发明名称
石墨消解仪及其控制方法

摘要
本发明涉及一种石墨消解仪，属于实验设备技术领域。所述石墨消解仪包括石墨块和控制电路，所述控制电路包括：加热管、变频电路、主控器和通信单元。所述通信单元用于接收上位机的用户方法库信息并将用户方法库信息传输给主控器；所述主控器根据通信单元所传输来的上位机的用户方法库信息及湿度传感器所探测的石墨块的温度来给变频电路提供控制信号；变频电路用于控制加热管。本发明提供的石墨消解仪能够通过上位机进行远程控制。可应用于食品、医药、农业、林业、环保、化工和生化等领域以对土壤、植株、种子、矿石等化学分析关的样品消解处理。
1. 一种石墨消解仪，其特征在于，所述石墨消解仪包括石墨块和控制电路，所述控制电路包括温度传感器、加热管、变频电路、主控器和通信单元，其中，温度传感器用于探测石墨块的温度；所述通信单元用于接收上位机的所传送的方法库信息并将上位机的用户方法库信息传输给主控器；所述主控器根据通信单元所传输来的上位机的方法库信息及温度传感器探测的石墨块的温度信息变频电路提供控制信号；变频电路用于驱动加热管。

2. 根据权利要求1所述的石墨消解仪，其特征在于，所述控制电路还包括声控传感器、蜂鸣器和第一驱动电路，所述声控传感器用于探测消波仪内的声音，主控器根据声控信息来控制第一驱动电路提供控制信号，第一驱动电路用于驱动蜂鸣器。

3. 根据权利要求2所述的石墨消解仪，其特征在于，所述控制电路还包括报警风机和第二驱动电路，其中，主控器根据温度传感器所探测的温度信息及上位机设置的用户方法库信息给第二驱动电路提供控制信号，第二驱动电路用于对散热风机进行驱动。

4. 根据权利要求1-3任一所述的石墨消解仪，其特征在于，所述的通信单元为网络适配器。

5. 根据权利要求1-3任一所述的石墨消解仪，其特征在于，所述的通信单元包括通信电平转换电路、通信模块和天线，所述通信模块为蓝牙模块或者Wi-Fi模块。

6. 一种石墨消解仪的控制方法，其特征在于，所述方法包括上位机通过通信单元给消解仪的主控器发送用户方法库信息，消解仪的主控器根据消解仪内的温度传感器和声控传感器所探测的信息以及所接收的用户方法库信息控制加热管、风扇电机和蜂鸣器的工作状态。

7. 根据权利要求6所述的石墨消解仪的控制方法，其特征在于，所述消解仪的主控器的工作过程具体包括如下步骤：
 (01) 接收上位机的用户方法库信息；
 (02) 判断是用户选择消解方法并确认了吗？如果是，执行步骤(03)，否则返回步骤(01)；
 (03) 使加热管进行加热；
 (04) 判断是否有异常声控，如果是，执行步骤(05)，否则执行步骤(07)；
 (05) 使加热管停止加热；
 (06) 判断用户是否选择继续加热？如果是，则返回步骤(03)，否则执行步骤(14)；
 (07) 判断石墨块的温度是否达到第一设定值？如果否，返回步骤(03)，如果是，则继续执行步骤(08)；
 (08) 通过PID控制，使石墨块保持恒温；
 (09) 判断是否达到设定时间？如果是，则执行步骤(11)，否则执行步骤(10)；
 (10) 延时等待，并返回到步骤(09)；
 (11) 使散热风机开始工作；
 (12) 判断温度是否下降到了第二设定值，如果是，则执行步骤(14)，否则执行步骤(13)；
 (13) 延时等待，并返回到步骤(12)；
 (14) 使散热风机停止工作，并使蜂鸣器报警；
 (15) 延时一段时间，结束。

8. 根据权利要求根据权利要求6或7所述的石墨消解仪的控制方法，其特征在于，所述
通信单元为网络适配器。

9. 根据权利要求根据权利要求6或7所述的石墨消解仪的控制方法，其特征在于，所述通信单元包括通信电平转换电路、通信模块和天线。

10. 根据权利要求根据权利要求9所述的石墨消解仪的控制方法，其特征在于，所述通信模块为蓝牙模块或者Wi-Fi模块。
石墨消解仪及其控制方法

技术领域

[0001] 本发明涉及一种石墨消解仪及其控制方法，尤其涉及一种能够远程控制的石墨消解仪及其控制方法，属于实验设备技术领域。

背景技术

[0002] 现有技术中的利用微波炉和压力消解罐组合来消解样品，但是现有技术中的消解仪都是通过设置在消解仪上的控制面板来进行控制，而通过消解仪来对样品进行消解时，数分钟内温度和压力急剧升高，能量不能释放，易产生超高压，从而引起爆炸。因此实验人员近距离操控消解仪可能出现因爆罐而遭受伤害。

发明内容

[0003] 为克服现有技术中存在的技术问题，本发明的发明目的是提供一种石墨消解仪及其控制方法，其能够远程进行控制。

[0004] 为实现所述的发明目的，本发明的一方面提供一种石墨消解仪，所述石墨消解仪包括石墨块和控制电路，所述控制电路包括：温度传感器、加热管、变频电路、主控器和通信单元。其中，温度传感器用于探测石墨块的温度，所述通信单元用于接收上位机的所传送的方法库信息并将上位机的用户方法库信息传输给主控器；所述主控器根据所通信单元所传输来的上位机的方法库信息及温度传感器所探测的石墨块的温度给变频电路提供控制信号，变频电路用于驱动加热管。

[0005] 优选地，所述控制电路还包括声响传感器、蜂鸣器和第一驱动电路，所述声响传感器用于探测消泡仪内的声音，主控器根据声音信号来给第一驱动电路提供控制信号，第一驱动电路用于驱动蜂鸣器。

[0006] 优选地，所述控制电路还包括散热风机和第二驱动电路。其中，主控器根据温度传感器所探测的温度信息及上位的用户方法库信息给第二驱动电路提供控制信号，第二驱动电路用于对散热风机进行驱动。

[0007] 本发明的另一方面提供一种石墨消解仪的控制方法，其包括上位机通过通信单元给消解仪的主控器发送用户方法库信息，消解仪的主控器根据消解仪设置的温度传感器和声响传感器所探测的信息以及所接收的用户方法库信息控制加热管、风扇电机和蜂鸣器的工作状态。

[0008] 优选地，所述消解仪的主控器的工作过程包括如下步骤：

[0009] （01）接收PC机的用户方法库信息；

[0010] （02）判断是否是用户选择消解方法并确认了吗？如果是，执行步骤（03），否则返回步骤（01）；

[0011] （03）使加热管进行加热；

[0012] （04）判断是否有异常声音，如果是，执行步骤（05），否则执行步骤（07）；

[0013] （05）停止加热管加热；
[0014] (06) 判断用户是否选择继续加温？如果是，返回步骤 (03)，否则执行步骤 (14)；
[0015] (07) 判断石墨块的温度是否达到第一设定值？如果是，返回步骤 (03)，否则执行步骤 (08)；
[0016] (08) 通过 PID 控制，使石墨块保持恒温；
[0017] (09) 判断是否达到设定时间？如果是，执行步骤 (11)，否则执行步骤 (10)；
[0018] (10) 延时等待，并返回到步骤 (09)；
[0019] (11) 使散热风机开始工作；
[0020] (12) 判断温度是否下降到了第一设定值，如果是，执行步骤 (14)，否则执行步骤 (13)；
[0021] (13) 延时等待，并返回到步骤 (12)；
[0022] (14) 使散热风机停止工作，并使蜂鸣器报警；
[0023] (15) 延时一段时间，结束。
[0024] 优选地，所述通信单元为网络适配器。
[0025] 优选地，所述通信单元包括通信信道转换电路、通信模块和天线，所述通信模块为蓝牙模块或 Wi-Fi 模块。
[0026] 与现有技术相比，本发明提供的石墨消解仪能够进行远程控制。可应用于食品、医药、农业、林业、环保、化工等化验等领域以对土壤、植株、种子、矿石等化学分析用的样品消解处理。

附图说明
[0027] 图 1 是本发明提供的石墨消解仪的组成框图；
[0028] 图 2 是本发明提供的通信单元的组成框图；
[0029] 图 3 是点对点通信系统的上位机的工作流程图；
[0030] 图 4 是点对点通信系统的消解仪主控器的初始化流程图；
[0031] 图 5 是点对点通信系统的消解仪主控器的控制过程流程图。

具体实施方式
[0032] 下面结合附图详细说明本发明。
[0033] 图 1 是本发明提供的石墨消解仪的组成框图。如图 1 所示，石墨消解仪包括石墨块和控制电路，其中，控制电路包括：通信单元，其用于接收上位机的用户数据包信息并将上位机的用户数据包信息传输至主控器；温度传感器，所述温度传感器设置于石墨块旁用于探测石墨块的温度，第一放大器，其用于放大温度传感器所输出的电信号；第一 A/D 转换器，其用于将第一放大器所放大的电信号转换成数字信号，并提供给主控器；声响传感器，所述声响传感器设置于消解仪内腔用于探测异常声音，第二放大器，其用于放大声响传感器所输出的电信号；第二 A/D 转换器，其用于将第二放大器所放大的电信号转换成数字信号，并提供给主控器；变频电路，其根据主控器所提供的控制信号驱动加热管；加热管，其用于放置于石墨块上的样品进行加热消解；第一驱动电路根据主控器提供的控制信号来对蜂鸣器进行驱动；蜂鸣器，其用于报警；第二驱动电路根据主控器提供的控制信号来对散
热风机进行驱动；散热风机，其用于驱动散热风扇；FLASH存储器，其用于存放解毒仪的工作程序；DRAM存储器，其用于存储解毒仪工作时的临时值；EEPROM存储器，其用于存储用户的工作过程，即用户方法库信息；液晶触摸屏，其用于输入指令；主控器，所述主控器根据所通信单元所传输来的上位机的用户方法库信息或者通过触摸屏输入的指令及石墨块的温度给变频电路提供控制信号；根据上位机的用户方法库信息及温度传感器的信息提供第一驱动电路提供控制信号，根据温度传感器所探测的温度信息给第一驱动电路提供控制信号；主控器还用于将第一到第二 A/D 转换器所提供的数字信号进行处理以在显示器上进行显示或者传给通信单元，通信单元还对主控器发送来的信号传送给远程的上位机。所述通信单元为网络适配器，所述网络适配器用于将解毒仪与计算机网络进行连接。

或者所述的通信单元包括通信电平转换电路、Wi-Fi 模块或者蓝牙模块和天线。

[0034] 图 2 是本发明提供的通信单元的电路图，如图 2 所示，本发明提供的通信单元包括通信电平转换电路、通信模块和天线，所述通信模块为 Wi-Fi 模块或者为蓝牙模块；所述通信电平转换模块用于将主处理器所输出的电平转换为通信模块所需要的电平，该包括反相器和电阻。通信模块包括匹配电路、放大器、收发器、AD 转换器、DA 转换器、CPU、控制和接口电路（MAC/PHY）、ROM、RAM 和 FLASH。在接收到信号时，天线将接收信号电转换为电信号，而后经收发器放大，经 AD 转换器转换成数字信号，而后提供给 CPU。CPU 所输出的信号经 MAC/PHY 处理并后经电平转换器中第一反相器和电阻 R1 电平变换，由 3.3V 变换成 5.0V，而后传送给解毒仪的主处理器（主控器）。主处理器的信号需要发送时，则先由电平转换器中第二反相器和电阻 R2 电平交换，由 5.0V 变换成 3.3V，而经 MAC/PHY 处理传输给 CPU。CPU 将要发送的信号送给 DA 转换器变成模拟信号，而后再经收发器进行放大，输入匹配网络，而后再输入天线发送到空间。

[0035] 图 3 是点对点通信系统的上位机的工作流程图。如图 3 所示，用于对解毒仪进行控制的手机或者 PC 机（上位机）的工作过程包括如下步骤：

[0036] 01：初始化串口；
[0037] 02：初始化通信模块；
[0038] 03：设置通信模块参数；
[0039] 04：判断参数是否设置成功，如果是，则执行步骤 05，否则返回步骤 02；
[0040] 05：建立通信连接；
[0041] 06：判断是否成功建立通信连接，如果是，则执行步骤 07，否则返回步骤 05；
[0042] 07：设置通信模块波特率；
[0043] 08：判断是否有 PC 联机信号？如果是执行步骤 09，否则返回步骤 07；
[0044] 09：发送用户方法库信息，所述方法库包括设定的上限温度、解毒时间等；
[0045] 10：结束。

[0046] 图 4 是点对点通信系统的解毒仪主控器的初始化流程图。图 5 是点对点通信系统的解毒仪主控器的控制过程流程图。如图 4 和 5 所示，解毒仪主控器的工作过程包括如下步骤：

[0047] 01：初始化串口；
[0048] 02：初始化通信模块；
[0049] 03：设置通信模块参数；
[0050] 04：判断参数是否设置成功，如果是，则执行步骤 05，否则返回步骤 02；
[0051] 05：等待接收请求连接信号；
[0052] 06：判断是否在超时前收到上位机请求连接事件？如果是，则执行步骤 07，否则返回步骤 05；
[0053] 07：接收上位机请求连接；
[0054] 08：判断是否成功建立通信连接，如果是，则执行步骤 09，否则返回步骤 07；
[0055] 09：设置串口波特率；
[0056] 10：判断是否有联机信号？如果是，则执行步骤 11，否则返回步骤 09；
[0057] 11：接收用户方法库信息；
[0058] 12：判断用户选择消解方法并确认了吗？如果是，则执行步骤 13，否则返回步骤 11；
[0059] 13：给变频电路提供控制信号，使加热管进行加热；
[0060] 14：判断是否有异常声响，如果是，则执行步骤 15，否则执行步骤 17；
[0061] 15：给变频电路提供控制信号，使加热管停止加热；
[0062] 16：判断用户是否选择继续加热？如果返回步骤 13，否则执行步骤 24；
[0063] 17：判断石墨块的温度是否达到设定值？如果否，返回步骤 13，否则继续步骤 18；
[0064] 18：通过 PID 控制，使石墨块保持恒温；
[0065] 19：判断是否达到设定时间？如果是，则执行步骤 21，否则执行步骤 20；
[0066] 20：定时，待机，并返回到步骤 19；
[0067] 21：给第二驱动电路提供的控制信号使散热风机开始工作；
[0068] 22：判断温度是否下降到了摄氏 80 度，如果是，则执行步骤 24，否则执行步骤 23；
[0069] 23：延时等待，并返回到步骤 22；
[0070] 24：给第二驱动电路提供控制信号使散热风机停止工作，并给第一驱动电路提供控制信号使蜂鸣器报警；
[0071] 27：延时，而后结束。
[0072] 本发明的提供的消解仪，可以通过通信单元与远程的 PC 机、手机等进行远程连接，利用远程的手机或者 PC 机进行远程控制，如此，可避免工作人员避免化学样品在消解时因为未控制造成的伤害。
[0073] 虽然以上已结合附图对本发明作了详尽说明，但本领域技术人员应当认识到，在没有脱离本发明构思的前提下，任何基于本发明作出的改进和变换仍然属于本发明保护范围内的内容。
图 5