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Method and  apparatus  for
efficiently performing nearest neighbor
queries on a database of records wherein
each record has a large number of
attributes by automatically extracting a
multidimensional index from the data.
The method is based on first obtaining
a statistical model of the content of
the data in the form of a probability
density function. This density is then
used to decide how data should be
reorganized on disk for efficient nearest
neighbor queries. At query time, the
model decides the order in which data
should be scanned. It also provides the
means for evaluating the probability of
correctness of the answer found so far
in the partial scan of data determined by
the model. In this invention a clustering
process is performed on the database
to produce multiple data clusters. Each
cluster is characterized by a cluster
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model. The set of clusters represent a probability density function in the form of a mixture model. A new database of records is built
having an augmented record format that contains the original record attributes and an additional record attribute containing a cluster
number for each record based on the clustering step. The cluster model uses a probability density function for each cluster so that the
process of augmenting the attributes of each record is accomplished by evaluating each record’s probability with respect to each cluster,
Once the augmented records are used to build a database the augmented attribute is used as an index into the database so that nearest
neighbor query analysis can be very efficiently conducted using an indexed look up process. As the database is queried, the probability
density function is used to determine the order clusters or database pages are scanned. The probability density function is also used to
determine when scanning can stop because the nearest neighbor has been found with high probability.
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A Density-Based Indexing Mcthod for Efficient Execution of High-Dimensional

Necarest-Neighbor Queries on Large Databases

. Field of the Invention

The prescnt invention concerns a database management system (DBMS) for
storing data and retrieving the data based on a data access language such as SQL.
Onc major use of database technology is to help individuals and organizations make
decisions and generate reports based on the data contained within the database. This
vention is also applicable to the retrieval of data from non-traditional data sets, such

as images, videos, audio, and mixed multimedia data in general.

Background Art

An important class of problems in the areas of database decision support and
analysis are similarity join problems, also known as nearest-neighbor queries. The
basic problem is: given a record (possibly from the database), find the set of records
that are “most similar” to it. The term record here is used in general to represent a set
of valucs, however the data can be in any form including image files, or multimedia
files, or binary fields in a traditional database management system. Applications are
many and include; marketing, catalog navigation (e.g. look-up products in a catalog
similar to another product), advertising (especially on-linc), fraud detection, customer
support, problem diagnosis (e.g. for product support), and management of knowledge
bascs. Other applications are in data cleaning applications, especially with the growth
of the data warchousing market.

It has been asserted in the database literature that the only way to answer
nearest neighbor queries for large databases with high dimensionality (many fields) is
to scan the databasc, applying the distance measurc between the query object and
every record in the data. The primary reason for this asscrtion is that traditional
database indexing schemes all fail when the data records have more than 10 or 20
ficlds (i.e. when the dmensionality of the data is high). Consider databases having
hundreds of ficlds. This invention provides a method that will work with both low
dimensional and high dimensional data. While scanning the database is acceptable for
small databases, it is too ineflicient to be practical or uscful for very large databascs.

The alternative is to develop an index, and hope to index only a small part of the data

SUBSTITUTE SHEET (RULE 26)
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(only a few columns but not all). Without variation, most (probably all) schemes
published in the literature fail to generalize to high-dimensionality (methods break
down at about 20 dimensions for the most advanced of these approaches, at 5 or 6 for
traditional ones).

This problem is of importance to many applications (listed above) and
generally is a useful tool for exploring a large database or answering “query-by-
example” type queries (e.g., the graphic image closest to a given image). Hence it can
be used as a means for extending the database and providing it with a more flexible
interface that does not require exact queries (as today’s SQL requires). It can also be
used to index image data or other multi-media data such as video, audio, and so forth.

Most practical algorithms work by scanning a database and searching for the
matches to a query. This approach is no longer practical when the database grows
very large, or when the server is real-time and cannot afford a long wait (e.g. a web
server). The solution is to create a multi-dimensional index. The index determines
which entries in the database are most likely to be the “nearest” entries to the query.
The job then is to search only the set of candidate matches after an index scan is
conducted. Note that the query can be just a record from the database and the answer
is determining other records similar to it. Another example is an image query where
the answer is images “similar” to this query by some user defined distance metric.

As an example, consider a database that contains the ages, incomes, years of
experience, number of children, etc. on a set of people. If it was known ahead of time
that queries will be issued primarily on age, then age can be used as a clustered-index
(i.e. sort the data by age and store it in the database in that order). When a query
requesting the entry whose age value is nearest some value, say 36 years, then one
only need visit the relevant parts of the database. However, indexing rapidly becomes
difficult to perform if one adds more dimensions to be indexed simultaneously. In
fact, as the number of indexes grows, the size of the index structure dominates the
size of the database.

This problem has been addressed in prior work on index structures (including
TV-trees, SS-Tree, SR-Trees, X-Trees, KD-trees, KD-epsilon-Trees, R-trees, R+-
trees, R*-trees, VA-File) and methods for traversal of these structures for nearest
neighbor queries.  Any indexing method has to answer three questions: 1. how is the
index constructed? 2. how is the index used to select data to scan? and 3. how is the

index used to confirm that the correct nearest neighbor has been found?
2
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Prior art approaches had serious trouble scaling up to higher dimensions.
Almost always a linear scan of the database becomes preferable between 20 and 30
dimensions. For traditional indexing scheme this happens at 5 dimensions or even
lower.  Statistical analysis of k-d tree and R-tree type indexes confirms this
difficulty; see Berchtol S., Bshm C., Keim, D, Kriegel, H.-P.: “Optimized Processing
of Nearest Neighbor Queries in High-Dimensional Space”, submitted for publication,
1998 and Berchtold S., Bshm C., Keim D. and Kriegel H.P.: “A Cost Model for
Nearest Neighbor Search in High Dimensional Space”, ACM PODS Symposium on
Principles of Database Systems, Tucson, Arizona, 1997.  Indexes work by
partitioning data into data pages that are usually represented as hyperectangles or
spheres. Every data page that intersects the query ball (area that must be searched to
find and confirm the nearest neighbor point) must be scanned. In high-dimensions for
hyperrectangles and spheres, the query ball tends to intersect all the data pages. This
is known as the “curse of dimensionality”. In fact, in a recent paper, by Beyer K.,
Goldstein J., Ramakrishnan R., Shaft U, “When is Nearest Neighbor Meaningful?”
submitted for Publication, 1998, the question is raised of whether it makes sense at all
to think about nearest n'eighbor in high-dimensional spaces.

Most analyses in the past have assumed that the data is distributed uniformly.
The theory in this case does support the view that the problem has no good solution.
However, most real-world databases exhibit some structure and regularity. In fact, a
field whose values are uniformly distributed is usually rare, and typically non-
informative. Hence it is unlikely that one would ask for nearest neighbor along values
of a uniformly distributed field. In this invention the statistical structure in the

database is exploited in order to optimize data access.

Summary of the Invention

The present invention exploits structure in data to help in evaluating nearest
neighbor queries. Data records stored on a storage medium have multiple data
attributes that are described or summarized by a probability function. A nearest
neighbor query is performed by assigning an index for each of the records based upon
the probability function and then efficiently performing the nearest neighbor query.

In a typical use of the invention, the data is stored with the help of a database
management system and the probability function is determined by performing a

clustering of the data in the database. The results of the clustering are then used to
3
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create a clustered-index structure for answering nearest neighbor queries on the data
stored in the database. The clustering identifies groups in the data consisting of
elements that are generally “more similar” to each other than elements in other
groups. The clustering builds a statistical model of the data. This model is used to
determine how the data should be partitioned into pages and also determines the order
in which the data clusters or pages should be scanned. The model also determines
when scanning can stop because the nearest neighbor has been found with very high-
probability.

Preliminary results on data consisting of mixtures of Gaussian distributions
shows that if one know;‘s what the model is, then one can indeed scale to large
dimensions and use the clusters effectively as an index. Tests have been conducted
with dimensions of 500 and higher. This assumes that the data meets certain
“stability” conditions that insure that the clusters are not overlapping in space. These
conditions are important because they enable a database design utility to decide
whether the indexing method of this invention is likely to be useful for a given
database. It is also useful at run-time by providing the query optimizer component of
the database system with information it needs to decide the tradeoff between
executing an index scan or simply doing a fast sequential scan.

An exemplary embodiment of the invention evaluates data records contained
within a database wherein each record has multiple data attributes. A new database of
records is then built having an augmented record format that contains the original
record attributes and an additional record attribute containing a cluster number for
each record based on the clustering model. Each of the records that are assigned to a
given cluster can then be easily accessed by building an index on the augmented data
record. The process of clustering and then building an index on the record of the
augmented data set allows for efficient nearest neighbor searching of the database.

This and other objects, advantages and features of the invention will become
better understood from the detailed description of an exemplary embodiment of the

present invention which is described in conjunction with the accompanying drawings.

Brief Description of the Drawings

Figure 1is a schematic depiction of a computer system for use in practicing

the present invention;
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Figure 2A is a schematic depiction of a data mining system constructed in
accordance with an exemplary embodiment of the present invention;

Figure 2B is a flow chart documenting the processing steps of an exemplary
embodiment of the invention;

Figures 3A and 3B schematically illustrate data clusters;

Figures 4A - 4D depict data structures used during representative clustering
processes suitable for use in practicing the present invention;

Figure 5 is a depiction in one dimension of three Gaussians corresponding to
the three data clusters depicted in Figures 3A and 3B;

Figures 6A and 6B depict subdivisions of a cluster into segments in
accordance with an alternative embodiment of the invention;

Figures 7 and 8 are tables illustrating nearest neighbor query results achieved
through practice of an exemplary embodiment of the invention;

Figure 9A is a two dimensional illustration of why high dimensional data
records make nearest neighbor inquiries difficult; and

Figure 9B is a depiction of three data clusters showing one stable cluster and

two unstable clusters.

Detailed Description of Exemplary Embodiment of the Invention

The present invgﬁntion has particular utility for use in answering queries based
on probabilistic analysis of data contained in a database 10 (Figure 2A). Practice of
the invention identifies data partitions most likely to contain relevant data and
eliminates regions unlikely to contain relevant data points. The database 10 will
typically have many records stored on multiple, possibly distributed storage devices.
Each record in the database 10 has many attributes or fields. A representative
database might include age, income, number of years of employment, vested pension
benefits etc. A data mining engine implemented in software running on a computer
20 (Figure 1) accesses data stored on the database and answers queries.

An indexing process depicted in Figure 2B includes the step of producing 12 a
cluster model. Most preferably this model provides a best-fit mixture-of-Gaussians
used in creating a probability density function for the data. Once the clu.ster model
has been created, an optimal Bayes decision step 13 is used to assign each data point
from the database 10 into a cluster. Finally the data is sorted by their cluster

assignment and used to index 14 the database or optionally created an augmented
5
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database 10" (Figure 2A) having an additional attribute for storing the cluster number
to which the data point is assigned. As an optional step in the indexing process one
can ask whether it makes sense to index based upon cluster number. If the data in the
database produces unstable clusters as that term is defined below, then a nearest
neighbor query using p;robability information may make little sense and the indexing
on cluster number will not be conducted.

One use of the clustering model derived from the database 10 to answer
nearest neighbor queries concerning the data records in the database. F igure 2B
depicts a query analysis component QC of the invention. Although both the
clustering component C and the query component QC are depicted in Figure 2B, it is
appreciated that the clustering can be performed independently of the query. The
query analysis component QC finds with high probability a nearest neighbor (NN) of
a query point Q presented as an input to the query analysis component. The nearest
neighbor of Q is then found in one of two ways. A decision step 15 determines
whether a complete scan of the database is more efficient than a probabalistic search
for the nearest neighbor (NN). If the complete scan is more efficient, the scan is
performed 16 and the nearest neighbor identified. If not, a region is chosen 17 based
on the query point and that region is scanned 18 to determine the nearest neighbor
within the region. Once the nearest neighbor (NN) in the first identified region is
found, a test is conducted 19 to determine if the nearest neighbor has been determined
with a prescribed tolerance or degree of certainty. If the prescribed tolerance is not
achieved a branch is take to identify additional regions to check for a nearest neighbor
or neighbors. Eventually the nearest neighbor or neighbors are found with acceptable
certainty and the results are output from the query analysis component QC.

To illustrate the process of finding a nearest neighbor outlined in Figure 2B
consider the data depicted in Fiugres 3A and 3B. Figure 3A is a two dimensional
depiction showing a small sampling of data points extracted from the database 10.
Such a depiction could be derived from a database having records of the format

shown in Table 1:

Table 1
Years Vested Other
EmployeelD Age Salary Employed Pension Attributes
XXX-XX-XXXX 46 39K 15 100K
YYY-YY-YYYY 40 59K 4 0K
QQQ-QQ-QQQQ 57 88K 23 550K
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The two dimensions that are plotted in Figure 3A are years of employment and
salary in thousands of dollars. One can visually determine that the data in Figure 3A
is lumped or clustered together into three clusters Cluster1, Cluster2, and Cluster3.
Figure 3B illustrates the same data points depicted in Figure 3A and also illustrates an
added data point or data record designated Q. A standard question one might ask of
the data mining system 11 would be what is the nearest neighbor (NN) to Q in the
database 10?7 To answer this question in an efficient manner that does not require a
complete scan of the entire database 10, the invention utilizes knowledge obtained

from a clustering of the data in the database.

Database Clustering

One process for performing the clustering step 12 of the data stored in the
database 10 suitable for use by the clustering component uses a K-means clustering
technique that is described in co-pending United States patent application entitled “A
scalable method for K-means clustering of large Databases” that was filed in the
United States Patent and Trademark Office on March 17, 1998 under application
serial no. 09/042,540 and which is assigned to the assignee of the present application
and is also incorporated herein by reference.

A second clustering process suitable for use by the clustering component 12
uses a so-called Expectation-Maximization (EM) analysis procedure. E-M clustering
is described in an article entitled “Maximum likelihood from incomplete data via the
EM algorithm”, Journal‘ of the Royal Statistical Society B, vol 39, pp. 1-38 (1977).
The EM process estimates the parameters of a model iteratively, starting from an
initial estimate. Each iteration consists of an Expectation step, which finds a
distribution for unobserved data (the cluster labels), given the known values for the
observed data. Co-pending patent application entitled “A Scalable System for
Expectation Maximization Clustering of Large Databases” filed May 22, 1998 under
application serial number 09/083,906 describes an E-M clustering procedure. This
application is assigned to the assignee of the present invention and the disclosure of
this patent application is incorporated herein by reference.

In an expectation maximization (EM) clustering analysis, rather than harshly
assigning each data point in Figure 3A to a cluster and then calculating the mean or

average of that cluster, each data point has a probability or weighting factor that
7



10

15

20

25

30

WO 00/28441

PCT/US99/26366

describes its degree of membership in each of the K clusters that characterize the data.
For the EM analysis used in conjunction with an exemplary embodiment of the
present invention, one associates a Gaussian distribution of data about the centroid of
each of the K clusters in Figure 3A. EM is preferred over K-Means since EM
produces a more valid statistical model of the data. However, Clustering can be done
using any other clustering method, and then the cluster centers can be parametrized by
fitting a gaussian on each center and estimating a covariance matrix from the data.
EM gives us a fully parameterized model, and hence is the presently the preferred
procedure. _

Consider the one dimensional depiction shown in Figure 5. The three
Gaussians G1, G2, G3 represent three clusters that have centroids or means X1, X2,
X3 in the salary attribu;e of 42K, 58K, and 78K dollars per year. The compactness of
the data within a cluster is generally indicated by the shape of the Gaussian and the
average value of the clﬁster is given by the mean. Now consider the data point
identified on the salary axis as the point “X” of a data record having a salary of
$45,000. The data point ‘belongs’ to all three clusters identified by the Gaussians.
This data point ‘belongs’ to the Gaussian G2 with a weighting factor proportional to
h2 (probability density value) that is given by the vertical distance from the horizontal
axis to the curve G2. This same data point X ‘belongs’ to the cluster characterized by
the Gaussian G1 with a weighting factor proportional to h1 given by the vertical
distance from the horizontal axis to the Gaussian G1. The point ‘X’ belongs to the
third cluster characteri;ed by the Gaussian G3 with a negligible weighting factor.

One can say that the data point X belongs fractionally to the two clusters G1, G2. The
weighting factor of its membership to G1 is given by h1/(h1+h2+Hrest); similarly it
belongs to G2 with weight h2/(h1+h2+Hrest). Hrest is the sum of the heights of the
curves for all other clusters (Gaussians). Since the height in other clusters is negligible
one can think of a “fraction” of the case belonging to cluster 1 (represented by G1)
while the rest belongs to cluster 2 (represented by G2). For example, if h1 = 0.13 and
h2 = 0.03, then 0.13/(0.1340.03) = 0.8 of the case belongs to cluster 1, while 0.2 of it
belongs to cluster 2.

The invention disclosed in the above referenced two co-pending patent
applications to Fayyad et al brings data from the database 10 into a computer memory

22 (Figure 1) and the clustering component 12 creates an output model 14 from that
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data. The clustering model 14 provided by the clustering component 12 will typically
fit in the memory of a personal computer.

Figures 4A — 4b illustrate data structures used by the K-means and EM
clustering procedures disclosed in the aforementioned patent applications to Fayyad et
al. The data structures of Figures 4A — 4C are used by the clustering component 12 to
build the clustering model 14 stored in a data structure of Figure 4D. Briefly, the
component 12 gathers data from the database 10 and brings it into a memory region
that stores vectors of the data in the structure 170 of Figure 4C. As the data is
evaluated it is either summarized in the data structure 160 of Figure 4A or used to
generate sub-clusters that are stored in the data structure 165 of Figure 4B. Once a
stopping criteria that is used to judge the sufficiency of the clustering has been
achieved, the resultant model is stored in a data structure such as the model data

structure of Figure 4D.

Probability Function
Each of K clusters in the model (Figure 4D) is represented or summarized as a

multivariate gaussian h:aving a probability density function:

- Equation 1:

- 1 (1 200-p) 7 (x-p1))
p(x) = PN b e
where x = (X;,X,X3,X4,...,X,) is a n-component column matrix corresponding to a data
point in the selected n dimensional space of the database, u is the n-component
column matrix corresponding to a data structure 154 having the means (averages) of
the data belonging to the cluster in each of the n dimensions (designated SUM in
Figure 4D) and sigma (£) is an n-by-n covariance matrix that relates how the values
of attributes in one dimension are related to the values of attributes in other
dimensions for the poin'ts belonging to the cluster. The transpose of a matrix & is
represented by 7, and the inverse of a matrix £ is represented by =™, The
determinant of a matrix % is represented by |2|. The covariance matrix is always -
symmetric. The depiction of Figure 6 represents this Gaussian for the two clusters
G1, G2 in one dimension.

The number of values required to represent each cluster is the sum of the

following quantities: the number N (one number) indicating the data records
9
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summarized in a given cluster. (In K-means clustering this is an integer in E-M
clustering a floating point number) The dimension n equals the number of attributes
in the data records and is equal to the width of a SUM data structure (Figure 4D) of
the model 14. There are n*(n+1)/2 values for the covariance matrix £ which give a
total of 1+n+[n*(n+1)]/2 values in all. If the covariance matrix is diagonal (Figure 4D
for example), then there are n numbers in the covariance matrix 156 and the number
of values needed to characterize the cluster is reduced to 1 +2n. It is also possible to
represent a full covariance matrix (not necessarily diagonal) if space allows.

Returning to the example of Figures 3A and 3B, one would in principle need
to scan all data points to find the nearest neighbor point (NN) closest to query point
Q. Instead of scanning the entire database, use of the clustering model, however,
allows the nearest neighbor query process to scan only cluster #2. This avoids
scanning 66% of data in the database assuming each cluster has 33% of data in it. In
a situation wherein the cluster number K is larger the process is even more efficient.

Scanning of a cluster for the nearest neighbor implies a knowledge of cluster
assignment for all points in the database 10. The properties summarized in Figures 7
and 8 allow a probability density based indexing method. The data is modeled as a
mixture of Gaussians. A clustering algorithm such as scalable K-means or EM is
used to cluster the data. The clustering allows a probability density function for the
database to be calculated.

The model for each cluster is a Gaussian. Recall that each cluster ! has

associated with it a probability function of the form:-

Equation 2:
p(x|l)= Wexp{— -;j(x - p.’)T (2)1)_l (x - pl)}

where u' is the mean of the cluster, and T’ designates the covariance matrix. It is

assumed the data is generated by a weighed mixture of these Gaussians. A distance

measure is assumed to be of the following form:

Equation 3:

10
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Dist(x, y) = W

where x and y are data vectors. The invention supports a fairly wide family of distance
measures. The assumption is made that the distance is of quadratiac normal form, i.e.
it can be written as: Diét(x,q) =(x-q)'D(x - q) with D being a positive semi-definite
matrix, i.e. for any vector x, x'Dx »0. For Euclidean distance, D is diagonal with all

entries being 1.

11
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Use of a Euclidean weighted distance measure does not change the results

other than a pre-scaling of the input space:

Equation 4:

Dist(x, y) = \/—m '

The use of a weighting factor allows certain dimensions of the n attributes to be

favored or emphasized in the nearest neighbor determination. When the distance

from a data point to a cluster with center ', the Euclidean distance is used:

Equation 5:

Dist(x, ) = 3", 4)’

The cluster membership function is given by:

Equation 6:

L = argmax p(x| Dp()

Equation 6 assigns a data point x to the cluster with highest probability. This step 16
is known in the literature as an optimal Bayes decision Rule. (Figure 2) The data
points are partitioned into regions corresponding to predicted cluster membership.

The clustering s:tep is followed by a step of creating a new column in the
database that represents the predicted cluster membership. In accordance with the
exemplary embodiment of the present invention, the database 10 is rebuilt using the
newly added column, and the cluster number for the basis of a CLUSTERED INDEX
as that term is used in the database field. Table 4 (below) illustrates the records of
table 1 with an augmented field or attribute of the assigned cluster number.

12
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Table 4
Years Vested Cluster
EmployeelD Age Salary Employed Pension Number
XXX-XX-XXXX 46 39K 15 100K #1...
YYY-YY-YYYY 40 59K 4 0K #2
QQQ-QQ-QQQQ 57 88K 23 550K #3

A new database 10” (Figure 2) is created that includes a clustered index based
upon the augmented attribute of cluster number that is assigned to each data point in
the database.

At query time, the invention scans the region or cluster most likely to contain
the nearest-neighbor . The scanning is repeated until the estimated probability that
the nearest-neighbor is correct exceeds some user defined threshold. Typically only a
very small number of clusters or regions will need to be visited. The approach is
applicable to K-nearest neighbor queries as well since relatively little additional
overhead is needed to find the closest K data points within the cluster to which the
data point Q is assigned. This invention also supports a file-based implementation and
does not require a database system. In this case, instead of writing a new column, the
data from each cluster is written into a separate file. The subsequent discussion refers
to the extra column attribute, but simply replacing the step “scan cluster X with
“read data from file X” is an equivalent implementation of this invention.

When a query is to be processed, it is assumed the input query of the point Q
is a data record. The probability density model that is based upon the cluster model
14 of Figure 4D is used to determine cluster membership for the data point Q. The
process then scans the cluster most likely to contain the nearest neighbor (NN) based
on a probability estimate. If the probability that the nearest neighbor estimate has
been found is above a certain threshold, the process returns the nearest neighbor based
upon the scan of the cluster, if not, a next most likely cluster is scanned. The
distance to the nearest neighbor found so far in the scan is tracked. This distance
defines a region around the query point Q which is designated the Q-ball in Figure
3B. The choice of distance metric determines the shape of the ball. The next cluster
with which we have the highest probability of encountering a nearest neighbor is next
scanned. This probability is computed using a linear combination of non-central chi
squares distribution which approximates the probability of a point belonging to the

cluster falling within the Q-ball (say cluster 1 in Figure 3B). If the probability is
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smaller than some threshold ¢, for example, the scan is terminated since this indicates

the likelihood of finding nearer points is vanishinglysmall.

Exemplary Process and Its Probablistic Anzilysis

This section describes in greater detail the process introduced above for
answering nearest-neighbor queries in sufficient detail to permit analysis. The
process includes two main components. The first component takes a data set D as
input and constructs an index that supports nearest-neighbor queries. The second
component takes a query point q and produces the nearest neighbor of that point with

high probability.

The index is constructed in three steps.

1. Produce a best-fit mixture-of-Gaussians probability density function
(pdf) for the data;

2 Use the optimal Bayes decision rule to assign each data point to a cluster;
and

3. Sort the data points by their cluster assignment.
There are many ways to find a mixture-of-Gaussians pdf that fits data (e.g., Thiesson
etal, 1998, ). The exemplary process uses a scalable EM clustering scheme (See
Fayyad et al pending patent application) that was developed to classify large
databases for a variety of applications other than nearest-neighbor queries.
The outcome of this algorithm is a mixture-of-Gaussians pdf of the form:

Equation 7:

f(x) = Zl)iG(x | Hi,Z))

where p; are the mixture coefficients, 0 < pi<1, Z p=1, and G(xJu;z;) is a
multivariate Gaussian pdf with a mean vector u; and a positive definite covariance
matrix %;. The optimal decision rule for a mixture of Gaussians pdfis presented in
Duda and Hart, Pattern Classification and Scene Analysis, John Wiley and Sons, New
York, 1973. It dictates that a data point x is assigned to Cluster C; if i = | maximizes
the quantity:

Equation 8:
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8 =~1/20x=p)" X7 (x~ 11,)~1/2log | ¥, | +log p,

Note that this decision rule maximizes the probability that x is generated by
the ith Gaussian distribution in Equation 1(cluster C;) and in that sense it is an optimal
decision. This decision rule defines a set of K regions R;,... Ry in high-dimensional
Euclidean space where R; contains the set of points assigned to the cluster Ci. Define
R(x) to be the region-identification function; that is, each data point x belongs to
region R(x) where R(x) is one of the K regions Ry,... Ry Finally, an index I(x) is
defined such that I(x) = i if R(x) = R;, namely, I has K possible values which indicate
to which cluster the optimal Bayes rule assigns x. The sorting of the database by I(x)
can be implemented by adding a new attribute to the database and by building
clustered indexes based on the cluster number. |

The second component of the invention is activated at query time. It finds
with high probability a nearest neighbor of a query point q, denoted by n(q). For its
description, use the notation B(q,r) to denote a sphere centered on q and having radius
r. Also denote by E the set of regions scanned so far, and by e the knowledge learned

by scanning the regions in E. A nearest neighbor of q is then found as follows:

NearestNeighbor (q; Ry, ... R, f)
1. Let Cj be the cluster assigned to q using the optimal decision rule
(Equation2); ‘
2. Scan data in Rjand determine the nearest neighbor n(q) in Rj and its
distance r from q;
3. SetE = {Rj};
4. While P(B(q,r) is Empty | e) > tolerance {
a. find 4 cluster Cj not in E which minimizes P(B(q,r)n Rj is Empty |
e); '
b. scanthe datain Rj; Set E=E U {Rj};
c. if a data point closer to q is found in R}, let n(q) be that point, and
set r to be the new minimum distance.

The quantity P(B(q,r) is Empty | ) is the probability that B(q,r), which is
called the query ball, is empty, given the evidence e collected so far. The evidence
consists simply of the list of points included in the regions scanned so far. Before we
show how to compute this quantity and how to compute Pr(B(q,r)n Ri isEmpty | e);,
the process is explained using the simple example depicted in Figure 3A and 3B. In

this example, the optimal Bayes rule generated three regions R1, R2, and R3 whose
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boundaries are shown. A given query point Q is found to reside in region R1. The
algorithm scans R1, a current nearest neighbor (NN) is found, a current minimum
distance r is determined, and a query ball B(q,r) is formed. The query ball is shown in
figure 3B. If the process was deterministic it would be forced to scan the other
regions, R2 and R3 since they intersect the query ball. Instead the process determines
the probability that the ball is empty given the fact that the region R1 has been
scanned. Suppose this probability exceeds the tolerance. The algorithm must now
choose between scanning R2 and scanning R3. A choice should be made according to
the region that maximizes the probability of finding a nearer neighbor once that
region is scanned, namely, the algorithm should scan the region that minimizes
P(B(q,r)nRi is Empty | e). This quantity is hard to compute and so the algorithm

approximate this quantity using equation 9 below.

It is shown how to compute the approximation and analyze the difference
between the computed quantity and the desired one. In this example, region R2 is
selcted to be scanned. The process then halts because P(B(q,r) is Empty | ) becomes
negligible once R1 and R2 have been scanned. The basis for computing P(B(q,r) is
Empty | e) is the fact that data points are assumed to be randomly generated using the
mixture-of-Gaussians pdf f (equation 1). In other words, take f to be the true model
that generated the database. The sehsitivity of the process to this assumption must be
tested using real data sets. The probablity the ball is empty is the product of the
probabilities that each point does not fall in the ball, because, according to the

assumption, the x;’s are iid samples from f{x).
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Consequently, one has :

Equation 9:

PB(q, rYisEmpty | ¢) =] [[1- P(x, € Blg, )| x, € R(x.)]

i=1

Where R(xi) is the region of x; and n is the number of data points. If R(x;) has been
scanned then P(x;eB(q,f)lxieR(xi)) = 0. In general, P(x; € B(q,r) | x; € R(xi)) is not

computable. Fortunately, it is acceptable to use the approximation:

Equation 10:

P(xi € B(q,r) | xi € R(xi)) approx = P(x; € B(q,r) | x; generated by C))
Where C; is the cluster assigned to x; using the optimal Bayes decision rule.

Using the same reasoning as above and the fact that P(xi € B(q,r)nR; | x; €
R(xi)) = P(x; € B(q,r) | x; € R;)), then one has:

Equation 11;
P(B(g.NNRjis Empty | €) = [ 1- P(x € B(qr) | x; € R)®

Which is approximately = [ 1- P(x; e B(q,n) | xi génerated by C)I"™, where n(R;) is
the number of points falling in region R;.

The remaining task of computing P(x e B(q,r) | x generated by C; has been
dealt with in the statistical literature in a more general setting. This probability can be
calculated numerically using a variety of approaches. In particular, numerical

approaches have been devised to calculate probabilities of the form:
Equation 12:

P[(x-q) D(x-q) <= r’]

X is a data point assumed to be generated by a multivariate Gaussian
distribution G(x|p1,6). D is a positive semi-definite matrix. In case Euclidean distance
is used to measure distances between data points, D is simply the identity matrix.
However, the numerical methods apply to any distance function of the form d(x,q) =

(x-q)"D(x-q) where D is a positive semi-definite matrix.

17



10

15

20

WO 00/28441 PCT/US99/26366

The pdf of the random variable (x-q)'D(x-q) is a chi squared distribution when
D =1Iand q=p. Itis a noncentralized chi squared distribution when D =1 and qis
not equal to u.. It is a sum of non-centralized chi-squared pdfs in the general case of a
positive semi-definite quadratic form e.g. x'Dx >0 for any x. The general method
uses a linear transformation to reduce the problem to calculating the cumulative
distribution of a linear combination of chi-squares. The invention uses a method of
Sheil and O’Murcheataigh. (See Quadratic Forms in Random Variables. Marcel
Dekker, Inc., New York, 1992) The computation is illustrated assuming that the
dimensions are uncorrelated (i.e. ) is diagonal) and that the Euclidean distance metric
is used (D is the identity matrix), but the needed probability is computable for the
general case. In the general case:

Equation 13:

(=) D(x=g)=3 (¥, -4,

Where q; is the jth component of q and x; is transformed to a standard normal random
variable z; of the form:
Equation 14:
2
X, —u)+(u, —q,

O'j.

Where &= (- qy)/ ojand ; is the jth component of 1. Now (z-5;)* has a
noncentral chi-square distribution with 1 degree of freedom and noncentrality

2
parameter & .
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The final result is:

Equation 15:

Pl(x-¢q)" D(x -~ q)<rt]= P[iafzz(l,dﬁ) <r?]

This cumulative distribution function (cdf) can be expanded into an infinite series.
The terms of the series are calculated until an acceptable bound on the truncation error

is achieved.

Cluster Stability

Traditional (prior art) indexing methods for performing nearest neighbor
searches conclude that scanning of the entire da;abase must be used when the number
of dimensions of the davta increase. In Berchtold et al “A cost model for nearest
neighbor search in high-dimensional data space”, ACM PODS Symposium on
Principles of Database Systems, Tucson Arizona, 1997, an approximate nearest
neighbor model on ass@med uniform distribution of data found that in high
dimensions a full scan of the database would be needed to find the nearest neighbor of
a query point. A key assumption of the Berchtold et al work is that if a nearest-
neighbor query ball intersects a data page the data page must be visited in the nearest
neighbor search.

Consider the example illustrated in F igure 9A. This figure assumes a set of
data points resides densély in an d-dimensional sphere of radius r and that to perform
a nearest neighbor search a minimum bounding rectangle is constructed around this
sphere. The two dimensional case is shown on the left of Figure 9A. Note the ratio of
the volume of the inscribed sphere to the volume of the minimum bounding box used
to perform the nearest neighbor search converges rapidly to 0 as d goes to infinity.
Define the ‘corners’ of the bounding box as the regions outside the sphere but still in
the box. When d (dimensionality) is large, most of the volume is in the corner of the
boxes and yet there is no data in these corners. Figure 9A at the right suggests the
growth of the corners. In fact both the number and size of the corners grow
exponentially with dimensionality.

Any fixed geometry will never fit real data tightly. In high dimensions, such

discrepancies between volume and density of data points start to dominate. In
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conclusion, indices based on bounding objects are not good enough, because they
frequently scan data pages where no relevant data resides.

By introducing the concept of cluster stability the dimensionality problem is
addressed and used to determine when scanning of the database is necessary. If the
data in the entire database is generated from a single Gaussian, then scanning of the
database is necessary. In a mixture of Gaussians, each data point or query is
generated by a single Gaussian. The points that are being clustered can be thought of
as being generated by the Gaussian that generated them. It is assumed that the data
point and the query points are generated by the same distribution. If the distance
between data points in the same cluster approaches the mean cluster separation
distance as the dimensipnality increases the clusters is said to be unstable since every
point is the same distance apart. Similarly, the distance between any two points from
two distinct cluster approaches the mean between cluster distance.

| If for two clusters, the between cluster distance dominates the within cluster
distance, the clusters are stable with respect to each other. In Figure 9B the points in
cluster 1 are stable and in clusters 2 and 3 there are unstable.

Assume qq and x 4; are generated by cluster i and x 4 j is generated by cluster j.

X, — 2 X, — 2
I ai— 9l — 1 and [ ai —4qa |l .
E(x,, —q,11) E(lfx,, —q,1°)

Then the clusters i and j are pairwise stable with parameter & and for any e>0.

—d>1

lim 4o PU %y =4 P2 (5 - €) |l x,, — g, IP) =1

If every cluster is stable with respect to at least one other cluster then its
nearest neighbor search. will be well defined.  With probability 1, the ratio of the
farthest and nearest neighbors is bigger than some constant greater than 1. For
example in Figure 9A, Cluster 1 is stable with respect to both Clusters 2 and 3 so a
nearest neighbor is well defined.

Assume a query point qq and a data point xy; are generated by a cluster i and a
data point xg; is generated by cluster j. If cluster I is unstable with itself and there

exists a cluster j that is pairwise stable with i with parameter §>1, then for any ¢ > 0:

lim ., PIDMAX, 2 (§ — e)DMIN,] =1
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If every cluster is stable with respect to every other cluster then if a point
belongs to one cluster, its neareste neighbor also belongs to that cluster. Therefore if
the data is partitioned by cluster membership then with probability one the index will
only need to visit one cluster to find the nearest neighbor. With probability one (i.e.
certainty) other clusters can be skipped and no false drops of points in the query
occur.

Assume qq and x q; are generated by cluster i. If cluster I is unstable with
itself and pairwise &ij > & >1 stable with every other cluster j, j not equal to I, then qd
nearest neighbor was also generated by cluster i. Specifically for any point x4; from
cluster j not in i:

Pllxa; ~ qdll* >(5-€)lIxai — qa [ =1.

These results show that if one has a stable mixture of Gaussians where the between
cluster distance dominates the within cluster distance, and if a cluster partition
membership function is used to assign all data generated by the same Gaussian to the
same partition, the index can be used for nearest neighbor queries generated by the
same distribution. The higher the dimensionality, the better the nearest neighbor

query works.

Number of Clusters

From the perspective of indexing, the more clusters one has, the less data one
must scan. However, determining which cluster to scan next requires a lookup into
the model. If there are too many clusters, this lookup becomes too expensive.
Consider an extreme case where each point in the database is its own cluster. In this
case no data will need to be scanned as the model identifies the result directly.
However, the lookup into the model is now as expensive as scanning the entire
database.

Generally, the number of clusters is chosen to be between 5 and 100. The cost
of computing probabilities from the model in this case if fairly negligible. Note that
with 5 clusters, assuming well-separated clusters, one can expect an 80% savings in
scan cost. So not many clusters are needed. The tradeoff between model lookup time

and data scan cost can be optimized on a per application basis.
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Types of Queries Supported

The query data record in nearest-neighbor applications can be either from the
same distribution the data came from or from a different distribution. In either case,
the invention works well since the probabilities discussed above work for any fixed
query points. If the query is from the data used to generate the probabilities, the
invention will find the nearest neighbor in a scan of one cluster. This is true if the
query comes from the same distribution that the cluster model is drawn from and the
distribution is stable.

Assume one has a cluster model with a set of clusters C, and Let ICi|, I=
1,....K, denote the size of C; for C; € C. The |C| is the summation of |Ci| over all the
Ci. If one defines S; to be the proportion of data that are member of Cj, e §;=
ICil/IC|, then we expect that on an average query, only iSf will be scanned. The

i=]
reason for this is that with probability Si, the query will come from Ci, and scanning
Ci is equivalent to scanning a portion Si of the data.

Generally one expects that most queries in high dimension will come from the
same distribution as the data itself. Also, dimensions are not independent and some
combinations of values'may not be realistic. In a database of demographics, for
example, one does not expect to see a find similar query on an entry for a record
whose value for age is 3 and whose income is $50K. An advantage of practice of the
invention is in a situation where data is not stable and a bad query is requested, the
invention realizes the neareste neighbor may reside in many clusters and the process

switches to a sequential scan of all the data in the database.

Testing of the Exemplary embodiment

The tables of Figures 7 and 8 summarize results of a test of nearest-neighbor
searches using an exemplary embodiment of the invention. The goal of these
computations experiments was to confirm the validity of practice of the invention.
Experiments were conducted with both synthetic and real world databases. The
purpose of the synthetic databases was to study the behavior of the invention in well
understood situations. The real data sets were examined to assure the assumptions
were not too restrictive and apply in natural situations.

The synthetic data sets were drawn from a mixture of ten Gaussians. One on

set of tests stable clusters were generated and then unstable clusters from a known
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generating model were used. Additionally, clusters from unknown generation models
were used wherein the density model had to be estimated. What it means for the
clusters to be stable and unstable are discussed in this application. Briefly, each
Gaussian has a covarianace matrix o*I where I is the identity matrix. The
dimensionality of the data is given by d and the distance between means or centroids
of the clusters is 1. It 14> o(d)", then the clusters are stable.

In one experiment, the size of the database was fixed and was chosen to be
500,000/d for d, the dimension was less than 100. For d greater than or equal to 100
the database size was 1,000,000/d. The process of finding the closest two neighbors
to a given data point is performed for 250 query points randomly selected from the
database. In every case the two nearest neighbors were found by examining only one
cluster. In addition the process correctly determined that no additional clusters
needed to be searched. Since each cluster contained ten percent of the data, each
query required a scan of ten percent of the data. This test confirmed that when the
clusters are stable and the model is known the process of finding nearest neighbors
works very well.

To test how the process works when the clusters are unstable. The amount of
overlap of the Gaussians that model the clusters grows exponentially as the number of
dimensions increases. To evaluate how well the invention works in such a situation,
the databases that were generated were first completely scanned to find the nearest
neighbor and then the invention used to find the nearest neighbor. Scanning of the
clusters stops once the process finds the known nearest neighbor . Figure 7 tabulates
the data. The figure also tabulates an idealized value based not upon how much of the
database must be scanned but the prdbability based predictor that enough data has
been scanned to assure with a tolerance that the correct nearest neighbor data point
has been found.

Since the data gathered in Figure 7 was from an unstable situation, one would
expect the process to require a scan of much of the database. The chart below
provides the percentage of time an error occurred in finding the nearest neighbor, i.e.

the estimated nearest neighbor distance exceeded the actual nearest neighbor distance.

Dimension 10 20 30 40 50 60 70
Accuracy 988 964 936 932 948 964 924
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As seen in Figure 7, the percentage of the data scanned increased gradually
with dimensionality. The ideal process predicted by theory scanned less data. This
difference between the ideal process and the present invention indicates the invention
probability estimate is conservative. In the experiments summarized in Figure 8, the
data were generated from ten Gaussians with means or centroids independently and
identically distributed in each dimension from a uniform distribution. Each diagonal
element of the covariance matrix £ was generated from a uniform distribution . The
data is therefore well separated and should be somewhat stable. Clusters that were
used were generated using the EM process of Fayyad et al without using knowledge
of the data generating distribution except that the number of clusters was known and
used in the clustering. The results of the test on 10 to 100 dimensions are given in
Figure 8. The distributjon is stable in practice and the two nearest neighbors were
located in the first clusters and scanning was stopped.

The testing summarized by these Figures show how much savings is achieved
by scanning the clusters in order of their likelihood of containing a nearest neighbor
and then stopping when the nearest neighbor is found with high confidence. Note,
even if more that one cluster is scanned to find the nearest neighbor, there is still a
substantial savings over performing a scan of the entire database. The data in these
tables confirms a significant benefit is achieved by clustering data in a large database

if query by example or nearest-neighbor queries are to be performed.

Alternative Embodiment
Further efficiency can be obtained through careful organization of the data

within each cluster or region. In an alternative embodiment of the invention, instead
of scanning an entire cluster to find the nearest neighbor, the process scans part of a
cluster and then determines the next part of a cluster to scan (either another part of
same cluster, or part of some other cluster). The diagram of Figure 6A shows data
points in 2 dimensions. In the alternative embodiment of figure 6A, one only needs to
visit “slices” of a cluster.

Slicing of the clusters is performed by defining mutual hyperplanes and
equiprobability regions. The cluster slicing process is performed by slicing each
cluster into a set of iso-probability regions S (shells or donuts), and then using inter-

cluster hyperplanes H to cut them further into subregions. Figure 6A shows an
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example of slicing one cluster into 6 inter-cluster plane regions, and into an additional
5 iso-probability slices, giving 30 parts of the cluster.

Data can also be ordered within a particular cluster. The present invention is
based upon the premise that it is possible to exploit the structure in data when data is
clustered. Within a cluster one can ask how the data should be scanned. This issue is
one of practical database management since data will have to be laid out on disk
pages. It should be possible to use a stopping criteria within a cluster and avoid
scanning all pages.

Consider a query point that happens to be near the center of a cluster. Clearly
the data near the center should be scanned, while data within the cluster but further
from the center may not have to be scanned. This suggests a disk organization that is
similar to the one illust{ated in Figure 6B. The rational behind such a layout is that
regions R get bigger as they get farther from the center of the cluster. Furthermore,
the central region CR should not be partitioned finely since theory suggests that data
points close to the center are indistinquishable from each other by distance: i.e. they

are all essentially equidistant from a query.

Exemplary Data Processing System

With reference to Figure 1 an exemplary data processing system for practicing
the disclosed data mining engine invention includes a general purpose computing
device in the form of a :(:onventional computer 20, including one or more processing
units 21, a system memory 22, and a system bus 23 that couples various system
components including the system memory to the processing unit 21. The system bus
23 may be any of several types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a variety of bus architectures.

The system memory includes read only memory (ROM) 24 and random access
memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic
routines that helps to transfer information between elements within the computer 20,
such as during start-up, is stored in ROM 24.

The computer 20 further includes a hard disk drive 27 for reading from and
writing to a hard disk, not shown, a rﬁagnetic disk drive 28 for reading from or writing
to a removable magnetic disk 29, and an optical disk drive 30 for reading from or
writing to a removable optical disk 31 such és a CD ROM or other optical media. The

hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to
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the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface
33, and an optical drive interface 34, respectively. The drives and their associated
computer-readable media provide nonvolatile storage of computer readable
instructions, data structures, program modules and other data for the computer 20.
Although the exemplary environment described herein employs a hard disk, a
removable magnetic disk 29 and a removable optical disk 31, it should be appreciated
by those skilled in the art that other types of computer readable media which can store
data that is accessible by a computer, such as magnetic cassettes, flash memory cards,
digital video disks, Bernoulli cartridges, random access memories (RAMs), read only
memories (ROM), and the like, may also be used vin the exemplary operating
environment.

A number of program modules may be stored on the hard disk, magnetic disk
29, optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or
more application programs 36, other program modules 37, and program data 38. A
user may enter commands and information into the computer 20 through input devices
such as a keyboard 40 and pointing device 42. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing unit 21 through a serial
port interface 46 that is coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port or a universal serial bus (USB). A
monitor 47 or other type of display device is also connected to the system bus 23 via
an interface, such as a video adapter 48. In addition to the monitor, personal
computers typically include other peripheral output devices (not shown), such as
speakers and printers.

The computer 20 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 49. The
remote computer 49 may be another personal computer, a server, a router, a network
PC, a peer device or other common network node, and typically includes many or all
of the elements described above relative to the computer 20, although only a memory
storage device 50 has been illustrated in Figure 1. The logical connections depicted in
Figure 1 include a local area network (LAN) 51 and a wide area network (WAN) 52.
Such networking envirénm_ents are commonplace in offices, enterprise-wide computer

networks, intranets and the Internet.

26



10

WO 00/28441 PCT/US99/26366

When used in a LAN networking environment, the computer 20 is connected
to the local network 51 through a network interface or adapter 53. When used in a
WAN networking environment, the computer 20 typically includes a modem 54 or
other means for establishing communications over the wide area network 52, such as
the Internet. The modem 54, which may be internal or external, is connected to the
system bus 23 via the serial port interface 46. In a networked environment, program
modules depicted relative to the computer 20, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that the network connections
shown are exemplary and other means of establishing a communications link between
the computers may be used.

While the present invention has been described with a degree of particularity,
it is the intent that the invention include all modifications and alterations from the

disclosed implementations falling within the spirit or scope of the appended claims.
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We Claim:

1. A method for evaluating data records contained within a database wherein each
record has multiple data attributes; the method comprising the steps of:

a) clustering the data records contained in the database into multiple data
clusters wherein each of the multiple data clusters is characterized by a cluster model;
and

b) building a new database of records having an augmented record format that
contains the original record attributes and an additional record attribute containing a

cluster identifier for each record based on the clustering step.

2. The method of claim 1 wherein the cluster model includes a) anumber of data
records associated with that cluster, b) centroids for each attribute of the cluster

model and ¢) a spread for each attribute of the cluster model.

3. The method of claim 1 additionally comprising the step of indexing the records in

the database on the additional record attribute.

4. The method of claim 1 additionally comprising the step of finding a nearest
neighbor of a query data record by evaluating database records indexed by means of

the cluster identifiers found during the clustering step.

5. The method of claim 4 wherein the step of finding the nearest neighbor is
performed by evaluating a probability estimate based upon a cluster model for the

clusters that is created during the clustering step.

6. The method of claim 5 wherein the step of finding the nearest neighbor is
performed by scanning the database records indexed by cluster identifiers having a

greatest probability of containing a nearest neighbor.

7. The method of claim 6 wherein the step of scanning database records is performed
for data records indexed on multiple cluster identifiers so long as a probability of

finding a nearest neighbor within a cluster exceeds a threshold.
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8. The method of claim 1 wherein the clustering process is performed using a
scalable clustering process wherein a portion of the database is brought into a rapid
access memory prior to clustering and then a portion of the data brought into the rapid
access memory is summarized to allow other data records to be brought into memory

for further clustering analysis.
9. The method of claim 1 wherein the number of data attributes is greater than 10,

10. The method of claim 4 wherein the step of finding the nearest neighbor is based
upon quadratic distance metric between the query data record and the database

records indexed by the cluster identifier.

1. A method for evaluating data records stored on a storage medium wherein each
record has multiple data attributes that have been characterized by a probability
function; said method comprising the steps of assigning an index for each of the

records on the storage medium based upon the probability function.

12. The method of claim 11 wherein the probability function is found by clustering

the data in the database and wherein the index for the data records is a cluster number.

13. The method of claim 11 wherein records having the same index are written to a

single file on the storage medium.

14. The method of claim 11 wherein the records are stored by a database
management system and the index is used to form a record attribute of records stored

within a database maintained on the storage medium.

15. The method of claim 12 wherein the clustering model for the database defines a
probability function that is a mixture of Gaussians and wherein the step of building
the index comprises the step of assigning each record in the database to a cluster

based upon said probability function.
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16. The method of claim 15 wherein the assigning step comprises a Bayes decision
step for assigning each data record to a data cluster associated with one of said

Gaussians,

17. The method of claim 12 further comprising a step of finding a nearest neighbor

from the data records for a query record by scanning data records within a cluster.

18. The method of claim 17 wherein further comprising the step of subdividing data
records within each cluster into cluster subcomponents and additionally comprising
the step of finding a nearest neighbor of a query data record by scanning records from

a cluster subcomponent.

19. The method of claim 17 wherein the step of determining a nearest neighbor
comprises the step of determining a distance between the query data record and data

records accessed in the database by means of the database index.

20. The method of claim 17 comprising the step of choosing between a scan of a
subset of the database and a complete scan of the database based on the probability

estimate generated by a statistical model of the data.

21. The method of claim 17 wherein the step of determining the nearest neighbor
scans multiple data records in the database from more than one cluster based upon a

likelihood probability function of the cluster model used to index the data records,

22. The method of claim 17 wherein a multiple number of data records are stored as a

set of nearest neighbors.
23. The method of claim 17 wherein the nearest neighbor determination is based on a

distance determination between a query record and a data record that comprises a

quadratic normal form of distance.
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24. The method of claim 12 wherein the storage medium stores a database of data
records and further comprises a step of finding a nearest neighbor to a query record
from the data records of the database, said step of finding the nearest neighbor
comprising the step of choosing between a sequential scan of the database to find the
nearest neighbor or seafching for the nearest neighbor using the index derived from

the probability function thereby optimizing the step of finding the nearest neighbor.

25. A process for use in answering queries comprising the steps of :

a) clustering data stored in a database using a clustering technique to provide
an estimate of the probability density function of the sample data;

b) adding an additional column attribute to the database that represents the
predicted cluster membership for each data record within the database; and

c) rebuilding a data table of the database using the newly added column as an

index to records in the table.

26. The process of claim 25 wherein an index for the data in the database is created

on the additional column.

27. The process of claim 25 comprising the additional step of performing a nearest

neighbor query to identify a nearest neighbor data point to a query data point.

28. The process of claim 26 wherein the nearest neighbor query is performed by

finding a nearest cluster to the query data point.

29. The process of claim 28 additionally comprising the step of scanning data in a
cluster identified as most likely to contain nearest neighbor based on a probability

estimate for said cluster.

30. The process of claim 29 wherein if the probability that the nearest neighbor
estimate is correct is above a certain threshold, the scanning is stopped, but if it is not

y

then scanning additional clusters to find the nearest neighbor.
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31. In a computer data mining system, apparatus for evaluating data in a database
comprising:

a) one or more data storage devices for storing data records on a storage
medium; the data records including data attributes; and

b) a computer having a rapid access memory and an interface to the storage
devices for reading data from the storage medium and bringing the data records from
the storage medium into the rapid access memory for subsequent evaluation;

¢) the computer comprising a processing unit for evaluating at least some of
the data records and for determining a probability density function for the records and
programmed to build an index for the data records in the database wherein the index

is based on the probability density function.

32. The apparatus of claim 31 wherein said computer stores the data records having a

common index (same cluster) in a file of records not part of a database table.

33. The apparatus of claim 31 wherein the computer includes a database management
component for setting up a database and using the index to organize data records in

the database.

34. The apparatus of claim 33 wherein the computer derives the probability function
on a clustering of data from data in the database and further wherein the computer
builds an additional database of records for storage on the one or more data storage
devices and wherein the data records of the additional database are augmented with a

cluster attribute.

35. A computer-readable medium having computer-executable components
comprising;
a) a database component for interfacing with a database that stores data

records made up of multiple data attributes;
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b) a modeling component for constfucting and storing a clustering model that
characterizes multiple data clusters; and
¢) an indexing component for indexing the database on a cluster number for

each record in the database.

36. The computer readable medium of claim 35 wherein said modeling component
constructs a model of data clustering that corresponds to a mixture of probability
functions and the indexing is performed based on a probability assessment of each

record to the mixture of probability functions.

37. The computer readable medium of claim 36 wherein said indexing component
generates an augmented data record having a cluster number attribute for storage by

the database component.

38. The computer readable medium of claim 35 wherein said modeling component is
adapted to compare a new model to a previously constructed model to evaluate
whether further of said data records should be moved from said database into said

rapid access memory for modeling,

39. The computer readable medium of claim 35 wherein said modeling component is
adapted to update said cluster model by calculating a weighted contribution by each

of said data records in said rapid access memory.,

40. A method for evaluating data records stored on a storage medium wherein each
record has multiple data attributes that have been clustered to define a probability
function of the data records stored on the storage medium; said method comprising
the steps of evaluating the clusters of a clustering model and if the cluster separation

between cluster centroids is of a sufficient size, assigning an index for each of the
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6 records on the storage medium based upon the probability function that is derived

7 from the clustering model.
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