This invention relates to installations on the walls of buildings and vehicles of decorative or utilitarian flexible panels, such as curtains. The walls usually having windows, which installations are of the type wherein opposite edges of the panels are engaged with guideways which hold the panels extended but permit them to be moved in whole or in part in a plane parallel to the wall. The object is to provide an improved mounting element or "slider" for joining the panel edges and the guideways by use of which the desired effective installation in spite of structural incongruities between the panel and the guideways is realized in a superior manner, as will appear as the description proceeds.

The invention will be well understood by reference to the following description of an illustrative embodiment thereof shown in the accompanying drawings wherein:

Fig. 1 is an elevation of the interior of the wall of the body of a passenger carrying airplane exemplifying the invention. The figure is schematic and not realistic as to proportions;

Fig. 2 is a vertical section through a panel and its supports;

Fig. 3 is an elevation of one of the slider elements;

Fig. 4 is a top plan view thereof;

Fig. 5 is a section on the line 5—5 of Fig. 3;

Fig. 6 is a side view of the slider as seen from the right of Fig. 3, with part broken away; and

Fig. 7 is a section on the line 7—7 of Fig. 6, but showing the shank extended to the position shown in dotted lines in Fig. 3.

Referring now to Fig. 1 of the drawings, I have there shown schematically, as viewed from the interior, the wall of an airplane which wall is pierced by a series of windows 10. Above and below the series of windows are top and bottom guideways 12a and 12b, respectively, between which are extended curtain panels 14. Herein a pair of curtains is provided for each window similar to so-called sash curtains, but secured at their top and bottom margins to the guideways. They may either be extended over the windows or drawn to one side to any desired degree, and are illustrated in the drawing as being shrirred centrally and secured by tiebacks 16.

Referring now to Fig. 2, each of the guideways may be formed by a suitable metallic molding having spaced flanges 18 with integral margins 20 and 22 in the same plane. The edge of the inturnd part 20 constitutes a rail or track on which the "sliders" to be secured run while the opposing part 22 is in effect a guard rail to hold them in position.

The sliders as seen in Figs. 3 through 7 include a cylindrical neck portion 24, for riding on rail 20, an inner head 26 and an outer body portion 28. The head 26 which may be substantially conical as shown is received in the space between the flanges 18 and is of a diameter greater than the space between the inturnd edges 20 and 22, so that the slider is supported on track 20. The head may be entered into the space between the flanges and behind the parts 20 and 22, either from the end of the guideway or through a gateway formed at a suitable point in portions 20 and 22 in well known manner. The slider cannot be released by direct outward pull and the cooperation of the head 26 with the guard rail 22, and of the body 28 with the outer face of rail 20, prevents it from tipping to any considerable angle in a plane transverse to the wall.

In accordance with the invention a resiliently extensible connection is provided between a group of sliders and the adjacent panel edge along opposite sides of the panel for reasons hereinafter referred to. The drawings illustrate a preferred form of device for effecting such connection. The body extends laterally, viewing Fig. 4, of the neck portion 24 and is provided with a central chamber 30 (see Fig. 7) in which is resiliently suspended a shank 32 the projecting end of which is anchored to the curtain edge. Herein the body is of generally oblong cross section and pierced with an oblong slot 34 opening through the ends thereof as seen in Figs. 4 and 5. Along the longer walls of the slot are recesses 36 which do not extend through that end of the body which is the lower end viewing Figs. 3 and 5, so that shoulders 38 are provided at the front and rear of the slot 34. The shank 32 is a generally similar oblong member fitting freely in the slot 34. An opening through the upper end of the shank (see Fig. 7) defines upper and lower cross parts 40 and 42 respectively between which is received the helical compression spring 44, one end of which will be supported by the shoulders 38 at one end of the chamber, the other end of which bears against the cross bar 40. From the cross bars 40 and 42 integral tongues 46 and 47 may extend which enter the ends of the spring and serve to position it. The ends of these may closely oppose one another, as seen in Fig. 7.

Normally the spring retracts the shank portion 32 within the body to the position shown in full lines in Fig. 3, with its distal end projecting. This distal end is secured to the edge of the curtain but under strain it may be drawn outward from the body to the dotted line position of Fig. 3 and in full lines in Fig. 7.

The distal end of the shank is herein shown as provided with a snap-fastener socket 48 secured by a washer 49 adapted to cooperate with a stud member 50 secured to the edge of the curtain. The socket 48 is larger in cross section than the slot 34 and prevents withdrawal of the shank 32 from the body of the upper end in Fig. 3.

It is convenient to assemble the spring 44 with the shank 32 in the manner shown, insert the shank into the body from above and then apply the socket 48 to the distal end of the shank. The tongue 47 may easily be bent to one side to permit the spring to be engaged thereover.

The slider comprising the parts 24, 26 and 28 and likewise the shank 32 may be, and preferably are, molded from nylon or similar form-retaining but resiliently flexible material.

The resilient connection of the curtain to the sliders facilitates mounting of the curtains and moving them to their desired positions along the guideways. As portions of the curtains are shifted, perhaps by a force applied to a vertical edge, the strains are equalized and the movement facilitated. Violent jerks or pulls occurring during the use of the curtains are cushioned and no breaking or tearing will result. If the guideways are not strictly parallel to the line of fastener studs, either because of some constructional feature of the installation, as for instance to adapt it to a wall having a slightly curved boundary, or because of inaccuracies in the installation of the guideways or of the studs 50, the extensibility of the connecting means compensates. Shrinking or stretching of the
fabric in use or as a result of washing or cleaning is also compensated for.
I am aware that the invention may be embodied in other specific forms without departing from the spirit or
effectual attributes thereof, and I therefore desire the
present embodiment to be considered in all respects as
illustrative and not restrictive, as is in fact clear in several
matters from the description itself. Reference is to be
had to the appended claims to indicate those principles
of the invention exemplified by the particular embodi-
ment described and which I desire to secure by Letters
Patent:
1. A slider for connecting the edge of a curtain to a
guideway comprising an outer or female element and an
inner or male element, each a unitary molded unit, the
relatively remote ends of said elements having means for
connecting one to the guideway and the other to the cur-
tain, the outer element having a vertical slot therethrough
of generally oblong cross-section and having recesses in
its wider side walls above its lower end to provide seats
for the lower end of a helical spring, the sides of which
are received in the recesses, the inner element compris-
ing a shank of oblong cross-section to fit the slot, the
shank being cut away to define upper and lower crossbars,
the inner element being movable upwardly to project the
shank beyond the upper end of the outer element to
expose laterally a considerable portion of the distance
between said crossbars for the lateral introduction of the
helical spring between them, the cross bars having
projecting tongues to enter the ends of the spring.
2. A slider as set forth in claim 1 wherein the tongue
on the lower crossbar is resiliently flexible laterally from
the plane of the shank and its upper end normally lies
closely adjacent to and in alignment with the tongue on
the upper crossbar.

References Cited in the file of this patent

UNITED STATES PATENTS

561,460 Washburn 6 June 2, 1896
1,364,427 Corey 6 January 4, 1921
2,496,910 Fridolph 6 February 7, 1950
2,660,237 Bopp et al. 6 November 24, 1953
2,761,150 Kellogg 6 September 4, 1956
2,796,625 Rosenzweig 6 June 25, 1957

FOREIGN PATENTS

664,291 Germany 6 May 12, 1935