发明名称
突变体 II 型 β - 内酰胺酰化酶

摘要
本发明涉及突变体 II 型 β - 内酰胺酰化酶。其是具有 II 型 β - 内酰胺酰化酶活性的模型多肽的变
体，其中，突变体 β - 内酰胺酰化酶较之具有 β - 内酰胺酰化酶活性的模型多肽而言，针对乙二酰 -7 - ADCA 的体外 β - 内酰胺酰化酶活性提高了至少 1.5 倍。
1. 突变体 II 型 β-内酰胺酰化酶，其是具有 II 型 β-内酰胺酰化酶活性的模型多肽的变体，其中，所述突变体 β-内酰胺酰化酶较之具有 β-内酰胺酰化酶活性的所述模型多肽而言，针对己内酰-7-ADCA 的体外 β-内酰胺酰化酶活性提高了至少 1.5 倍。

2. 突变体 II 型 β-内酰胺酰化酶，其是具有 II 型 β-内酰胺酰化酶活性的模型多肽的变体，其中，所述突变体 II 型 β-内酰胺酰化酶至少在选自第 10、29、161、270、274、280、296、314、442、514、589、645、694、706 和 726 位构成的组的氨基酸位置上经过修饰，其中采用了 Pseudomonas 的 SE83-acyII 酰化酶的氨基酸序列（SEQ ID NO: 1）的氨基酸位置编号。

3. 如权利要求 1 所述的突变体 II 型 β-内酰胺酰化酶，其至少在选自第 10、29、161、270、274、280、296、314、442、514、589、645、694、706 和 726 位构成的组的氨基酸位置上经过修饰，其中采用了 Pseudomonas 的 SE83-acyII 酰化酶的氨基酸序列（SEQ ID NO: 1）的氨基酸位置编号。

4. 如前述任意一项权利要求所述的突变体 II 型 β-内酰胺酰化酶，其中，具有 β-内酰胺酰化酶活性的所述模型多肽选自下述组，所述组包括 Pseudomonas 的 SE83-acyII 酰化酶（SEQ ID NO: 1），来自动物 Brevundimonas diminuta 的 N176（SEQ ID NO: 2）和来自 Brevundimonas diminuta 的 V22 酰化酶（SEQ ID NO: 3）以及具有与 SEQ ID NO: 1 有至少 70% 或与 SEQ ID NO: 2 有至少 70% 或与 SEQ ID NO: 3 有至少 70% 的百分比同一性的氨基酸序列的且具有 II 型 β-内酰胺酰化酶活性的多肽构成。

5. 如权利要求 4 所述的突变体 II 型 β-内酰胺酰化酶，其中，所述模型多肽是 Pseudomonas 的 SE83-acyII 酰化酶（SEQ ID NO: 1）。

6. 如前述任意一项权利要求所述的突变体 II 型 β-内酰胺酰化酶，其中，所述突变体 II 型 β-内酰胺酰化酶在第 161 位经过修饰，优选地，与选自自由 10、29、270、274、280、296、314、442、514、589、645、694、706 和 726 构成的组的位置上的至少一处其它修饰组合。

7. 编码前述任意一项权利要求所述的突变体 II 型 β-内酰胺酰化酶的
多核苷酸。

8. 包含权利要求 7 所述的多核苷酸的表达载体或表达盒。

9. 经权利要求 7 所述的多核苷酸或权利要求 8 所述的载体或盒转化的宿主细胞。

10. 生产权利要求 1-6 所述的突变体 II 型 \(\beta \)-内酰胺酰化酶的工艺，所述工艺包括在有有益于生产突变体 II 型 \(\beta \)-内酰胺酰化酶的条件下培养如权利要求 9 所述的宿主细胞，以及可选地，回收所述多肽。

11. 生产感兴趣的脱酰基化 \(\beta \)-内酰胺化合物的工艺，所述工艺包括使用权利要求 1-6 所述的突变体 II 型 \(\beta \)-内酰胺酰化酶对感兴趣的 \(\beta \)-内酰胺化合物的酰化前体进行脱酰基化的步骤。

12. 如权利要求 11 所述的工艺，其中，所述感兴趣的脱酰基化 \(\beta \)-内酰胺化合物是 6-APA、7-ACA、7-ADCA、7-ADAC 或 7-氨基-3-氨基甲酰乙酰-3-头孢霉素核-4-羧酸。

13. 如权利要求 11 或 12 所述的工艺，其中，所述感兴趣的 \(\beta \)-内酰胺化合物的酰化前体具有属于二羧酸构成的组的酰基，优选地，琥珀酰基、戊二酰基、己二酰基、\(\alpha \)-酮己二酰基和氨基己二酰基，更优选地，己二酰基。

14. 如权利要求 11-13 中任意一项所述的工艺，其中，所述突变体 II 型 \(\beta \)-内酰胺酰化酶以被固定的形式使用。

15. 如权利要求 1-6 所述的突变体 II 型 \(\beta \)-内酰胺酰化酶用于对感兴趣的 \(\beta \)-内酰胺化合物的酰化前体进行脱酰基化的用途。

16. 如权利要求 15 所述的用途，其中所述感兴趣的 \(\beta \)-内酰胺化合物是 7-ADCA 或 7-ACA。

17. 如权利要求 15 或 16 所述的用途，其中，所述感兴趣的 \(\beta \)-内酰胺化合物的酰化前体属于二羧酸构成的组，优选地，琥珀酰基、戊二酰基、己二酰基、\(\alpha \)-酮己二酰基和氨基己二酰基，更优选地，己二酰基。

18. 权利要求 15-17 中任意一项所述的工艺，其中，所述突变体 II 型 \(\beta \)-内酰胺酰化酶以被固定的形式使用。
说明书

突变体II型β-内酰胺酰化酶

本发明涉及突变体 II 型 β-内酰胺酰化酶（acylase）、编码所述酶的多肽以及所述多肽转化的微生物和生产所述突变体 II 型 β-内酰胺的方法。本发明还涉及使用本发明的突变体 II 型 β-内酰胺酰化酶来生产感兴趣的脱酰基化 β-内酰胺化合物的工艺。

β-内酰胺抗生素构成了抗生素化合物的最重要的组，其临床应用已有很长的历史。在该组中，突出的有青霉素和头孢菌素。青霉素是多种有丝状真菌，例如，Penicillium（例如 P. chrysogenum）天然生产的。头孢菌素是多种微生物，例如 Acremonium（例如，A. chrysogenum）和 Streptomyces（例如，Streptomyces clavuligerus）天然生产的。

作为经典菌株改进技术的结果，过去数十年来，P. chrysogenum 和 A. chrysogenum 中的抗生素生产水平也显著增加。随着对产生青霉素和头孢菌素的生物合成途径的了解逐渐增加以及重组 DNA 技术的出现，已经可以用新的工具来改进生产菌株。

P. chrysogenum 中对青霉素进行生物合成的前两个步骤是三个氨基酸 L-5-氨基-5-羧基戊酸（L-αα-氨基己二酸）（A）、L-半胱氨酸（C）和 L-缬氨酸（V）缩合为三肽 LLD-ACV，接着是该三肽环化为异青霉素 N 的形式。该化合物含有典型的 β-内酰胺结构。第三个步骤涉及通过酰基转移酶（AT）的作用用硫水侧链代替 L-5-氨基-5-羧基戊酸的亲水侧链。

在 EP-A-0448180 中描述，AT 介导的酶促交换反应在细胞内的细胞器——微体中发生。可通过表达脱乙酰氧头孢菌素 C 合酶（EC 1.14.20.1 - DAOCS，在本文中还被称为扩环酶（expandase））的非前驱（non-

头孢菌素比青霉素贵得多。一个原因在于，一些头孢菌素（例如头孢氨苄（cephalexin））是通过多次化学转化从青霉素制得的。另一原因在于，目前仅具有 D-α-氨基酸-己二酰基侧链的头孢菌素才能被发酵。在这一重要起始材料——头孢菌素 C 在任何 pH 下都易溶于水，因此，这暗示要使用麻烦且昂贵的柱技术来进行长且浪费的分离工艺。还必须经过多次化学和酶促转化，将这种方式获得的头孢菌素 C 转化为治疗用的头孢菌素。

已有报道，扩环酶能将具有特定侧链的青霉素扩环为对应的 7-ADCA
衍生物。扩环酶的这一特征被用于 WO93/05158、WO95/04148 和 WO95/04149 公开的技术中。在这些公开文本中，通过在经扩环酶基因转化过的重组 Penicillium chrysogenum 菌株中对某些 6-氨基青霉烷酸（6-APA）衍生物进行体内转化，来代替将青霉素 G 体外转化为 7-ADCA 的传统化学转化。更具体地，WO93/05158 教导了扩环酶在 P. chrysogenum 中的体内使用，这与作为储备的己二酰基侧链（也被称为己二酰基）组合，所述侧链是 P. chrysogenum 中酰基转移酶的底物。这导致了己二酰-6-APA 的形成，己二酰-6-APA 被引入 P. chrysogenum 菌株的扩环酶转化，产生了己二酰-7-ADCA，其被真菌细胞排出周围培养基。

在随后的步骤中，可通过化学方法或通过酰化酶酶促切掉对应的 7-ADCA 衍生物的侧链，由此产生 7-ADCA 和对应的侧链。文献中已提到多种类型的微生物可用作为酰化酶产生菌株，用于对通过发酵获得的 β-内酰胺衍生物脱酰基化。此外，生产酰化酶的微生物的例子是 Escherichia coli、Kluyvera citrophila、Proteus rettgeri、Pseudomonas sp.、Alcaligenes faecalis、Bacillus megaterium、Bacillus sphaericus 和 Arthrobacter viscosus 种的某些菌株。

I 型酰化酶是对青霉素 V 特异性的。这些酶由四个相同的亚基构成，每个亚基具有 35 kDa 的分子量。来自 Bacillus sphaericus 的克隆基因的完整核酸序列已被报道（Ollson A. Appl. Environm. Microb. (1976), 203）。

II 型酰化酶都共享下述共有的分子结构：这些酶是小 α-亚基（20-25 kDa）和大 β-亚基（60-65 kDa）构成的异二聚体。在底物特异性方面，II 型酰化酶可被进一步分为两组。

IIA 型酰化酶对青霉素 G 非常特异，因此通常被称为青霉素酰化酶。通常，它们对邻近酰胺基氮原子的基元（这可能是头孢霉素核（cephem）基团、青霉素（penem）基团、氨基酸等）并不太特异，但是对底物的酰
基因元有底物特异性。该酰基基因元必须非常疏水，其优选是苯甲基或（短）烷基。不被 IIA 型酰化酶水解的底物的例子是具有二羧酸作为酰基因元的那些：琥珀酰基、戊二酰基、己二酰基和氨基酸己二酰基，CefC 的侧链。IIA 型酰化酶的例子是来自 Escherichia coli、Kluyvera citrophila、Proteus rettgeri 和 Alcaligenes faecalis 的酶。

已有报道，IIB 型酰化酶能将具有琥珀酰基、戊二酰基、己二酰基和 α-酮己二酰基作为酰基因元的头孢菌素（包括脱乙酰氧衍生物）以及甚至 CefC 水解至非常有限的程度。还可基于氨基酸序列同源性，将该 IIB 型酰化酶的组再分为两组。这些亚组在本文中被定义为 SY77 组和 SE83 组，它们是因为分别来自 Pseudomonas SY77 和 Pseudomonas SE83-acyII 的酰化酶得名的。

Matsuda et al (J. Bacteriol (1985), 163, 1222) 已经对编码 SY77-酰化酶的基因进行克隆及测序，其表明，该酶对戊二酰-7-ACA 具有活性，但是对琥珀酰-7-ACA 和己二酰-7-ACA 的活性要少得多。SY77-前体的三维结构是已知的（J. Biol.Chem. (2002), 277, 2823）。

此后，Matsuda et al. (J. Bacteriol (1987), 169, 5815 和 J. Bacteriol. (1987), 169, 5821) 对编码 SE83-acyII 酰化酶的基因进行了克隆和测序，其表明，该酶对戊二酰-7-ACA、己二酰-7-ACA、琥珀酰-7-ACA 和 CEFC（头孢菌素 C）具有活性（降序排列）。与 SE83 相关的所有研究都集中于酶水解 70ACA 衍生物的能力，特别是水解 CEFC 的能力。

在 WO91/16435 中已显示，SY77 和 SE83-acyII 之间的氨基酸同源性非常低：酰化酶的 α-亚基大约 25%，β-亚基大约 28%。

表 1

<table>
<thead>
<tr>
<th>Type-IIB 酰化酶</th>
<th>SE83acyii</th>
<th>N176</th>
<th>V22</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE83acyii</td>
<td>100</td>
<td>94</td>
<td>93</td>
</tr>
<tr>
<td>N176</td>
<td>94</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>V22</td>
<td>93</td>
<td>98</td>
<td>100</td>
</tr>
</tbody>
</table>

图 1：对 β-内酰胺酰化酶——来自 Pseudomonas SE83 的 II 型 SE83-acyii（SEQ ID No.1）、来自 Brevundimonas diminuta N-176（SEQ ID No.2）和来自 Brevundimonas diminuta V22 的 V22（SEQ ID No.3）的氨基酸序列进行的多比对。

图 2：在 pH = 8.8 和 30°C（图 2a）下以及 pH = 9.5 和 40°C（图 2b）下，通过固定的酰化酶对己二酰-7-ADCA 的转化。Pseudomonas SE83 ACYii 野生型的固定的酰化酶（实线）和突变体 L161T 固定的酰化酶（虚线）。速率（ml KOH/分钟，Y 轴上）被作为百分比转化率（%，X 轴上）的函数作图。

在第一个方面，本发明提供了下述突变体 II 型 β-内酰胺酰化酶，其是具有 II 型 β-内酰胺酰化酶活性的模型多肽的变体，其中，突变体 β-内酰胺酰化酶较之具有 β-内酰胺酰化酶活性的模型多肽而言，针对己二酰-7-ADCA 的体外 β-内酰胺酰化酶活性提高了至少 1.5 倍。在材料和方法章节
对针对二酰-7-ADCA 的体外 β-内酰胺酰化酶活性的测定进行了详细描述。更优选地，突变体 II 型 β-内酰胺酰化酶的针对二酰-7-ADCA 的体外 β-内酰胺酰化酶活性提高了至少 2 倍，更优选地，至少 2.5 倍，更优选地，至少 3 倍，更优选地，至少 4 倍，更优选地，至少 5 倍，更优选地，至少 6 倍，更优选地，至少 7 倍，更优选地，至少 8 倍，更优选地，至少 9 倍，更优选地，至少 10 倍，更优选地，至少 11 倍。

在本发明的上下文中，“改变的或突变体 II 型 β-内酰胺酰化酶”指具有酰化酶活性的、并非从天然来源获得的并且其氨基酸序列与天然 II 型 β-内酰胺酰化酶的完整氨基酸序列有所不同的任何酶。

本发明还提供了下述突变体 II 型 β-内酰胺酰化酶，其是具有 II 型 β-内酰胺酰化酶活性的多肽的变体，其中，所述突变体 II 型 β-内酰胺酰化酶至少在选自第 161、270、296、442 和 589 位构成的组或或第 10、29、274、280、314、514、645、694、706 和 726 位构成的组或第 10、29、161、270、274、280、296、314、442、514、589、645、694、706 和 726 位构成的组或第 10、29、270、274、280、442、514、589、645、694 和 726 构成的组的氨基酸位置上经过修饰，其中采用了 Pseudomonas 的 SE83-acylII酰化酶的氨基酸序列（SEQ ID NO:1）的氨基酸位置编号。

更优选地，本发明还提供了下述突变体 II 型 β-内酰胺酰化酶，其是具有 II 型 β-内酰胺酰化酶活性的多肽的变体，其中，突变体 β-内酰胺酰化酶较之具有 β-内酰胺酰化酶活性的多肽而言，针对二酰-7-ADCA 的体外 β-内酰胺酰化酶活性提高了至少 1.5 倍，更优选地，至少 2 倍，更优选地，至少 2.5 倍，更优选地，至少 3 倍，更优选地，至少 4 倍，更优选地，至少 5 倍，更优选地，至少 6 倍，更优选地，至少 7 倍，更优选地，至少 8 倍，更优选地，至少 9 倍，更优选地，至少 10 倍，更优选地，至少 11 倍，并且，其中，所述突变体 II 型 β-内酰胺酰化酶至少在选自第 161、270、296、442 和 589 位构成的组或第 10、29、274、280、314、514、645、694、706 和 726 位构成的组或第 10、29、161、270、274、280、296、314、442、514、589、645、694、706 和 726 位构成的组或第 10、29、270、274、280、442、514、589、645、694 和 726 构成的组的氨
氨基酸位置上经过修饰，其中采用了 *Pseudomonas* 的 SE83-acyII 酰化酶的氨基酸序列（SEQ ID NO: 1）的氨基酸位置编号。

本发明优选提供了下述突变体 II 型 β-内酰胺酰化酶，其是具有 II 型 β-内酰胺酰化酶活性的模型多肽的变体，其中，所述突变体 II 型 β-内酰胺酰化酶至少在第 10 位或至少在第 29 位，至少在第 161 位或至少在第 270 位或至少在第 274 位或至少在第 280 位或至少在第 296 位或至少在第 314 位或至少在第 442 位或至少在第 514 位或至少在第 589 位或至少在第 645 位或至少在第 694 位或至少在第 706 位或至少在第 726 位经过修饰，其中采用了 *Pseudomonas* 的 SE83-acyII 酰化酶的氨基酸序列（SEQ ID NO: 1）的氨基酸位置编号。在本发明的一种实施方式中，提供了在第 161 位或第 296 位具有单种修饰的突变体 II 型 β-内酰胺酰化酶。

本发明还提供了下述突变体 II 型 β-内酰胺酰化酶，其是具有 II 型 β-内酰胺酰化酶活性的模型多肽的变体，其中，所述突变体 II 型 β-内酰胺酰化酶至少在位置 161+270 的组合或至少在位置 161+296 的组合或至少在位置 161+442 的组合或至少在位置 161+589 的组合或至少在位置 270+296 的组合或至少在位置 270+442 的组合或至少在位置 270+589 的组合或至少在位置 296+442 的组合或至少在位置 296+589 的组合或至少在位置 442+589 的组合或至少在位置 161+270+296 的组合或至少在位置 161+270+442 的组合或至少在位置 161+270+589 的组合或至少在位置 161+296+589 的组合或至少在位置 161+296+442 的组合或至少在位置 161+296+589 的组合或至少在位置 296+442+589 的组合或至少在位置 161+296+442 的组合或至少在位置 161+296+589 的组合或至少在位置 296+442+589 的组合或至少在位置 161+296+442 的组合或至少在选自 161、270、296、442 和 589 构成的组的 4 个位置的任何组合或至少在位置 161、270、296、442 和 589 的组合处经过修饰，并且，其中，所述突变体 II 型 β-内酰胺酰化酶可能在除了这些位置或前述所有可能的位置之外的其它氨基酸位置具有修饰，其中采用了 *Pseudomonas* 的 SE83-acyII 酰化酶的氨基酸序列（SEQ ID NO: 1）的氨基酸位置编号。

本文中使用的具有 II 型 β-内酰胺酰化酶活性的模型多肽选自由下列多肽构成的组：具有 II 型 β-内酰胺酰化酶活性且优选具有 SEQ ID NO: 1 的氨基酸序列（即，*Pseudomonas* 的种 SE83 的 SE83-acyII 酰化酶）或具有
SEQ ID NO: 2 的氨基酸序列（即，*Pseudomonas* 的种 N176 的 N176 酰化酶）或具有 SEQ ID NO: 3 的氨基酸序列（即，*Brevundimonas diminuta* V22的 V22 酰化酶）的多肽和具有与 SEQ ID NO: 1 有至少 70%，优选至少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一性的氨基酸序列，或具有与 SEQ ID NO: 2 有至少 70%，优选至少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一性的氨基酸序列，或具有与 SEQ ID NO: 3 有至少 70%，优选至少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一性的氨基酸序列，且具有 II 型 β-内酰胺酰化酶活性的多肽。作为用于本发明的具有 II 型 β-内酰胺酰化酶活性的模型多肽而言，更优选的是具有 II 型 β-内酰胺酰化酶活性，并且具有 SEQ ID NO: 1 的氨基酸序列或具有 SEQ ID NO: 2 的氨基酸序列或具有 SEQ ID NO: 3 的氨基酸序列的多肽。作为具有 II 型 β-内酰胺酰化酶活性的模型多肽而言，最优选的是 *Pseudomonas* 的 SE83-acyII酰化酶（SEQ ID NO: 1）。

本发明优选提供了选自下述组的模型 II 型 β-内酰胺酰化酶的突变体，所述组由具有 SEQ ID NO: 1 的氨基酸序列的酰化酶和具有 SEQ ID NO: 2 的氨基酸序列的酰化酶和具有 SEQ ID NO: 3 的氨基酸序列的酰化酶，以及具有与 SEQ ID NO: 1 有至少 70%，优选至少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一性的氨基酸序列，或具有与 SEQ ID NO: 2 有至少 70%，优选至少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一性的氨基酸序列，或具有与 SEQ ID NO: 3 有至少 70%，优选至少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一性的氨基酸序列，且具有 II 型 β-内酰胺酰化酶活性的多肽构成，并且，所述突变体具有至少在第 10 位或至少在第 29 位，至少在第 161 位或至少在第 270 位或至少在第 274 位或至少在第 280 位或至少在第 296 位或至少在第 314 位或至少在第 442 位或至少在第 514 位或至少在第 589 位或至少在第 645 位或至少在第 694 位或至少在第 706 位或至少在第 726 位上
的修饰。在一种实施方式中，本发明提供了下述突变体 II 型 β-内酰胺酰化酶，其在第 161 位或第 296 位具有单种修饰，其中采用了 Pseudomonas 的 SE83-acyII 酰化酶的氨基酸序列（SEQ ID NO:1）的氨基酸位置编号。

在氨基酸位置上的修饰可包含另外的氨基酸（选自天然存在的 20 种 L-氨基酸的组，见表 1）的取代。或者，氨基酸位置上的修饰可包含所述位置上氨基酸的缺失。此外，氨基酸位置上的修饰可包含对所述氨基酸 C-末端侧或 N-末端侧一个或多个氨基酸的取代。

表 1

<table>
<thead>
<tr>
<th>氨基酸</th>
<th>三字母编码</th>
<th>单字母编码</th>
</tr>
</thead>
<tbody>
<tr>
<td>丙氨酸</td>
<td>Ala</td>
<td>A</td>
</tr>
<tr>
<td>精氨酸</td>
<td>Arg</td>
<td>R</td>
</tr>
<tr>
<td>天冬酰胺</td>
<td>Asn</td>
<td>N</td>
</tr>
<tr>
<td>天冬氨酸</td>
<td>Asp</td>
<td>D</td>
</tr>
<tr>
<td>半胱氨酸</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>谷氨酸</td>
<td>Glu</td>
<td>E</td>
</tr>
<tr>
<td>谷氨酰胺</td>
<td>Gln</td>
<td>Q</td>
</tr>
<tr>
<td>甘氨酸</td>
<td>Gly</td>
<td>G</td>
</tr>
<tr>
<td>组氨酸</td>
<td>His</td>
<td>H</td>
</tr>
<tr>
<td>异亮氨酸</td>
<td>Ile</td>
<td>I</td>
</tr>
<tr>
<td>亮氨酸</td>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>赖氨酸</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>甲硫氨酸</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>苯丙氨酸</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>脯氨酸</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>丝氨酸</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>苏氨酸</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>色氨酸</td>
<td>Trp</td>
<td>W</td>
</tr>
<tr>
<td>酪氨酸</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>缬氨酸</td>
<td>Val</td>
<td>V</td>
</tr>
</tbody>
</table>
本发明的突变体 II 型 β-内酰胺酰化酶，优选地，选自具有 SEQ ID NO: 1 的氨基酸序列的酰化酶和具有 SEQ ID NO: 2 的氨基酸序列的酰化酶和具有 SEQ ID NO: 3 的氨基酸序列的酰化酶的模型 II 型 β-内酰胺酰化酶的突变体可能携带一种或多种下述修饰：

- 第 10 位上的谷氨酸（SEQ ID NO:1）或丙氨酸（SEQ ID NO:2 和 SEQ ID NO:3）被带正电荷的氨基酸残基（例如赖氨酸或精氨酸）或具有 α-螺旋形成的构象偏好的小氨基酸残基（例如丙氨酸）取代，优选赖氨酸取代；
- 第 29 位上的丝氨酸被具有芳香族（样）侧链的氨基酸（例如苯丙氨酸、酪氨酸、色氨酸和组氨酸）或具有更大的不带电荷的极性侧链或带正电荷的侧链的氨基酸（例如天冬酰胺、谷氨酰胺、精氨酸和赖氨酸）取代，优选被天冬酰胺或苯丙氨酸取代；
- 第 161 位上的亮氨酸被更小且更具极性的氨基酸（例如苏氨酸、丝氨酸、甘氨酸和半胱氨酸）或在 pH=9 左右带正电荷的氨基酸（例如精氨酸和赖氨酸）取代，优选被丝氨酸或苏氨酸或甘氨酸取代，最优选被苏氨酸取代；
- 第 274 位上的组氨酸被至少在侧链 γ 位含有碳、氧或硫原子并且尺寸比组氨酸要小的氨基酸残基（例如亮氨酸、异亮氨酸、半胱氨酸、苏氨酸、丝氨酸、天冬酰胺、缬氨酸和脯氨酸）取代，优选被亮氨酸、异亮氨酸、半胱氨酸或苏氨酸取代；
- 第 280 位上的精氨酸被被负电荷取代了正电荷的氨基酸残基（例如天冬氨酸和谷氨酸）或被具有不分支且不带电荷的极性侧链的氨基酸残基（例如谷氨酰胺、天冬酰胺和丝氨酸）取代，优选被谷氨酰胺和天冬酰胺取代，最优选被谷氨酰胺取代；
- 第 296 位上的组氨酸被带电荷的或极性的氨基酸或能代替模型酰化酶中已有的键合到组氨酸残基的 N-δ 或 N-ε 原子上的氢键的氨基酸残基取代，例如，被天冬酰胺和谷氨酰胺取代，优选被谷氨酰胺取代；
第 314 位上的异亮氨酸被具有 β-分支的更小的氨基酸残基（例如缬氨酸）或具有中等准确的构象，残留的氨基酸残基（例如谷氨酰胺、天冬酰胺、丝氨酸和苏氨酸）取代，优选被缬氨酸或谷氨酰胺取代；

第 442 位上的谷氨酸被没有疏水侧链或具有小疏水侧链的氨基酸残基（例如甘氨酸、丙氨酸、缬氨酸和异亮氨酸）取代，优选被甘氨酸取代；

第 514 位上的脯氨酸被具有更具极性和/或更具柔性的侧链（能带来额外的氢键）的氨基酸残基（例如谷氨酰胺、天冬酰胺、苏氨酸、丝氨酸、半胱氨酸、天冬氨酸和谷氨酸）取代，优选被谷氨酰胺取代；

第 589 位上的精氨酸被在某些环境下能保持正电荷的氨基酸残基（例如组氨酸和赖氨酸）或被具有能形成氢键的芳香族侧链的氨基酸残基（例如酪氨酸和色氨酸）或被能代替模型酶在混合的 N-δ 或 N-ε 原子上的氢键的氨基酸残基（例如天冬酰胺和谷氨酰胺）取代，优选被组氨酸取代；

第 645 位上的丙氨酸被具有对 β-链形成的增加的偏好的小氨基酸残基（例如苏氨酸、缬氨酸、丝氨酸、半胱氨酸和亮氨酸）取代，优选被苏氨酸取代；

第 694 位上的天冬酰胺被具有小于天冬酰胺的侧链的氨基酸残基（例如丙氨酸、苏氨酸、丝氨酸、半胱氨酸、缬氨酸和甘氨酸）取代，优选被苏氨酸取代；

第 706 位上的酪氨酸被没有侧链或具有比亮氨酸小的侧链的氨基酸残基（例如甘氨酸、丙氨酸、缬氨酸、丝氨酸、半胱氨酸、苏氨酸和脯氨酸）取代，优选被甘氨酸取代；

第 726 位上的缬氨酸被具有更大疏水侧链的氨基酸残基（例如异亮氨酸、亮氨酸和甲硫氨酸）取代，优选被异亮氨酸取代。

本发明的高度优选的实施方案是选自下述组的模型 II 型 β-内酰胺酰化
酶的突变体，所述组由具有 SEQ ID NO: 1 的氨基酸序列的酰化酶和具有
SEQ ID NO: 2 的氨基酸序列的酰化酶和具有 SEQ ID NO: 3 的氨基酸序列的
酰化酶，以及具有与 SEQ ID NO: 1 有至少 70%，优选至少 75%，更优选至
少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一
性的氨基酸序列，或具有与 SEQ ID NO: 2 有至少 70%，优选至少 75%，
更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的
百分比同一性的氨基酸序列，或具有与 SEQ ID NO: 3 有至少 70%，优选至
少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少
95%的百分比同一性的氨基酸序列，且具有 II 型 β-内酰胺酰化酶活性的多
肽构成，并且，所述突变体携带下述修饰中之一：H296Q、L161G、
L161S 或 L161T。

本发明的更加高度优选的实施方式是选自下述组的模型 II 型 β-内酰胺
酰化酶的突变体，所述组由具有 SEQ ID NO: 1 的氨基酸序列的酰化酶和具有
SEQ ID NO: 2 的氨基酸序列的酰化酶和具有 SEQ ID NO: 3 的氨基酸序列的
酰化酶，以及具有与 SEQ ID NO: 1 有至少 70%，优选至少 75%，更优选至
少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一
性的氨基酸序列，或具有与 SEQ ID NO: 2 有至少 70%，优选至少 75%，
更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少 95%的百分比同一性的氨基酸序列，或具有与 SEQ ID NO: 3 有至少 70%，
优选至少 75%，更优选至少 80%，更优选至少 85%，更优选至少 90%，最优选至少
95%的百分比同一性的氨基酸序列，且具有 II 型 β-内酰胺酰化酶活性的多
肽构成，并且，所述突变体携带位置上突变。最优选的是下述突变体酰化酶，其在下述 2 个位置的组合处具有修饰：[161+10]、[161+29] 或
[161+314]，或在下述 3 个位置的组合处：[161+29+274]、[161+29+706]、
[161+29+514]、[161+274+589] 或 [161+274+706]，或在下述 4 个位置的组合
处：[161+29+274+726]、[161+274+280+314]，或在下述 5 个位置的组合
处：[161+29+274+314+694]、[161+274+280+514+726]，或在下述 6 个位置
的组合处具有修饰：[161+29+280+314+645+726]。

在第二个方面，本发明提供了编码本发明的突变体 II 型 β-内酰胺酰化酶的多核苷酸。本发明还提供了编码所述突变体 II 型 β-内酰胺酰化酶的 α-亚基的多核苷酸以及编码所述突变体 II 型 β-内酰胺酰化酶的 β-亚基的多核苷酸。WO2005/014821 在第 8 页和第 9 页公开：编码 SE83-组的酰化酶的基因编码由 α-亚基、间隔肽和 β-亚基（按该顺序）构成的多肽。在宿主细胞中经历转录和翻译之后，源自 *Pseudomonas* sp. SE83 的酰化酶以大小为大约 84 kDa 的非活性单链多肽的形式产生。之后，SEQ ID NO: 1 的氨基酸序列中第 230 和第 231 位以及第 239 和第 240 位上的氨基酸之间发生两次自消化，这导致除去了由 9 个氨基酸构成的间隔肽，并将其分离为 25 kDa 的 α-亚基和 58 kDa 的 β-亚基。一个 α-亚基和一个 β-亚基通过疏水相互作用结合，形成大约 83 kDa 的具有酰化酶活性的异二聚体。如技术人员所公知的，编码 N-末端甲硫氨酸的第一个密码子（ATG）是在原核生物中进行蛋白合成期间翻译起始所必需的。甲硫氨酸在翻译后被去除。
根据本发明的编码突变体 II 型 β-内酰胺酰化酶或 α-亚基或 β-亚基的多核苷酸可以是编码根据本发明的合适的氨基酸序列的任何多核苷酸。或者，本发明的多核苷酸可包含这样的编码序列，其中，针对多种氨基酸的密码子使用源自 Pseudomonas 中的密码子使用。例如，可对密码子使用加以改变，使其适合将或已用编码改变的 II 型 β-内酰胺酰化酶的 DNA 片段转化的特定宿主细胞的密码子使用。

在第三个方面，本发明提供了包含前文定义的本发明多核苷酸的表达载体或表达盒。

在第四个方面，本发明提供了经转化的宿主细胞，其是用本发明的多核苷酸或本发明的表达载体或表达盒转化过的。经转化的宿主细胞可用于生产本发明的突变体 II 型 β-内酰胺酰化酶。

用于生产本发明的突变体 II 型 β-内酰胺酰化酶的宿主细胞优选是本领域已知能细胞外或细胞内高效生产蛋白或酶的那些宿主细胞，例如，微生物，例如真菌、酵母和细菌。优选的宿主细胞的例子包括但不限于下述属：Aspergillus（例如 A. niger、A. oryzea）、Penicillium（例如 P. emersonii、P. chrysogenum）、Saccharomyces（例如 S. cerevisiae）、Kluyveromyces（例如 K. lactis）、Bacillus（例如 B. subtilis、B. licheniformis、B. amyloliquefaciens）、Escherichia（E. coli）、Streptomyces（例如 S. clavuligerus）、Pseudomonas。

在第五个方面，本发明提供了生产本发明的突变体 II 型 β-内酰胺酰化酶的工艺，所述工艺包括在有益于生产突变体扩环酶的条件下培养经转化的宿主细胞，以及可选地，回收所述突变体扩环酶。

在第六个方面，本发明提供了生产感兴趣的脱酰基化 β-内酰胺化合物的工艺，所述工艺包括使用本发明的突变体 II 型 β-内酰胺酰化酶对感兴趣的 β-内酰胺化合物的酰化前体进行脱酰基化的步骤。感兴趣的脱酰基化 β-内酰胺化合物可以是天然存在的青霉素或头孢菌素的衍生物，例如，6-APA、7-ACA、7-ADCA、7-ADAC、7-氨基-3-氨基甲酰氧甲基-3-头孢霉素核4-羧酸（例如 WO2004/106347）等。优选地，感兴趣的脱酰基化 β-内酰胺化合物是 7-ADCA 或 7-ACA，最优选是 7-ADCA。感兴趣的 β-内酰胺化
合物的酰化前体可具有属于二羧酸构成的组的酰基。优选的酰基是琥珀酰基、戊二酰基、己二酰基、α-酮己二酰基和氨基己二酰基。更优选的是己二酰基和氨基己二酰基，高度优选的是己二酰基。优选的感兴趣的 β-内酰胺化合物的酰化前体是己二酰-7-ADCA、己二酰-7-ACA、氨基己二酰-7-ADCA 和氨基己二酰-7-ACA，后者作为 CEFC 已知；最优选的是己二酰-7-ADCA。

本发明用于生产感兴趣的脱酰基化 β-内酰胺化合物的工艺可以以分批模式进行，其中，突变体 II 型 β-内酰胺酰化酶在包含感兴趣的 β-内酰胺化合物的酰化前体的溶液中以溶解状态使用。

在第七个方面，本发明涉及本发明的突变体 II 型 β-内酰胺酰化酶用于生产感兴趣的脱酰基化 β-内酰胺化合物的工艺中的用途，所述工艺包括对感兴趣的 β-内酰胺化合物的酰化前体进行脱酰基化的步骤。感兴趣的脱酰基化 β-内酰胺化合物可以是天然存在的青霉素或头孢菌素的衍生物，例如，6-APA、7-ACA、7-ADCA、7-ADCA、氨基-3-氨基甲酰氧甲基-3-头孢霉素核-4-羧酸等。优选地，感兴趣的脱酰基化 β-内酰胺化合物是 7-ADCA 或 7-ACA，最优选是 7-ADCA。感兴趣的 β-内酰胺化合物的酰化前体可具有属于二羧酸构成的组的酰基。优选的酰基是琥珀酰基、戊二酰基、己二酰基、α-酮己二酰基和氨基己二酰基。更优选的是己二酰基和氨基己二酰基，高度优选的是己二酰基。最优选的感兴趣的 β-内酰胺化合物的酰化前体是己二酰-7-ADCA、己二酰-7-ACA、己二酰-7-ACA、氨基-3-氨基甲酰氧甲基-3-头孢霉素核-4-羧酸、α-酮己二酰-7-ADCA、α-酮己二酰-7-ACA、氨基己二酰-7-ADCA 和氨基己二酰-7-ACA，后者作为 CEFC 已知。本发明用于生产感兴趣的脱酰基化 β-内酰胺化合物的工艺可以以分批
模式进行，其中，突变体 II 型 β-内酰胺酰化酶在包含感兴趣的 β-内酰胺化合物的酰化前体的溶液中以溶解状态使用。更优选地，突变体 II 型 β-内酰胺酰化酶以被固定的形式使用。

材料和方法

制备酰化酶

将具有 wt 基因或突变体基因的质粒转入 E. coli Top 10 细胞（Invitrogen）。使用 20 ml 2xTY 培养基（含有 50 μg/ml Zeocine），在 37℃ 和 280 rpm 下，在 100 ml 瓶中接种细胞。24 小时后，以 1:1000 向具有 100 ml 2xTY 培养基、50 μg/ml Zeocine 和 0.05%阿拉伯糖的瓶中接种 50 μl 培养物，在 25℃ 和 280 rpm 下培养。对培养物进行离心，冷冻于-20℃。为制备不含细胞的提取物，将沉淀物重新悬浮于提取缓冲液（50mM Tris/HCL、0.1 mg/ml DNAse1、2mg/ml Lysozyme、10mM DTT（二硫苏糖醇）、5mM MgSO4）中，并进行孵育。30 分钟后，对提取物进行离心，含有酰化酶活性的上清液被用于进行活性测量。

使用 SDS-PAGE 凝胶电泳和分析性 HPLC 尺寸排除色谱（在 TSK 3000SWx1 柱上，用 0.1M 磷酸盐缓冲液（pH 7.0）作为洗脱剂来进行）来测定酰化酶含量。应用的色谱条件：流速 1.0 ml/分钟，在 280 nm 处检测。通过比较观察到的酰化酶的峰的面积，可对不同样品的蛋白含量进行比较。使用 154350（M⁻¹·cm⁻¹）的摩尔消光系数，从 OD280 来计算酰化酶蛋白含量。HPLC 色谱有其它峰的情况下，针对其它峰的作用对样品的 E280 值加以校正。

纯化

将来自 100 ml 培养物的细胞沉淀物重新悬浮于 1 ml 20 mM Tris pH 8 中。在冰上以 10 μ的振幅进行 9 x 10 秒的超声波处理（Soniprep 150 IBU03）后，在微离心管中于 14000 rpm 和 4℃ 下对细胞悬浮液进行 5 分钟的离心。用 0.1 M HCl 将上清液调节为 pH 5.3-5.4 之后，对其进行离心，以除去沉淀。随后，用 NaOH 将上清液滴定回 pH=8。大约 100-400 μl 被
加到 1 ml MonoQ 柱（用含有 10% NaCl 的 20 mM Tris pH8 平衡过）上。洗脱期间按照下文所述来混合缓冲液 A（20 mM Tris pH8）和缓冲液 B（20 mM Tris pH8 + 1M NaCl）：0-1 分钟，10%B/90%A；1-5 分钟，20%B/80%A；5-9 分钟，40%B/60%A；9-12 分钟，60%B/40%A；12-15 分钟，100%B。收集含有酰化酶活性的峰级分，加到凝胶过滤柱 TSKGel 3000SWxl 上，该柱已用 100 mM 磷酸钠缓冲液 pH 7 平衡过。收集峰级分，储藏起来以备后用。

试剂
可按照 WO9848037 所述，通过酶促合成，从己二酸和 7-ADCA 来制备己二酰-7-ADCA。此外，可按照 Shibuya et al. 在 Agric. Biol. Chem., 1981, 45(7), 1561-1567 中所述，但从己二酸酐开始（代替戊二酸酐），通过化学合成来制备己二酰-7-ADCA。

在合适的缓冲液中制备己二酰-7-ADCA 底物的 8%（w/v）贮液，用 4 N NaOH 将其调节至想要的 pH。

通过将 200 mg 4-(二甲基氨基)-苯甲酸（p-DMBA）溶解于 100 ml 柠檬酸（溶解于 1 升乙醇中的 315.5 g 柠檬酸单水合物）中，来新鲜制备颜料试剂。

在 0.2 M CHES 缓冲液（2-(N-环己基氨基)乙磺酸）中，于 pH 8.0 至 pH 10.0 的范围内进行活性测量，如果需要的话，用 4N HCl 或 4 N NaOH 将所述缓冲液调节至想要的 pH。

测量酰化酶活性
将 180 μl 合适的缓冲液与 200 μl 处于相应缓冲液中的底物贮液和 20 μl 酶溶液混合，在想要的温度下孵育 20 分钟，如无特别指明的话，通常是在室温下孵育。加入 600 μl 颜料试剂来停止反应。室温下 10 分钟后，在 415 nm 处测量吸光度。通过在加入酶之前就向检验体系中加入颜料溶液来进行空白测量。酰化酶活性被计算为每分钟光密度（OD）的增加（δOD/分钟）。为计算绝对活性，使用每升 0.1 至 1 g 7-ADCA 范围内的
7-ADCA 校正线。

K_M 测定和 pH 曲线。

按照所述的检验来进行 K_M 测定。但是，己二酰-7-ADCA 浓度在 0.5 至 4% (w/v) 己二酰-7-ADCA 之间变化。

实施例

实施例 1 SE83 ACYii 突变体的酰化酶活性

用己二酰-7-ADCA 作为底物，在 pH=8.5 和 pH=9.5 时测量突变体的酰化酶活性。结果示于表 2 中。

表 2：野生型和突变体酰化酶对己二酰-7-ADCA 的相对活性，将 pH=8.5 时野生型的活性设定为 1。括号中是 pH=9.5 时相对于野生型活性的活性。在室温下进行检验。在存在 4% (w/w) 己二酰-7-ADCA 时测量起始速率。

<table>
<thead>
<tr>
<th>酶</th>
<th>代号</th>
<th>酰化酶活性</th>
<th>pH=8.5</th>
<th>pH=9.5</th>
<th>pH=9.5 时的活性</th>
<th>pH=8.5 时的活性</th>
</tr>
</thead>
<tbody>
<tr>
<td>野生型</td>
<td>SE83 ACY-ii</td>
<td>1.00</td>
<td>0.61</td>
<td>(1.00)</td>
<td>0.61 (1.00)</td>
<td></td>
</tr>
<tr>
<td>突变体</td>
<td>L161T</td>
<td>1.95</td>
<td>1.38</td>
<td>(2.26)</td>
<td>0.71 (1.16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H296Q</td>
<td>1.35</td>
<td>1.11</td>
<td>(1.82)</td>
<td>0.83 (1.36)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L161S+E442G</td>
<td>1.68</td>
<td>1.22</td>
<td>(2.00)</td>
<td>0.73 (1.20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L161S+H589R</td>
<td>1.60</td>
<td>1.05</td>
<td>(1.72)</td>
<td>0.66 (1.08)</td>
<td></td>
</tr>
</tbody>
</table>

在 pH=8.5 以及 pH=9.5 时，突变体的活性较之野生型酰化酶显著更高。此外，当将 pH=9.5 时的活性与 pH=8.5 时的活性相比时，明显可见，突变体酰化酶在 pH 9.5 的活性较之野生型相对更高。突变体的 pH 活性曲线向更高的 pH 迁移，这使得这些突变体特别适合在升高的 pH 下使用。这点特别重要，因为转化产率将在更高的 pH 下增加，这是由于热力学平衡更进一步朝向完成水解反应的方向。

鉴于在己二酰-7-ADCA 向 7-ADCA 和己二酸转化的过程中，后者的浓
度将增加，因此，产物抑制可能会降低在初始速率条件下测量到的突变体的提高效果。因此，在存在 1.5% (w/v) 的己二酸时，测量野生型和突变体酰化酶的活性。表 3 显示，在这些条件下，在 pH=8.5 以及 pH=9.5 时，突变体的活性较之野生型也显著更高。这些突变体的 pH 活性曲线没有迁移到更高的 pH。

使用己二酰-7-ADCA 作为底物，在 pH=8.6、pH=9.1 和 pH=9.5 时，存在 1.5% (w/v) 的己二酸时，测定野生型和突变体酰化酶的酰化酶活性。结果如表 4 所示。

表 4 显示，在 pH=8.6、pH=9.1 和 pH=9.5 时，突变体的活性较之野生型酰化酶显著更高。当将 pH=9.1 时的活性提高与 pH=8.6 时的活性提高相比时，明显可见，突变体酰化酶在 pH 9.1 的活性较之野生型提高更显著。突变体的 pH 活性曲线向更高的 pH 迁移，这使得这些突变体特别适合在升高的 pH 下使用。当将 pH=9.5 与 pH=8.6 相比时，大多数突变体酰化酶的活性相对野生型而言在 pH=9.5 时仍比 pH=8.5 时提高更多。

表 3：野生型和突变体酰化酶对己二酰-7-ADCA 的相对活性，将 pH=8.5 时野生型的活性设定为 1。括号中是 pH=9.5 时相对于野生型活性的活性。在室温下进行检验。在存在 4%（w/w）己二酰-7-ADCA 时测量起始底物浓度。在存在 1.5%（w/v）己二酸时测量起始活性。

<table>
<thead>
<tr>
<th>酶</th>
<th>代号</th>
<th>酰化酶活性</th>
<th>pH=9.5 时的活性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pH=8.5</td>
<td>pH=9.5 (1.00)</td>
</tr>
<tr>
<td>野生型</td>
<td>SE83 ACY-ii</td>
<td>1.00</td>
<td>0.80 (1.00)</td>
</tr>
<tr>
<td>突变体</td>
<td>L161G</td>
<td>2.53</td>
<td>1.80 (2.25)</td>
</tr>
<tr>
<td></td>
<td>L161G+E10K</td>
<td>2.13</td>
<td>1.47 (1.83)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH=8.5 时的活性</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80 (1.00)</td>
</tr>
<tr>
<td>0.71 (0.89)</td>
</tr>
<tr>
<td>0.69 (0.86)</td>
</tr>
</tbody>
</table>

表 4：野生型和突变体酰化酶对己二酰-7-ADCA 的相对活性，将 pH=8.6 时野生型的活性设定为 1。括号中是分别在 pH=9.1 和 pH=9.5 时相对于野生型活性的活性。在室温下进行检验。在存在 2% (w/w) 己二酰-
7-ADCA 时测量起始底物浓度。在存在 1.5% (w/v) 己二酸时测量起始活性。

<table>
<thead>
<tr>
<th>酶/突变体</th>
<th>pH 下的相对活性</th>
<th>在下述 pH 下的活性之比</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.6</td>
<td>9.1</td>
</tr>
<tr>
<td>野生型 SE83 ACT-ii</td>
<td>1.00</td>
<td>0.76 (1.00)</td>
</tr>
<tr>
<td>L161S</td>
<td>2.23</td>
<td>2.24 (2.94)</td>
</tr>
<tr>
<td>L161T</td>
<td>2.08</td>
<td>2.57 (3.36)</td>
</tr>
<tr>
<td>L161T+S29N</td>
<td>2.28</td>
<td>2.82 (3.69)</td>
</tr>
<tr>
<td>L161T+H274L</td>
<td>3.58</td>
<td>5.59 (7.32)</td>
</tr>
<tr>
<td>L161T+S29N+H274L</td>
<td>4.46</td>
<td>6.63 (8.68)</td>
</tr>
<tr>
<td>L161T+I314V</td>
<td>2.93</td>
<td>3.54 (4.63)</td>
</tr>
<tr>
<td>L161T+N694T</td>
<td>2.39</td>
<td>1.91 (2.49)</td>
</tr>
<tr>
<td>L161T+V726I</td>
<td>2.55</td>
<td>4.06 (5.32)</td>
</tr>
<tr>
<td>L161T+S29N</td>
<td>2.28</td>
<td>2.82 (3.69)</td>
</tr>
<tr>
<td>L161T+Y706G</td>
<td>4.51</td>
<td>4.05 (5.30)</td>
</tr>
<tr>
<td>L161T+S29N+Y706G</td>
<td>10.20</td>
<td>9.57 (12.53)</td>
</tr>
<tr>
<td>L161T+S29N+P514Q</td>
<td>3.08</td>
<td>3.16 (4.13)</td>
</tr>
<tr>
<td>L161T+S29N+H274L +I314Q+N694T</td>
<td>8.92</td>
<td>9.39 (12.29)</td>
</tr>
<tr>
<td>L161T+S29N+R280O+I314V+A645T+V</td>
<td>5.35</td>
<td>7.26 (9.51)</td>
</tr>
<tr>
<td>酶/突变体</td>
<td>pH 下的相对活性</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>8.6</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>726I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L161T+S29F+H274L +V726I</td>
<td>4.30</td>
<td>7.23 (9.46)</td>
</tr>
<tr>
<td>L161T+H274I+R280 Q+1314V</td>
<td>6.06</td>
<td>9.05 (11.85)</td>
</tr>
<tr>
<td>L161T+H274L+R589 H</td>
<td>3.00</td>
<td>3.72 (4.87)</td>
</tr>
<tr>
<td>L161T+H274C+Y706 G</td>
<td>7.50</td>
<td>7.24 (9.47)</td>
</tr>
<tr>
<td>L161S+H274T+R280 Q+ P514Q+V726I</td>
<td>4.09</td>
<td>4.19 (5.48)</td>
</tr>
</tbody>
</table>

实施例 2 通过对 SE83 ACYii 突变体的 K_M 测量指示底物亲和性

表 5 显示了针对多种突变体测得的相对于野生型的 K_M 值。Michaelis 常数 K_M 代表当酶以其最大速度的 50% 运作时的底物浓度。在低于 K_M 的底物浓度下，酶会更慢，而在高于 K_M 的底物浓度下，酶会运作得更快，直到在高底物浓度下酶完全饱和并且以最大速度运作。在酶促转化的终点（此时底物耗尽），低 K_M 是关键的，以保持相当的活性。在突变体的相对 K_M 值<1.00 时，这表示在更低的底物浓度（例如在转化终点）时，突变体相对野生型而言在保持相对较高的活性方面具有优势。
表 5：以相对 K_M 值表示的相对底物亲和性。使用前文所述的检验来进行 K_M 测定。己二酰-7-ADCA 的浓度在 0.5 至 4%己二酰-7-ADCA 之间变化。

<table>
<thead>
<tr>
<th>酶/突变体</th>
<th>在下述 pH 的相对 K_M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH = 8.6</td>
</tr>
<tr>
<td>Wt SE83 ACYii</td>
<td>1.00</td>
</tr>
<tr>
<td>L161T</td>
<td>0.43</td>
</tr>
<tr>
<td>L161S</td>
<td>0.40</td>
</tr>
<tr>
<td>L161T+N694T</td>
<td>0.64</td>
</tr>
<tr>
<td>L161T+I314V</td>
<td>0.39</td>
</tr>
<tr>
<td>L161T+I314V</td>
<td>0.43</td>
</tr>
<tr>
<td>S29N+L161T</td>
<td>0.51</td>
</tr>
<tr>
<td>S29N+L161T+P514Q</td>
<td>0.57</td>
</tr>
<tr>
<td>L161T+V726I</td>
<td>0.24</td>
</tr>
<tr>
<td>L161T+V726I</td>
<td>0.21</td>
</tr>
<tr>
<td>L161T+H274L</td>
<td>0.18</td>
</tr>
<tr>
<td>L161T+Y706G</td>
<td>0.40</td>
</tr>
</tbody>
</table>

实施例 3 被固定的 SE83 ACYii 突变体的酰化酶活性

按照 WO97/04086 所述，使用明胶和壳多糖作为胶凝剂，戊二醛作为交联剂，来进行固定。通过在温度和 pH 受控的 100 ml 反应器中进行对己二酰-7-ADCA 的完全水解，来测量被固定的野生型酰化酶和突变体酰化酶的表现。以 3.2%己二酰-7-ADCA 进行实验。以使得能在想要的条件下在 120 分钟内获得至少 90%的转化的方式，来提供被固定的酶。在 pH=8.8 和 30°C 以及 pH=9.5 和 40°C 下进行转化。用同样的量（重量）的野生型和突变体酰化酶来进行转化。反应期间，通过加入 1 M KOH 溶液使 pH 保持恒定。被固定的酰化酶的活性被表示为每分钟的 KOH ml 数。在图 2a 和图 2b 中，显示了作为转化率函数的速率（其被表示为每分钟的 ml KOH）。
在 pH=8.8 和 30℃ 时取六次的平均。转化的最初 30%的数据不包括在内，因为系统还没有完全稳定，使得数据大为发散。在 pH=9.5 和 40℃ 时取两次的平均。因此，变动更大。但是，计算出的斜率给出了对活性的良好指示。图 2a 和图 2b 显示，整个转化期间，突变体酰化酶的活性都显著更高。

通过用同一批被固定的酰化酶，测量随后 20 次 180 分钟的转化率，来测定被固定的酰化酶的稳定性。测量每次孵育中转化的 30 至 50%之间的速率。被固定的酰化酶的残余活性在本文中被定义为相对于第一次孵育而言在第 20 次孵育时的活性。

表 6 概括了结果。观察到，特别是在能使水解反应的动力学平衡迁移到完全转化的条件下（高温和高 pH 下），经突变酰化酶的稳定性较之野生型显著提高。

作为经突变的酰化酶的这种更高的水解活性和更高的稳定性的结果，每克经突变的酰化酶的生产能力也相当大地增加。

表 6：在指出的条件下进行 20 次转化后的残余活性。

<table>
<thead>
<tr>
<th>反应条件</th>
<th>酰化酶</th>
<th>残余活性 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 8.8; 30 ℃</td>
<td>野生型</td>
<td>103%</td>
</tr>
<tr>
<td></td>
<td>L161T</td>
<td>106%</td>
</tr>
<tr>
<td>pH 9.5; 30 ℃</td>
<td>野生型</td>
<td>98%</td>
</tr>
<tr>
<td></td>
<td>L161T</td>
<td>102%</td>
</tr>
<tr>
<td>pH 8.8; 40 ℃</td>
<td>野生型</td>
<td>88%</td>
</tr>
<tr>
<td></td>
<td>L161T</td>
<td>99%</td>
</tr>
<tr>
<td>pH 9.5; 40 ℃</td>
<td>野生型</td>
<td>66%</td>
</tr>
<tr>
<td></td>
<td>L161T</td>
<td>76%</td>
</tr>
</tbody>
</table>
<110> 帝斯曼知识产权资产管理有限公司

<120> 突变体酰化酶

<130> 24988WO

<160> 3

<170> PatentIn version 3.3

<210> Pseudomonas sp. SE83

<220>

<221> CDS

<222> (562) . . . (2886)

<400> 1

```
aagctttgca tgcgggacgc cgctgccgcc ctgaagaaga cccgctacaa gggcagcagc
gtggctctcc tgacggtgcg cggttgcgcgc tgcagcacgg ccggcgccagt tctggccagc
aatacgccga aagcggcctt cactcggtgac gacgaggtga tggactggga caggtgtgcc
 gcacgccggg ccaagaagga cgggtggagc gtttcccccgg tgtacgcccc gggcatacgac
atgatgctgc cgctgacgca ttctcatatc ggcaacaacct gcgcgaacta tgcgggcttg
agctgcaagc cggctctaccc ccactagctc ggcctctatc ccaaggcggcc tgctccgcgc
acccgcaagc gcgtgcgggc cgagatccag tgggccccca taagggcagc cccctccgtga
 tgggggcca tgtcagccgg ccggccggtat ccgctctgcg cctcaagac atcgctcagt
ccagcttcgc atcttctgcg gcgcgcgtga gctctgccag attccgataaa
gcaacagcag aatg aacg atgg cgc ggc cag acc gat cgc gag
      Met Thr Met Ala Ala Lys Thr Asp Arg Glu
  1   5  10
```

```
gcc ctg cag cgc ggc ctg cgc cag ctg cgc gtc ggc tgg ctc tgg ccc
gat ggc tgc ctc tgg ctc ttc cgg gtc gat ggc tgg ctc att ccc
 Ala Leu Gln Ala Ala Leu Pro Pro Leu Ser Gly Ser Leu Ser Ile Pro
 15  20  25
```

```
gga ttg aag cgc cgg cgc gtc gtc cag cgc gat ggc tgg ggc atc ccg
 Gly Leu Ser Ala Pro Val Arg Val Gln Arg Asp Gly Trp Gly Ile Pro
 30  35  40
```

```
cat atc aag cgc tcc ggc gag gcc gat gcc tgt cgc ggc tgc ggc ttc
 His Ile Lys Ala Ser Gly Glu Ala Asp Ala Tyr Ala Leu Gly Phe
 45  50  55
```
gtc cat gcg cag gac cgc ctt ttc cag atg gaa ctg acg cgc cgc aag Val His Ala Gln Asp Arg Leu Phe Gln Met Glu Leu Thr Arg Arg Lys 60 65 70

gcg ctg gtt cgc cgc gcc gaa tgg ctg ggc gac gca gca gcc gag gcc Ala Leu Gly Arg Ala Ala Glu Trp Leu Gly Ala Glu Ala Ala Glu Ala 75 80 85 90

gat atc ttg gtt cgc ctc cgg atg gaa aaa gtc gtc cgg cgc gat Asp Ile Leu Val Arg Leu Arg Gly Met Glu Lys Val Cys Arg Arg Asp 95 100 105

ttc gag gcc ctg gtt gcc gag ggc aag gac atg ctg cgg gcc tat gtc Phe Glu Ala Leu Gly Ala Glu Ala Leu Lys Met Leu Arg Ala Tyr Val 110 115 120

gcc gcc gtt aac gcg ttc ctg gct tcc ggt gct cct ttc ccc atc gaa Ala Gly Val Asn Ala Phe Leu Ala Ser Gly Ala Pro Leu Pro Ile Glu 125 130 135

tat gcc ctc ctc gcc gaa ccg gag gcc tgg gaa ccc tgg cac agc Tyr Gly Leu Leu Gly Ala Glu Pro Glu Pro Trp Glu Pro Trp His Ser 140 145 150

atc gcc gtt atg cgg ctc gct ggg ctt gtc atg ggc tcc gtc tgg ttc Ile Ala Val Met Arg Leu Gly Leu Met Gly Ser Val Trp Phe 155 160 165 170

aag ctc tgg cgg atg ctg ggc ctg ctc cgg gtc gaa gcc gcc aat gcc Lys Leu Trp Arg Met Leu Ala Leu Pro Val Val Gly Ala Ala Asn Ala 175 180 185

cgg aag ctc cgc tat gac gat gcc gcc cca gac ctg ctc tgc atc ccg Leu Lys Leu Arg Tyr Asp Asp Gly Gly Glu Asp Leu Leu Cys Ile Pro 190 195 200

cgg ggt gtc cag gag gcc ctc gaa gag ctg ctc cgg gcc ggc cgg cgg ctc gat Pro Gly Val Glu Ala Glu Arg Leu Glu Ala Asp Leu Ala Leu Arg 205 210 215

ccc ggc gtt gat gcc ctc agg ctg aac cgc atg gcc gcc gac gcc gcc tcc gat Pro Ala Val Asp Ala Leu Lys Ala Met Gly Gly Glu Asp Ala Ser Asp 220 225 230

gcg gcc gcc gcc gcc ggc aac cgc tgg ggc ctc cgg gcc cgc gcc cgc aag Ala Ala Gly Gly Ser Asn Asn Trp Ala Val Ala Pro Gly Arg Thr 235 240 245 250

gcg acg gcc cgg ctc atc ctc ggc gat cgg cat cgc gtc ttc gaa Ala Thr Gly Arg Pro Ile Leu Ala Gly Asp Pro His Arg Val Phe Glu 255 260 265

atc ctc ggc atg tat ggc cag cat cac ctg gtc gat cgc gag ttc gac Ile Pro Gly Met Tyr Ala Gln His His Leu Ala Cys Asp Arg Phe Asp 270 275 280

atg atc ggt ctc acc gtt cgg gtt gtc cgc gcc ttc cgc cat ttc ggc 1407
<table>
<thead>
<tr>
<th>aa</th>
<th>Gly</th>
<th>Leu</th>
<th>Thr</th>
<th>Val</th>
<th>Pro</th>
<th>Gly</th>
<th>Val</th>
<th>Pro</th>
<th>Gly</th>
<th>Pro</th>
<th>Gly</th>
<th>Phe</th>
<th>Pro</th>
<th>His</th>
<th>Phe</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>aac</td>
<td>ggc</td>
<td>aag</td>
<td>gtc</td>
<td>gcc</td>
<td>tac</td>
<td>tgc</td>
<td>gtc</td>
<td>acc</td>
<td>cat</td>
<td>gcc</td>
<td>ttc</td>
<td>atg</td>
<td>gac</td>
<td>att</td>
<td>1503</td>
</tr>
<tr>
<td>His</td>
<td>Asn</td>
<td>Gly</td>
<td>Lys</td>
<td>Val</td>
<td>Ala</td>
<td>Tyr</td>
<td>Cys</td>
<td>Val</td>
<td>Thr</td>
<td>His</td>
<td>Ala</td>
<td>Phe</td>
<td>Met</td>
<td>Asp</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>cac</td>
<td>gat</td>
<td>ctc</td>
<td>tat</td>
<td>ctc</td>
<td>gag</td>
<td>caa</td>
<td>ttc</td>
<td>ggc</td>
<td>gag</td>
<td>gac</td>
<td>ggg</td>
<td>cgc</td>
<td>acg</td>
<td>ggc</td>
<td>cgg</td>
<td>1551</td>
</tr>
<tr>
<td>His</td>
<td>Asp</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
<td>Gln</td>
<td>Phe</td>
<td>Ala</td>
<td>Glu</td>
<td>Asp</td>
<td>Gly</td>
<td>Arg</td>
<td>Thr</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ttc</td>
<td>ggc</td>
<td>aac</td>
<td>gag</td>
<td>ttc</td>
<td>gag</td>
<td>ccc</td>
<td>gta</td>
<td>gcc</td>
<td>tgg</td>
<td>cgg</td>
<td>cga</td>
<td>gac</td>
<td>cgt</td>
<td>atc</td>
<td>gcg</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Gly</td>
<td>Asn</td>
<td>Glu</td>
<td>Phe</td>
<td>Glu</td>
<td>Pro</td>
<td>Val</td>
<td>Ala</td>
<td>Trp</td>
<td>Arg</td>
<td>Arg</td>
<td>Asp</td>
<td>Arg</td>
<td>Ile</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>gtc</td>
<td>cgg</td>
<td>ggt</td>
<td>ggc</td>
<td>gat</td>
<td>cgc</td>
<td>gaa</td>
<td>ttc</td>
<td>gat</td>
<td>atc</td>
<td>gtc</td>
<td>gag</td>
<td>acg</td>
<td>cgc</td>
<td>cat</td>
<td></td>
<td>1647</td>
</tr>
<tr>
<td>Val</td>
<td>Arg</td>
<td>Gly</td>
<td>Ala</td>
<td>Asp</td>
<td>Arg</td>
<td>Glu</td>
<td>Phe</td>
<td>Asp</td>
<td>Ile</td>
<td>Val</td>
<td>Glu</td>
<td>Thr</td>
<td>Arg</td>
<td>His</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ggc</td>
<td>ccc</td>
<td>gtc</td>
<td>atc</td>
<td>gcg</td>
<td>ggc</td>
<td>gat</td>
<td>ccc</td>
<td>gtc</td>
<td>gag</td>
<td>gga</td>
<td>gca</td>
<td>ggg</td>
<td>cgc</td>
<td>atg</td>
<td>ctc</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Pro</td>
<td>Val</td>
<td>Ile</td>
<td>Ala</td>
<td>Gly</td>
<td>Asp</td>
<td>Pro</td>
<td>Leu</td>
<td>Glu</td>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Thr</td>
<td>Leu</td>
<td></td>
<td>1695</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>cgc</td>
<td>tcg</td>
<td>gtc</td>
<td>cag</td>
<td>ttc</td>
<td>gcc</td>
<td>gag</td>
<td>acc</td>
<td>gac</td>
<td>ctt</td>
<td>tcc</td>
<td>ttc</td>
<td>gat</td>
<td>tgc</td>
<td>ctc</td>
<td>acg</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Gln</td>
<td>Phe</td>
<td>Ala</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
<td>Ser</td>
<td>Phe</td>
<td>Asp</td>
<td>Cys</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
<td>1743</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>cgg</td>
<td>atg</td>
<td>ccc</td>
<td>ggc</td>
<td>gca</td>
<td>tgg</td>
<td>acc</td>
<td>gtt</td>
<td>ggc</td>
<td>cag</td>
<td>ctt</td>
<td>tac</td>
<td>gac</td>
<td>gcg</td>
<td>acg</td>
<td>cgc</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Met</td>
<td>Pro</td>
<td>Gly</td>
<td>Ala</td>
<td>Ser</td>
<td>Thr</td>
<td>Val</td>
<td>Ala</td>
<td>Gln</td>
<td>Leu</td>
<td>Tyr</td>
<td>Asp</td>
<td>Ala</td>
<td>Thr</td>
<td>Arg</td>
<td>1791</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ggc</td>
<td>tgg</td>
<td>ggc</td>
<td>ctg</td>
<td>atc</td>
<td>gac</td>
<td>cat</td>
<td>aat</td>
<td>ctc</td>
<td>gtc</td>
<td>gcc</td>
<td>ggg</td>
<td>gat</td>
<td>gtc</td>
<td>ggc</td>
<td>ggc</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Trp</td>
<td>Gly</td>
<td>Leu</td>
<td>Ile</td>
<td>Asp</td>
<td>His</td>
<td>Asn</td>
<td>Leu</td>
<td>Val</td>
<td>Ala</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Ala</td>
<td>Gly</td>
<td>1839</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>tcg</td>
<td>atc</td>
<td>ggc</td>
<td>cat</td>
<td>ctc</td>
<td>gtc</td>
<td>cgc</td>
<td>gcc</td>
<td>cgc</td>
<td>tgc</td>
<td>cgg</td>
<td>tcc</td>
<td>cgc</td>
<td>ccg</td>
<td>ccg</td>
<td>ggc</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ile</td>
<td>Gly</td>
<td>His</td>
<td>Leu</td>
<td>Val</td>
<td>Arg</td>
<td>Ala</td>
<td>Arg</td>
<td>Val</td>
<td>Pro</td>
<td>Ser</td>
<td>Arg</td>
<td>Pro</td>
<td>Arg</td>
<td>Glu</td>
<td>1887</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>aac</td>
<td>ggc</td>
<td>tgg</td>
<td>ctc</td>
<td>cgg</td>
<td>ggc</td>
<td>cgg</td>
<td>ggc</td>
<td>cgg</td>
<td>tgg</td>
<td>tcc</td>
<td>ggc</td>
<td>gag</td>
<td>cat</td>
<td>gaa</td>
<td>tgg</td>
<td>cgc</td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Trp</td>
<td>Leu</td>
<td>Pro</td>
<td>Val</td>
<td>Pro</td>
<td>Gly</td>
<td>Trp</td>
<td>Ser</td>
<td>Gly</td>
<td>Glu</td>
<td>His</td>
<td>Glu</td>
<td>Trp</td>
<td>Arg</td>
<td>1935</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ggc</td>
<td>tgg</td>
<td>att</td>
<td>ccc</td>
<td>cac</td>
<td>gag</td>
<td>ggc</td>
<td>atg</td>
<td>ccc</td>
<td>gtc</td>
<td>atc</td>
<td>gat</td>
<td>cgg</td>
<td>cgc</td>
<td>gtc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Trp</td>
<td>Ile</td>
<td>Pro</td>
<td>His</td>
<td>Glu</td>
<td>Ala</td>
<td>Met</td>
<td>Pro</td>
<td>Arg</td>
<td>Val</td>
<td>Ile</td>
<td>Asp</td>
<td>Pro</td>
<td>Pro</td>
<td>Gly</td>
<td>1983</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ggc</td>
<td>ctc</td>
<td>atc</td>
<td>gtc</td>
<td>acg</td>
<td>ggc</td>
<td>aac</td>
<td>aac</td>
<td>cgc</td>
<td>gtc</td>
<td>tgg</td>
<td>ggc</td>
<td>gac</td>
<td>gat</td>
<td>cat</td>
<td>ccc</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Ile</td>
<td>Val</td>
<td>Thr</td>
<td>Ala</td>
<td>Asn</td>
<td>Asn</td>
<td>Arg</td>
<td>Val</td>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
<td>Asp</td>
<td>His</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>gat</td>
<td>tat</td>
<td>ctc</td>
<td>tgt</td>
<td>acc</td>
<td>gat</td>
<td>tgc</td>
<td>cat</td>
<td>ccc</td>
<td>tac</td>
<td>cgc</td>
<td>gcc</td>
<td>gaa</td>
<td>cgg</td>
<td>atc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Tyr</td>
<td>Leu</td>
<td>Cys</td>
<td>Thr</td>
<td>Asp</td>
<td>Cys</td>
<td>His</td>
<td>Pro</td>
<td>Tyr</td>
<td>Arg</td>
<td>Ala</td>
<td>Glu</td>
<td>Arg</td>
<td>Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>atg</td>
<td>gag</td>
<td>cgc</td>
<td>ctg</td>
<td>gtc</td>
<td>gcc</td>
<td>agt</td>
<td>ccc</td>
<td>gct</td>
<td>ttc</td>
<td>gcc</td>
<td>gtc</td>
<td>gag</td>
<td>gat</td>
<td>ggc</td>
<td>ggc</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Glu</td>
<td>Arg</td>
<td>Leu</td>
<td>Val</td>
<td>Ala</td>
<td>Ser</td>
<td>Pro</td>
<td>Ala</td>
<td>Phe</td>
<td>Ala</td>
<td>Val</td>
<td>Asp</td>
<td>Asp</td>
<td>Ala</td>
<td></td>
<td>2127</td>
</tr>
</tbody>
</table>
510 515 520

gcg atc cac gcc gat acg ctc tcc ccc cat gtc ggc ttg ctc cgg gcg
Ala Ile His Ala Asp Thr Leu Ser Pro His Val Gly Leu Leu Arg Ala
525 530 535

agg ctc gaa ggc ctc gga atc cag ggc agt ctc cct gcc gaa gag ttg
Arg Leu Glu Ala Leu Gly Ile Gln Gly Ser Leu Pro Ala Glu Glu Leu
540 545 550

agg cag acc ctc atc gcc tgg gac ggc cgc atg gat gct ggc tgc cag
Arg Gln Thr Leu Ile Ala Trp Asp Gly Arg Met Asp Ala Gly Ser Gln
555 560 565 570

2271

gcg gct tcc gct tat aat gcg ttc cgc agg gcg ctc acc cgg cgg ctc gta
Ala Ala Ser Ala Tyr Asn Ala Phe Arg Arg Ala Leu Thr Arg Leu Val
575 580 585

2319

acg gcc cgc agc ggg ctc gac cag cca gcc ata cgc cat ccc ttc ggc gcc
Thr Ala Arg Ser Gly Leu Glu Glu Ala Ile Ala His Pro Phe Ala Ala
590 595 600

2367

gtc ccc ggc gtc tcc ccc cag ggg cag gtc tgg tgg gcc gtc ccc
gct Pro Gly Val Ser Pro Glu Glu Val Val Trp Ala Val Pro
605 610 615

2415

acc ctc ctg cgc aac gac gat gcc ggg atg ctg aaa ggc tgg aac tgg
Thr Leu Leu Arg Asn Asp Ala Gly Met Leu Lys Gly Trp Ser Trp
620 625 630

2463

gac gag gcc ttc gg ggc ctc gtc gcg cag cag aac ctg acc
Asp Glu Ala Leu Ser Glu Ala Leu Ser Val Ala Thr Gln Asn Leu Thr
635 640 645 650

2511

ggg cgc ggc tgg ggc gag gcg cat cgg cgg cgt ttc acg cac cag ctc
Gly Arg Gly Trp Gly Glu Glu His Arg Pro Arg Phe Thr His Pro Leu
655 660 665

2559

tcc gcg cag ttc cgc ggc tgg gcc gcg ctg ctc aac cgg gtg cgg
cct Pro Ala Glu Gly Asp Thr Val Leu Ala Asn Pro Val Ser Arg
670 675 680

2607

ccg atc gcc ggc gag gcc gcg gac acc ggc ctg gcgc gcc ctc gcg
Pro Ile Gly Gly Asp Asp Thr Val Leu Ala Asn Gly Val Leu Val Pro
685 690 695

2655

tcg gcc gga ctc gag gcg acc tat gcc gcg ctgc gtc gtc acc ggc
Ser Ala Phe Pro Glu Ala Leu Thr Tyr Gly Ala Leu Ser Arg Tyr Val Phe
700 705 710

2703

gat gtc ggc atg tgt gag aat acg cgct gtc gtc acc ggc gcgc gcgc gcgc
Asp Val Gly Asn Trp Asp Asn Ser Arg Trp Val Val Phe His Gly Ala
715 720 725 730

2751

tcg ggc cag gcc ctc cac ttc gac cag aat gcc cca tgg
cct Ser Gly His Pro Ala Ser His Ser Tyr Ala Asp Glu Asn Ala Pro Trp
735 740 745

2799
<table>
<thead>
<tr>
<th>Gene</th>
<th>Amino Acid</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>agc gag tgc gcg atg gtg ccg atg ctc tat agc tgg gac agg atc gcc</td>
<td>Ser Asp Cys Ala Met Val Pro Met Leu Tyr Ser Trp Asp Arg Ile Ala</td>
<td>2847</td>
</tr>
<tr>
<td>gcg gag gcc gtg acc tcg cag gaa ctc gtc ccg gcc tga ggggcaaggc</td>
<td>Ala Glu Ala Val Thr Ser Gln Glu Leu Val Pro Ala</td>
<td>2896</td>
</tr>
<tr>
<td>tgcggtcagc ctgcgccagc attctttcgg cagggccggg tgcgttaagcc gcgtgttccc</td>
<td></td>
<td>2956</td>
</tr>
<tr>
<td>cgcgccgtca cggtcaggac gcgcggccttc acatagctcg agcgcgtcgga caggagccag</td>
<td></td>
<td>3016</td>
</tr>
<tr>
<td>gccgcgagat cgccgacccc gtgcggcgttg cgcgccgggc tgcgcgggaat gcgcagctca</td>
<td></td>
<td>3076</td>
</tr>
<tr>
<td>agctgctcaca gcgcgcaggg gtcgcgcagc acctggtccga tatccgctg gcgcagctgc</td>
<td></td>
<td>3136</td>
</tr>
<tr>
<td>cgcgg</td>
<td></td>
<td>3141</td>
</tr>
</tbody>
</table>

210. **Brevundimonas diminuta N-176**

220. CDS

400. 2
cccggggatc tcgcaagcgg cttgcgcgcgt cctgcgcagc aatatgcgca aggcgggctt 60
cacgggtggaa cacgaggtga tggattgggg cacgggtgctc gccccggcggg ccaagaagga 120
cggctggagc gtttccccgg ttctagccaa cggccatcagc atgatgctcg cgctgacgca 180
tttctacatc ggcaacaact gcgtgaacta tgcgggcttg gcgtgcggcag cgcgtcactac 240
cgaaaaactc ggcgcctatag ccaagggcgc cgctccgggtt acctggcaac gcacgcgcggc 300
cgaaatccag ggtgcagccct cacaagggac gcctccgggtg atgtgggggc agttcagcgc 360
gccggccggcc taccgcctgc gcctcaagaa cactgctcag tccccctctg cgcgtcactcag 420
gcagctcagc ctcgcgcgctg gactgctgcc agattcggag aagcaatggag gcgttgccgc 480
ga atg act atg gcc gcg aac acc gat cgc gcg gtc ttg cag gcg gcg Met Thr Met Ala Ala Asn Thr Asp Arg Ala Val Leu Glu Ala Ala 527 |
| ctg ccc ccc tcc ggc agc ctc ccc att ccc gga ttg agc gcg tgc Leu Pro Pro Leu Ser Gly Ser Leu Pro Pro Gly Leu Ser Ala Ser 575 |

31
gtc cgc gtc cgg cgc gat gcc tgg ggc atc cgg cat atc aag gcc tgc
Val Arg Val Arg Arg Asp Ala Trp Gly Ile Pro His Ile Lys Ala Ser
35 40

623
ggc gag gcc gat gcc tat cgg gcg ctg ggc ttc gtc cat tgc cag gac
Gly Glu Ala Asp Ala Tyr Arg Ala Leu Gly Phe Val His Ser Gln Asp
50

671
cgt ctt ttc cag atg gag ctg acg ctg cgc aag gcg ctg gga cgc gcg
Arg Leu Phe Gln Met Glu Leu Thr Arg Arg Lys Ala Leu Gly Arg Ala
65 70 75

719
gcc gaa tgg ctg ggc gcc gag gcc gcc gat atc ctc gtc gcg
Ala Glu Trp Leu Gly Ala Glu Ala Ala Asp Ile Leu Val Arg
80 85 90 95

767
cgg ctc gga atg gaa aaa gtc tgc cgg cgc gac ttc gag gcc tgg ggc
Arg Leu Gly Met Glu Val Cys Arg Arg Asp Phe Glu Ala Leu Gly
100 105 110

815
gtc gag gcg aag gag atg ctg cgg gcctatgtcgcggtgaaacgc
Val Glu Ala Lys Asp Met Leu Arg Ala Tyr Val Ala Gly Val Asn Ala
115 120 125

863
ttc ctc gct tcc cgg gcc gtc cct gta gac gcc ggc gtc gcg
tac gga ttc cgctggc
Phe Leu Ala Ser Gly Ala Pro Leu Pro Val Glu Tyr Gly Leu Leu Gly
130 135 140

911
gca gag ccc gag gcc tgg gag cct tgg cac agc gcg gcg gcg atg cgc
Ala Glu Pro Glu Pro Trp Glu Pro Trp His Ser Ile Ala Val Met Arg
145 150

959
cgg ctg gcc ctg ctt atg ggt tgg gtc ctg tgc aag atc tgg cgg atc
Arg Leu Gly Leu Leu Met Gly Ser Val Trp Phe Lys Leu Trp Arg Ile
160 165 170 175

1007
cgg cgg cgg ctg gtt gcc gtc ggc gat ctc gcc ggc gga gac
Leu Ala Leu Pro Val Val Gly Ala Ala Asn Ala Leu Lys Arg Tyr
180 185 190

1055
gac gat gcc ggc cgg gat tgg ctc tgc atc cgg ccc gcc gcg gga gac
Asp Asp Gly Gly Arg Leu Leu Cys Ile Pro Pro Gly Ala Glu Ala
195 200 205

1103
gat cgg ctc gag gcg gat tgg ctc gtc gcg acc ctg cgg ccc gcc gcg gtc gat gcg
Asp Arg Leu Glu Ala Asp Leu Thr Leu Arg Pro Ala Val Asp Ala
210 215 220

1151
cct ctt cgg ggg cgg gat gcc tgg cgg gcc gat gcc ggc ggc ggc
Leu Leu Lys Ala Met Gly Asp Ala Ser Asp Ala Ala Gly Gly Gly
225 230 235

1199
agc aac cgg ggc gtc gct cgc ggc gcg gcg gcg gcg gcg gcg gcg gcg
Ser Asn Asn Trp Ala Val Ala Pro Gly Thr Ala Thr Gly Arg Pro
240 245 250 255

1247
atc ctc gcg gcc gat ccg cat cgc gtc ttc gaa atc ccg gcc atg tat
1295
Ile Leu Ala Gly Asp Pro His Arg Val Phe Glu Ile Pro Gly Met Tyr
260 265 270

gcg cag cat cat ctg gcc tgc gac cgg ttc gac atg atc ggc ctg acc
Ala Gln His His Leu Ala Cys Asp Arg Phe Asp Met Ile Gly Leu Thr
275 280 285

gtg ccg ggc gtg ccg ggc ttc ccg cac ttc gcc cat aac ggc aag gtc
Val Pro Gly Val Pro Gly Phe Pro His Phe Ala His Asn Gly Lys Val
290 295 300

gcc tat tgc gtc acc cat gcc ttc atg gac atc cac gat ctc tat ctc
Ala Tyr Cys Val Thr His Ala Phe Met Asp Ile His Asp Leu Tyr Leu
305 310 315

gag cag ttc ggc ggg gag ggc cgc act gcg cgg ttc ggc aac gat ttc
Glu Gln Phe Ala Gly Glu Gly Arg Thr Ala Arg Phe Gly Asn Asp Phe
320 325 330 335

gag ccc gtc gcc tgg agc cgg gac cgt atc gcg gtc cgg ggt ggc gcc
Glu Pro Val Ala Trp Ser Arg Asp Arg Ile Ala Val Arg Gly Gly Ala
340 345 350

gat cgc gag ttc gat atc gtc gag acg cgc cat ggc ccg gtt atc ggc
Asp Arg Glu Phe Asp Ile Val Glu Thr Arg His Gly Pro Val Ile Ala
355 360 365

gcc gat ccg cgc gat ggc gca ggc ctc a cg cgt tgc gtc cag ttc
Gly Asp Pro Arg Gly Ala Ala Leu Thr Leu Arg Ser Val Gln Phe
370 375 380

gcc gag acc gat ctc ttc tgc tgg tgc tgc tgc tgc tgc tgc tgc tgc tgc
Ala Glu Thr Asp Leu Ser Phe Asp Cys Leu Thr Arg Met Pro Gly Ala
385 390 395

tcg acc gtg gcc cag ctc tac gac gcg acg cgc ggc tgg gcc ctg atc
Ser Thr Val Ala Gln Leu Tyr Asp Ala Thr Arg Gly Trp Gly Leu Ile
400 405 410 415

gac cat aac ctc gtc gcc ggg gat gtc ggg ggc tgg atc ggc cat ctc
Asp His Asn Leu Val Ala Gly Asp Val Ala Gly Ser Ile Gly His Leu
420 425 430

gtc cgc gcc cgc gtt ccg tcc cgt ccg cgc gaa aac ggc tgg ctg ccg
Val Arg Ala Arg Val Pro Ser Arg Pro Arg Glu Asn Gly Trp Leu Pro
435 440 445

gtt ccg ggc tgg tcc gcc gag cat gaa tgg ggc tgg att ccc ctc
Val Pro Gly Trp Ser Gly Glu His Glu Trp Arg Gly Ile Pro His
450 455 460

gag gcc atg ccc cgc gtc gat ccc ccc cgg gcc ggc atc atc gtc aag
Glu Ala Met Pro Arg Val Ile Asp Pro Pro Gly Gly Ile Ile Val Thr
465 470 475

gcc aat aat cgc gtc gtc gcc gat gac cat ccc gat tat ctc tgc acc
Ala Asn Asn Arg Val Val Ala Asp Asp His Pro Asp Tyr Leu Cys Thr
491 496 497 498 499 500
gac aat agc cgc tgg gtc gtc ttc cac gcc gcc tcc ggg cat ccc gcc
Asp Asn Ser Arg Trp Val Val Phe His Gly Ala Ser Gly His Pro Ala
720 725 725 730 735

agc gcc cat tat gcc gat cag aat gcc ccc tgg agc gac tgt gcc atg
Ser Ala His Tyr Ala Asp Gln Ala Ala Pro Trp Ser Asp Cys Ala Met
740 745 750

gtg ccg atg ctc tat agc tgg gac agg atc ggc gca gag gcc gtc aag
Val Pro Met Leu Tyr Ser Trp Asp Arg Ile Ala Ala Glu Ala Val Thr
755 760 765

tcg cag gaa ctc gtc ccc gcctgagggc cgggctggtt gtcagcctgc
Ser Gln Glu Leu Val Pro
770

cgcagcctc ttgcgcc

2687

2735

2783

2831

2847

〈210〉 3
〈211〉 2325
〈212〉 DNA
〈213〉 Brevundimonas diminuta V22

〈220〉
〈221〉 CDS
〈222〉 (1) .. (2322)

〈400〉 3
atg act atg gct gcc aac acc gat cgc gcc gtc ttg cag gcc ggc ctg
Met Thr Met Ala Ala Asn Thr Asp Arg Ala Val Leu Gln Ala Ala Leu
1 5 10 15

ccg ccc ctt tcc gcc gcc ctc ccc acc gaa ttg aag ggc tgc gtc
Pro Pro Leu Ser Gly Ser Leu Pro Ile Pro Gly Leu Ser Ala Ser Val
20 25 30

cct atc cag cgc gat gcc tgg gcc atc ccc gcc cat atc aag gcc tcc gcc
Pro Ile Gln Arg Asp Ala Trp Gly Ile Pro His Ile Lys Ala Ser Gly
35 40 45

144

gag gcc gat gcc tat cgc gcc ctg gcc ttc gtc cat gcc cag gcc cgc
Glu Ala Asp Ala Tyr Arg Ala Leu Gly Phe Val His Ala Gln Asp Arg
50 55 60

192

c tt ccc gac cag atg gat gct gcc aag ctg cgg cgc cgg ggc cgg ggc
cgc gc gac gat gct gcc ctg ggc ttc gcc gac gcc ggc ggc ggc
ggc ctg ggc ttc gcc gac gcc ggc ggc ggc ggc ggc
Leu Phe Gln Met Glu Val Thr Arg Arg Lys Ala Leu Gly Arg Ala Ala
65 70 75 80

240

gaa tgg ctc ctc ggc gat gcc ggc ggc ctc ggc ctc gtc ccc ggg
cgc ggc ctc gcc ggc ggc ggc ggc ggc ggc
cgc ggc ggc ggc ggc ggc ggc ggc ggc
glc ggc ggc ggc ggc ggc ggc ggc ggc
Glu Trp Leu Gly Ala Glu Ala Ala Glu Ala Asp Ile Leu Val Arg Arg
85 90 95

288

cgc ggc ggc ggc ggc
Leu Gly Met Glu Lys Val Cys Arg Arg Asp Phe Glu Ala Leu Gly Ala
336

35
gag gcg aag gac atg ctc cgg gcc tac gtc gcc ggc gtcg aac gca ttc
Glu Ala Lys Asp Met Leu Arg Ala Tyr Val Ala Gly Val Asn Ala Phe
115 120 125

c tg gct tcc ggt gtt ccc ctc gtc gaa tac gga tgg ctc gga gca
Leu Ala Ser Gly Pro Leu Pro Val Gly Tyr Gly Leu Leu Gly Ala
130 135 140

gag cgg gag ccc tgg gag cct tgg cac agc atc gcg gtcg atg cgc cgg
Glu Pro Glu Pro Trp Pro Trp His Ser Ile Ala Val Met Arg Arg
145 150 155 160

c tg ggc cct cag gtt ggc gtc tgg ttc aag ctc tgg cgg atg ctc
Leu Gly Leu Leu Met Gly Ser Val Trp Phe Lys Leu Trp Arg Met Leu
165 170 175

gcg ctc cgg gtc gga gcc ggc gct aat ggc ctc cag ctc cgc tat gac
Ala Leu Pro Val Val Gly Ala Ala Asn Ala Leu Lys Leu Arg Tyr Asp
180 185 190

gat ggc ggc cgc gat ttg ctc tgc atc ctc cgg cgc ggc gaa gcg gat
Asp Gly Gly Arg Asp Leu Leu Cys Ile Pro Pro Arg Ala Glu Ala Asp
195 200 205

c gg ctc gag ggc gat ctc cgc acc ctc ggg cgc ggc gtc gat ggc ctc
Arg Leu Glu Ala Asp Leu Ala Thr Leu Arg Pro Ala Val Asp Ala Leu
210 215 220

c tg aag ggc atg ggc ggg gat gcc tca gat ggc ggc ggt ggc ggc agc
Leu Lys Ala Met Gly Gly Asp Ala Ser Asp Ala Ala Gly Gly Gly Ser
225 230 235 240

aac aac tgg ggc gtc ggc cgc ggc gct acg ggc gtc ggc ggc ccc ctc
Asn Asn Trp Ala Val Val Pro Glu Arg Thr Leu Thr Tyr Arg Pro Ile
245 250 255

c tc ggc gat cgc cat cgc gtc ttc cag atc ccc ggc gtcg atg tat gcc
Leu Ala Gly Asp Pro His Arg Val Phe Glu Pro Gly Met Tyr Ala
260 265 270

cag cat cat ctc ggc tgg cat cgc ttc gat atc ggc cgg ctc cgg acc gtc
Gln His His Leu Ala Cys Asp Arg Phe Asp Met Ile Gly Leu Thr Val
275 280 285

c gg ggc gtg cgg ggt ttt ccg cat ttc ggc ctc aac ggc aag gtc ggc
Pro Gly Val Pro Gly Pro His Phe Ala His Asn Gly Lys Val Ala
290 295 300

tac tgc gtc acc cat ggc ttc atg gac att cac gat ctc tac ctt gag
Tyr Cys Val Thr His Ala Phe Met Asp Ile His Asp Leu Tyr Leu Glu
305 310 315 320

cag ttc ggc gag ggc cgc agg gcg cgg tgc ggc aac gat ttc gag
Gln Phe Ala Glu Glu Gly Arg Arg Ala Arg Phe Gly Asn Asp Phe Glu
325 330 335

36
ccc gcc gcc tgg agc cgg gac cgt atc gcg gtc cgg ggt ggt gcc gcc Pro Ala Ala Trp Ser Arg Asp Arg Ile Ala Val Arg Gly Gly Ala Asp 340 345 350

cgc gaa ttc gat atc atc gag acg cgc cat gtt ccc gtc ata gca ggc Arg Glu Phe Asp Ile Ile Glu Thr Arg His Gly Pro Val Ile Ala Gly 355 360 365

gat ccg cgc gat ggc gca gcg ctc acg ctc cgc tgg gtc cag ttc ggc Asp Pro Arg Asp Gly Ala Ala Leu Thr Leu Arg Ser Val Gln Phe Ala 370 375 380

1104

gag acc gat ctg tcc ttc gat tgc ctg acg cgg atg ccg ggc gca tcg Glu Thr Leu Ser Phe Asp Cys Leu Thr Arg Met Pro Gly Ala Ser 385 390 395 400

1200

acc gtg gcg cag ctc tac gac gcg acg cgc ggc tgg ggc ctg atc gac Thr Val Ala Glu Leu Tyr Asp Ala Thr Arg Met Pro Gly Leu Ile Asp 405 410 415

1248

cat aat ctc gtc gcc ggg gat gtc cgg cgc tgg gtc atc gcc cat ctg gtc His Asn Leu Val Ala Gly Asp Val Gly Gly Ser Ile Gly His Leu Val 420 425 430

1296

cgc cgc cgt gtc ccc cgc tgc gcg gac cgg gaa aac gcc tgg ctg ccc gtg Arg Ala Arg Val Pro Ser Arg Ser Arg Glu Asn Gly Trp Leu Pro Val 435 440 445

1344

ccg gcc tgg tcc gcg gag cat gaa tgg cgg ggt tgg att ccg cac gag Pro Gly Trp Ser Gly Glu His Glu Trp Arg Gly Trp Ile Pro His Glu 450 455 460

1392

gcg atg ccg cgc gtg atc gat ccc cgc ggc ggc atc atc gtc acg ggc Ala Met Pro Arg Val Ile Asp Pro Pro Gly Ile Ile Val Thr Ala 465 470 475 480

1440

aat aat cgc gtc gtg gcc gat gac cat ccc gat tat ctc tgc acc gat Asn Asn Arg Val Val Ile Asp Asp His Pro Asp Tyr Leu Cys Thr Asp 485 490 495

1488

tgc cat cgc ccc tac cgc gcc gag ccc atc atg aag cgc gtc gtc gcc Cys His Pro Pro Tyr Ala Glu Pro Ile Met Lys Arg Leu Val Ala 500 505 510

1536

aat ccc gct ttc gcc gtc gag cat gcc ggc gac atc cat gcc gat acg Asn Pro Ala Phe Ala Val Asp Asp Ala Ala Ile His Ala Asp Thr 515 520 525

1584

tcg tcc ccc cat gtc ggg tgg tct cgc cgg agg ctc gag gcg ctt gga Leu Ser His Val Gly Leu Leu Arg Arg Arg Leu Glu Ala Leu Gly 530 535 540

1632

gcc cgc gac gcc tcc cgc ggc gaa ggg ctg agg cag atg ctc gtc ggc Ala Arg Asp Asp Ser Ala Ala Gly Leu Arg Glu Gln Met Leu Val Ala 545 550 555 560

1680
tgg gac ggc cgc atg gat gcg gct tgc gag tgc gcg tct gcc tac aat
Trp Asp Gly Arg Met Asp Ala Ala Ser Glu Val Ala Ser Ala Tyr Asn
565 570

gcg TTC cgc agg ggc ctc acg cgg ctc gct acg gac cgc aac ggg gct
Ala Phe Arg Arg Ala Leu Thr Arg Leu Val Thr Asp Arg Ser Gly Leu
580 585 590

gag cag ggc ata tgc cat ccc ttc gcg gct gtc ggc cgg ggc gtc tca
Glu Gln Ala Ile Ser His Pro Phe Ala Ala Val Ala Pro Gly Val Ser
595 600 605

ccg cca ggc cag gtc tgg tgg gcc gtc ggc acc ctg ctg cgc gac gac
Pro Gln Gly Gln Val Trp Ala Val Pro Thr Leu Leu Arg Asp Asp
610 615 620

gat gcc gga atg ctg aag ggc tgg aac gac cag gcc tgg tct gac
Asp Ala Gly Met Leu Lys Gly Trp Ser Trp Asp Gln Ala Leu Ser Glu
625 630 635 640

gcc ctc tgc gtc gcc tgc cag aac ctg acg cgg cga aac tgg ggc gaa
Ala Leu Ser Val Ala Ser Gln Leu Ser Arg Arg Ser Trp Gly Glu
645 650 655

gag cat cgg cgc ctc acg cat ccc ttc gcc aac cgg cca ttc cgc gcc
Glu His Arg Pro Arg Phe Thr His Pro Leu Ala Thr Gln Phe Pro Ala
660 665 670

tgg gcc ggg ctg ctg aat ccg gct tcc cg tgg atc gcc ggc gat ggc
Trp Ala Gly Leu Leu Asn Pro Ala Ser Arg Pro Ile Gly Gly Asp Gly
675 680 685

gac acc gtt ctg ggc aac ggg ctc gtc ccc tca gcc ggg ccc cag ggc
Asp Thr Val Leu Ala Asn Gly Leu Val Pro Ser Ala Gly Pro Gln Ala
690 695 700

acc tat gcc gcc tgc tgc cgc tac gtc ttt gat gtc gcc aat tgg gac
Thr Tyr Gly Ala Leu Ser Arg Tyr Val Phe Asp Val Gly Asn Trp Asp
705 710 715 720

aat agc cgc tgg gtc ttc cac ggc gcc tcc gcc ggg cat cgc gcc aac
Asn Ser Arg Gtp Val Trp Val Phe His Gly Ala Ser Gly His Pro Ala Ser
725 730 735

gcc cat tat gcc gat cag aag cgc ctc tgg aac gcc gac tgg gtc atg gtc
Ala His Tyr Ala Asp Gln Ala Ala Pro Trp Ser Asp Cys Ala Met Val
740 745 750

ccg atg ctc tat aag ggc agg atc gcc gca gac ggc gtc agc tgc
Pro Met Leu Tyr Ser Trp Asp Arg Ile Ala Ala Glu Ala Val Thr Ser
755 760 765

cag gaa ctc gtc ccc ggc tga
Gln Glu Leu Val Pro Ala
770