实用新型名称
一种奶牛监视装置

摘要
一种奶牛监视装置，由嵌入式应用电路（1）、RFID电子标签（2）、RFID电子标签读写模块（3）、体温检测模块（4）、电导率检测电路（5）、称重电路（6）、液晶显示模块（7）共同组成；通过RFID电子标签识别奶牛编号，通过体温检测模块、电导率检测电路、称重电路实现奶牛体温、牛奶电导率、奶牛重量检测；通过液晶显示模块实现显示功能；装置具有实用性强、性能稳定等显著特点。
权利要求书

1. 一种奶牛监视装置，由嵌入式应用电路(1)、RFID电子标签(2)、RFID电子标签读写模块(3)、体温检测模块(4)、电导率检测电路(5)、称重电路(6)、液晶显示模块(7)共同组成，其特征在于：a. 由S3C4400嵌入式控制器、两片K4X163PC·FGC6存储器接成26b容量的SDRAM、两片K9GE08U0E·S存储器接成32b容量的NAND Flash构成嵌入式应用电路(1)，由KD·ETO1WKD模块构成RFID电子标签(2)，由DSM·301模块构成RFID电子标签读写模块(3)，由MLX90614模块构成体温检测模块(4)；b. DJ·S·1CF电极、OP07运放、LM741运放构成电导率检测电路(5)，YZC·1B称重电阻传感器、金属膜电阻、AD620仪表放大器构成称重电路(6)，由JLX12864G·109·P模块构成液晶显示模块(7)；c. S3C2440嵌入式控制器的TXD1、RXD1端口分别接DSM·301模块的RXD、TXD端口，实现KD·ETO1WKD模块无线读写即可识别出奶牛编号；d. S3C2440嵌入式控制器的SCLK1端口接MLX90614模块的SCL端口、SDA1端口接MLX90614模块的SDA端口，实现奶牛体温检测；e. DJ·S·1CF电极的阳极接OP07运放的第二端口、阴极接OP07运放的第三端口，OP07运放的第六端口接LM741运放的第二端口，LM741运放的第六端口接S3C2440嵌入式控制器的AIN1端口，实现牛奶电导率检测；f. YZC·1B称重电阻传感器与金属膜电阻接成电桥，电桥输出端口接AD620仪表放大器的输入端口，AD620仪表放大器的输出端口接S3C2440嵌入式控制器的AIN2端口，实现奶牛重量检测；g. S3C2440嵌入式控制器的GPB1·GPB8端口接JLX12864G·109·P模块的数据端口，GPB9·GPB13端口接JLX12864G·109·P模块的控制端口，实现奶牛编号、奶牛体温、牛奶电导率、奶牛重量显示。
说明书

一种奶牛监视装置

技术领域
[0001] 本实用新型涉及嵌入式控制器技术、传感器技术、液晶显示技术、RFID电子标签技术、运行技术，尤其是一种奶牛监视装置。

背景技术
[0002] 牛奶营养丰富，对人的身体有很多益处，奶牛的身体状况直接影响奶牛产奶的质量与数量，牛奶在我国需求量也很大。本装置采用ARM9架构的高性能嵌入式控制器为核心结合传感器等技术设计出一种奶牛监视装置，为保障牛奶的质量与数量提供技术支持。

发明内容
[0003] 本实用新型的目的在于提供一种奶牛监视装置，通过RFID电子标签识别奶牛编号，通过体温检测模块、电导率检测电路、称重电路实现牛体温、牛奶电导率、奶牛重量检测，通过液晶显示模块实现显示。
[0004] 本实用新型解决其技术问题所采用的技术方案为：采用ARM9架构的高性能嵌入式控制器为核心结合传感器技术、液晶显示技术、RFID电子标签技术、运行技术进行设计，由嵌入式应用电路（1）、RFID电子标签（2）、RFID电子标签读写模块（3）、体温检测模块（4）、电导率检测电路（5）、称重电路（6）、液晶显示模块（7）共同组成。其特征在于：由S3C2440嵌入式控制器、两片K4X1G163PC-FGC6存储器接成2Gb容量的SDRAM，两片K9GAG08U0E-S存储器接成32Gb容量的NAND Flash构成嵌入式应用电路（1），由KD-ET01WKD模块构成RFID电子标签（2），由DSM-301模块构成RFID电子标签读写模块（3），由MLX90614模块构成体温检测模块（4），由DJSC-ICF电极、OP07运放、LM741运放构成电导率检测电路（5），YZC-1B称重电阻传感器、金属膜电阻、AD620仪表放大器构成称重电路（6），由JLX12864G-109-P模块构成液晶显示模块（7）；S3C2440嵌入式控制器的TXD1、RXD1端口分别接DSM-301模块的RXD、TXD端口，实现KD-ET01WKD模块无线读写即可识别出奶牛编号；S3C2440嵌入式控制器的SCLK1端口接MLX90614模块的SCL端口、SDA1端口接MLX90614模块的SDA端口，实现牛体温检测；DJSC-ICF电极的阳极接OP07运放的第二端口，阴极接OP07运放的第三端口，OP07运放的第六端口接LM741运放的第二端口，LM741运放的第六端口接S3C2440嵌入式控制器的AIN1端口，实现牛奶电导率检测；YZC-1B称重电阻传感器与金属膜电阻接成电桥，电桥输出端口接AD620仪表放大器的输入端口，AD620仪表放大器的输出端口接S3C2440嵌入式控制器的AIN2端口，实现牛奶重量检测；S3C2440嵌入式控制器的GPB1-GPB8端口接JLX12864G-109-P模块的数据端口，GPB9-GPB13端口接JLX12864G-109-P模块的控制端口，实现奶牛编号、奶牛体温、牛奶电导率、奶牛重量显示。
[0005] 本实用新型的有益效果是：采用ARM9架构的高性能嵌入式控制器为核心结合传感器技术、液晶显示技术、RFID电子标签技术、运行技术进行设计，实现牛体温、牛奶电导率、奶牛重量检测，并通过液晶显示模块实现显示功能；装置具有实用性强、性能稳定等显著特点。
附图说明
[0006] 下面结合附图对本实用新型作进一步的描述。

具体实施方式
[0008] 参见图1本实用新型由嵌入式应用电路（1）、RFID电子标签（2）、RFID电子标签读写模块（3）、体温检测模块（4）、电导率检测电路（5）、称重电路（6）、液晶显示模块（7）共同组成。由S3C2440嵌入式控制器、两片K4X1G163PC-FGC6存储器接成2Gb容量的SDRAM、两片K9GA0616E-S存储器接成32Gb容量的NAND Flash构成嵌入式应用电路（1），由KD-ET01WKD模块构成RFID电子标签（2），由DSM-301模块构成RFID电子标签读写模块（3），由MLX90614模块构成体温检测模块（4），由DJS-1CF电极、OP07运放、LM741运放构成电导率检测电路（5），YZC-1B称重电阻传感器、金属膜电阻、AD620仪表放大器构成称重电路（6），由JLX12864G-109-P模块构成液晶显示模块（7）。
[0009] KD-ET01WKD模块安装在每只牛的耳朵上，每块KD-ET01WKD模块具有64位唯一编号；S3C2440嵌入式控制器的TXD1、RXD1端口分别接DSM-301模块的RXD、TXD端口，实现KD-ET01WKD模块无线读写即可识别出奶牛编号。
[0010] MLX90614模块由红外温度传感器、低噪声放大器、ADC、DSP单元、脉宽调制电路及逻辑控制电路构成，模块输出的测量结果保存在MLX90614内部ROM中，S3C2440嵌入式控制器的SCLK1端口接MLX90614模块的SCL端口、SDA1端口接MLX90614模块的SDA端口，实现奶牛体温检测。
[0011] DJS-1CF电极的阳极接OP07运放的第二端口、阴极接OP07运放的第三端口，OP07运放的第六端口接LM741运放的第二端口，LM741运放的第六端口接S3C2440嵌入式控制器的AIN1端口，实现牛奶电导率检测。
[0012] YZC-1B称重电阻传感器与金属膜电阻接成电桥，电桥输出端口接AD620仪表放大器的输入端口，AD620仪表放大器的输出端口接S3C2440嵌入式控制器的AIN2端口，实现奶牛重量检测。
[0013] S3C2440嵌入式控制器的GPB1-GPB8端口接JLX12864G-109-P模块的数据端口、GPB9-GPB13端口接JLX12864G-109-P模块的控制端口，实现奶牛编号、奶牛体温、牛奶电导率、奶牛重量显示。