integrated with other circuitry that can utilize the thin vertical structures. For example, a large number of thin vertical structures may be built on a substrate. Some of those thin vertical structures may be formed into capacitors, and others of those thin vertical structures may be formed into transistors or other semiconductor components. The higher height/pitch ratio provided by the thin vertical structure dielectrics in accordance with the present disclosure may provide higher capacitor density than conventional planar capacitors. The thicknesses of the thin vertical structures may vary across a substrate. This may allow, for example, capacitors to be formed from thinner vertical structures than other circuitry on the substrate also being formed from the thin vertical structures.

According to one embodiment, a method of making an integrated circuit using three-dimensional semiconductor manufacturing technology may include forming thin vertical semiconductor structures on a substrate; forming a dielectric on the thin vertical semiconductor structures; and/or forming electrodes around the dielectric to create capacitors.

In certain embodiments, the method of making the integrated circuit may include forming an oxide by oxidizing the thin vertical semiconductor structures to form the dielectrics for the capacitor or by depositing an oxide on the thin vertical semiconductor structures; forming a conducting layer over the oxide on the thin vertical semiconductor structures; using a smoothing process to form the electrodes for the capacitor from the deposited conducting layer; forming silicon oxide, and wherein the step of forming the conducting layer comprises depositing a polysilicon layer; and/or forming the thin vertical semiconductor structures with a height greater than a pitch such that a ratio between the height to pitch is greater than one, thereby providing the capacitor as a high density capacitor.
[0012] One method of integrating the thin vertical semiconductor capacitors with other circuitry may include forming a protection layer over a first portion of the substrate before forming active devices, wherein the thin vertical semiconductor structures are formed in a second portion of the substrate not covered by the protection layer; removing the protection layer from the first portion of the substrate after forming the capacitors; forming a second protection layer over the capacitors; forming the active devices in the first portion of the substrate not covered by the second protection film; and/or forming the active devices in the first portion of the substrate; forming the electric components as planar devices in the first portion of the substrate.

[0013] Another method of integrating the thin vertical semiconductor capacitors with other circuitry may include forming a protection layer over a first plurality of the thin vertical semiconductor layer, wherein the capacitors are created from a second plurality of the thin vertical semiconductor structures not covered by the protection layer; removing the protection layer from the first plurality of the thin vertical semiconductor structures; forming a second protection layer over the created capacitors; forming FinFET transistors using the first plurality of the thin vertical semiconductor structures not covered by the second protection film; and/or removing the second protection layer before a source/drain implant step of the forming FinFET transistors step.

[0014] According to another embodiment, an apparatus may include a three-dimensional integrated circuit including a first plurality of thin vertical semiconductor structures, in a first portion of a substrate, wherein the first plurality is configured to be used as a dielectric for capacitors; electrodes coupled to the first plurality of thin vertical structures and configured to provide electrical contact to the capacitors; and/or a second plurality of thin vertical semiconductor structures, in a second portion of the substrate, wherein the second plurality is configured to be used as transistors.

[0015] In certain embodiments, the thin vertical semiconductor structures may include a base with an oxidized surface on the base to be used as the dielectrics for the capacitors; the thin vertical semiconductor structures may include a silicon base with a silicon oxide surface on the silicon base to be used as the dielectrics for the capacitors; a ratio of a height of the thin vertical semiconductor structures to a pitch of the thin vertical semiconductor
structures may be greater than one, thereby providing that the capacitors are high density capacitors; the electrodes may extend approximately an entire length and height of the thin vertical semiconductor structures; and/or the thin vertical semiconductor structures may include FinFET structures.

[0016] In some embodiments, the apparatus may include a smoothed conducting layer over the thin vertical semiconductor structures forming the electrodes for the capacitors; a smoothed polysilicon layer over the thin vertical semiconductor structures forming the electrodes for the capacitors; and/or electronics manufactured on the substrate, the electronics being coupled to the capacitors and including active devices or active planar devices.

[0017] The foregoing has outlined rather broadly certain features and technical advantages of embodiments of the present invention in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter that form the subject of the claims of the invention. It should be appreciated by those having ordinary skill in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same or similar purposes. It should also be realized by those having ordinary skill in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. Additional features will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended to limit the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] For a more complete understanding of the disclosed system and methods, reference is now made to the following descriptions taken in conjunction with the accompanying drawings.

[0019] FIGURE 1 is a cross-sectional view of a planar metal-insulator-metal (MIM) capacitor according to the prior art.
FIGURE 2A is a top-down view of thin vertical structures formed on a substrate according to one embodiment of the disclosure.

FIGURE 2B is a cross-sectional view of thin vertical structures formed on a substrate according to one embodiment.

FIGURE 3A is a top-down view of thin vertical structures formed on a substrate after oxidation of the structures according to one embodiment of the disclosure.

FIGURE 3B is a cross-sectional view of thin vertical structures formed on a substrate after oxidation according to one embodiment of the disclosure.

FIGURE 4A is a top-down view of a capacitor formed from oxidized thin vertical structures according to one embodiment of the disclosure.

FIGURE 4B is a cross-sectional view of a capacitor formed from oxidized thin vertical structures according to one embodiment of the disclosure.

FIGURE 5 is an example flow chart illustrating a method for manufacturing a capacitor from thin vertical structures according to one embodiment of the disclosure.

FIGURE 6A is a cross-sectional view illustrating formation of thin silicon structures according to one embodiment of the disclosure.

FIGURE 6B is a cross-sectional view illustrating a varied use of thin silicon structures as different electronic components according to one embodiment of the disclosure.

FIGURE 7 is an example flow chart illustrating formation of high-density capacitors in one portion of a substrate for integration with other components on the substrate according to one embodiment of the disclosure.
FIGURES 8A-8E are example cross-sectional views of the formation of high-density capacitors based on thin silicon structures in one portion of a substrate according to embodiments of the disclosure.

FIGURE 9 is an example flow chart illustrating formation of high-density capacitors in one portion of a substrate for integration with other components on the substrate according to another embodiment of the disclosure.

FIGURES 10A-D are example cross-sectional views of the formation of high-density capacitors based on thin silicon structures in one portion of a substrate according to embodiments of the disclosure.

DETAILED DESCRIPTION

A method of using thin vertical structures, such as those made with FinFET technology, to make and provide high density capacitors for integrated circuits is described in some embodiments below. In some embodiments, the high density capacitors may be manufactured through semiconductor processing by forming thin silicon structures, oxidizing some of those structures, and forming electrodes around oxidized thin silicon structures. The high density capacitors may be manufactured as part of integrated circuits (ICs) including other thin silicon structures used for other components and/or other structures used for other components.

One manufacturing process for manufacturing high density capacitors is described with reference to FIGURES 2A-B, 3A-B, and 4A-B. FIGURE 2A is a top-down view of thin vertical structures formed on a substrate according to one embodiment of the disclosure; and FIGURE 2B is a cross-sectional view of thin vertical structures through line 204 formed on a substrate according to one embodiment. Thin silicon structures 202 may be formed on substrate 206. The thin vertical structures 202 may be silicon fins manufactured with FinFET technology processes on silicon substrates. In some embodiments, capacitors built using the thin vertical structures may have oxidized thin vertical structures, and that oxidization is not part of other structures manufactured with FinFET technology. In some embodiments, capacitors built using the thin vertical structures may use a significant amount of the height of the thin vertical
structure to improve capacitance, whereas other structures manufactured with FinFET technology only use a fraction of the height of the thin vertical structure. Although a silicon substrate is used as an example in certain embodiments throughout this description, any semiconductor substrate, such as silicon germanium (SiGe), gallium arsenide (GaAs), or others, may be used in the same or similar manufacturing processes. Further, in certain embodiments, insulator-based substrates may also be used. The thin vertical structures 202 may be shaped in a snake pattern as shown in FIGURE 2A, but may also be formed in other shapes, such as quadrilaterals, triangles, circles, ovals, polygons, or other arbitrary closed or open shapes.

[0035] The dimensions of the thin vertical structures 202 may be characterized by fin pitch, fin height, and/or fin thickness. A fin thickness may be defined as a lateral distance from a start of one structure to an end of a structure through a cross-section of the structure at its thinnest point. In some embodiments, the fin thickness for the structures 202 may be 2-12 nanometers, or in certain embodiments approximately 5-6 nanometers. A fin pitch between the structures may be defined as a distance between the start of one structure and the start of the next structure. In some embodiments, the fin pitch may be approximately 20 to 80 nanometers. A fin height may be defined as a vertical distance from a top of the substrate 206 to a top of the thin vertical structure 202. In some embodiments, the fin height may be approximately 40 to 160 nanometers. For a same amount of fin pitch, if the fin height is larger, then a higher capacitance value may be provided. The fin height may be larger than the fin pitch. Layout efficiency may be proportional to a ratio of fin height to fin pitch. In some embodiments, layout efficiencies of greater than one may be achieved with thin vertical structures 202.

[0036] Next, the thin vertical structures may be oxidized to form the insulator of a conductor-insulator-conductor capacitor structure. FIGURE 3A is a top-down view of thin vertical structures formed on a substrate after oxidation of the structures according to one embodiment of the disclosure; and FIGURE 3B is a cross-sectional view of thin vertical structures formed on a substrate after oxidation according to one embodiment of the disclosure. The thin vertical structures may be oxidized through reactive processes to form silicon dioxide on a surface of the thin vertical structures 202 and/or diffuse oxide through the thin vertical structures 202 to form oxidized thin vertical structures 206A. For example, when the substrate 206 is silicon, the substrate 206 may be placed in an oven and heated to sufficiently high
temperatures in an oxygen atmosphere to cause the silicon to react with oxygen to form silicon oxide. Although the oxide 206A is shown throughout the thin vertical structures 206A, the oxide coverage may not be uniform throughout all of the thin vertical structures. Further, the oxide 206A may not extend completely through the thin vertical structures 206. Finally, although the oxide 206A is shown extending into the substrate 206, the substrate 206 may not be oxidized during oxide formation on the thin silicon structures 202. In some embodiments, the oxide 206A may be formed through depositing additional material, rather than oxidation of existing material, such as through chemical vapor deposition (CVD) or atomic layer deposition (ALD).

[0037] After oxidization, electrodes around the oxidized thin vertical structures may be formed. The electrodes may form the conducting layers of a conductor-insulator-conductor capacitor. In one embodiment, the conductor may be a metal and the capacitor have a metal-insulator-metal (MEVI) capacitor structure. However, conductors other than metal may also be used in the capacitors. FIGURE 4A is a top-down view of a capacitor formed from oxidized thin vertical structures according to one embodiment of the disclosure; and FIGURE 4B is a cross-sectional view of a capacitor formed from oxidized thin vertical structures according to one embodiment of the disclosure. A conducting layer 208 may be deposited on and/or around the oxidized thin vertical structures 202. The conducting layer 208 may include metal films, polysilicon films, and/or gate electrode materials. As examples, the conducting layer 208 may be evaporated onto the structures 202, the conducting layer 208 may be deposited through physical sputter deposition on the structures 202, the conducting layer 208 may be deposited through atomic layer deposition (ALD) on the structures 202, and/or the conducting layer 208 may be deposited through electrodeposition on the structures 202. After deposition of the conducting layer 208, the conducting layer may be leveled to approximately a top of the thin vertical structures 202 to form separate electrodes 208A and 208B. For example, a Chemical Planarization or Polishing (CMP) process, etch methods, or similar methods may be used to form electrodes 208A and 208B for the capacitor. The electrode 208A, the thin vertical structure 202, and the electrode 208B may form a conductor-insulator-conductor capacitor, such as a metal-insulator-metal (MIM) capacitor. Although metal-insulator-metal structures are described, the "metal" layer of the structure may be understood to be any conducting material and thus include, for example, polysilicon. Although two electrodes 208A and 208B are shown in FIGURES 4A-
4B, more than two electrodes may be formed after the planarization of conducting material 208 depending on the layout of the thin vertical structures 202 and/or the number of capacitors being formed for an integrated circuit. In some embodiments, multiple capacitors may be formed from a plurality of thin vertical structures, and each capacitor may include two electrodes, such that there is a plurality of electrodes corresponding to a plurality of capacitors formed from the thin vertical structures.

[0038] FIGURE 5 is an example flow chart illustrating a method for manufacturing a capacitor from thin vertical structures according to one embodiment of the disclosure. A method 500 begins at block 502 with forming thin vertical structures on a substrate, such as by forming the structures from the substrate itself. In some embodiments, the structures may be formed by depositing and patterning materials to form semiconductor structures on a substrate, which may allow the capacitors to be formed on an insulating substrate, such as silicon dioxide (SiO₂).

[0039] Then, at block 504, a dielectric may be formed on the thin vertical semiconductor substrates. The dielectric may be used as the insulator of the capacitor being formed. In some embodiments, when the substrate is a semiconductor, the oxide may be formed on the substrate simultaneously with the thin vertical structures to provide an insulating layer between a later formed conductor and the semiconductor substrate. In some embodiments, blocks 502 and 504 may be combined by forming thin vertical structures in an insulating substrate such that the resulting thin vertical structures are already oxidized.

[0040] Next, at block 506, electrodes are formed around the dielectric of the thin vertical structures to create capacitor structures. In some embodiments, the capacitor may have a higher density than conventional planar capacitors because the thin vertical structure provides additional capacitance along a height of the structure without consuming additional lateral space.

[0041] The high density capacitors formed on thin vertical structures may be formed as part of integrated circuits containing other components. One embodiment of such an integration is shown in FIGURES 6A-B. FIGURE 6A is a cross-sectional view illustrating formation of thin silicon structures according to one embodiment of the disclosure. First, a plurality of thin vertical structures 604 may be formed on substrate 602. Then, a portion of the
plurality of thin vertical structures 604 may be used to form capacitors while another portion of
the plurality of thin vertical structures 604 may be used to form other components, such as active
devices including transistors. FIGURE 6B is a cross-sectional view illustrating a varied use of
thin silicon structures for different applications according to one embodiment of the disclosure.
A first portion 604A of thin vertical structures 604 may be formed into transistors of an
electronic component, such as by depositing field isolation oxide 610. Additional layers and
electrodes may later be formed in or on the first portion 604A to complete construction of
particular arrangements of transistors or other components. A second portion 604B of thin
vertical structures 604 may be formed into capacitors coupled to or integrated with the electronic
component with electrodes 608A and 608B around oxide 602A. Metal layers deposited over the
thin vertical structures 604 may be used to couple the capacitors with the active devices.
Although not shown, planar devices may also be constructed alongside the thin vertical
structures 604 and coupled to the components formed from the thin vertical structures 604, such
as capacitors or transistors.

[0042] The capacitors formed from thin vertical structures may be integrated with
other components in an integrated circuit. One embodiment of a method for performing the
integration is shown in the flow chart of FIGURE 7 and cross-sectional views of FIGURES 8A-
E. FIGURE 7 is an example flow chart illustrating formation of high-density capacitors in one
portion of a substrate for integration with other components on the substrate according to one
embodiment of the disclosure; and FIGURES 8A-8E are example cross-sectional views of the
formation of high-density capacitors based on thin silicon structures in one portion of a substrate
according to embodiments of the disclosure.

[0043] A method 700 may begin at block 702 with depositing a first protective
layer over a first portion of a substrate. A first protective layer 804 is illustrated after deposition
and patterning on a substrate 802 in FIGURE 8A. The first protective layer 804 may be used to
protect a portion of the substrate 802 while thin vertical structures for capacitors are formed in
other areas of the substrate 802. In one embodiment, the first protective layer 804, such as
silicon nitride (Si₃N₄) and/or silicon dioxide (SiO₂), may be deposited and openings patterned in
the first protective layer 804 over portions of the substrate where integrated circuit layouts have
die areas assigned for high density capacitors.
Then, at block 704, the thin vertical structures are formed on the substrate in a second portion of the substrate not under the first protective layer. A plurality of thin vertical structures 806 is shown formed from substrate 802 in FIGURE 8B. The vertical structures 806 may be formed by, for example, depositing a mask material (not shown), performing deep reactive etching (DRIE) to remove portions of the substrate 802 between the mask material, and then removing the mask material. The deep reactive ion etching (DRIE) may use chemistries selected to match the material of the substrate 802. For example, when the substrate 802 is silicon, a DRIE using xenon difluoride (XeF₂) may be selected to form a high aspect ratio vertical semiconductor structures. Other semiconductor manufacturing techniques, such as those used in FinFET manufacturing, may also be used in the manufacturing of thin vertical structures 806.

Next, at block 706, oxide may be formed on the thin vertical structures to form a dielectric layer of one or more capacitors. An oxide layer 802A is shown on substrate 802 and thin vertical structures 806 in FIGURE 8C. The oxide may be formed, for example, when the substrate 802 is silicon, by heating the substrate 802 to high temperatures in an oxygen-rich atmosphere to form oxide at the exposed surfaces that diffuses through the substrate 802 at a rate controlled by temperature and atmospheric oxygen content.

Then, at block 708, conductors may be formed around the oxide layer to form electrodes for the one or more capacitor. A conductor material 808 may be deposited to fill the openings etched into the substrate 802 as shown in FIGURE 8D. A planarization step may then optionally be performed to create a smooth level surface at the transitions between the conductor material 808 and the thin vertical structures 806. Depending on the shape formed by thin vertical structures 806, two or more electrodes may be formed in the conductor material 808. The two electrodes may operate as positive and negative terminals to the capacitor formed by conductive material 808 and thin vertical structures 806.

Then, at block 710, the first protective layer 804 may be removed. After the formation of the capacitors from thin vertical structures 806 is complete, the protective layer 804 may no longer be needed. Thus, in some embodiments, the layer 804 may be removed to
allow additional processing on the substrate 802 to be performed to manufacture other components of an integrated circuit (IC).

[0048] Next, at block 712, a second protective layer may be deposited over the capacitor(s) formed during blocks 704, 706, and 708. A protective layer 810 is shown over the conductive material 808 and thin vertical structures 806 in FIGURE 8E. At block 714, additional processing, such as to form active devices, may be performed on the portion of the substrate 802 not covered by second protective layer 810.

[0049] Another embodiment of a method for performing the integration of capacitors formed from thin vertical structures with other components in an integrated circuit is shown in the flow chart of FIGURE 9 and cross-sectional views of FIGURES 10A-D. FIGURE 9 is an example flow chart illustrating formation of high-density capacitors in one portion of a substrate for integration with other components on the substrate according to another embodiment of the disclosure; and FIGURES 10A-D are example cross-sectional views of the formation of high-density capacitors based on thin silicon structures in one portion of a substrate according to embodiments of the disclosure.

[0050] A method 900 begins at block 902 with forming thin vertical structures on a substrate. Thin vertical structures 1004 are shown on a substrate 1002 in FIGURE 10A. Although all of the substrate 1002 is shown patterned into thin vertical structures 1004, portions of the substrate 1002 may be left unpatterned. These unpatterned portions may be used in later processing for forming planar components, providing packaging connections, and/or providing die separation space to allow dicing the substrate into individual dies.

[0051] Then, at block 904, a first protective layer may be deposited over a first portion of the thin vertical structures. A first protective layer 1006, such as silicon nitride or silicon oxide, is shown in FIGURE 10B. The first protective layer 1006 may protect a first portion of the structures 1004 while a second portion of the structures 1004 are manufactured into one or more capacitors. The protected structures 1004 may be processed at a later time into other components of the integrated circuit.
[0052] Next, at block 906, capacitors may be formed from the second portion of thin vertical structures. Capacitor 1008 manufactured from the second portion 1004A of thin vertical structures 1004 is shown in FIGURE IOC. The manufacturing of capacitor 1008 may be performed, in one embodiment, through the manufacturing process of FIGURE 5 to oxidize the portion 1004A and form conducting electrodes around the oxidized portion 1004A. Other manufacturing techniques and steps may be used in the manufacturing of capacitor 1008.

[0053] Then, at block 908, the first protective layer is removed. With the capacitor 1008 formed from the portion 1004A, the first protective layer 1006 may no longer be needed and thus be removed. Removal may be performed through a wet or dry etch that selectively removes the protective layer 1006.

[0054] Next, at block 910, a second protective layer is deposited over the second portion of thin vertical structures to protect the capacitor during subsequent manufacturing processes. A protective layer 1010 around capacitor 1008 is shown in FIGURE 10D. The first portion 1004B of thin vertical structures 1004 is shown outside of protective layer 1010, and subsequent processing may be performed at block 912 to form components from the portion 1004B. For example, transistors may be formed from the portion 1004B. The transistors may be coupled together to form logic circuitry, such as to process signals including audio signals. In some embodiments, the transistors may be organized as mixed-signal circuitry for processing both analog and digital signals. For example, the transistors may be connected to form electronic components, such as charge pump circuits or other power supply circuits, such that the capacitors based on the thin vertical structures may be coupled to or integrated with the electronic components as decoupling capacitors. In some embodiments, when the transistors are FinFET transistors, the protective layer 1010 may be removed before a source/drain implant step involved in forming the FinFET transistors.

[0055] The schematic flow chart diagrams of FIGURE 5, FIGURE 7, and FIGURE 9 is generally set forth as a logical flow chart diagram. As such, the depicted order and labeled steps are indicative of aspects of the disclosed method. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated method. Additionally, the format and symbols employed are provided
to explain the logical steps of the method and are understood not to limit the scope of the method. Although various arrow types and line types may be employed in the flow chart diagram, they are understood not to limit the scope of the corresponding method. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the method. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted method. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown.

[0056] Although the present disclosure and certain representative advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
CLAIMS

What is claimed is:

1. A method of making an integrated circuit using three-dimensional semiconductor manufacturing technology, comprising:

 forming thin vertical semiconductor structures on a substrate;

 forming a dielectric on the thin vertical semiconductor structures; and

 forming electrodes around the dielectric to create at least one capacitor.

2. The method of claim 1, wherein the steps of forming the dielectric and forming the electrodes comprises:

 oxidizing the thin vertical semiconductor structures to form the dielectrics for the at least one capacitor;

 forming a conducting layer over the oxidized thin vertical semiconductor structures; and

 using a smoothing process to form the electrodes for the at least one capacitor from the deposited conducting layer.

3. The method of claim 2, wherein the step of oxidizing the thin vertical semiconductor structures comprises forming silicon oxide, and wherein the step of forming the conducting layer comprises depositing a polysilicon layer.

4. The method of claim 1, wherein the steps of forming the dielectric and forming the electrodes comprises:

 depositing an oxide layer on the thin vertical semiconductor structures to form the dielectrics for at least one capacitor;

 forming a conducting layer over the oxide layer; and
using a smoothing process to form the electrodes for the at least one capacitor from the deposited conducting layer.

5. The method of claim 1, wherein the step of forming the thin vertical semiconductor structures comprises forming the thin vertical semiconductor structures with a height greater than a pitch such that a ratio between the height to pitch is greater than one, thereby providing the capacitor as a high density capacitor.

6. The method of claim 1, wherein the step of forming the thin vertical semiconductor structures comprises:

 forming a first protection layer over a first portion of the substrate before forming the thin vertical semiconductor structures, wherein the thin vertical semiconductor structures are formed in a second portion of the substrate not covered by the first protection layer;

 removing the first protection layer from the first portion of the substrate after forming the at least one capacitor in the second portion of the substrate;

 forming a second protection layer over the at least one capacitor; and

 forming electronic components in the first portion of the substrate not covered by the second protection layer.

7. The method of claim 5, wherein the step of forming electronic components in the first portion of the substrate comprises forming planar devices in the first portion of the substrate.

8. The method of claim 1, further comprising:

 forming a first protection layer over a first plurality of the thin vertical semiconductor structures, wherein the at least one capacitor is created from a second plurality of the thin vertical semiconductor structures not covered by the first protection layer;
removing the first protection layer from the first plurality of the thin vertical semiconductor structures after creating the at least one capacitor;

forming a second protection layer over the at least one capacitor; and

forming FinFET transistors using the first plurality of the thin vertical semiconductor structures not covered by the second protection layer.

9. The method of claim 8, further comprising removing the second protection layer before a source/drain implant step of the forming FinFET transistors step.

10. A three-dimensional integrated circuit, comprising:

 a first plurality of oxidized thin vertical semiconductor structures in a portion of a substrate, wherein the first plurality is configured to be used as a dielectric for capacitors; and

 electrodes coupled to the oxidized first plurality of thin vertical structures and configured to provide electrical contact to the capacitors.

11. The three-dimensional integrated circuit of claim 10, further comprising a second plurality of thin vertical semiconductor structures in another portion of the substrate, wherein the second plurality is configured to be used as transistors.

12. The three-dimensional integrated circuit of claim 10, wherein the thin vertical semiconductor structures comprise a base with an oxidized surface on the base to be used as the dielectrics for the capacitors, and further comprising a smoothed conducting layer over the thin vertical semiconductor structures forming the electrodes for the capacitors.

13. The three-dimensional integrated circuit of claim 10, wherein the thin vertical semiconductor structures comprise a silicon base with a silicon oxide surface on the silicon base to be used as the dielectrics for the capacitors, and further comprising a smoothed polysilicon layer over the thin vertical semiconductor structures forming the electrodes for the capacitors.
14. The three-dimensional integrated circuit of claim 10, wherein a ratio of a height of the thin vertical semiconductor structures to a pitch of the thin vertical semiconductor structures is greater than one, thereby providing that the capacitors are high density capacitors.

15. The three-dimensional integrated circuit of claim 10, further comprising electronic components manufactured on the substrate, wherein the electronic components are coupled to the capacitors.

16. The three-dimensional integrated circuit of claim 15, wherein the electronic components comprise active devices.

17. The three-dimensional integrated circuit of claim 16, wherein the active devices comprise FinFET transistors.

18. The three-dimensional integrated circuit of claim 16, wherein the active devices comprise planar transistors.

19. The three-dimensional integrated circuit of claim 10, wherein the electrodes extend approximately an entire length and height of the thin vertical semiconductor structures.

20. The three-dimensional integrated circuit of claim 10, wherein the thin vertical semiconductor structures comprise FinFET structures.
FORM THIN VERTICAL SEMICONDUCTOR STRUCTURE ON A SUBSTRATE

FORM A DIELECTRIC ON THE THIN VERTICAL SEMICONDUCTOR SUBSTRATES

FORM ELECTRODES AROUND THE DIELECTRIC TO CREATE CAPACITORS

FIG. 5
START

700

DEPOSIT FIRST PROTECTIVE LAYER OVER A FIRST PORTION OF A SUBSTRATE

702

FORM THIN VERTICAL SEMICONDUCTOR STRUCTURES IN SECOND PORTION OF SUBSTRATE NOT UNDER FIRST PROTECTIVE LAYER

704

FORM OXIDE ON THIN VERTICAL SEMICONDUCTOR STRUCTURES FOR DIELECTRIC OF CAPACITORS

706

FORM ELECTRODES AROUND OXIDE BY DEPOSITING AND PLANARIZING CONDUCTOR

708

REMOVE FIRST PROTECTIVE LAYER

710

DEPOSIT SECOND PROTECTIVE LAYER OVER CAPACITORS

712

FORM ACTIVE DEVICES IN PORTION OF SUBSTRATE NOT COVERED BY SECOND PROTECTIVE LAYER

714

FIG. 7
START

900

FORM THIN VERTICAL SEMICONDUCTOR STRUCTURES IN SUBSTRATE

902

DEPOSIT FIRST PROTECTIVE LAYER OVER A FIRST PORTION OF THIN VERTICAL SEMICONDUCTOR STRUCTURES

904

FORM CAPACITORS FROM SECOND PORTION OF THIN VERTICAL SEMICONDUCTOR STRUCTURES

906

REMOVE FIRST PROTECTIVE LAYER

908

DEPOSIT SECOND PROTECTIVE LAYER OVER SECOND PORTION OF THIN VERTICAL SEMICONDUCTOR STRUCTURES

910

FORM ACTIVE DEVICES FROM FIRST PORTION OF THIN VERTICAL SEMICONDUCTOR STRUCTURES

912

FIG. 9
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC(8) | B04D 29/00, H01L 29/00, H01L 29/48, H01L 29/775 (2016.01) |
| CPC | B04D 29/00, H01L 29/00, H01L 29/48, H01L 29/775 (2016.01) |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

- **Minimum documentation searched (classification system followed by classification symbols)**
 - IPC-B04D: H01L 29/00, H01L 29/48, H01L 29/775 (2016.01)
 - CPC-B04D: H01L 29/00, H01L 29/48, H01L 29/775 (2016.01)

- **Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched**
 - USPC-257/9, 977/622, 438/151

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0003], para [0004], para [0014], para [0033], para [0031] Figure 5,6,9</td>
<td>6-9,1,15-18</td>
</tr>
<tr>
<td>Y</td>
<td>US 201 1/0020987 A1 (Hareland et al) 27 January 2011 (27.01.2011) Abstract; para [0003],</td>
<td>6-9,1,15-18</td>
</tr>
<tr>
<td></td>
<td>[0005], para [0042], para [0046], Figure 5; Figure 6A-G</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 201 5/001 4776 A1 (Akarvardar et al) 15 January 2011 (15.01.2011) Abstract; Figures 1-10;</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>para [0013];[0030]</td>
<td></td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

6 July 2016 (06.07.2016)

Date of mailing of the international search report

11 August 2016 (11.08.2016)

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300

PCT OGP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)