

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 August 2006 (10.08.2006)

PCT

(10) International Publication Number
WO 2006/083410 A2

(51) International Patent Classification:
C12N 1/21 (2006.01)

(74) Agent: MCBRIDE, M., Scott; Foley & Lardner LLP, 777
East Wisconsin Avenue, Milwaukee, WI 53202 (US).

(21) International Application Number:
PCT/US2005/045714

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:
16 December 2005 (16.12.2005)

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

Published:

(26) Publication Language: English

— without international search report and to be republished
upon receipt of that report

(30) Priority Data:
60/639,443 22 December 2004 (22.12.2004) US
60/647,141 26 January 2005 (26.01.2005) US

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(71) Applicant (for all designated States except US): MICHIGAN BIOTECHNOLOGY INSTITUTE [US/US]; 3900 Collins Road, Lansing, MI 48909-0609 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YI, Jian [US/US];
Spartan Village 1623C, East Lansing, MI 48823 (US). KLEFF, Susanne [US/US]; 5319 Bear Lake Drive, East Lansing, MI 48823 (US). GUETTLER, Michael, V. [US/US]; 3721 Trianon Trail, Holt, MI 48842 (US).

WO 2006/083410 A2

(54) Title: RECOMBINANT MICROORGANISMS FOR INCREASED PRODUCTION OF ORGANIC ACIDS

(57) Abstract: Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant *Actinobacillus succinogenes* that has been transformed to express a *Zwischenferment (Zwf)* gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

RECOMBINANT MICROORGANISMS FOR INCREASED PRODUCTION OF ORGANIC ACIDS

STATEMENT REGARDING U.S. GOVERNMENT SUPPORT

[0001] This invention was made with support from the United States Government under Cooperative Agreement No. DE-FC36-02GO12001 awarded by the Department of Energy. The United States Government has certain rights in this invention.

CROSS-REFERENCE TO RELATED APPLICATIONS

[0002] This application claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application no. 60/647,141, filed on January 26, 2005; and U.S. provisional application no. 60/639,443, filed on December 22, 2004. The aforementioned applications are incorporated herein by reference in their entireties.

BACKGROUND

[0003] Many chemicals that are currently derived from petrochemical materials could be produced from naturally occurring carbohydrates. In particular, succinic acid, a four-carbon dicarboxylic acid, has the potential to become a high volume commodity chemical that could be used as starting material for commercial processes that produce many important intermediate and specialty chemicals for the consumer product industries and that currently rely on starting materials derived from non-renewable petrochemical materials. For example, as a commodity chemical, succinic acid could replace petrochemical starting materials used in the production of 1,4-butanediol (BDO) and tetrahydrofuran (THF) compounds, which are useful as solvents and starting materials for many industries. For example, BDO and THF compounds are useful for producing resins for automotive bodies, thermoplastics for use in household appliances, and elastic polymers such as Lycra™ in the textile industry. In addition, BDO and THF compounds also have many specialty uses in the agrochemical and pharmaceutical industries. Notably, worldwide consumption of BDO is expected to increase at an annual rate as high as 4%.

[0004] The petrochemicals currently used to produce BDO and THF include acetylene, formaldehyde, butane, butadiene, and propylene oxide. All of these have various hazardous properties, such as extreme flammability, chemical instability and toxicity. Further, as these materials are derived from petroleum, they deplete a non-renewable resource, and upon disposal or destruction, ultimately release carbon (as carbon dioxide) into the atmosphere. Thus, developing succinic acid as a replacement for petrochemically derived materials would reduce handling and storage of hazardous materials, enhance industrial and community safety, reduce pollution and environmental costs, and reduce dependence on oil.

[0005] Production of succinic acid and other organic compounds by fermentation of sugars is economically feasible. A number of microorganisms have been used to produce succinic acid using corn sugars as a carbon source. As such, developing succinic acid as replacement for petrochemical starting materials would expand markets for corn, and other agricultural products and/or biomass that can provide fermentable sugars.

[0006] Formally, the biochemical pathway for succinic acid production adds a carbon dioxide molecule to the three carbon compound phosphoenolpyruvate (PEP), to produce the four carbon compound oxaloacetate (OAA). The next steps in the pathway to succinic acid are part of the reverse tricarboxylic acid cycle (TCA cycle) and include two obligate reduction steps. In the biochemical process leading from OAA to succinate, OAA must first be reduced to produce L-malate. L-malate is then dehydrated to produce fumarate and water. Fumarate is then reduced to give the succinic acid. In the chemical arts, “reduction” refers to the addition of molecular hydrogen to a compound.

[0007] Generally, free molecular hydrogen is not found in intracellular biological systems. Rather, reduction is performed through the use of coenzymes that function as biochemical equivalents of hydrogen (*i.e.*, as carriers of molecular hydrogen) and are termed “reducing equivalents.” Reducing equivalents include the coenzymes nicotinamide adenine dinucleotide hydrogen (“NADH”), nicotinamide adenine dinucleotide phosphate hydrogen (“NADPH”), flavine adenine dinucleotide hydrogen (“FADH₂”), and flavin mononucleotide hydrogen (“FMNH”). Generally, NADH and

NADPH may be interconverted in a range of microorganisms by the enzyme pyridine dinucleotide transhydrogenase.

[0008] The reducing equivalents required to transform OAA to succinate are provided by NAD(P)H₂, FADH₂, or other co-factors. It is essential that a sufficient quantity of reducing equivalents is available for the transformation of OAA to succinate. If sufficient reducing equivalents are not available, the biochemical pathway will not function efficiently, and only a portion of the OAA will be transformed into the desired succinate.

[0009] Reducing equivalents may be produced in a number of biological processes that are commonly found in cellular metabolism. For example, reducing equivalents may be generated in the pentose phosphate cycle (PPC). In the PPC, glucose-6-phosphate is converted to D-6-phospho-glucono- δ -lactone by the enzyme glucose-6-phosphate dehydrogenase, which is also known as Zwischenferment enzyme or *Zwf*. As part of this conversion, NADP is converted to NADPH as an acceptor of reducing equivalents.

[0010] Few microorganisms have been described which produce sufficient concentrations of succinic acid for commercial production. One such microorganism is *Actinobacillus succinogenes*, a facultative anaerobe that was isolated from the bovine rumen. This organism produces high concentration of succinic acid and tolerates high sugar concentration. *Actinobacillus succinogenes* is one of the best known producers of succinic acid, but the fermentative yields of this strain may be limited by the lack of reducing equivalents. As such, improvements are desirable to increase the yield of succinic acid produced by fermentation, including the use of improved strains of microorganisms for producing succinic acid.

SUMMARY

[0011] Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms expresses a polypeptide that has one or more biochemical activities of an enzyme utilized in the pentose phosphate cycle. In one embodiment, the enzyme is glucose-6-phosphate-1-dehydrogenase, also called Zwischenferment enzyme or *Zwf*. For example, the recombinant microorganism may

express a polynucleotide that encodes a polypeptide having Zwf enzyme activity. In one embodiment, the recombinant microorganism is a recombinant strain of a succinic acid producing microorganism which has been transformed with a DNA molecule that expresses a polypeptide having Zwf enzyme activity.

[0012] The recombinant microorganism typically is capable of producing one or more organic acids at a level suitable for commercial production. In some embodiments, the recombinant microorganism is a succinic acid producing microorganism. For example, the microorganism may produce succinic acid at a concentration suitable for commercial production. A concentration suitable for commercial production may be at least about 20 g/L, 40 g/L, 60 g/L, 80 g/L, 100 g/L, 120 g/L, and/or 140 g/L. Desirably, the recombinant microorganism is capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L.

[0013] The recombinant microorganism may be selected and/or recombinantly engineered to tolerate relatively high concentrations of succinic acid to facilitate production of succinic acid at a concentration suitable for commercial production in a fermentation system. In some embodiments, the recombinant microorganism may be selected to produce relatively low amounts of undesirable by-products such as acetate, formate, and/or pyruvate (e.g., no more than about 2.0 g/L acetate, no more than about 2.0 g/L formate, and/or no more than about 3.0 g/L pyruvate). The recombinant microorganism may be derived from a strain (or a variant of a strain) that is resistant to levels of sodium monofluoroacetate at concentration of at least about 1 g/L, 2 g/L, 4 g/L, and/or 8 g/L. In another embodiment, a variant of the recombinant microorganism may be selected to be resistant to levels of sodium monofluoroacetate at concentration of at least about 1 g/L, 2 g/L, 4 g/L, and/or 8 g/L.

[0014] In one embodiment, the recombinant microorganism is derived from a strain of *Actinobacillus succinogenes* (i.e., “*A. succinogenes*”) or a microorganism related to *Actinobacillus succinogenes*. One suitable strain of *A. succinogenes* is Bacterium 130Z deposited with the American Type Culture Collection (ATCC), under ATCC Accession Number 55618. See U.S. 5,504,004 for description of Bacterium 130Z and other suitable strains.

[0015] Other suitable microorganisms may be selected for preparing the recombinant microorganism and may include microorganisms which are related to *A. succinogenes* as determined by sequence identity within 16S rRNA. For example, a suitable microorganism related to *A. succinogenes* may have 16S rRNA that exhibits substantial sequence identity to *A. succinogenes* 16S rRNA (*i.e.*, a microorganism having 16S rRNA that exhibits at least about 90% sequence identity to *A. succinogenes* 16S rRNA or more suitably, that exhibits at least about 95% sequence identity to *A. succinogenes* 16S rRNA). Many representative microorganisms of the family Pasteurellaceae have 16S rRNA that exhibits at least about 90% sequence identity to *A. succinogenes* 16S rRNA. For example, see Guettler *et al.*, INT'L J. SYSTEMATIC BACT. (1999), 49, 207-216 at page 209, Table 2. Suitable microorganisms may include microorganisms such as Bisgaard Taxon 6 and Bisgaard Taxon 10.

[0016] In some embodiments, the recombinant microorganism may be prepared from organisms other than *A. succinogenes*. For example, the recombinant miroorganism may be prepared from any microorganism that is suitable for use in fermentation systems for producing organic acids. A suitable microorganism may include *E. coli*. Suitable strains of *E. coli* are known in the art.

[0017] Variants of microorganisms that are resistant to sodium monofluoroacetate may also be suitable for preparing the recombinant microorganism. For example, see U.S. 5,521,075 and U.S. 5,573,931. In one embodiment, the recombinant microorganism is prepared from a variant of *A. succinogenes* that is resistant to at least about 1 g/L sodium monofluoroacetate. One suitable variant is FZ45. See U.S. 5,573,931. The recombinant microorganism deposited under ATCC Accession Number PTA-6255, is derived from a variant of *A. succinogenes* that is resistant to at least about 1 g/L sodium monofluoroacetate (*i.e.*, FZ45).

[0018] The recombinant microorganism typically is transformed with a polynucleotide encoding a polypeptide that has one or more biochemical activities of an enzyme utilized in the pentose phosphate cycle. For example, the recombinant microorganism may be transformed with a polynucleotide that encodes a polypeptide having one or more biochemical activities of the Zwf enzyme (*i.e.*, glucose-6-

phosphate dehydrogenase activity and/or NADP reductase activity). Desirably, the polynucleotide encodes a polypeptide that facilitates the conversion of NADP to NADPH. The polynucleotide or polypeptide may be endogenous to the microorganism or derived from a gene or enzyme normally present in the microorganism. In some embodiments, the polynucleotide or polypeptide may be homologous to an endogenous gene or enzyme of the microorganism. In other embodiments, the polynucleotide or polypeptide may be heterologous (*i.e.*, derived from a gene or enzyme normally not present in the microorganism or derived from a source other than the microorganism).

[0019] The recombinant microorganism may express a variant of the polynucleotide that encodes the polypeptide and/or a variant of the polypeptide. A variant of the polynucleotide may include a polynucleotide having at least about 90% sequence identity to the polynucleotide, or desirably, at least about 95% sequence identity to the polynucleotide, where the polynucleotide encodes a polypeptide that has one or more biochemical activities of the Zwf enzyme (*e.g.*, NADP reductase activity). A variant may include a polypeptide that has at least about 90% sequence identity to the polypeptide, or desirably, at least about 95% sequence identity to the polypeptide, where the polypeptide has one or more biochemical activities of the Zwf enzyme (*e.g.*, NADP reductase activity). As such, suitable polynucleotides may include polynucleotides encoding a polypeptide having at least about 95% sequence identity to a selected Zwf enzyme, where the polypeptide has NADP reductase activity.

[0020] The recombinant microorganism may be transformed with a polynucleotide that expresses a polypeptide having Zwf enzyme activity, where the recombinant microorganism exhibits higher Zwf enzyme activity than a microorganism which has not been transformed with a polynucleotide that expresses a polypeptide having Zwf enzyme activity. In some embodiments, the recombinant microorganism exhibits at least about five times (5 \times) more Zwf enzyme activity, (or desirably at least about ten times (10 \times) more Zwf enzyme activity, or more desirably at least about fifty times (50 \times) more Zwf enzyme activity), than a microorganism which has not been transformed with a polynucleotide that expresses a polypeptide having Zwf enzyme activity. Zwf enzyme activity may include NADP reductase activity. Zwf enzyme

activity may be determined by measuring the level of NADPH present the recombinant microorganism (*e.g.*, as compared to a microorganism which has not been transformed with a polynucleotide that expresses a polypeptide having *Zwf* enzyme activity).

[0021] The recombinant microorganism may express a polynucleotide that encodes a *Zwf* enzyme such as a *Zwf* gene. A variant of the polynucleotide may comprise a polynucleotide having at least about 90% sequence identity to a *Zwf* gene, or desirably, at least about 95% sequence identity to a *Zwf* gene and encoding a polypeptide that has one or more biochemical activities of the *Zwf* enzyme. A variant of a polynucleotide may include a nucleic acid fragment of the polynucleotide. For example, a fragment may include at least about 90% of a *Zwf* gene, or at least about 95% of a *Zwf* gene. A nucleic acid fragment may be any suitable length. For example, the nucleic acid fragment may comprise at least about 10, 50, 100, 250, 500, 1000 and/or 1400 nucleotides. A fragment may encode a polypeptide that has one or more biochemical activities of the *Zwf* enzyme.

[0022] Suitable *Zwf* genes may include *Zwf* genes endogenous or native to the recombinant microorganism (*i.e.*, *Zwf* genes normally present in the microorganism from which the recombinant microorganism is derived), or variants thereof. Other suitable *Zwf* genes may include *Zwf* genes heterologous to the microorganism (*i.e.*, *Zwf* genes normally not present in, or obtained from sources other than the microorganism used to prepare the recombinant microorganism), or variants thereof. Suitable *Zwf* genes may include variants that have at least about 90% sequence identity to the polynucleotide sequence of the selected *Zwf* gene (preferably at least about 95% sequence identity to the polynucleotide sequence of the selected *Zwf* gene) and that encode a polypeptide that has one or more biochemical activities of the *Zwf* enzyme (*i.e.*, glucose-6-phosphate dehydrogenase activity and/or NADP reductase activity).

[0023] Suitable *Zwf* genes may include the *E. coli* *Zwf* gene or variants thereof. The polynucleotide sequence of the *E. coli* *Zwf* gene is deposited with GenBank under accession number NC_000913, reverse complement of nucleotides 1,932,863 to 1,934,338 (SEQ ID NO:1) and under accession number M55005, nucleotides 708 to

2180 (SEQ ID NO:2). Suitable variants of the *E. coli* *Zwf* gene may include a polynucleotide having at least about 90% sequence identity (desirably at least about 95% sequence identity) to the polynucleotide of SEQ ID NO:1 (or SEQ ID NO:2), such that the polynucleotide encodes a polypeptide that has one or more biochemical activities of the *Zwf* enzyme (*i.e.*, glucose-6-phosphate dehydrogenase activity and/or NADP reductase activity).

[0024] Suitable *Zwf* genes may include the *A. succinogenes* *Zwf* gene or variants thereof. The draft genome sequence for *A. succinogenes* 130Z has recently been established and assembled and is publicly available as of September 2005, at the Joint Genome Institute, Department of Energy website. The *Zwf* gene is annotated as “glucose-6-phosphate 1-dehydrogenase” and is present on contig 115, nucleotides 8738-10225 (*i.e.*, SEQ ID NO:5). The predicted amino acid sequence of encoded polypeptide (*i.e.*, the *A. succinogenes* *Zwf* enzyme) is presented as SEQ ID NO:6. The *Zwf* enzyme exhibits 43% amino acid sequence identity and 60% amino acid homology to the *E. coli* *Zwf* enzyme using the “BLAST” alignment algorithm version BLASTP 2.2.12, BLOSUM62 matrix, available at the National Center for Biotechnology Information website. Suitable variants of the *A. succinogenes* *Zwf* gene may include a polynucleotide having at least about 90% sequence identity (desirably at least about 95% sequence identity) to the polynucleotide of SEQ ID NO:5, such that the polynucleotide encodes a polypeptide that has one or more biochemical activities of the *Zwf* enzyme (*i.e.*, glucose-6-phosphate dehydrogenase activity and/or NADP reductase activity).

[0025] The recombinant microorganism may express an endogenous *Zwf* enzyme (*i.e.*, a *Zwf* enzyme present within the microorganism from which the recombinant microorganism is derived), or variants thereof. In other embodiments, the recombinant microorganism may express a *Zwf* enzyme that is heterologous to the microorganism (*i.e.*, a *Zwf* enzyme that is not present or expressed in the microorganism from which the recombinant microorganism is derived), or variants thereof. Suitable *Zwf* enzymes may include variants having at least about 90% amino acid sequence identity to the amino acid sequence of a selected *Zwf* enzyme (desirably at least about 95% amino acid sequence identity to the selected *Zwf*

enzyme) and having one or more biochemical activities of the Zwf enzyme (e.g., NADP reductase activity and/or glucose-6-phosphate dehydrogenase activity). Suitable Zwf enzymes may include the *E. coli* Zwf enzyme (e.g., SEQ ID NO:3, polypeptide encoded by the reverse complement of the nucleotide sequence of nucleotides 1,932,863 to 1,934,338 of NC_000913) or variants thereof, and the *A. succinogenes* Zwf enzyme (e.g., SEQ ID NO:6) or variants thereof.

[0026] A variant polypeptide may include a fragment of a Zwf enzyme. For example, a fragment may include at least about 90% of the amino acid sequence of SEQ ID NO:3, or more desirably at least about 95% of the amino acid sequence of SEQ ID NO:3. In other embodiments, a fragment may include at least about 90% of the amino acid sequence of SEQ ID NO:6, or more desirably at least about 95% of the amino acid sequence of SEQ ID NO:6. A polypeptide fragment may be any suitable length. For example, the polypeptide fragment may comprise at least about 10, 50, 100, 200, and/or 300 amino acids (e.g., of SEQ ID NO:3 or SEQ ID NO:6). A polypeptide fragment typically has one or more biochemical activities of the Zwf enzyme.

[0027] The recombinant microorganism may include a succinic acid producing microorganism that has been transformed with a polynucleotide that expresses an endogenous (i.e., native) Zwf gene which encodes an endogenous (i.e., native) Zwf enzyme. In some embodiments, the recombinant microorganism may include a succinic acid producing microorganism that has been transformed with a polynucleotide that expresses a heterologous Zwf gene which encodes a heterologous Zwf enzyme. The recombinant microorganism deposited with the American Type Culture Collection (ATCC), under ATCC Accession Number PTA-6255, is a recombinant strain of a succinic acid producing microorganism (i.e., *A. succinogenes*) that expresses a heterologous Zwf gene (e.g., the *E. coli* Zwf gene) which encodes a heterologous Zwf enzyme.

[0028] The recombinant microorganism may express a polypeptide having Zwf enzyme activity at relatively high levels (i.e., the polypeptide may be “overexpressed”). For example, the recombinant microorganism may express an endogenous Zwf enzyme at relatively high levels as compared to a non-recombinant

microorganism. In some embodiments, the recombinant microorganism may be transformed with a DNA molecule (e.g., a plasmid) that expresses an endogenous *Zwf* enzyme at relatively high levels compared to a recombinant microorganism that has not been transformed with the DNA molecule.

[0029] A polynucleotide, such as a *Zwf* gene, may be optimized for expression in a selected microorganism from which the recombinant microorganism is derived. For example, a heterologous *Zwf* gene may be optimized for expression in a non-native microorganism. In some embodiments, a *Zwf* gene may be optimized for expression in *A. succinogenes*, or in a microorganism such as Bisgaard Taxon 6 or Bisgaard Taxon 10. In other embodiments, a *Zwf* gene may be optimized for expression in *E. coli*.

[0030] A polynucleotide such as a *Zwf* gene may be optimized for expression in the recombinant microorganism by any suitable strategy. For example, a *Zwf* gene may be optimized for expression in the recombinant microorganism by operably linking the *Zwf* gene to a promoter sequence that facilitates expression of the *Zwf* gene in the recombinant microorganism. The promoter sequence may be optimized to facilitate relatively high levels of expression in the recombinant microorganism (i.e., optimized to facilitate “overexpression”). The *Zwf* gene may be operably linked to a promoter sequence that is endogenous to the microorganism (i.e., a promoter native to the microorganism) or heterologous to the microorganism (i.e., a promoter normally not present in, or derived from a source other than the microorganism). Suitable promoters may include promoters that are not the native promoter for the selected *Zwf* gene (i.e., a non-*Zwf* gene promoter, which may be endogenous to the microorganism or heterologous to the microorganism). Suitable promoters may include inducible promoters or constitutive promoters. Suitable promoters may be derived from promoters of succinic acid producing microorganisms.

[0031] In other embodiments, expression of a *Zwf* gene may be optimized at the translational level. For example, a heterologous *Zwf* gene may be modified to include codons that demonstrate preferred usage frequency in the microorganism from which the recombinant microorganism is derived as a non-natural host for the gene.

[0032] In another embodiment, expression of a polynucleotide such as a *Zwf* gene may be optimized by providing a relatively high copy number of the polynucleotide in the recombinant microorganism. For example, a *Zwf* gene may be present on an epigenetic element that is capable of replicating to achieve a relatively high copy number in the recombinant microorganism (e.g., a plasmid).

[0033] In some embodiments, the recombinant microorganism is a recombinant strain of a succinic acid producing microorganism, such as *Actinobacillus succinogenes* or related microorganisms, which has been transformed with a DNA molecule that includes a promoter operationally linked to a *Zwf* gene. The *Zwf* gene may be derived from an endogenous or heterologous *Zwf* gene and may include, for example, the *A. succinogenes* *Zwf* gene (e.g., SEQ ID NO:5) and the *E. coli* *Zwf* gene (e.g., SEQ ID NOs: 1 & 2). Other *Zwf* genes are known and their polynucleotide sequences have been published (See, e.g., GenBank). Suitable endogenous or native promoter sequences of succinic acid producing microorganisms may include, for example, the *phosphoenolpyruvate (PEP) carboxykinase* promoter sequence. The *A. succinogenes phosphoenolpyruvate (PEP) carboxykinase* promoter sequence is deposited with GenBank under accession number AY308832, nucleotides 1-258 (SEQ ID NO:4). A *phosphoenolpyruvate (PEP) carboxykinase* promoter may be a suitable heterologous promoter for a *Zwf* gene (i.e., a non-*Zwf* gene promoter).

[0034] As described herein, a recombinant microorganism may include a recombinant DNA molecule as an epigenetic element and/or the recombinant DNA molecule may be incorporated into the genome of the microorganism (e.g., by appropriate methods of recombination). In certain embodiments, the DNA molecule is a plasmid, a recombinant bacteriophage, a bacterial artificial chromosome (BAC) and/or an *E. coli* P1 artificial chromosome (PAC). The DNA molecule may include a selectable marker. Suitable selectable markers may include markers for kanamycin resistance, ampicillin resistance, tetracycline resistance, chloramphenicol resistance, and combinations of these selectable markers. In one embodiment, the selectable marker is kanamycin resistance.

[0035] As described herein, a recombinant DNA molecule may include a suitable promoter operationally linked to a polynucleotide that encodes a polypeptide having

one or more biochemical activities of Zwf enzyme for expressing the polynucleotide in a recombinant microorganism (e.g., *A. succinogenes*). The promoter may be suitable for expressing the polypeptide in a succinic acid producing microorganism. In some embodiments, the recombinant DNA molecule includes a *phosphoenol pyruvate (PEP) carboxykinase* promoter (e.g., a *A. succinogenes phosphoenol pyruvate (PEP) carboxykinase* promoter) operationally linked to a *Zwf* gene or a variant thereof, (which may include a heterologous *Zwf* gene such as an *E. coli Zwf* gene or an *A. succinogenes Zwf* gene). For example, the DNA molecule may include nucleotides 1-258 of the DNA sequence deposited under GenBank accession number AY308832 (SEQ ID NO:4) or a variant thereof, operationally linked to the reverse complement of nucleotides 1,932,863 to 1,934,338 of the DNA sequence deposited under GenBank accession number NC_000913 (SEQ ID NO:1); or operationally linked to the DNA sequence deposited under GenBank accession number M55005 (SEQ ID NO:2); or operationally linked to the DNA sequence of SEQ ID NO:5. In some embodiments, the promoter may include a polynucleotide having at least about 95% sequence identity to the polynucleotide of SEQ ID NO:4 and having promoter activity in the recombinant microorganism.

[0036] A recombinant microorganism comprising the recombinant DNA molecule may be suitable for producing an organic acid (e.g., succinic acid or lactic acid) in a fermentation system. The recombinant microorganism comprising the recombinant DNA molecule may produce enhanced levels of an organic acid (e.g., succinic acid or lactic acid) in a fermentation system relative to a microorganism that does not comprise the recombinant DNA molecule.

[0037] Also disclosed is a DNA plasmid comprising one or more of the aforementioned recombinant DNA molecules. The DNA plasmid may include a selectable marker. Suitable selectable markers may include one or more of the genes for ampicillin resistance, streptomycin resistance, kanamycin resistance, tetracycline resistance, chloramphenicol resistance, and sulfonamide resistance, operationally linked to a suitable promoter (e.g., a constitutive promoter). In one embodiment, the DNA plasmid includes the gene for kanamycin resistance.

[0038] The DNA plasmid may include sequences required for maintaining and/or replicating the plasmid in one or more suitable host cells. In one embodiment, the DNA plasmid is capable of functioning as a shuttle vector between suitable host cells. The DNA plasmid may be capable of functioning as a shuttle vector between *A. succinogenes* and *E. coli*.

[0039] Also disclosed is a host cell that includes one or more of the aforementioned DNA molecules. For example, the host cell may comprise a DNA plasmid that includes the DNA molecule. The host cell may be suitable for producing and isolating a DNA plasmid that includes the DNA molecule.

[0040] The host cell may be suitable for producing one or more organic acids in a fermentation system. In some embodiments, the host cell expresses a *Zwf* gene (and subsequently a *Zwf* enzyme) at a level suitable for enhancing the production of one or more organic acids (e.g., succinic acid or lactic acid) in a fermentation system. In some embodiments, the host cell may express a *Zwf* gene (and subsequently a *Zwf* enzyme) at a level suitable for enhancing the concentration of reducing equivalents (e.g., NADPH) in the host cell. The host cell may comprise a recombinant strain of *A. succinogenes* that expresses a *Zwf* gene (and subsequently a *Zwf* enzyme) at a level suitable for enhancing the concentration of reducing equivalents (e.g., NADPH) in the strain. Such a strain may be suitable for producing enhanced levels of succinic acid in a fermentation system relative to a strain that does not comprise the recombinant DNA molecule.

[0041] In some embodiments, the host cell is capable of producing succinic acid at concentrations of at least about 20 g/L, 40 g/L, 60 g/L, 80 g/L, 100 g/L, 120 g/L, 140 g/L, and/or 160 g/L (e.g., in a fermentation system). In certain embodiments, the host cell is capable of producing succinic acid at concentrations of at about 50 g/L to about 130 g/L. Desirably, the host cell does not produce selected organic acids other than succinic acid at substantial concentrations. Where the host cell produces organic acids other than succinic acid (e.g., acetic acid, formic acid, pyruvic acid, and mixtures thereof), desirably the organic acids other than succinic acid are produced at concentrations no more than about 30 g/L, more desirably no more than about 20 g/L,

more desirably no more than about 10 g/L, and even more desirably no more than about 5 g/L.

[0042] The aforementioned recombinant microorganisms may be used in methods that include fermenting a nutrient medium to produce one or more organic acids. In some embodiments, the methods may include fermenting a nutrient medium with a recombinant microorganism that expresses a *Zwf* gene (e.g., the *E. coli* *Zwf* gene). Organic acids produced by the method may include succinic acid and lactic acid. In further embodiments, the methods are suitable for producing succinic acid at concentrations of at least about 20 g/L, 40 g/L, 60 g/L, 80 g/L, 100 g/L, 120 g/L, and/or 160 g/L.

[0043] In particular, the methods may include fermenting a nutrient medium with a recombinant strain of *A. succinogenes* that expresses a *Zwf* gene (and subsequently a *Zwf* enzyme) at a level suitable for enhancing the production of an organic acid (e.g., succinic acid). The *Zwf* gene may include a heterologous *Zwf* gene. A recombinant strain of *A. succinogenes* that expresses a heterologous *Zwf* gene (i.e., the *E. coli* *Zwf* gene) is deposited under ATCC accession number PTA-6255. In certain embodiments, the recombinant microorganism is a recombinant strain of a microorganism such as Bisgaard Taxon 6 or Bisgaard Taxon 10 that expresses a *Zwf* gene (which may be heterologous) at a level suitable for enhancing the production of an organic acid (e.g., succinic acid). Suitable recombinant microorganisms also include recombinant strains of *E. coli* that express a *Zwf* gene (which may be heterologous) at a level suitable for enhancing the production of an organic acid (e.g., lactic acid).

[0044] In the method, it may be desirable to ferment a nutrient medium with recombinant microorganisms that produce relatively high levels of selected organic acids, such as succinic acid and/or lactic acid. As such, the selected recombinant microorganisms may be resistant to high levels of organic acids, such as succinic and/or lactic acid. The recombinant microorganisms may also be selected to produce relatively low levels of other undesirable by-products. For example, the recombinant microorganism may produce relatively low levels of acetate, formate, pyruvate, and mixtures thereof (e.g., no more than about 2.0 g/L, no more than about 2.0 g/L

formate, and/or no more than about 3.0 g/L pyruvate). The above-described recombinant microorganisms that are resistant to concentrations of sodium monofluoroacetate of about 1 g/L, 2 g/L, 4 g/L, and/or 8 g/L are suitable for the method.

[0045] In the method, the nutrient medium typically includes a fermentable carbon source. A fermentable carbon source may be provided by a fermentable biomass. In one embodiment, the fermentable carbon source is derived from feedstock, including sugar crops, starch crops, and/or cellulosic crop residues. Generally, the fermentable carbon source is a sugar, such as glucose. The fermentable carbon source may also include sugar alcohols. In suitable embodiments, the method results in a succinic acid yield (g) of at least about 100% relative to glucose (g).

BRIEF DESCRIPTION OF THE DRAWINGS

[0046] Figure 1: Metabolic flux analysis of *A. succinogenes* variant FZ45 batch fermentation using glucose.

[0047] Figure 2: Metabolic flux analysis of recombinant *A. succinogenes* FZ45/pJR762.73 batch fermentation using glucose.

[0048] Figure 3: Zwf enzymatic activities in cell extracts of transformed strains. Extracts were prepared and assayed for Zwf activity as described below. All strains carrying pJR762.73 showed orders of magnitude increases in Zwf activity, which is graphed on a logarithmic scale.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0049] Disclosed herein is a recombinant microorganism which expresses a polypeptide that has one or more biochemical activities of an enzyme utilized in the pentose phosphate cycle. As used herein, “microorganism” includes any suitable single-cell organism such as bacteria, fungi, and yeast. As used herein, “recombinant microorganism” means a microorganism that has been modified in a manner that results in a non-naturally occurring microorganism. A “recombinant microorganism” may include a microorganism that has been transformed with a DNA molecule (e.g., a recombinant DNA molecule).

[0050] A recombinant microorganism may include a microorganism that has been transformed with a DNA molecule that expresses a polypeptide having one or more biochemical activities of the *Zwf* enzyme. The pentose phosphate cycle utilizes several enzymes including glucose-6-phosphate-1-dehydrogenase, (also called Zwischenferment enzyme or *Zwf*); 6-phosphogluconolactonase; 6-phosphogluconate dehydrogenase, (also called *Gnd*); ribose-5-phosphate isomerase A and B; ribulose phosphate 3-epimerase; transketolase I and II; and transaldolase A and B. Of these enzymes, *Zwf* and *Gnd* result in the production of two hydrogen equivalents in the form of NADPH.

[0051] The recombinant microorganism may express any suitable polypeptide or variant thereof having one or more biochemical activities of the *Zwf* enzyme (e.g., glucose-6-phosphate-1-dehydrogenase activity and NADP reductase activity). For example, one suitable *Zwf* enzyme is the *E. coli* *Zwf* enzyme or a variant thereof. In some embodiments, the recombinant microorganism may express the *Zwf* enzyme at elevated levels (i.e., “overexpress” the enzyme) relative to levels present in non-recombinant microorganisms.

[0052] The recombinant microorganism may express a variant polypeptide having at least about 90% sequence identity to the amino acid sequence of a *Zwf* enzyme, and more desirably at least about 95% sequence identity to the amino acid sequence of a *Zwf* enzyme. In suitable embodiments, the recombinant microorganism may express a variant of a *Zwf* enzyme that has at least about 96%, 97%, 98%, or 99% sequence identity to the *Zwf* enzyme. Desirably, the variant polypeptide has one or more biochemical activities of the *Zwf* enzyme. A variant polypeptide may include a fragment of the *Zwf* enzyme. Suitable *Zwf* enzymes include *A. succinogenes* *Zwf* enzyme, *E. coli* *Zwf* enzyme, and variants thereof.

[0053] The recombinant microorganism may express a polynucleotide encoding a polypeptide having one or more biochemical activities of the *Zwf* enzyme such as a *Zwf* gene or a variant thereof. For example, the recombinant microorganism may express a *Zwf* gene or a variant comprising a DNA sequence that has at least about 90% sequence identity to the *Zwf* gene, and more desirably at least about 95% sequence identity to the *Zwf* gene. In suitable embodiments, the recombinant

microorganism may express a variant of the *Zwf* gene comprising a DNA sequence that has at least about 96%, 97%, 98%, or 99% sequence identity to the *Zwf* gene. Desirably, the variant polynucleotide encodes a polypeptide having one or more biochemical activities of *Zwf* enzyme. A variant polynucleotide may include a fragment of the *Zwf* gene. In some embodiments, the recombinant microorganism may express an *A. succinogenes* *Zwf* gene, an *E. coli* *Zwf* gene, or a variant thereof.

[0054] The recombinant microorganism may be derived from any suitable microorganism. Typically, the microorganism is capable of producing an organic acid at a level suitable for commercial production. As used herein, an “organic acid” includes at least one carboxylic group. For example, “organic acid” includes succinic acid and lactic acid. As used herein, organic acids may be alternately designated by the organic acid anion or a salt thereof. For example, “succinic acid” may be referred to as “succinate”; “lactic acid” may be referred to as “lactate”; “formic acid” may be referred to as “formate”; and “pyruvic acid” may be referred to as “pyruvate.”

[0055] Suitable microorganisms for preparing recombinant microorganisms as described herein may include, but are not limited to, members of the *Actinobacillus* genus, including *A. succinogenes*; Bisgaard Taxon 6; Bisgaard Taxon 10; *Mannheimia succiniciproducens*; *E. coli*; *Anaerobiospirillum succiniciproducens*; *Ruminobacter amylophilus*; *Succinivibrio dextrinosolvens*; *Prevotella ruminicola*; *Ralstonia eutropha*; and coryneform bacteria (e.g., *Corynebacterium glutamicum*, *Corynebacterium ammoniagenes*, *Brevibacterium flavum*, *Brevibacterium lactofermentum*, *Brevibacterium divaricatum*); members of the *Lactobacillus* genus; yeast (e.g., members of the *Saccharomyces* genus); and any subset thereof. Suitable microorganisms for preparing recombinant microorganisms as described herein may include succinic acid producing microorganisms.

[0056] The recombinant microorganism typically expresses a *Zwf* gene, which may be a heterologous *Zwf* gene. The *Zwf* gene may be optimized for expression in the recombinant microorganism. For example, the *Zwf* gene may be operationally linked to a promoter that facilitates overexpression of the gene in the recombinant microorganism relative to a non-recombinant microorganism. The promoter may be endogenous to the microorganism (i.e., native to the microorganism from which the

recombinant microorganism is derived) or heterologous to the microorganism (*i.e.*, not native to the microorganism from which the recombinant microorganism is derived or obtained from a source other than the microorganism). The promoter may be endogenous to the *Zwf* gene or heterologous to the *Zwf* gene (*i.e.*, a non-*Zwf* gene promoter). The promoter may facilitate constitutive and/or inducible expression of the *Zwf* gene, and/or the promoter may be modified to facilitate constitutive and/or inducible expression of the *Zwf* gene by suitable methods.

[0057] The *Zwf* gene may be modified to facilitate translation of the corresponding mRNA. For example, the *Zwf* gene may be modified to include codons that are not present in the endogenous or native gene. These non-endogenous codons may be selected to reflect the codon usage frequency in the recombinant microorganism. Codon usage tables have been developed for many microorganisms and are known in the art. The *Zwf* gene may be modified to reflect the codon usage frequency for *A. succinogenes* as provided below:

Exemplary Codon Frequency Usage for *Actinobacillus succinogenes*.

Source: GenBank Release 144.0 [November 12, 2004]

Triplet [frequency per thousand]

UUU	[20.4]	UCU	[1.9]	UAU	[13.0]	UGU	[7.4]
UUC	[29.7]	UCC	[14.8]	UAC	[16.7]	UGC	[3.7]
UUA	[35.3]	UCA	[13.0]	UAA	[1.9]	UGA	[0.0]
UUG	[20.4]	UCG	[5.6]	UAG	[0.0]	UGG	[16.7]
CUU	[13.0]	CCU	[5.6]	CAU	[5.6]	CGU	[20.4]
CUC	[1.9]	CCC	[0.0]	CAC	[7.4]	CGC	[9.3]
CUA	[0.0]	CCA	[3.7]	CAA	[18.6]	CGA	[1.9]
CUG	[5.6]	CCG	[35.3]	CAG	[3.7]	CGG	[0.0]
AUU	[27.8]	ACU	[18.6]	AAU	[13.0]	AGU	[7.4]
AUC	[22.3]	ACC	[31.5]	AAC	[39.0]	AGC	[3.7]
AUA	[0.0]	ACA	[5.6]	AAA	[76.1]	AGA	[1.9]
AUG	[20.4]	ACG	[18.6]	AAG	[1.9]	AGG	[0.0]
GUU	[26.0]	GCU	[13.0]	GAU	[33.4]	GGU	[61.2]
GUC	[7.4]	GCC	[13.0]	GAC	[29.7]	GGC	[24.1]
GUA	[11.1]	GCA	[22.3]	GAA	[64.9]	GGA	[0.0]
GUG	[27.8]	GCG	[35.3]	GAG	[5.6]	GGG	[5.6]

[0058] The recombinant microorganism may include a recombinant strain of *A. succinogenes* that expresses a *Zwf* gene (e.g., an endogenous *Zwf* gene and/or a heterologous *Zwf* gene such as the *E. coli* *Zwf* gene). Other suitable microorganisms for producing recombinant microorganisms include Bisgaard Taxon 6 (deposited with the Culture Collection, University of Göteborg, Sweden (CCUG), under accession number 15568); Bisgaard Taxon 10 (deposited under CCUG accession number 15572); and any suitable strain of *E. coli* for which many strains are known in the art. The recombinant microorganism may be derived from a strain that produces high levels of one or more organic acids such as succinic acid and lactic acid, and/or the

recombinant microorganism may be selected and/or engineered to produce high or enhanced levels of one or more organic acids such as succinic acid and lactic acid relative to a non-recombinant microorganism.

[0059] The recombinant microorganism may be derived from strains that are resistant to relatively high levels of undesirable by-products and/or strains of microorganisms that produce relatively low levels of undesirable by-products. Undesirable by-products may include formate (or formic acid), acetate (or acetic acid), and/or pyruvate (or pyruvic acid). Methods for selecting strains that produce low levels of acetate are known in the art. *See, e.g.*, U.S. 5,521,075 and U.S. 5,573,931, which are incorporated herein by reference. For example, strains of microorganisms that produce relatively low levels of acetate may be selected by growing the microorganisms in the presence of a toxic acetate derivative, such as sodium monofluoroacetate at a concentration of about 1.0 to about 8.0 g/L. Selected strains may produce relatively low levels of acetate (*e.g.*, less than about 2.0 g/L), formate (*e.g.*, less than about 2.0 g/L), and/or pyruvate (*e.g.*, less than about 3.0 g/L) in a glucose fermentation. One suitable monofluoroacetate resistant strain for producing a recombinant microorganism is a strain of *A. succinogenes* called FZ45, which is a derivative of *A. succinogenes* deposited under ATCC accession number 55618. *See* U.S. 5,573,931, which describes suitable methods for preparing microbial strains that are resistant to monofluoroacetate.

[0060] The recombinant microorganism may be selected and/or engineered to be resistant to relatively high levels of undesirable by-products and/or to produce relatively low levels of undesirable by-products. For example, after transformation, a population of recombinant microorganisms may be grown in the presence of sodium monofluoroacetate to select strains that are resistant to relatively high levels of acetate and/or strains that produce relatively low levels of acetate.

[0061] A DNA sequence that encodes a polypeptide with one or more biochemical activities of the *Zwf* enzyme may be obtained by employing methods known in the art (*e.g.*, PCR amplification of a *Zwf* gene with suitable primers and cloning into a suitable DNA vector). The polynucleotide sequences of suitable *Zwf* genes have been disclosed. (*See, e.g.*, GenBank). For example, the polynucleotide sequence of the *A.*

succinogenes *Zwf* gene has been published (SEQ ID NO:5 & 6). (See Joint Genome Institute, Department of Energy website). The *E. coli* *Zwf* gene is deposited with GenBank (e.g., under GenBank Accession Number NC_000913 (SEQ ID NO:1) and GenBank Accession Number M55005 (SEQ ID NO:2)). The *Zwf* gene or variants thereof may be obtained by PCR amplification of a microorganism's genomic DNA with appropriate primers.

[0062] The DNA vector may be any suitable vector for expressing the gene in a recombinant microorganism. Suitable vectors include plasmids, artificial chromosomes (e.g., bacterial artificial chromosomes), and/or modified bacteriophages (e.g., phagemids). The vector may be designed to exist as an epigenetic element and/or the vector may be designed to recombine with the genome of the microorganism.

[0063] The DNA molecule typically includes a promoter operationally linked to a polynucleotide that encodes a polypeptide having *Zwf* enzyme activity. The promoter may be endogenous or native to the microorganism from which the recombinant microorganism is derived, or heterologous to the microorganism (i.e., derived from a source other than the recombinant microorganism). Furthermore, the promoter may be the native promoter for a selected *Zwf* gene or may be a promoter other than the native promoter for a selected *Zwf* gene (i.e., a non-*Zwf* gene promoter). Where the recombinant microorganism is a strain of *A. succinogenes*, a suitable endogenous or native promoter is the *A. succinogenes* *phosphoenolpyruvate (PEP) carboxykinase* promoter (SEQ ID NO:4), deposited under GenBank accession number AY308832, including nucleotides 1-258, or a variant thereof. The promoter may be operationally linked to the *Zwf* gene using cloning methods that are known in the art. For example, the promoter and *Zwf* gene may be amplified by PCR using primers that include compatible restriction enzyme recognition sites. The amplified promoter and gene then may be digested with the enzyme and cloned into an appropriate vector that includes a suitable multiple cloning site.

[0064] In addition, the DNA molecule may include a selectable marker. The selectable marker may impart resistance to one or more antibiotic agents. For example, selectable markers may include genes for ampicillin resistance,

streptomycin resistance, kanamycin resistance, tetracycline resistance, chloramphenicol resistance, sulfonamide resistance, or combinations of these markers. Typically, the selectable marker is operationally linked to a promoter that facilitates expression of the marker. Plasmids and other cloning vectors that include selectable markers are known in the art.

[0065] The DNA molecule typically is used to transform a host cell. Suitable host cells include any cell that is useful for storing and/or producing the DNA molecule.

[0066] Suitable host cells may include cells that expresses any gene present on the DNA molecule. Suitable host cells also may include cells that are capable of producing an organic acid in a fermentation process, such as succinic acid at a concentration suitable for commercial production (e.g., at least about 20 g/L, more suitably at least about 50 g/L, and more suitably at least about 100 g/L).

[0067] The methods for producing an organic acid typically include fermenting a nutrient medium with a recombinant microorganism that expresses a *Zwf* gene. For example, the method may include fermenting a nutrient medium with a recombinant *A. succinogenes* that expresses a *Zwf* gene (e.g., a heterologous *Zwf* gene such as the *E. coli* *Zwf* gene). Organic acids produced in the fermentation may include succinic acid. One suitable recombinant microorganism for the methods is a recombinant strain of *A. succinogenes* that expresses the *E. coli* *Zwf* gene, deposited under ATCC accession number PTA-6255. The methods also may include fermenting a nutrient medium with a recombinant strain of Bisgaard Taxon 6 or Bisgaard Taxon 10 that express a *Zwf* gene (e.g., a heterologous *Zwf* gene such as the *E. coli* *Zwf* gene) to produce succinic acid. The methods also may include fermenting a nutrient medium with a recombinant strain of *E. coli* that expresses a *Zwf* gene (or overexpresses a *Zwf* gene) to produce one or more organic acids such as lactic acid.

[0068] The methods may employ recombinant microorganisms that are resistant to relatively high levels of the organic acid being produced (e.g., succinic acid). The methods also may employ strains of microorganisms that are resistant to relatively high levels of undesirable by-products and/or strains of microorganisms that produce relatively low levels of undesirable by-products.

[0069] The nutrient medium typically includes a fermentable carbon source. The fermentable carbon source may be provided by a fermentable biomass. A fermentable biomass may be derived from a variety of crops and/or feedstocks including: sugar crops (*e.g.*, sugar, beets, sweet sorghum, sugarcane, fodder beet); starch crops (*e.g.*, grains such as corn, wheat, sorghum, barley, and tubers such as potatoes and sweet potatoes); cellulosic crops (*e.g.*, corn stover, corn fiber, wheat straw, and forages such as Sudan grass forage, and sorghum). The biomass may be treated to facilitate release of fermentable carbon source (*e.g.*, sugars). For example, the biomass may be treated with enzymes such as cellulase and/or xylanase, to release simple sugars. The fermentable carbon source may include simple sugars and sugar alcohols such as glucose, maltose, mannose, mannitol, sorbitol, galactose, xylose, arabinose, and mixtures thereof.

[0070] The methods typically result in a relatively high yield of succinic acid relative to an input carbon source such as glucose. For example, the methods may have a succinic acid yield (g) of at least about 90% relative to glucose input (g). Alternatively, the yield may be calculated as % succinic acid yield (mol) / glucose input (mol). As such, the methods may have a succinic acid yield (mol) of at least about 140% relative to glucose input (mol). Desirably, the methods may have a succinic acid yield (mol) of at least about 130% or at least about 170% relative to glucose input (mol).

[0071] The methods also typically result in a relatively high concentration of succinic acid production (*e.g.*, relative to a method that uses a non-recombinant microorganism in a fermentation). For example, a fermentation may reach a concentration of at least about 50 g/L succinic acid. Desirably, a fermentation may reach a concentration of at least about 90 g/L succinic acid or more desirably, a concentration of at least about 130 g/L succinic acid. In some embodiments, the fermentation typically does not produce substantial levels of undesirable by-products such as acetate, formate, pyruvate, and mixtures thereof (*e.g.*, no more than about 2.0 g/L acetate, no more than about 2.0 g/L formate, and/or no more than about 3.0 g/L pyruvate).

[0072] The methods may be used to produce relatively high concentration of lactic acid (e.g., relative to a method that uses a non-recombinant microorganism in a fermentation). For example, the recombinant microorganisms may be used in a fermentation to produce lactic acid at a concentration of at least about 25 g/L. In one embodiment, the fermentation yields may yield about 0.5 g lactic acid per gram glucose. The methods for producing lactic acid may include fermenting a suitable carbon source with recombinant *E. coli* that expresses (or overexpresses) a polypeptide that has one or more biochemical activities of the *Zwf* gene. For example, the method may include fermenting a suitable carbon source with recombinant *E. coli* that expresses the *E. coli* *Zwf* gene from an epigenetic element such as a plasmid.

Illustrated Embodiments

[0073] In one embodiment, the recombinant microorganism is a recombinant strain of *Actinobacillus succinogenes* that expresses a heterologous *Zwf* gene. The heterologous *Zwf* gene may be optimized for expression in *Actinobacillus succinogenes*. The heterologous *Zwf* gene may encode an *E. coli* *Zwf* enzyme. The recombinant strain may include recombinant *Actinobacillus succinogenes* deposited under ATCC Accession Number PTA-6255. The recombinant strain may be capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L (e.g., in a fermentation system that utilizes a suitable carbon source). The recombinant strain may be resistant to levels of sodium monofluoroacetate of at least about 1 g/L.

[0074] In some embodiments, the recombinant strain is a recombinant strain of microorganism belonging to Bisgaard Taxon 6 or Bisgaard Taxon 10 that expresses a heterologous *Zwf* gene. The heterologous *Zwf* gene may encode *E. coli* *Zwf* enzyme.

[0075] In another embodiment, the recombinant strain is a recombinant strain of *Actinobacillus succinogenes*, which includes a DNA molecule comprising a transcription promoter for *Actinobacillus succinogenes* operationally linked to a heterologous *Zwf* gene. The transcription promoter may include the *A. succinogenes phosphoenolpyruvate (PEP) carboxykinase* promoter or a variant thereof (e.g., a polynucleotide of SEQ ID NO:4 or a polynucleotide having at least about 95%

sequence identity to SEQ ID NO:4, where the polynucleotide has *A. succinogenes phosphoenolpyruvate (PEP) carboxykinase* promoter activity). The heterologous *Zwf* gene may encode *E. coli Zwischenferment* enzyme or a variant thereof (e.g., a polynucleotide of SEQ ID NO:1 or a polynucleotide having at least about 95% sequence identity to SEQ ID NO:1, where the polynucleotide has *E. coli Zwischenferment* enzyme activity). The heterologous *Zwf* gene may include the *E. coli Zwf* gene. Optionally, the *Zwf* gene may be optimized for expression in *Actinobacillus succinogenes*. The DNA molecule may be epigenetic (e.g., present on a plasmid). The DNA molecule may include a selectable marker (e.g., kanamycin resistance, ampicillin resistance, streptomycin resistance, sulfonamide resistance, tetracycline resistance, chloramphenicol resistance, or a combination thereof).

[0076] In another embodiment, the recombinant strain is a recombinant strain of *Actinobacillus succinogenes* which comprises a heterologous *Zwf* enzyme. The heterologous *Zwf* enzyme may be expressed from a *Zwf* gene that has been optimized for expression in *Actinobacillus succinogenes*. The heterologous *Zwf* enzyme may include *E. coli Zwischenferment* enzyme. The recombinant strain may include recombinant *A. succinogenes* deposited under ATCC Accession Number PTA-6255. The recombinant strain may be capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L. Optionally, the recombinant strain is resistant to levels of sodium monofluoroacetate of at least about 1 g/L.

[0077] In one embodiment, the method for producing succinic acid includes fermenting a nutrient medium with a recombinant microorganism that expresses a heterologous *Zwf* gene. The recombinant microorganism may include a recombinant strain of *Actinobacillus succinogenes* (e.g., *A. succinogenes* recombinant strain deposited under ATCC Accession Number PTA-6255). The recombinant microorganism may include a recombinant strain of Bisgaard Taxon 6 or a recombinant strain of Bisgaard Taxon 10. The heterologous *Zwf* gene may include the *E. coli Zwf* gene. Optionally, the recombinant strain is resistant to levels of sodium monofluoroacetate of at least about 1 g/L. Optionally, the recombinant strain is capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L. The nutrient medium may include a fermentable sugar (e.g., glucose).

Typically, the method results in a succinic acid yield (g) of at least about 100% relative to glucose (g).

[0078] In one embodiment, the recombinant DNA molecule includes a transcription promoter for *A. succinogenes* operationally linked to a heterologous *Zwf* gene. For example, the transcription promoter may include the *A. succinogenes phosphoenolpyruvate (PEP) carboxykinase* promoter or a variant thereof, (e.g., a polynucleotide of SEQ ID NO:4 or a polynucleotide having at least about 95% sequence identity to SEQ ID NO:4, where the polynucleotide has *Actinobacillus succinogenes phosphoenolpyruvate (PEP) carboxykinase* promoter activity).

[0079] In one embodiment, the recombinant DNA molecule is present in a DNA plasmid. Typically, the DNA plasmid includes a selectable marker (e.g., a gene selected from the group consisting of ampicillin resistance, kanamycin resistance, streptomycin resistance, tetracycline resistance, chloramphenicol resistance, sulfonamide resistance, and combinations thereof). The DNA molecule, which may be present in a DNA plasmid, may be present in a host cell. The host cell may be capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L in a fermentation system.

[0080] In one embodiment, the recombinant microorganism is a recombinant strain of a succinic acid producing microorganism which has been transformed with a DNA molecule that expresses a polypeptide having *Zwf* enzyme activity. The DNA molecule may include a polynucleotide that encodes a polypeptide having *Zwf* enzyme activity, which may include NADP reductase activity. The DNA molecule may include a polynucleotide that encodes a polypeptide having at least about 90% sequence identity (or desirably at least about 95% sequence identity) to the amino acid sequence of a *Zwf* enzyme (e.g., SEQ ID NO:3 or SEQ ID NO:6), where the polypeptide has *Zwf* enzyme activity (e.g., NADP reductase activity). The DNA molecule may include a polynucleotide sequence having at least about 90% sequence identity (or desirably at least about 95% sequence identity) to the polynucleotide sequence of a *Zwf* gene (e.g., SEQ ID NO:1; SEQ ID NO:2; or SEQ ID NO:5), where the polynucleotide encodes a polypeptide having *Zwf* enzyme activity. In some embodiments, the recombinant strain may be derived from a microorganism whose

16S rRNA has at least about 90% sequence identity to 16S rRNA of *Actinobacillus succinogenes*. For example, the recombinant strain may be derived from a strain of *Actinobacillus succinogenes*, Bisgaard Taxon 6, or Bisgaard Taxon 10.

[0081] In another embodiment, the recombinant microorganism is a recombinant strain of a succinic acid producing microorganism that has been transformed with a heterologous *Zwf* gene. The heterologous *Zwf* gene may be optimized for expression in the microorganism. In some embodiments, the heterologous *Zwf* gene may encode *E. coli* *Zwf* enzyme. In some embodiments, the *Zwf* gene may include a polynucleotide having at least about 95% sequence identity to SEQ ID NO:1, where the polynucleotide has *Zwf* enzyme activity.

[0082] In another embodiment, the recombinant microorganism is a recombinant strain of a succinic acid producing microorganism that has been transformed with a DNA molecule that includes a transcription promoter for *phosphoenolpyruvate (PEP) carboxykinase* operationally linked to polynucleotide encoding a polypeptide having *Zwf* enzyme activity. The transcription promoter may include the *Actinobacillus succinogenes phosphoenolpyruvate (PEP) carboxykinase* promoter. In some embodiments, the promoter may include a polynucleotide having at least about 95% sequence identity to SEQ ID NO:4, where the polynucleotide has promoter activity.

[0083] In another embodiment, the recombinant microorganism is a recombinant strain transformed with a DNA molecule that is epigenetic. The DNA molecule may be present on a plasmid.

[0084] In another embodiment, the recombinant microorganism is a recombinant strain that is capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L.

[0085] The recombinant strain may be resistant to levels of sodium monofluoroacetate of at least about 1 g/L. In some embodiments, the recombinant strain is recombinant *Actinobacillus succinogenes* deposited under ATCC Accession Number PTA-6255.

[0086] In another embodiment, the recombinant microorganism is used for producing succinic acid in a method that include fermenting a nutrient medium with the recombinant microorganism. The nutrient medium typically includes fermentable

sugar such as glucose. The method may result in a succinic acid yield (g) of at least about 100% relative to glucose (g).

[0087] In some embodiments, the DNA molecule comprising a transcription promoter for a succinic acid producing microorganism operationally linked to a heterologous *Zwf* gene. The transcription promoter may include a *phosphoenolpyruvate (PEP) carboxykinase* promoter. In some embodiments, the promoter includes a polynucleotide having at least about 95% sequence identity to SEQ ID NO:4, where the polynucleotide has promoter activity. The DNA molecule may be present within a plasmid. The DNA molecule may be present in a host cell (e.g., a host cell capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L).

EXAMPLES

Microorganism Strains and Plasmids

[0088] *A. succinogenes* strain FZ45 is a stable bacterial variant of *Actinobacillus succinogenes* 130Z, which is resistant to sodium monofluoroacetate. See Guettler *et al.*, INT'L J. SYST. BACT. (1999) 49:207-216; and U.S. Patent 5,573,931. The *E. coli*-*A. succinogenes* shuttle vector pLS88 (deposited at the American Type Culture Collection as ATCC accession no. 86980) was obtained from Dr. Leslie Slaney, University of Manitoba, Canada. Plasmid pLS88 is described as having been isolated from *Haemophilus ducreyi* and may confer resistance to sulfonamides, streptomycin, and kanamycin.

Genetic Manipulations

[0089] Recombinant DNA manipulations generally followed methods described in the art. Plasmid DNA was prepared by the alkaline lysis method. Typical resuspension volumes for multicopy plasmids extracted from 1.5 ml cultures were 50 µl. Larger DNA preparation used the Qiagen Plasmid Purification Midi and Maxi kit according to the manufacturer's instructions. Restriction endonucleases,

Molecular Weight Standards, and pre-stained markers were purchased from New England Biolabs and Invitrogen and digests were performed as recommended by the manufacturers, except that an approximately 5-fold excess of enzyme was used. DNA was analyzed on Tris-acetate-agarose gels in the presence of ethidium bromide. DNA was extracted from agarose gels and purified using the Qiagen gel extraction kit according to the manufacturer's instructions. DNA was dephosphorylated using shrimp alkaline phosphatase (Roche) in combination with restriction digests. The phosphatase was heat inactivated at 70°C for 15 min. Ligations were performed using a 3- to 5-fold molar excess of insert to vector DNA in a 20 µl reaction volume and 1 µl of T4 DNA Ligase (New England Biolabs) for 1 hour at 25°C. *E. coli* transformation were performed by using "library efficiency competent cells" purchased from Invitrogen, following the manufacturer's instructions.

[0090] Transformations using ligation mixes were plated without dilutions on standard LB plates containing the appropriate antibiotic. PCR amplifications were carried out using the Perkin Elmer manual as a guideline. Primer designs were based on published sequences (as provided a the National Center for Biotechnology Information (NCBI) database). The primers included engineered restriction enzyme recognition sites. Primers were analyzed for dimer and hairpin formation and melting temperature using the Vector NTI program. All primers were ordered from the Michigan State Macromolecular Structure Facility. PCR amplifications were carried out in an Eppendorf Gradient Master Cycler, or in a Perkin Elmer Thermocycler. Starting annealing temperatures were determined using the Vector NTI program for each primer pair. Restriction enzymes for digesting the amplified products were purchased from Invitrogen or New England Biolabs.

Plasmid pJR762.55

[0091] The *A. succinogenes* phosphoenolpyruvate (PEP) carboxykinase promoter sequence (P^{pepck}, SEQ ID NO:4, GenBank accession number AY308832, including nucleotides 1-258) was amplified from *A. succinogenes* FZ45 genomic DNA using the following primers: Forward, 5'-AAAGAATTCTTAATTCTTAATCGGGAC

(SEQ ID NO:7); and Reverse, 5'-GCGTCGACATACTTCACCTCATTGAT (SEQ ID NO:8). *EcoRI* and *SalI* restriction sequences (underlined nucleotides) were included to facilitate cloning, and the resulting 0.27-kb P^{pepck} fragment was inserted as an *EcoRI/SalI* fragment into pLS88 to produce plasmid pJR762.55.

Plasmid pJR762.73

[0092] The *Zwf* gene from *E. coli* was amplified from strain BL21(DE3) genomic DNA (ATCC accession number NC_000913), using the following primers: Forward, 5'-CCGCTCGAGGGCGGTAACGCAAACAGC (SEQ ID NO:9); and Reverse, 5'-CCGCTCGAGTTACTCAAACATTCCAGG (SEQ ID NO:10). *XhoI* restriction sequences (underlined nucleotides) were included to facilitate cloning and the ensuing 1.5kb *Zwf* fragment was inserted into the *SalI* site of pJR762.55 to produce plasmid pJR762.73.

Transformation of *A. succinogenes*

[0093] *A. succinogenes* competent cells for electroporation were prepared by growing cells in tryptic soy broth medium (TSB) to an OD_{600} of ~0.6. Cells were spun down, washed twice with sterile water, twice with 10% v/v glycerol and resuspended in 0.01x the original culture volume with 10% glycerol. Cells were flash frozen and stored at minus 80°C. Approximately 40 μ l of thawed cells were used for electroporation, in 0.1 cm cuvettes with a BioRad GenePulser at settings of 400 W, 25 mF, and 1.8 kV. Following electroporation, 1 ml room temperature TSB medium was immediately added and the cells were incubated at 37°C for 1h. The cell solution was plated on TSB agar plates containing Kanamycin (100 μ g/ml).

Optical density determination of *A. succinogenes*

[0094] Samples from magnesium-neutralized fermentations were spun at 420 × g for 2 min to precipitate the MgCO₃ and diluted with 0.5N HCl to solubilize any remaining precipitate before reading at OD₆₆₀.

A. succinogenes batch fermentations

[0095] *A. succinogenes* fermentations were performed in 5l fermentors containing the following medium unless otherwise specified: 80 g/L glucose, 85 g/L liquid feed syrup (LFS), 0.2 mg/L biotin, 5 mM phosphate, 3g/L yeast extract, Sensient AG900. The pH was maintained at 7.0 with a Mg(OH)₂. Agitation was set at 250 rpm, temperature at 38°C, and carbon dioxide was sparged at a rate of 0.025 v.v.m. Fermentors were inoculated with a 1.25% seed inoculum, raised in serum vials containing the medium described above. The fermentation medium for recombinant strains of *A. succinogenes* contained 100 µg/ml kanamycin.

Clearing of LFS

[0096] For fermentations that required a measure of growth through optical density measurements a cold water extract of LFS was used. Suspended solids and some oils were removed through centrifugation of LFS in a Sorvall GSA rotor, at 9,000 rpm for 20 minutes. The supernatant was allowed to settle in a separation funnel for 3 hours at room temperature. The lower water phase typically represented 57% (w/v) of the raw LFS.

Biochemical Assays to Verify *Zwf* Expression

[0097] Glucose-6-phosphate dehydrogenase assays were performed as described by Choi *et al.*, 2003. (See Choi, Jae-Chulk, Shin, Hyun-Dong, Lee, Yong-Hyun (2003) *Enzyme and Microbial Technology* 32, p.178-185; “Modulation of 3-hydroxyvalerate

molar fraction on poly(3-hydroxybutyrate-3-hydroxyvalerate) using Ralstonia eutropha transformant co-amplifying phbC and NADPH generation-related Zwf genes"). The formation rate of D-6-phospho-glucono- δ -lactone was measured by the increase in NADPH, which was quantified by measuring the absorbance at 340 nm. Each assay was performed in 1 ml containing, 50 μ l [1M] Tris-HCl, pH 7.5, 200 μ l [50mM] MgCl₂, 100 μ l [10 mM] NADP, 100 μ l [10 mM] glucose-6-phosphate, 450 μ l H₂O, and 100 μ l cell extract. The specific activity was calculated as: Specific Activity = dA/dt/0.623 \times (protein concentration), or μ mol/min mg⁻¹. Increased Zwf activity was observed in all recombinant strains that include the plasmid pJR762.73, which expresses the *E. coli* Zwf gene from the *A. succinogenes* PEPCK promoter. Increased activity was observed in transformed *Actinobacillus* strain (FZ45) and in transformed strains of Bisgaard Taxon 6 (BT6) and Bisgaard Taxon 10 (BT10), which carried the plasmid pJR762.73. These results are illustrated in Figure 3.

E. coli fermentations

[0098] *E. coli* strains DH5 α /pJR762.73 (Zwf), DH5 α /pJR762.17 (Zwf), and DH5 α /pLS88 were grown in NBS 5-liter Bioflo III fermentors using four liters of the following medium: 900AG yeast extract 15g; corn steep liquor 15g; Na₂HPO₄ 1.16g; NaH₂PO₄.H₂O, 0.84g; (NH₄)₂SO₄ 3g; MgSO₄.7H₂O, 0.61; CaCl₂.2H₂O, 0.25g, and glucose, 45g per liter. The pH was controlled at 6.7 through the automatic addition of K₂CO₃ (3.3N). The fermentations were each started with a 1.25% inoculum. Conditions were initially made aerobic which favored the rapid growth of the *E. coli* cells; stirring was at 500 rpm and the medium was sparged with air at 0.5 liter/liter-min. Fermentor conditions were made anaerobic to favor organic acid production when the cell density reached a minimum of 6.2 OD₆₆₀ units; then the medium was sparged with 0.2 liter/liter-min of a CO₂ and H₂ mixture (95:5), and stirring was reduced to 250 rpm. Samples were taken periodically and the organic acid products and residual glucose concentrations were determined through HPLC.

Analysis of Fermentation Broths

[0099] Succinic acid, glucose, lactic acid, pyruvate, ethanol, and formic acid concentrations were determined by reverse phase high pressure liquid chromatography (HPLC) using a Waters 1515 Isocratic pump with a Waters 717 Auto sampler and a Waters 2414 refractive index detector set at 35°C. The HPLC system was controlled, data collected and processed using Waters Breeze software (version 3.3). A Bio-Rad Aminex HPX-87H (300 mm x 7.8 mm) column was used with a cation H guard column held at 55°C. The mobile phase was 0.021 N sulfuric acid running at 0.5 ml/min. Samples were filter through a 0.45 µm filter, and 5.0 µl was injected onto the column. Run time was thirty minutes.

CO₂ Measurements

[0100] A mass flow controller (Brooks model 5850I) was used to monitor and supply CO₂ to the fermentor sparging system at 100 ml/min. A mass flow meter (Brooks model 5860I) was used to measure CO₂ exiting the fermentor by way of the exhaust condenser system. The two CO₂ flow meters were connected to a computer via a 4-20 ma Bio-Command Interface. The BioCommand Plus Bioprocessing software logged the inlet and outlet CO₂ flow every 60 seconds. The rate of CO₂ consumption (ml/min) was expressed as the difference between the inlet and outlet rates during any given minute (CO₂use = CO₂in - CO₂out). The volume of CO₂ consumed during any given fermentation interval is the sum of rates each minute of the interval. The moles of CO₂ consumed were calculated using the Ideal Gas Law, (consumed liters ÷ 22.4 liters/mole = consumed moles).

[0101] The mass flow meters were calibrated by the manufacturer for CO₂ and their precision was 1% of full scale or 2 ml/m. The fermentation set-up was monitored for gas leaks by mixing 5% hydrogen into the CO₂. Hydrogen leaks were detected using a Tif8800 CO/Combustible Gas analyzer.

Metabolic flux analysis of *A. succinogenes* fermentations

[0102] The metabolic flux distributions (MFA) during anaerobic succinic acid production in *Actinobacillus succinogenes* were analyzed using the FluxAnalyzer software package. The FluxAnalyzer package was obtained from Professor Steffen Klamt (Max Planck Institute, Magdeburg, Germany) and was operated according to the instructions provided in the manual. The FluxAnalyzer package facilitates the analysis of metabolic fluxes by providing a graphical user interface for the MATLAB program, which performs the actual mathematical calculations. The MATLAB software was purchased from MathWork Inc. By measuring the changes in extracellular concentrations of the known and expected components of the entire metabolic pathway, the intracellular fluxes for the major intracellular metabolites were calculated using the metabolic network model described below. The specific network (labeled A_succinogenes) was constructed using the 20 known metabolites and 27 reactions shown below (without considerations of biomass composition and growth rate):

A. *succinogenes* Metabolic Network Model

Glucose (in) → Glucose	(R1)
Glucose → Glucose-6P	(R2)
Glucose-6P + 2 NAD → 2 PEP + 2 NADH	(R3)
PEP → Pyruvate	(R4)
PEP + CO ₂ → OAA	(R5)
Pyruvate → Pyruvate (out)	(R6)
Pyruvate + NAD → Acetyl-coA + NADH + CO ₂	(R7)
Pyruvate + NADH + CO ₂ → Malic acid	(R8)
Acetyl-coA → Acetate	(R9)
Acetate → Acetate (out)	(R10)
Acetate + OAA → Citrate	(R11)
Citrate + NAD → CO ₂ + NADH + α-KG	(R12)
OAA + NADH → Malic acid + NAD	(R13)
Malic acid → Fumarate	(R14)
Fumarate + NADH → Succinic acid + NAD	(R15)
Succinic acid → Succinic acid (out)	(R16)
CO ₂ (in) → CO ₂	(R17)
Glycerol (in) → Glycerol	(R18)
Glycerol + 2 NAD → PEP + 2 NADH	(R19)
Sorbitol (in) → Sorbitol	(R20)
Sorbitol + NAD → Glucose-6P + NADH	(R21)
Xylose (in) → Xylose	(R22)
Xylose → R5P	(R23)
R5P + 5/3 NAD → 5/3 PEP + 5/3 NADH	(R24)
Glucose-6P + 2 NADP → R5P + CO ₂ + 2 NADPH	(R25)
Acetyl-coA + 2 NADH → Ethanol + 2 NAD	(R26)
Ethanol → Ethanol (out)	(R27)

[0103] Fermentation samples were analyzed over the time course of the fermentations using the analytical methods previously described. Concentrations of glucose, glycerol, arabinose, xylose, sorbitol, succinic acid, acetic acid, ethanol,

pyruvate, lactic acid and fermentation volumes were determined at each sampling time. The amount of metabolite was calculated according to the formula: (metabolite, g) = V (fermentor, l) * C (metabolite, g/l). The metabolite consumption rate or the metabolite production rate during the time period of t_0 - t_1 was calculated using the formula: Metabolite consumption rate (mol/h, t_0 and t_1) = [Amount (metabolite, g, t_0) – Amount (metabolite, g, t_1)] / [(t_1 - t_0) * Molecular Weight of Metabolite]. For comparison of metabolic flux for all the time periods, the consumption rate or production rate of metabolite in the flux map was adjusted, assuming a glucose consumption rate in the flux map of 100. The metabolite consumption or production rate in the map “Mcp” was determined according to the following formula: $Mcp = (\text{metabolic consumption/or production rate}) \times 100 / (\text{glucose consumption rate})$.

[0104] The consumption or production rates of the various metabolites were input into the metabolic network model in the FluxAnalyzer package according to the operating instructions. The function “Calculate/Balance Rates” was used to calculate all the calculatable rates. If the system was non-redundant, an optimization procedure was started, where a linear objective function was minimized. If the system was redundant, one or more of three methods (simple least squares, variances-weighted least squares I and variances weighted least squares II) were applied to calculate the rates. The flux rate was shown directly on the flux map. Final flux map were copied into Microsoft Excel files for storage purposes.

Metabolic Flux Analysis of Biochemical Pathways in *A. succinogenes* FZ45

[0105] Metabolic flux analysis was used to evaluate the effect of different carbon sources on succinic acid production in batch fermentations with *A. succinogenes* FZ45. The analyses established that the major pathway for succinic acid production in *A. succinogenes* FZ45 flows in the following manner: phosphoenolpyruvate (PEP) → oxaloacetate (OAA) → malate → fumarate → succinic acid. The glyoxylate shunt and the PEP-transport-system (PTS) appear not to be substantially used in the organism. Glucose fermentations reach a concentration of 61.7 g/L succinic acid with a yield of about 94% (succinic acid (g) / glucose (g)). Fermentations performed using

a more reduced carbon source, such as sorbitol, produced higher amounts of succinic acid (77.3 g/L) with a higher yield (108% succinic acid (g) / glucose (g)), indicating that reducing power may become a limiting factor during the fermentation of glucose.

Enhanced Succinic Acid Production From Glucose By Over-Expression of *Zwf*

[0106] Strains FZ45, FZ45/pLS88 and FZ45/pJR762.73 were cultured under standard production conditions with the exception that 100 µg/ml kanamycin was added to the fermentation medium for the transformed strains. FZ45/pLS88 served as a second control, and is transformed with the cloning vector, carrying no *PEP carboxykinase* promoter or *Zwf* gene. The carbon source used was glucose. The strain FZ45/pJR762.73 showed an increase in succinic acid production over the control strains FZ45 and FZ45/pLS88, with a corresponding increase in the final concentration of succinic acid. The total amount of succinic acid produced from glucose increased from 284 g to 302 g, the molar yield of succinic acid produced increased from 144% to 155% (moles succinic acid /100 moles glucose), the weight yield increased from 94.7% to 101.9%, and the final concentration of succinic acid in the fermentation broth increased from 62 g/L to 65 g/L. These results are summarized in Table 1. All transformed FZ45 derivatives exhibit slower growth compared to the untransformed FZ45, which may be caused by the replication of the additional extrachromosomal plasmid DNA.

Table 1 Production of Succinic acid From Glucose by Strains FZ45, FZ45/pLS88 and FZ45/pJR762.73

Strain	Molar yield (%)	Weight yield (%)	g/L	Total Succinic acid [g]
FZ45	144	94.7	61.7	284
FZ45/pLS88	149	98.0	60.4	272
FZ45/pJR762.73	155	101.9	65.4	302

[0107] Further, the strain FZ45/pJR762.73 also produced less of the two metabolites acetic acid and pyruvic acid, as shown in Table 2.

Table 2 Production of Other Metabolites by Strains FZ45 and FZ45/pJR762.73

Strain	Succinic Acid [g/l]	Pyruvic Acid [g/l]	Acetic Acid [g/l]
FZ45	61.7	3.7	1.5
FZ45/pLS88	60.4	2.1	1.4
FZ45/pJR762.73	65.4	2.7	1.4

[0108] Metabolic flux analyses on both FZ45 and FZ45/pJR762.73 showed that FZ45/pJR762.73 channeled more carbon into the pentose phosphate pathway than the untransformed FZ45 (see Figure 1 and Figure 2). Thus, over-expression of the *Zwf* protein was sufficient to enhance succinic acid yields and to reduce the production of other metabolites when glucose was used as carbon source.

Fermentation with *A. succinogenes* FZ45/pJR762.73 using a Reduced Carbon Source

[0109] Fermentations with *A. succinogenes* FZ45/pJR762.73 utilizing mannitol as a carbon source were also performed. Mannitol is a 6-carbon sugar-alcohol that is more reduced than glucose. Expression of *Zwf* also enhanced succinic acid production using mannitol (see Table 3). However, fermentations using this sugar alcohol also showed increased yields even with the untransformed strain FZ45. This indicates that increasing the amount of metabolic reducing equivalents will enhance succinic acid production.

Table 3 Production of Succinic Acid Using Mannitol as Carbon Source

Strain	Carbon Source	Molar yield (%)	Weight yield (%)	g/L	Succinic Acid [total g]
FZ45	glucose	144	94.7	61.7	284
FZ45	mannitol	179	116.0	85	406
FZ45/pJR762.73	mannitol	193	125.4	88	421

Effect of *Zwf* Expression in Recombinant Bisgaard Taxon 6 and Bisgaard Taxon 10

[0110] The effect of *Zwf* expression in other species was also tested using the organisms Bisgaard Taxon 6 (BT6) and Bisgaard Taxon 10 (BT10). Both organisms belong to the family Pasteurellaceae, and are related to *A. succinogenes*. Also, both organisms are known to produce succinic acid. Using the methods described above and the same plasmid, pJR762.73 (carrying the *Zwf* gene under the *A. succinogenes PEPCK* promoter), Bisgaard Taxa were transformed. Both these transformed strains showed an increase in succinic acid production using glucose as the carbon source. These results are shown in Table 4 below.

Table 4 Production of Succinic acid from Glucose by Strains BT6/pJR762.73 and BT10/pJR762.73

Strain	Molar yield (%)	Weight yield (%)	g/L	Succinic Acid [total g]
BT6/pLS88	92	60.3	40	174
BT6/ pJR762.73	96	62.8	39	180
BT10/pLS88	132	86.5	56	255
BT10/ pJR762.73	136	89.0	57	258

[0111] Flux analysis of these fermentations with the Bisgaard Taxa strains indicated that use of the pentose phosphate pathway was indeed increased in the strains carrying the plasmid. BT6/pJR762.73 routed more carbon through the pentose phosphate pathway than the control (33 mol% vs. 20 mol%). Similarly, BT10/pJR762.73 routed

35 mol% carbon through the pentose phosphate pathway, compared to only 5 mol% in the control.

[0112] It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention. Thus, it should be understood that although the present invention has been illustrated by specific embodiments and optional features, modification and/or variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention.

[0113] In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

[0114] Also, unless indicated to the contrary, where various numerical values are provided for embodiments, additional embodiments are described by taking any 2 different values as the endpoints of a range. Such ranges are also within the scope of the described invention.

[0115] All references, patents, and/or applications cited in the specification are incorporated by reference in their entireties, including any tables and figures, to the same extent as if each reference had been incorporated by reference in its entirety individually.

WHAT IS CLAIMED IS:

1. A recombinant strain of a succinic acid producing microorganism which has been transformed with a DNA molecule that expresses a polypeptide having *Zwf* enzyme activity.
2. The recombinant strain of claim 1, wherein the microorganism is a microorganism whose 16S rRNA has at least about 90% sequence identity to 16S rRNA of *Actinobacillus succinogenes*.
3. The recombinant strain of claim 2, wherein the microorganism is a microorganism selected from the group consisting of *Actinobacillus succinogenes*, Bisgaard Taxon 6, and Bisgaard Taxon 10.
4. The recombinant strain of claim 1, wherein *Zwf* enzyme activity includes NADP reductase activity.
5. The recombinant strain of claim 1, wherein the microorganism is transformed with a heterologous *Zwf* gene.
6. The recombinant strain of claim 5, wherein the heterologous *Zwf* gene is optimized for expression in the microorganism.
7. The recombinant strain of claim 5, wherein the heterologous *Zwf* gene encodes *E. coli* *Zwf* enzyme.
8. The recombinant strain of claim 5, wherein the *Zwf* gene comprises a polynucleotide having at least about 95% sequence identity to SEQ ID NO:1.
9. The recombinant strain of claim 1, wherein the polypeptide has at least about 95% amino acid sequence identity to SEQ ID NO:3.

10. The recombinant strain of claim 1, wherein the DNA molecule comprises a transcription promoter for *phosphoenolpyruvate (PEP) carboxykinase* operationally linked to polynucleotide encoding a polypeptide having Zwf enzyme activity.

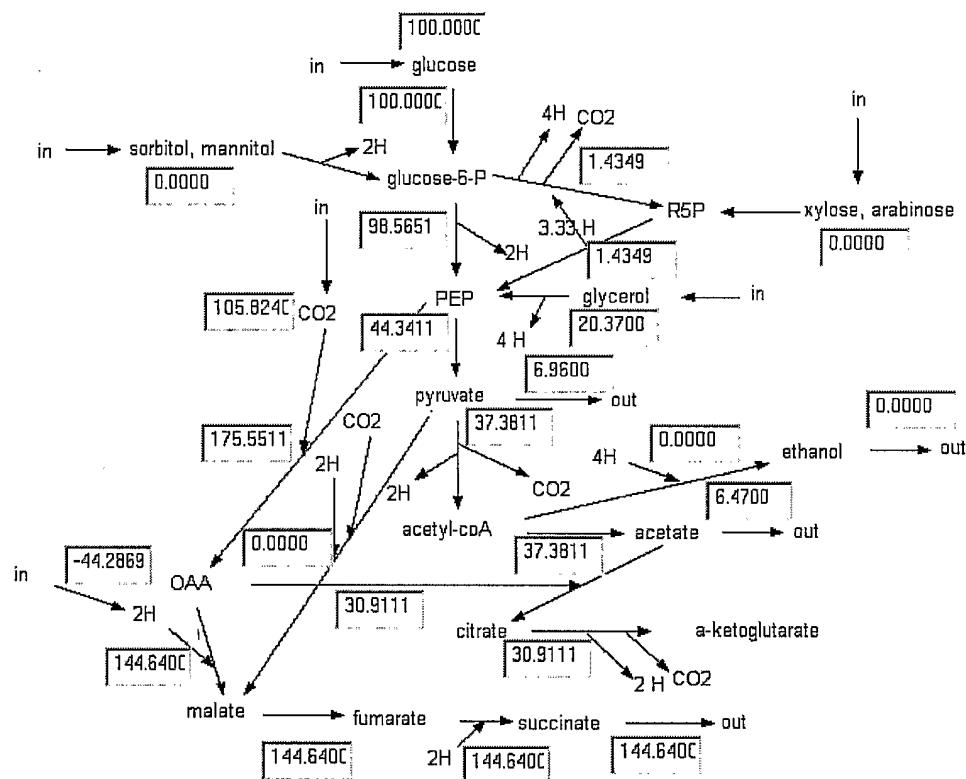
11. The recombinant strain of claim 10, wherein the transcription promoter comprises the *Actinobacillus succinogenes phosphoenolpyruvate (PEP) carboxykinase* promoter.

12. The recombinant strain of claim 10, wherein the promoter comprises a polynucleotide having at least about 95% sequence identity to SEQ ID NO:4 and the polynucleotide has promoter activity.

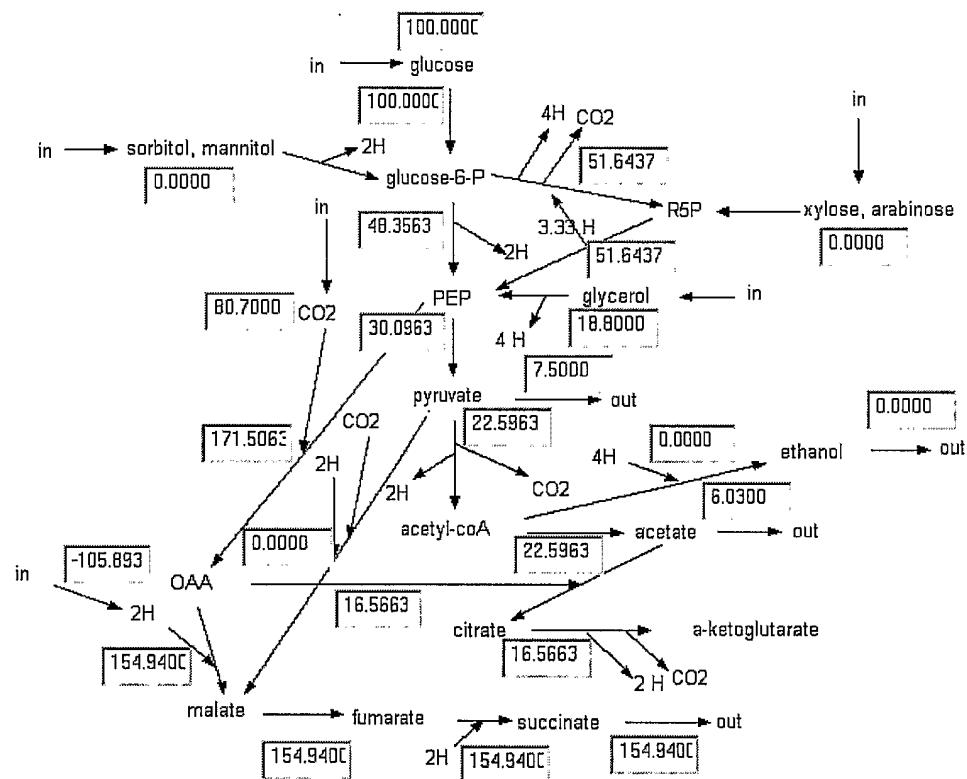
13. The recombinant strain of claim 1, wherein the DNA molecule is epigenetic.

14. The recombinant strain of claim 13, wherein the DNA molecule is present on a plasmid.

15. The recombinant strain of claim 1, wherein the recombinant strain is capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L.


16. The recombinant strain of claim 1, wherein the recombinant strain is resistant to levels of sodium monofluoroacetate of at least about 1 g/L.

17. The recombinant strain of claim 1, wherein the recombinant strain is recombinant *Actinobacillus succinogenes* deposited under ATCC Accession Number PTA-6255.


18. A recombinant strain of a succinic acid producing microorganism which has been transformed with a DNA molecule that expresses a polypeptide having NADP reductase activity and the polypeptide has at least about 95% sequence identity to SEQ ID NO:3.

19. A method for producing succinic acid comprising fermenting a nutrient medium with the recombinant microorganism of any of claims 1-18.
20. The method of claim 19, wherein the nutrient medium comprises glucose.
21. The method of claim 19, wherein the method results in a succinic acid yield (g) of at least about 100% relative to glucose (g).
22. A DNA molecule comprising a transcription promoter for a succinic acid producing microorganism operationally linked to a heterologous *Zwf* gene.
23. The DNA molecule of claim 22, wherein the succinic acid producing microorganism is *Actinobacillus succinogenes*.
24. The DNA molecule of claim 22, wherein the transcription promoter comprises a *phosphoenolpyruvate (PEP) carboxykinase* promoter.
25. The DNA molecule of claim 22, wherein the promoter comprises a polynucleotide having at least about 95% sequence identity to SEQ ID NO:4 and the polynucleotide has promoter activity.
26. A DNA plasmid comprising the DNA molecule of any of claims 22-25.
27. A host cell comprising the DNA plasmid of claim 26.
28. The host cell of claim 27, wherein the host cell is capable of producing succinic acid at concentrations of about 50 g/L to about 130 g/L.

Figure 1. Metabolic flux analysis of *A. succinogenes* variant FZ45 batch fermentation using glucose.

Figure 2. Metabolic flux analysis of recombinant *A. succinogenes* FZ45/pJR762.73 batch fermentation using glucose.

3 / 3

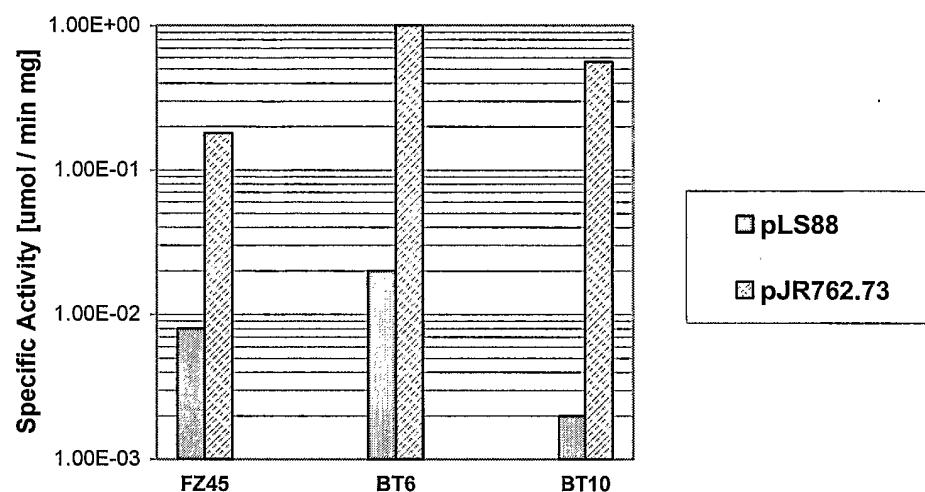

Figure 3. Zwf enzymatic activities in cell extracts of transformed strains.

Table 5 Sequence Listing

SEQ ID NO:1 - atggcggt aacgcaaaca gcccaggcct gtgacctgg
 cattttcgac gcgaaaaggcg accttgcgcg tcgtaaattt ctgccttccc tgtatcaact
 ggaaaaagcc ggtcagctca acccggacac ccggattatc ggcgttagggc gtgctgactg
 ggataaaagcg gcatatacca aagttgtccg cgaggcgctc gaaactttca taaaagaaaac
 cattgatgaa ggtttatggg acaccctgag tgcacgtctg gattttgtt atctcgatgt
 caatgacact gctgcattca gccgtctcg cgcgatgctg gatcaaaaaa atcgatcac
 cattaactac tttgccatgc cgcccagcac tttggcgca atttgcaaag ggcttggcg
 ggcaaaaactg aatgctaaac cggcacgcgt agtcatggag aaaccgctgg ggacgtcgct
 ggacgacctcg cagggaaatca atgatcaggt tggcgaatac ttcgaggagt gccaggttta
 ccgtatcgac cactatcttgc taaaagaaaac ggtgctgaac ctgttggcg tgcgtttgc
 taactccctg tttgtgaata actgggacaa tcgcaccatt gatcatgtt agattaccgt
 ggcagaagaa gtggggatcg aagggcgctg gggctatttt gataaagccg gtcagatgct
 cgacatgatc cagaaccacc tgctgcaaattt tctttgcattt attgcgtatgt ctccgcgtc
 tgacctgagc gcagacagca tccgcgtatgc aaaagtgaaa gtactgaagt ctctgcgcgc
 catcgaccgc tccaaacgtac gcgaaaaaac cgtacgcggg caatatactg cgggcttcgc
 ccagggcaaa aaagtgcgg gatatcttgc agaagaggc gcgaacaaga gcagcaatac
 agaaaacttc gtggcgatcc gcgtcgacat tgataactgg cgctggcccg gtgtgcattt
 ctacctcgatc actggtaaac gcgtgcgcac caaatgttctt gaagtcgtgg tctatttcaa
 aacacctgaa ctgaatctgt taaaagaatc gtggcaggat ctgcccgcaga ataaactgac
 tatccgtctg caacctgtatgc aaggcgttgcgatc tatccaggta ctgaataaag ttccctggcct
 tgaccacaaa cataacctgc aaatcacca gctggatctg agctattcag aaacacccaa
 tcagacgcacat ctggcgatgc cctatgaacg tttgtgttgc gaaaccatgc gtggatttca
 ggcactgtttt gtacgtcgatc acgaagtggaa agaaggctgg aaatgggttag actccattac
 tgaggcgtgg gcgatggaca atgatgcgc gaaaccgtat caggccggaa cctggggacc
 cttgcctcg gtggcgatgc ttacccgttcc tggcgttcc tggaaatgagt tttagttaa

SEQ ID NO:2 - atg gcggtaacgc
 aaacagccca ggcctgtgac ctggtcattt tcggcgccaa aggccacccctt ggcgtcgta
 aattgctgcc ttccctgtat caactggaaa aagccggatca gctcaaccccg gacacccggaa
 ttatcggcgatc agggcgatc gactggata aagccggata taccaaaatgtt gtcccgccagg
 cgctcgacat ttcatgaaa gaaaccattt atgatggatcc atggacaccctt ctgagtcac
 gtctggatcc ttgtatctc gatgtcaatgc acactgtgc attcagccgt ctcggcgccg
 tgctggatca aaaaaatcgatc atcaccatca actactttgc catgcccggcc agcacttttgc
 ggcgtatcc caaaggccctt ggcgtggccaa aactgaatgc taaaccggca cgcgtatgc
 tggagaaacc gctggggacg tcgctggcgatc cctcgccaggaa aatcaatgtat caggccgg
 aataacttcga ggagtgcgc gtttaccgtt tcgaccacta tcttggtaaa gaaacgggtgc

tgaacctgtt ggccgtcggt tttgctaact ccctgtttgt gaataactgg gacaatcgca
ccattgatca tggtgagatt accgtggcag aagaagtggg gatcgaaggg cgctggggct
attttataa agccggtcag atgcgcgaca tgatccagaa ccacactgctg caaattcttt
gatgtattgc gatgtctccg ccgtctgacc tgagcgcaga cagcatccgc gatgaaaaag
tgaaagtacc tgaagtctcg tcgcccgcata gaccgctcca acgtacgcga aaaaaccgta
cgccggcaat atactgcgtt ccccaaggca aaaaagtgcc gggatatctg gaagaagagg
gcccgaacaa gagcagcaat acagaaactt tcgtggcgat ccgcgtcgac attgataact
ggcgctgggc cggtgtgcc tcctacactgc gtactggtaa acgtctgccc accaaatgtt
ctgaagtcgt ggtctatttc aaaacacctg aactgaatct gttaaagaa tcgtggcagg
atctgccgca gaataaaactg actatccgtc tgcaacctga tgaaggcgtg gatatccagg
tactgaataa agttcctggc cttgaccaca aacataacct gcaaattcacc aagctggatc
tgagctattc agaaacaccc aatcagacgc atctggcgga tgcctatgaa cgtttgcgtc
tggaaaccat gcgtggattt cagggactgt ttgtacgtcg cgacgaagtg gaagaagcct
ggaaatgggt agactccatt actgaggcgt gggcgatgga caatgatgcg ccgaaaccgt
atcaggccgg aacctgggaa cccgttgcct cggtggcgat gattaccgt gatggtcgtt
cctgaaatga gttttagttaa

SEQ ID NO:3 - MAVTQTAQACDLVIFGAKGDLARRKLLPSLYQLEKAGQLNPDTR
IIGVGRADWDKAAYTKVVREALETFMKETIDEGLWDTLSARLDFCNLDVNDTAAFSRL
GAMLDQKNRITINYFAMPPSTFGAICKGLGEAKLNAKPARVVMEKPLGTSLATSEQEIN
DQVGEYFEECQVYRIDHYLGKETVNLALRFANSLFVNNWDNRTIDHVEITVAEEVG
IEGRWGYFDKAGQMRDMIQNHLLQILCMIAMSPPSDLSADSIRDEKVVLKSLRRIDR
SNVREKTVRGQYTAGFAQGKKVPGYLEEEGANKSSNTETFVAIRVDIDNWRWAGVPFY
LRTGKRLPTKCSEVVVYFKTPELNLFKESWQDLPQNKLTIRLQPDEGVDIQVLNKVPG
LDHKHNLQITKLDLSYSETFNQTHLADAYERLLLETMRGIQALFVRRDEVVEAWKWVD
SITEAWAMDNDAPKPYQAGTWGPVAVAMITRDGRSWNEFE

SEQ ID NO:4 - ttaatttctt taatcgggac gctatcgata aattgaaaat
gcagcaatag aggaaacacg gtttgggttga gtggaaaacag ccgtgtttt tcatttaccg
ccataaaaaat ttgaaacgga tcacaaatca tgaaaaaaat acgttcaaatt tagaactaat
tatcgaaaat ttgatctagt taacatttt taggtataaa tagtttaaa atagatctag
tttggatttt taattttaaa ttatcaatga ggtgaagt

SEQ ID NO:5 - TTACGCTTT TTCTTCATGG AGCCCGAAGG TCTGCGCCAT ACGCGTCCTT CACGGCGAT AAGTTTATCC GCTTCCACCG GTCCCCAGGT GCCGGCTTCA TATTCTGAAA CGCGACCTTG GTTTCCCTG TAATCCAAA TCGGCTGCAC GAATTCCAG CAGGCCTGAA CGGCGTCGGT ACGGGCGAAT AATGTGGCGT CGCCTTCAT GGCCTCAAGC AGTAAACGTT CGTAGGCGGT TAATAAATTA GCGGAAGAAC TGATATCCGC ATAACGGAAA TCCATGGATA CTTCTTTAGC CTCGAAGCCG GCTCCCGGTT TTTTCAAACC GAAGAACATG GAAATGCCTT CGTCGGTTG GATACGGATG ATTAATTGT TATCCGGCGC ATTTGGCTG AATACCGGGT GCGCGTGGT TTTGAAATGA ATGACGATT CCGTCACCCG GGTGGCAG CGTTTACCGG TCGCACGTA AAACGGCACG CGGCCAGC GCCAGTTATC GATTGGCAG CGCAACGCCA TGTAGGTTTC GGTGCCGAA TCGGACGGCA CGCCCGCTTC CTCCAGATAA CCCTTCACCG GTTTATCGTC AACGGTGGAG GCCGTGTATT GCCCTAATAC CAGATTGTGT TTGAGATCTT CCGTGGTCAA CGGATGAGA CAATAGAGCA CTTTGGCGT TTCGTACGC ATGGAATCGG CGTTAATAAT CGCCGGCGGT TCCATGGCAA CCATTGCCA TACTTGCAAT AAGTGGTTT GGAACATATC CCGCATTGCA CGGAACCGT CATAATAGCC GCCCGTTGT TCTACGCCA TCTCTTCCGC GCCGGTGATT TCTACGTAAT CGATGAAGTT ACGGTTCCAA AGCGGTTCGA ACAGGCCGTT GGAGAACATCG AGCACCAACA GATTTGCAC GGTTCCTTG CCCAAATAAT GGTGATACG GTAAATCTGG TGTTCCTCGA AGAAACGGTG AATCTGAATA TCCAGTGCTT TGGCGGTTT AATATCGAA CGGAACGGTT TTTCCACGAT AATCCGTTTC CAGCGAATT CTTCCGTATT TAAGCCGTGA GCGCCAGGC ATTCCGGAAT AACGCCGTAC AGGCTCGCG GAGTGGATAG ATAATAAAGC GTATTGCCG AGGTTGGTA TTTGCGTGT AATTCATCCA AACGAGGCAG TAACTTACG TAATCCGCCG AATCGGAGGT GTTACGCC TGGTAATACA GATGAGAACAA GAATTATCC AGCGTTTCGC CTTCGGCATT TTCTGGGTA ATCAGGGCGG TTTCGATTTT TTCAACGGAAA ATGTCATCCG TCATTTCTGT GCGGGCCACT CCCAGCACGG AGAAGTTTC TTCAACCGT CCGATTGT AAAGATTATA GAGTGCAGGAA ATTAATTAC GGTGCGTCAG ATCCCTGAT GCGCCGAAAA TCACGATACA ATTATTTCT GCTTCAT

SEQ ID NO:6 - MKAENN CIVIFGASGDLTHRKLIPALYNLYKIGRLEENFSVLGVARTEM
 DDI FREKMR TALITQENAEGETLDKFC SHLYQAVNTSDSADYV KLLP RLDELHD KYQTCGNTL
 YYLSTPPSLYGVIP ECLA HGLNTE FGWKR IIVEK PFGYD IKTAKA LDIQI HRFFEEHQIYRI
 DHYLGKETVQ NLLV LRF SNGLF EPLW NRNF IDYVEITGAEEIGVE QRG GYD GS GAM RD MFQ NH
 LLQVLAMV A M EPPA I NADSMR D E TAKVLYCLHPLT TEDLKH N LVLG QYTA STVDDK PVKG YLE
 EA GVP SD SGT ETY M ALRC QIDN WRWAGV P FY VRTG KRL PTRV T EIVI HF KTT PHP VFSQ NAP DN
 KLI IRI QP D E G I S M F G L K K P G A G F E A K E V S M D F R Y A D I S S A N L L T A Y E R L L L D A M K G D A T L F
 ART DAV HAC WKF V QP I LDY KEN QGRV Y EYE AGT WGP V EAD KLI A REGRV W R R P S G S M K K A

SEQ ID NO:7 - AAAGAATTCTTAATTCTTAATCGGGAC

SEQ ID NO:8 - GCGTCGACATACTTCACCTCATTGAT

SEQ ID NO:9 - CCGCTCGAGGGCGGTAA CGCA AACAGC

SEQ ID NO:10 - CCGCTCGAGTTACTCAA ACTCATTCCAGG