woO 2009/017550 A1 |10 00 OO0 O O O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO

International Bureau

(43) International Publication Date
5 February 2009 (05.02.2009)

(10) International Publication Number

WO 2009/017550 Al

(51) International Patent Classification:
GOG6F 7/00 (2006.01)

(21) International Application Number:
PCT/US2008/007757
(22) International Filing Date: 23 June 2008 (23.06.2008)
English

English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

11/882,448 1 August 2007 (01.08.2007) US

(71) Applicant (for all designated States except US): SYBASE,
INC. [US/US]; One Sybase Drive, Building A, 6th Floor,
Dublin, CA 94568 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): IRELAND, Evan
[NZ/NZ]; 24 Baroda Street, Khandallah, Wellington, 6035
(NZ).

(74) Agents: LEE, Michael, Q. et al.; Sterne, Kessler, Gold-
stein & Fox PL.L.C., 1100 New York Avenue, N.W., Wash-
ington, DC 20005-3934 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: PROGRAMMING SYSTEM FOR OCCASIONALLY-CONNECTED MOBILE BUSINESS APPLICATIONS

100
102
H 106 104
Synchronization %
* System
Server
System Mobile
Device

FIG. 1

(57) Abstract: A system, method, and computer program product are provided for synchronizing a local database with a remote
database. Additionally, a system, method, and computer program product are provided for performing a service operation on a

database, the database located on a database system.

WO 2009/017550 PCT/US2008/007757

PROGRAMMING SYSTEM FOR OCCASIONALLY-CONNECTED
MOBILE BUSINESS APPLICATIONS

BACKGROUND OF INVENTION

FIELD OF THE INVENTION

[0001] The present invention relates generally to databases and, more particularly, to

synchronizing a remote database with a local database.

DESCRIPTION OF THE BACKGROUND ART

[0002] Mobile devices are in common usage, many featuring powerful processors, larger
and more colorful displays, and wireless networking capabilities. Despite these advances
in mobile technology, mobile devices typically have greater limitations on memory
capacity and networkability than workstation computers. Given the versatility of mobile
devices, it is helpful to implement a means by which these mobile devices can interact
with data sets larger than any it could manage on its own, and doing so in the context of
potentially intermittent, unreliable, or unavailable networking capabilities.

[0003] Interaction using data sets exchanged between mobile devices and central
servers often occurs in the context of exchanges of information stored in databases.
Mobile devices often retain a copy of some or all of the data found in the central
database in a local database for local access. However, inefficiencies abound given the
limitations of mobile devices. Additionally, mobile devices may run a variety of
operating systems, software suites, and programming frameworks.

[0004] Accordingly, what is desired is a means of efficiently synchronizing a local

database on a mobile device with a central database.

SUMMARY OF INVENTION

[0005] The invention includes a method for synchronizing a local database with a remote

database. The method includes the steps of defining a service operation, wherein the

WO 2009/017550) PCT/US2008/007757
service operation comprises a transaction, processing the transaction on the local
database, capturing operation calls performed by the transaction, and capturing change
sets of the transaction.

[0006] The invention also includes a computer program product comprising a computer
usable medium having computer program logic recorded thereon for enabling a processor
to synchronize a local database with a remote database. The computer program logic
includes defining means for enabling a processor to define a service operation, wherein
the service operation comprises a transaction, processing means for enabling a processor
to process the transaction on the local database, first capturing means for enabling a
processor to capture operation calls performed by the transaction, and second capturing
means for enabling a processor to capture change sets of the transaction.

[0007] The invention additionally includes a system capable of synchronizing a local
database with a remote database. The system includes a first module to define a service
operation, wherein the service operation comprises a transaction, a second module to
process the transaction on the local database, a third module to capture operation calls
performed by the transaction, and a fourth module to capture change sets of the
transaction.

[0008] The invention furthermore includes a method for performing a service operation
on a database, the database located on a database system. The method includes the steps
of defining a service operation, wherein the service operation comprises a transaction,
determining a target environment for the database system, and processing the transaction
on the database, wherein the transaction is selected from a set of transactions, the
transaction corresponding to the target environment.

[0009] Moreover, the invention includes a computer program product comprising a
computer usable medium having computer program logic recorded thereon for enabling a
processor to perform a service operation on a database, the database located on a database
system. The computer program logic includes defining means for enabling a processor to
define a service operation, wherein the service operation comprises a transaction,
determining means for enabling a processor to determine a target environment for the
database system, and processing means for enabling a processor to process the transaction
on the database, wherein the transaction is selected from a set of transactions, the

transaction corresponding to the target environment.

WO 2009/017550 3 PCT/US2008/007757

[0010] Also included in the invention is a system capable of performing a service

- operation on a database, the database located on a database system. The system includes
a first module to define a service operation, wherein the service operation comprises a
transaction, a second module to determine a target environment for the database system,
and a third module to process the transaction on the database, wherein the transaction is
selected from a set of transactions, the transaction corresponding to the target
environment.

[0011] Further features and advantages of the invention, as well as the structure and
operation of various embodiments of the invention, are described in detail below with
reference to the accompanying drawings. It is noted that the invention is not limited to
the specific embodiments described herein. Such embodiments are presented herein for
illustrative purposes only. Additional embodiments will be apparent to persons skilled in

the relevant art(s) based on the teachings contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The accompanying drawings, which are incorporated herein and form a part of the
specification, illustrate the present invention and, together with the description, further
serve to explain the principles of the invention and to enable a person skilled in the
relevant art to make and use the invention.

[0013] FIG. 1 illustrates a mobile data system, in accordance with an embodiment of the
present invention.

[0014] FIG. 2 illustrates a modular view of a mobile data system, in accordance with an
embodiment of the present invention.

[0015] FIG. 3 illustrates a programming system, in accordance with an embodiment of
the present invention.

[0016] FIG. 4 is a flowchart illustrating steps by which code is generated, in accordance
with an embodiment of the present invention.

[0017] FIG. 5 is a flowchart illustrating steps by which portable application logic is
written, in accordance with an embodiment of the present invention.

[0018] FIG. 6 is a flowchart illustrating steps by which a persistence-capable class is

defined, in accordance with an embodiment of the present invention.

WO 2009/017550 4 PCT/US2008/007757

[0019] FIG. 7 is a flowchart illustrating steps by which persistence logic is generated, in
accordance with an embodiment of the present invention.

[0020] FIG. 8 is a flowchart illustrating steps by which a service class is defined to
support different business logic on a client/server basis, in accordance with an
embodiment of the present invention.

[0021] FIG. 9 is a flowchart illustrating steps by which a service class is defined to
support different business logic for multiple target platforms, in accordance with an
embodiment of the present invention.

[0022] FIG. 10 is a flowchart illustrating steps by which a local database and server
database are kept in synchronization, in accordance with an embodiment of the present
invention.

[0023] FIG. 11 is a flowchart illustrating steps by which a window class is defined to
support presentation logic, in accordance with an embodiment of the present invention.

[0024] FIG. 12 depicts an example computer system in which the present invention may
be implemented.

[0025] The present invention will now be described with reference to the accompanying
drawings. In the drawings, generally, like reference numbers indicate identical or
functionally similar elements. Additionally, generally, the left-most digit(s) of a

reference number identifies the drawing in which the reference number first appears.

DETAILED DESCRIPTION

L INTRODUCTION

[0026] FIG. 1 depicts a mobile system 100 which allows a mobile device 104 to
synchronize with a server system 102 over a synchronization system 106, in accordance
with an embodiment of the present invention. Synchronization allows mobile device 104
to receive the most current data available on server system 102, as well as upload its most
currently available data to the server system 102, for any given application or set of
applications. For example, a calendar application might allow other users to add or make
changes to appointments which are then stored on server system 102. A user of mobile
device 104 may also have added or made changes to appointments within the mobile

device 104 itself. Upon synchronization, the server system 102 learns of the

WO 2009/017550 PCT/US2008/007757

[0027]

[0028]

[0029]

-5.-

appointments made on mobile device 104, and mobile device 104 learns of appointments
made on server system 102. In accordance with an additional embodiment of the present
invention, a partial synchronization is possible, whereby some subset of appointments
would be exchanged. “Data” as used herein may be any object, including, but not limited
to, information in any form (text, video, audio, etc.) and applications.

Synchronization system 106 is commonly a persistent network connection over a
cellular provider network, and communications travel over the Internet. However,
synchronization system 106 may be any communication means by which server system
102 and mobile device 104 may interact, such as a docking cradle, Wide Area Network
(WAN), Local Area Network (LAN), Wireless Local Area Network (WLAN), infrared,
or Bluetooth. The degree of availability of access to the communication means employed
may vary greatly, and a user of mobile device 104 may go for days without synchronizing
by using a docking cradle, or may be able to synchronize constantly when connected to a
WAN.

FIG. 2 depicts a mobile system 200 in which mobile device 104 is capable of
synchronizing with server system 102 over synchronization system 106, in accordance
with an embodiment of the present invention. Synchronization system 106 1s operable to
synchronize a central database 202 located at server system 102 with a local database 204
located at mobile device 104.

In a typical system, multiple mobile devices synchronize with a central server
system. The central server system need not be a single physical computer, and may in
fact comprise several computers distributed over a number of physical and network
locations. For the purposes of illustration, a server system 102 is depicted as a single

point of access for synchronization system 106.

[0030] - FIG. 3 depicts a programming system 300, in accordance with an embodiment of

the present invention. A developer creates XML files 302 which are processed by a code
generator to create generated files 304. These generated files include, for example, code
files 306, persistence files 308, and deployment files 310. In accordance with an
embodiment of the present invention, the developer creates custom-developed code 312,
which is then combined with generated files 304. These generated files 304 form the
basis of software running on mobile device 104 used to interact with local database 204

and synchronize with central database 202. The functionality of programming system

WO 2009/017550 6 PCT/US2008/007757
300 is described in greater detail in the following sections with continued reference to

FIGS. 1-3.

IL CODE GENERATION PROCESS

[0031] FIG. 4 is a flowchart 400 which illustrates the steps by which programming
system 300 is used to generate code for execution on mobile device 104. The method
starts at step 401 and proceeds to step 402 where XML class definitions are created. At
step 404, a code generator is run on the XML files. At step 406, output code is generated;
persistence logic is generated at step 408; and presentation logic is generated at step 410.

[0032] In accordance with an embodiment of the present invention, a class definition
includes parameter, attribute, and operation definitions. Parameters, attributes, and
potentially other definition types optionally specify a data type. In accordance with an
embodiment of the present invention, built-in data types are specified which have known
equivalents in one or more target platforms (e.g., Java, C#). Accordingly, a basic class

has the following structure, in accordance with an embodiment of the present invention:

<class name="MyClass">
<parameter name="myParam" type="int" />
<attribute name="x" type="int" />
<attribute name="y" type="int" />
<operation name="swap">
<code>
var t : int = X;
X =Yi
y = t;
</code>
</operation>
</class>

[0033] One skilled in the relevant arts will appreciate that any schema may be used to
achieve similar functionality, and the above schema is used only by way of example and
not limitation.

[0034] At step 406, the code generator will produce output code based on the above
example XML, in accordance with an embodiment of the present invention. For a target
programming language, a class named “MyClass” is defined with an integer parameter
“myParam” and integer attributes “x” and “y”. The class also has an operation named
“swap” defined, which takes the integer in “x”, stores the integer in a temporary variable

(1303

“t”, copies the integer from “y” to “x”, then copies the integer from “t” to “y”. The

WO 2009/017550 PCT/US2008/007757

[0035]

[0036]

[0037]

[0038]

[0039]

-7-

content between the <code> tags appears in the body of the generated code in order to
define the process by which the operation is performed.

In the case of, for example, Java and C# programming, it is possible that a <code>
section may be written such that the code is compatible with both programming
languages. However, it may be necessary to define different code blocks for each
language, either instead of or in addition to generic code sections. FIG. 5 is a flowchart
500 illustrating the steps by which compatible code is defined. The method begins at step
501 and proceeds to step 502 where a basic class is defined, as in the above example. At
step 504, a generic code section is defined. The generic code section is similar to the
code section shown in the above example, which is performed regardless of a target
platform. At step 506, a platform-specific code section is defined.

In accordance with an embodiment of the present invention, a platform-specific
code section specifies a target language. In accordance with an additional embodiment of
the present invention, the platform-specific code section specifies a target platform. One
skilled in the relevant arts will appreciate that any identifying information which would
necessitate creating different code sections is usable as a distinguishing factor in the
definition of a platform-specific code section. Moreover, the information specified, such
as a target language or target platform, may be combined such that a code section
requires, for example, a specific language and a specific platform in order to be used.

A code section created by the steps of flowchart 500 has the following structure,

in accordance with an embodiment of the present invention:

<code>
var t : int = x;
X =Y
Yy = t;

</code>

<code language="java" platform="cldcl.1">
System.exit (0} ;

</code>

<code language="cs" platform="netcf2.0">
Environment.Exit (0) ;

</code>

One skilled in the relevant arts will appreciate that any schema may be used to
achieve similar functionality, and the above schema is used only by way of example and
not limitation.

In accordance with an embodiment of the present invention, a target platform,

such as the target platform defined by mobile device 104, matches more than one

WO 2009/017550 g PCT/US2008/007757
platform-specific code section definition. In this situation, the code from all matching
code sections is appended and processed as a whole. Moreover, as shown in the above
example, generic code sections are usable together with platform-specific code sections.
Again, all code that matches the specific platform (generic code is performed regardless

of the platform) is appended and processed as a whole.

II1L. GENERATING PERSISTENCE LOGIC

[0040] Turning back to FIG. 4, step 408 of flowchart 400 processes XML files to
generate persistence logic. FIG. 6 is a flowchart 600 illustrating steps by which portable
entity classes are defined, in accordance with an embodiment of the present invention.
These portable entity classes are then used to generate persistence logic.

[0041] The method starts at step 601 and proceeds to step 602 where an entity is defined.
An entity is similar to the basic class defined in Section II, but is specifically used to
define persistence-capable classes, in accordance with an embodiment of the present
invention. Persistence-capable classes are used, for example, with the Hibernate API
from Red Hat, Inc., the Java Persistence API, or the Sybase Persistence API. One skilled
in the relevant arts will appreciate that persistence-capable classes are adaptable to use
with other APIs that provide relevant similar functionality.

[0042] At step 604, attributes of the entity are defined. In accordance with an
embodiment of the present invention, attributes of an entity are persistent fields.
Therefore, in accordance with an embodiment of the present invention, where an entity
would map to a table in a database, such as local database 204, the attributes map to
columns of the table.

[0043] At step 606, a determination is made as to whether a primary key for the entity is
defined by a single attribute or by a combination of attributes, in accordance with an
embodiment of the present invention. If the primary key is defined by a single attribute,
then the primary key attribute is identified at step 608. An example entity where the
primary key is defined by a single attribute would be defined as follows, in accordance

with an embodiment of the present invention:

<entity name="MyEntity" id="myId">
<attribute name="myId" type="long" />
</entity>

WO 2009/017550 9 PCT/US2008/007757

[0044] Specifically, the “id” field specifies that the attribute named “myld” is the
attribute to be used as the primary key. One skilled in the relevant arts will appreciate
that any schema may be used to achieve similar functionality, and the above schema is
used only by way of example and not limitation.

[0045] If, on the other hand, a combination of attributes is used to define the primary key
at step 606, then the method proceeds to step 610, where a basic class is created to define
the combination of primary key attributes. At step 612, this basic class is identified as the
primary key. An example entity where the primary key is defined by a combination of
attributes would therefore be defined as follows, in accordance with an embodiment of

the present invention:

<class name="MyPK">
<attribute name="idl" type="string" />
<attribute name="id2" type="short" />
</class>

<entity name="MyEntity" id-class="MyPK">
<attribute name="idl" type="string" />
<attribute name="id2" type="short" />

</entity>

[0046] Specifically, the attributes “id1” and “id2” combine to make the primary key, so a
class “MyPK” is defined by these two attributes. Then, the “id-class” field of the entity is
used to identify the class which comprises the primary key attributes. One skilled in the
relevant arts will appreciate that any schema may be used to achieve similar functionality,
and the above schema is used only by way of example and not limitation.

[0047] With the portable entity classes defined, it is possible to generate the actual
persistence logic as in step 408 of flowchart 400. FIG. 7 is a flowchart 700 illustrating
steps by which the persistence logic is generated from the portable entity classes, in
accordance with an embodiment of the present invention.

[0048] The method begins at step 701 and proceed to step 702 where a persistence-
capable class is defined. A persistence-capable class is, for example, the portable entity
classes disclosed above, but one skilled in the relevant arts will appreciate that any
functionally similar schema may be used. At step 704, a target platform is identified, in
accordance with an embodiment of the present invention. The target platform is, for

example, the platform associated with mobile device 104 and local database 204.

[0049]

Iv.

[0050]

[0051]

WO 2009/017550 PCT/US2008/007757

-10 -

In accordance with an embodiment of the present invention, the target platform
for a persistence-capable class is defined by a target language, such as Java or C#. In
accordance with an additional embodiment of the present invention, the target platform
for a persistence-capable class is defined by a persistence framework, such as Hibernate,
NHibernate, or Java Persistence API. At step 706, persistence logic consistent with the

target platform is generated based on the persistence-capable class.

DEFINING SERVICE CLASSES

A service class is an extension of the basic class defined in Section II. Service
classes can be used to support business operation replay for the purposes of synchronizing
databases, such as local database 204 and central database 202. Business operation replay
allows a service class to perform a set of operations against local database 204, and,
rather than uploading a copy of the results to central database 202, instead captures the
operations themselves and replays them against central database 202.

FIG. 8 is a flowchart 800 illustrating steps by which a service class is created.
The method begins at step 801 and proceeds to step 802, where a service 1s defined. In
accordance with an embodiment of the present invention, <service> tags are provided for
the definition of a service class, with statements available to a basic class also being
available to a service class (e.g., operation, code, attribute, etc.). At step 804, transactions
are demarcated. Transactions are, in the context of business operations, the set of
operations (typically code) which will be performed against the local database 204 and
replayed against the central database 202. An example service would be defined as

follows, in accordance with an embodiment of the present invention:

<service name="MyService"s
<operation name="changeAddress'">
<parameter name="updatedCustomer" type="Customer" />
<code>
begin transaction;
try
{
var customer : Customer =
Customer.find (updatedCustomer.getId()) ;
customer.setAddress (updatedCustomer.getAddress()) ;
commit transaction;

}

catch (Exception ex)

rollback transaction;

}

WO 2009/017550 PCT/US2008/007757

-11 -
</code>
</operations>
</service>
[0052] In the above example, the transaction begins at the start of the <code> block, and

is committed (i.e., played against the local database 204 and replayed against central
database 202) within a “try” block. In the event of an exception, the transaction is rolled-
back, and is accordingly not played against either database. One skilled in the relevant
arts will appreciate that any schema may be used to achieve similar functionality, and the
above schema is used only by way of example and not limitation.

[0053] In accordance with an embodiment of the present invention, services (as with any
basic class definition) may be either stateless or stateful. When using explicit transaction
demarcation with stateful services, transactions can be initiated by one operation and
committed by another.

[0054] In accordance with an additional embodiment of the present invention,
transactions need not be explicitly demarcated, and can be demarcated through the use of
declarative transaction demarcation. A <transaction> tag is defined, in an embodiment,
as a shorthand for defining an operation that begins a transaction, commits the transaction
if no exceptions are thrown, and rolls back the transaction if an exception is thrown.

[0055] At step 812, the performed code blocks are captured for replay against a central
database, such as central database 202. Flowchart 800 illustrates additional steps
common to an embodiment of the present invention whereby code generated from the
XML file may be executed on either a client, such as mobile device 104, or a server, such
as server system 102. At step 806, a determination is made as to whether the present
platform is a client platform or server platform. If the platform is a client platform, then
code marked as client code is generated at step 808; likewise, for a server platform, code
marked as server code is generated at step 810. In either case, only the code specific to
the identified platform is captured at step 812. An example service defining operations
for client and server platforms would be defined as follows, in accordance with an

embodiment of the present invention:

<service name="MyService"s>
<transaction name="changeAddress">
<parameter name="updatedCustomer" type="Customer" />
<code ifclient="true">
var customer : Customer =
Customer.find (updatedCustomer.getId()) ;
customer.setAddress (updatedCustomer.getAddress()) ;
</code>

WO 2009/017550 5 PCT/US2008/007757
-12 -

<code ifserver="true">
// make web service call to external system to update
address
</code>
</transaction>
</services>

[0056] In the above example, the first code section is executed if the code is generated for
a client platform, whereas the second code section is executed if the code is generated for
a server platform. At step 812, only the code for the corresponding platform is captured.
One skilled in the relevant arts will appreciate that any schema may be used to achieve
similar functionality, and the above schema is used only by way of example and not
limitation.

[0057] Additionally, transactions allow for the capture of operation calls and their
parameter values on a client-side transaction, in accordance with an embodiment of the
present invention. An example service defining operation calls and parameter values

would be defined as follows, in accordance with an embodiment of the present invention:

<service name="BankService"s
<transaction name="deposit"s>
<parameter name="accountId" type="int" />
<parameter name="amount" type="decimal" />
<code>
var account : Account = Account.find(accountId);
account .setBalance (account.getBalance () .add (amount)) ;
</code>
</transaction>
</service>

[0058] All tags located between the <transaction> tags, including the parameters, would
be included within the transaction for replay. One skilled in the relevant arts will
appreciate that any schema may be used to achieve similar functionality, and the above
schema is used only by way of example and not limitation.

[0059] FIG. 9 is a flowchart 900 illustrating alternate steps for defining a service class, in
accordance with an embodiment of the present invention. As with flowchart 800, detailed
above, the method starts at step 901 and proceeds to step 902 where a service is defined,
and to step 904 where transactions are demarcated. At step 906, the method determines
whether to generate code from code blocks targeted to a platform “A” or a platform “B”,
in accordance with an embodiment of the present invention. At step 908, code for
platform “A” is generated if a target platform, such as a platform defined by mobile
device 104, is determined to correspond to platform “A”. Alternatively, code for platform

“B” is generated if platform “B” corresponds to the target platform. One skilled in the

WO 2009/017550 PCT/US2008/007757
-13 -
relevant arts will appreciate that multiple target platforms may be defined. At step 912,
operation calls are captured, the operation calls corresponding to the code selected for the
target platform. Determining whether to capture code for a particular platform is
determined, in accordance with an embodiment of the present invention, by defining code
sections with specific platform targets, as shown in Section II.

[0060] FIG. 10 is a flowchart 1000 illustrating additional steps for defining a service
class, in accordance with an embodiment of the present invention. As with flowcharts
800 and 900, detailed above, the method starts at step 1001 and proceeds to step 1002
where a service is defined, and to step 1004 where transactions are demarcated. At step
1006, an entity class is manipulated in some manner. In accordance with an embodiment
of the present invention, a query is triggered on the entity class, causing some change to a
database, such as local database 204. As before, at step 1008, operation calls are captured
for playback against a central database 202.

[0061] Additionally, flowchart 1000 has step 1010, where change sets are captured.
Change sets indicate that an entity (e.g., a table in a database) has been modified. In all
cases shown in flowcharts 800, 900, and 1000, operation calls are transmitted to a central
database 202 and replayed against the database to effectuate the change caused by the
operation calls. However, it is possible that even by replaying operation calls, conflicts
arise in the central database 202, such as, for example, when an operation is dependent on
another data row which has been modified at the server of by a different client. In
accordance with an embodiment of the present invention, the conflict results in fewer data
rows in central database 202 being modified than were modified in local database 204.

[0062] When at least rows modified at local database 204 are also modified in central
database 202, even if a conflict arose, synchronization between local database 204 and
central database 202 is maintained, as all of the changed rows will be updated at local
database 204. However, if fewer rows are modified in central database 202 than were
modified at local database 204, then synchronization may not be maintained, as there are
now rows that have been modified at the local database 204 with changes that have not
been reflected in the central database 202.

[0063] In order to maintain synchronization in this situation, change sets are used to
capture a listing of all rows changed in local database 204, in accordance with an

embodiment of the present invention. In the event that fewer rows are modified in central

WO 2009/017550 14 PCT/US2008/007757
database 202 responsive to changes in local database 204, then the remaining rows of
central database 202, as reflected in the change set, are issued a “harmless update,” in
accordance with an embodiment of the present invention. A “harmless update” is any
update to the row which will trigger synchronization of the row with local database 204
without altering critical data contents, such as by, for example, updating a modification
date field. One skilled in the relevant arts will appreciate that a number of means for
issuing a “harmless update” exist, and the use of a date field is used as an example, and
not by way of limitation.

[0064] In accordance with an embodiment of the present invention, change sets capture
row insertions, deletions, and updates in the local database, but may be operable to
capture additional changes to the local database 204. One skilled in the relevant arts will
appreciate that the result of this process is to ensure that the local database 204 remains
synchronized with central database 202 even when a conflict arises, but that particular
implementations may utilize change sets to resolve conflicts in order to guarantee data
accuracy, not just synchronization.

[0065] The alternate steps illustrated in flowcharts 800, 900, and 1000 can be combined
or used separately. In accordance with an embodiment of the present invention, a service
class is defined that captures change sets, specifies a target environment for code sections,

and restricts the execution location for business operations on a client/server basis.

V. DEFINING PRESENTATION CLASSES

[0066] FIG. 11 is a flowchart 1100 illustrating steps by which a presentation class is
defined, in accordance with an embodiment of the present invention. Step 410 of
flowchart 400 in FIG. 4 generates presentation logic through the execution of a code
generator on XML data from presentation classes, in accordance with an embodiment of
the present invention.

[0067] The method begins at step 1101 and proceeds to step 1102, where a window 1s
defined. A window is a presentation class derived from the base class discussed in
Section II. Windows may define several controls, each control corresponding to some
behavior of the window. For example, a window with a text and icon label would be

defined as follows, in accordance with an embodiment of the present invention:

<window name="CustomerSearch" title="Customer Search">

WO 2009/017550 PCT/US2008/007757

-15 -
<label icon="images/customer.ico" text="Customer Name:" />
</window>
[0068] One skilled in the relevant arts will appreciate that any schema may be used to

achieve similar functionality, and the above schema is used only by way of example and
not limitation.

[0069] Additional controls are specified for the purposes of providing inputs and outputs
in the window. In accordance with an embodiment of the present invention, a window

with an input control would be defined as in the following example:

<window name="CustomerSearch" title="Customer Search"s
<label text="Customer Name:" />
<input name="customerName" />

</window>

[0070] Similarly, a window with an output control would be defined as in the following

example, in accordance with an embodiment of the present invention:

<window name="CustomerInfo" title="Customer Info">
<label text="Customer Name:" />
<output name="customerName" />

</window>

[0071] One skilled in the relevant arts will appreciate that any schema may be used to
achieve similar functionality, and the above schema is used only by way of example and
not limitation.

[0072] At step 1104, the aforementioned input and output controls are bound to attributes
of the window. In accordance with an embodiment of the present invention, an input or
output control with a particular name performs automatic data binding to an attribute with
the same name. If the attribute has not been explicitly defined, it is then implicitly
defined with a default data type (e.g., “string”). In accordance with an additional
embodiment of the present invention, if the data type of an input or output control is not
of the default data type, then an attribute must be explicitly defined.

[0073] At step 1106, an input or output control type is mapped to a widget. A control
definition allows a standard control type to be mapped to a platform-specific widget.
This allows for the mapping of input and output types to user interface widgets to be
extensible. In accordance with an embodiment of the present invention, a control

definition would be defined as follows:

<control type="input.boolean.checkbox">
<code>
final javax.swing.JCheckBox $$ = new
javax.swing.JCheckBox (${_ label_});

WO 2009/017550 . PCT/US2008/007757
-16 -

$$.setSelected (${getAttribute});
$§$.addItemListener
(

new java.awt.event.ItemListener ()

{

public void itemStateChanged(java.awt.event.ItemEvent
event)

${setAttribute} (event.getStateChange(} ==
java.awt.event.ItemEvent.SELECTED) ;

}
}
)

</code>
</control>

[0074] One skilled in the relevant arts will appreciate that any schema may be used to
achieve similar functionality, and the above schema is used only by way of example and
not limitation.

[0075] At step 1108, a style is mapped to a widget. A style definition defines code
generation for a named style that is referenced by a window class, or by a window control
such as one of the aforementioned input controls, in accordance with an embodiment of
the present invention. For example, style definition is defined as follows, in accordance

with an embodiment of the present invention:

<style name="FancyBorder">
<code platform="swing">
$$.setBorder (javax.swing.BorderFactory.createlineBorder
(java.awt.Color.PINK)) ;
</code>
<code platform="netcf">

</ééae>

</style>
[0076] It should be noted that, as with any code section, it is possible to bonﬁgure
alternate code fragmentvs for different platforms, as discussed in Section II, in accordance
with an embodiment of the present invention. One skilled in the relevant arts will

appreciate that any schema may be used to achieve similar functionality, and the above

schema is used only by way of example and not limitation.

V1. EXAMPLE COMPUTER SYSTEM IMPLEMENTATION

[0077] Various aspects of the present invention can be implemented by software,
firmware, hardware, or a combination thereof. FIG. 12 illustrates an example computer

system 1200 in which the present invention, or portions thereof, can be implemented as

WO 2009/017550 17 PCT/US2008/007757
computer-readable code. For example, the methods illustrated by flowcharts 400 of FIG.
4, 500 of FIG. 5, 600 of FIG. 6, 700 of FIG. 7, 800 of FIG. 8, 900 of FIG. 9, 1000 of FIG.
10, and 1100 of FIG. 11 can be implemented in system 1200. Various embodiments of
the invention are described in terms of this example computer system 1200. After
reading this description, it will become apparent to a person skilled in the relevant art how
to implement the invention using other computer systems and/or computer architectures.

[0078] Computer system 1200 includes one or more processors, such as processor 1204.
Processor 1204 can be a special purpose or a general purpose processor. Processor 1204
is connected to a communication infrastructure 1206 (for example, a bus or network).

[0079] Computer system 1200 also includes a main memory 1208, preferably random
access memory (RAM), and may also include a secondary memory 1210. Secondary
memory 1210 may include, for example, a hard disk drive 1212, a removable storage
drive 1214, and/or a memory stick. Removable storage drive 1214 may comprise a
floppy disk drive, a magnetic tape drive, an optical disk drive, a flash memory, or the like.
The removable storage drive 1214 reads from and/or writes to a removable storage unit
1218 in a well known manner. Removable storage unit 1218 may comprise a floppy disk,
magnetic tape, optical disk, etc. which is read by and written to by removable storage
drive 1214. As will be appreciated by persons skilled in the relevant art(s), removable
storage unit 1218 includes a computer usable storage medium having stored therein
computer software and/or data.

[0080] In alternative implementations, secondary memory 1210 may include other similar
means for allowing computer programs or other instructions to be loaded into computer
system 1200. Such means may include, for example, a removable storage unit 1222 and
an interface 1220. Examples of such means may include a program cartridge and
cartridge interface (such as that found in video game devices), a removable memory chip
(such as an EPROM, or PROM) and associated socket, and other removable storage units
1222 and interfaces 1220 which allow software and data to be transferred from the
removable storage unit 1222 to computer system 1200.

[0081] Computer system 1200 may also include a communications interface 1224.
Communications interface 1224 allows software and data to be transferred between
computer system 1200 and external devices. Communications interface 1224 may

include a modem, a network interface (such as an Ethernet card), a communications port,

WO 2009/017550 18 PCT/US2008/007757

a PCMCIA slot and card, or the like. Software and data transferred via communications
interface 1224 are in the form of signals which may be electronic, electromagnetic,
optical, or other signals capable of being received by communications interface 1224,
These signals are provided to communications interface 1224 via a communications path
1226. Communications path 1226 carries signals and may be implemented using wire or
cable, fiber optics, a phone line, a cellular phone‘ link, an RF link or other
communications channels.

[0082] In this document, the terms “computer program medium” and “computer usable
medium” are used to generally refer to media such as removable storage unit 1218,
removable storage unit 1222, and a hard disk installed in hard disk drive 1212. Signals
carried over communications path 1226 can also embody the logic described herein.
Computer program medium and computer usable medium can also refer to memories,
such as main memory 1208 and secondary memory 1210, which can be memory
semiconductors (e.g. DRAMSs, etc.). These computer program products are means for
providing software to computer system 1200.

[0083] Computer programs (also called computer control logic) are stored in main
memory 1208 and/or secondary memory 1210. Computer programs may also be received
via communications interface 1224. Such computer programs, when executed, enable
computer system 1200 to implement the present invention as discussed herein. In
particular, the computer programs, when executed, enable processor 1204 to implement
the processes of the present invention, such as the steps in the methods illustrated by
flowcharts 400 of FIG. 4, 500 of FIG. 5, 600 of FIG. 6, 700 of FIG. 7, 800 of FIG. 8, 900
of FIG. 9, 1000 of FIG. 10, and 1100 of FIG. 11 discussed above. Accordingly, such
computer programs represent controllers of the computer system 1200. Where the
invention is implemented using software, the software may be stored in a computer
program product and loaded into computer system 1200 using removable storage drive
1214, interface 1220, hard drive 1212 or communications interface 1224.

[0084] The invention is also directed to computer program products comprising software
stored on any computer useable medium. Such software, when executed in one or more
data processing device, causes a data processing device(s) to operate as described herein.
Embodiments of the invention employ any computer useable or readable medium, known

now or in the future. Examples of computer useable mediums include, but are not limited

WO 2009/017550 19 PCT/US2008/007757
to, primary storage devices (e.g., any type of random access memory), secondary storage
devices (e.g., hard drives, floppy disks, CD ROMS, ZIP disks, tapes, magnetic storage
devices, optical storage devices, MEMS, nanotechnological storage device, etc.), and
communication mediums (e.g., wired and wireless communications networks, local area

networks, wide area networks, intranets, etc.).

VII. CONCLUSION

[0085] While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example only, and not
limitation. It will be understood by those skilled in the relevant art(s) that various
changes in form and details may be made therein without departing from the spirit and
scope of the invention as defined in the appended claims. It should be understood that the
invention is not limited to these examples. The invention is applicable to any elements
operating as described herein. Accordingly, the breadth and scope of the present
invention should not be limited by any of the above-described exemplary embodiments,

but should be defined only in accordance with the following claims and their equivalents.

WO 2009/017550 PCT/US2008/007757

-20 -
WHAT IS CLAIMED IS:
1. A method for synchronizing a local database with a remote database, the method
comprising:

defining a service operation, wherein the service operation comprises a transaction;
processing the transaction on the local database;
capturing operation calls performed by the transaction; and

capturing change sets of the transaction.

2. The method of claim 1, further comprising:

sending the captured operation calls to the remote database.

3. The method of claim 2, further comprising:

replaying the captured operation calls at the remote database.

4. The method of claim 3, further comprising:

determining changes to the remote database responsive to the step of replaying the
captured operation calls;

comparing the change sets with the changes to the remote database; and

issuing a harmless update to the remote database for each change in the change sets not

present in the changes to the remote database.

5. The method of claim 4, further comprising:
receiving, at the local database, the changes to the remote database, wherein the changes
to the remote database include the harmless update; and

updating the local database consistent with the changes to the remote database.

6. A computer program product comprising a computer usable medium having
computer program logic recorded thereon for enabling a processor to synchronize a local
database with a remote database, the computer program logic comprising:

defining means for enabling a processor to define a service operation, wherein the service

operation comprises a transaction;

WO 2009/017550 PCT/US2008/007757
221 -
processing means for enabling a processor to process the transaction on the local
database;
first capturing means for enabling a processor to capture operation calls performed by the
transaction; and

second capturing means for enabling a processor to capture change sets of the transaction.

7. A system capable of synchronizing a local database with a remote database,
comprising:

a first module to define a service operation, wherein the service operation comprisesAa
transaction,

a second module to process the transaction on the local database;

a third module to capture operation calls performed by the transaction; and

a fourth module to capture change sets of the transaction.

8. A method for performing a service operation on a database, the database located
on a database system, the method comprising:

defining a service operation, wherein the service operation comprises a transaction;

determining a target environment for the database system; and

processing the transaction on the database, wherein the transaction is selected from a set

of transactions, the transaction corresponding to the target environment.

9. The method of claim 8, wherein the target environment comprises a target code
language.
10. The method of claim 8, wherein the target environment comprises a target

software platform.

11. The method of claim 8, wherein the target environment comprises a target

hardware platform.

12. The method of claim 8, wherein the target environment comprises a client

platform.

WO 2009/017550 PCT/US2008/007757

22 -
13. The method of claim 8, wherein the target environment comprises a server
platform.
14. A computer program product comprising a computer usable medium having

computer program logic recorded thereon for enabling a processor to perform a service operation
on a database, the database located on a database system, the computer program logic
comprising:

defining means for enabling a processor to define a service operation, wherein the service
operation comprises a transaction;

determining means for enabling a processor to determine a target environment for the
database system; and

processing means for enabling a processor to process the transaction on the database,
wherein the transaction is selected from a set of transactions, the transaction corresponding to the

target environment.

15. A system capable of performing a service operation on a database, the database
located on a database system, comprising:

a first module to define a service operation, wherein the service operation comprises a
transaction;

a second module to determine a target environment for the database system; and

a third module to process the transaction on the database, wherein the transaction is

selected from a set of transactions, the transaction corresponding to the target environment.

PCT/US2008/007757

WO 2009/017550

1%

O

|

301A8(Q
SlIGON

} "Old

wajsAsg
UOIBZIUOIYOUAS

~/

901

wayshAs
SETNEIN

c0}

1/12

PCT/US2008/007757

WO 2009/017550

<
N

aseqejeq
[eo07

%

I

201A8(3JIqON

- ¢'9ld

waysAs
UOIIBZIUOJYIUAS

(e
(=]
N

~/

901

N
N

aseqejeq
|enuan

ol

walsAg Joniag

2/12

PCT/US2008/007757

WO 2009/017550

o
(ap]

A%
\

//
apon
padojaaag-wolsn)
A
A 4
N
salid
yuaw/hojdag ole 90¢
B so|id
9pod
S9|l4 T
9oUd)sisIa _
Isisied | || . 90¢e
y0€ salid pajeldus

€ "Old

s34
TNX

c0¢

7 —

3/12

WO 2009/017550

401 Start

A 4

402 —~

Create XML
Class Definitions

) 4

404 —

Run Code Generator
On XML Files

A 4

406 —~

Generate Output
Code

A 4

408 —~

Generate Persistence
Logic

A

410 ~

Generate Presentation
Logic

FIG. 4

4/12

PCT/US2008/007757

FuN
o
o

WO 2009/017550 PCT/US2008/007757

O
[e]

501 Start
Y
502 —_ Define Basic
Class
\ 4
504 —~_| Define Generic
Code Sections

A

506 —~_| Define Platform-Specific
Code Sections

FIG. 5

5/12

WO 2009/017550

601

PCT/US2008/007757

[e)]
o
o

602 —~

Define an Entity

A 4

604 —

Define Attributes
of the Entity

606

Is the
Primary Key
a Single

Single

Attribute or a

Combination

of Attributes
?

Combination

Create a Basic
Class for the
Primary Key

Attributes

y

Identify the
Basic Class

FIG. 6

6/12

608 —_| Identify the

y

Primary Key
Attributes

WO 2009/017550 PCT/US2008/007757

~d
o

701 Start

A 4

702 ~pefine a Persistence-Capable Class

A 4

704 —~_| Identify Target
Platform

A 4

706 ~— Generate Persistence Logic

FIG. 7

7/12

WO 2009/017550 PCT/US2008/007757
800
801 Start
A
802 —~ Define a Service
A
804 —~ Demarcate Transactions
808
Client _ .
806 or Client Run Client
Server Code
Code?

Run Server
Code

Capture Operation
Calls

FIG. 8

8/12

WO 2009/017550 PCT/US2008/007757

<]
(e
o

901

902 —~ Define a Service

A 4

904 —~_ Demarcate Transactions

908

/

Run Platform
“A” Code

Platform
HAH or HB"
?

906

910 —_ Run Platform
“B” Code

<
«

A

912 ~_| Capture Operation
Calls

FIG. 9

9/12

WO 2009/017550 PCT/US2008/007757

1001
1002 ~ Define a Service
y
1004 —~— Demarcate Transactions
Y
1006 — Manipulate an
Entity Class
A
1008 —_| Capture Operation
Calls
A 4
1010 —~_| Capturseefshange
FIG. 10

10/12

WO 2009/017550

1101

Start

h 4

1102 —~

Define a Window

Y

1104 ——

Bind Input/Output
Controls to Attributes

A

Map Input/Output
Control Type to Widget

A 4

1108 —~—

Map a Style to
a Widget

FIG.

11

11/12

PCT/US2008/007757

WO 2009/017550 PCT/US2008/007757

// 1200
() Processor 1204
{ Y Main Memory 1208
<__—_> Display Interface 1202 (¢ ----- » Display 1230
Secondary Memory 1210
Hard Disk Drive
Communication 1212
Infrastructure
1206
() Remmmmesmmge¢_____’ Removable
Drive 1214 Storage Unit 1218
Removable
Interface 1220 {4~ 7-——-» Storage Unit 1222
1228
Network | :z: o] K
Interface 1224
Communications Path 1226

FIG. 12

12/12

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/07757

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 7/00 (2008.04)
USPC - 707/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC - 707/10

Minimum documentation searched (classification system followed by classification symbols)

USPC - 707/1, 10, 204 -- text search, see search terms below

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PubWEST(PGPB,USPT,USOC,EPAB,JPAB); Google Scholar

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search Terms Used: synchroni, remote, database, code, instruction, software, generat, execut, mobile, device, local, chang, modif,
script, target, hardware, platform, software, client, code, language, harmless, updat, critical, non, without)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6,636,873 B1 (CARINI et al.) 21 October 2003 (21.10.2003), entire document especially 8, 10, 12-15
- Figs 4, 5, 6; col 1, In 8-11, 63-66; col 3, In 60-63; col 4, In 9-13, 23-25, 29-31, 42-48; col 5, In 12, | ——--—menemomnene
Y 24-25, 35, 47-49; col 6, In 63-67; col 7 In 1-10, 12-24; col 8, In 563-56; col 9, In 7, 22-28, 40, 59- | 1-7,9, 11
67; col 10, In 1-10, 21-27, 52-54.
Y US 2005/0182773 A1 (FEINSMITH) 18 August 2005 (18.08.2005), especially Figs 1, 2; para 1-7,9
[0013], [0072], [0081], [0084].
Y US 2004/0158577 A1 (CHU et al.) 12 August 2004 (12.08.2004), especially para [0088]. 1

D Further documents are listed in the continuation of Box C.

[]

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or afier the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y”™ document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

22 August 2008 (22.08.2008)

Date of mailing of the international search report

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

28 AUG 2008
Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report

