

SCHWEIZERISCHE EIDGENOSSENSCHAFT

BUNDESAMT FÜR GEISTIGES EIGENTUM

® CH 668 865

AS

61 Int. Cl.4: H 01 P

H 01 P H 01 P 3/20 7/04

Erfindungspatent für die Schweiz und Liechtenstein

Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

PATENTSCHRIFT A5

(21) Gesuchsnummer:

5096/85

(73) Inhaber:

Centre de Recherches en Physique des Plasmas (CRPP), Lausanne

(22) Anmeldungsdatum:

29.11.1985

(72) Erfinder:

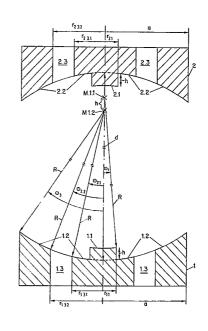
Isaak, Bernhard, Lausanne Perrenoud, André, Nyon Tran, Minh Quang, Lausanne

(24) Patent erteilt:

31.01.1989

(74) Vertreter:

BBC Aktiengesellschaft Brown, Boveri & Cie.,


Baden

Patentschrift veröffentlicht:

31.01.1989

64 Offener, quasi-optischer Resonator für elektromagnetische Millimeter- und Submillimeterwellen.

Dieser Resonator weist zwei einander gegenüberliegende Hohlspiegel (1, 2) mit annähernd sphärischer Krümmung auf. Zur Begünstigung der Ausbildung einer einzelnen, gewünschten TEM_{oop}-Mode gegenüber TEM_{oop}-Moden mit q = p ±1, p ±2, ..., im Resonator, sind die Hohlspiegel (1, 2) jeweils mit mindestens zwei um ein oder mehrere ganze Vielfache der halben Wellenlänge λ_p/2 der gewünschten TEM_{oop}-Mode stufenförmig gegeneinander versetzten Spiegelflächen (1.1, 1.2 bzw. 2.1, 2.2) versehen.

PATENTANSPRÜCHE

- 1. Offener, quasi-optischer Resonator für elektronmagnetische Millimeter- und Submillimeterwellen mit zwei einander gegenüberliegenden Hohlspiegeln (1, 2) mit annähernd sphärischer Krümmung, dadurch gekennzeichnet, dass die Hohlspiegel (1, 2) zur Begünstigung der Ausbildung einer einzelnen, gewünschten TEM_{oop}-Mode gegenüber TEM_{ooq}-Moden mit $q=p\pm 1, p\pm 2, \ldots$, jeweils mindestens zwei um ein oder mehrere ganze Vielfache der halben Wellenlänge $\lambda_p/2$ der gewünschten TEM_{oop}-Mode stufenförmig gegeneinander versetzte Spiegelflächen (1.1, 1.2 bzw. 2.1, 2.2) aufweisen (Fig. 1).
- 2. Offener, quasi-optischer Resonator nach Anspruch 1, dadurch gekennzeichnet, dass die gegeneinander stufenförmig versetzten Spiegelflächen (1.1, 1.2 bzw. 2.1, 2.2) der Hohlspiegel (1, 2) konzentrisch zueinander angeordnet sind und die innerste Spiegelfläche (1.1 bzw. 2.1) jeweils als durchgehende Zentralfläche ausgebildet ist (Fig. 1).
- 3. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass bei beiden Hohlspiegeln (1, 2) in einer der Spiegelflächen, vorzugsweise in einer äusseren (1.2 bzw. 2.2), mindestens ein vorzugsweise ringförmiger Schlitz (1.3 bzw. 2.3) zur Auskopplung der elektromagnetischen Wellen vorgesehen ist (Fig. 1).
- 4. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Krümmungsradius aller Spiegelflächen (1.1, 1.2 bzw. 2.1, 2.2) annähernd gleich ist (Fig. 1).
- 5. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der gegenseitige Abstand d der Hohlspiegel (1, 2) sowie ihr Radius a der Beziehung

$$N = a^2/\lambda_p d$$

genügen, wobei N eine Zahl zwischen 0,5 und 10 ist (Fig. 1).

- 6. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der gegenseitige Abstand d der Hohlspiegel (1, 2) grösser als $50 \lambda_p$ ist (Fig. 1).
- 7. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Flächen der einzelnen Spiegelflächen (1.1, 1.2 bzw. 2.1, 2.2) relativ zueinander so bemessen sind, dass auf sie etwa der gleiche Energiefluss entfällt (Fig. 1).
- 8. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Hohlspiegel (1, 2) jeweils zwei stufenförmig, vorzugsweise um etwa 6 $\lambda_p/2$ bis 10 $\lambda_p/2$ gegeneinander versetzte Spiegelflächen (1.1, 1.2 bzw. 2.1, 2.2) aufweisen (Fig. 1).
- 9. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass für $\lambda_p=2,5$ mm der Abstand d der Hohlspiegel 360 mm, der Krümmungsradius (R) der Hohlspiegel (1, 2) 288 mm und die stufenförmige Versetzung (h) der Spiegelflächen (1.1, 1.2 bzw. 2.1, 2.2) jeweils 10,033 mm beträgt, dass die zentrale Spiegelfläche (1.1 bzw. 2.1) jeweils einen Radius ($r_{1.1}$ bzw. $r_{2.1}$) von 12 mm und die äussere Spiegelfläche (1.2 bzw. 2.2) jeweils den gleichen Radius ($r_{1.1}$ bzw. $r_{2.1}$) als inneren und den Radius a jeweils als äusseren Radius aufweist und dass der Schlitz (1.3 bzw. 2.3) jeweils in der äusseren Spiegelfläche (1.2 bzw. 2.2) zwischen einem Radius ($r_{1.3.1}$ bzw. $r_{2.3.1}$) von 26 mm und einem Radius ($r_{1.3.2}$ bzw. $r_{2.3.2}$) von 43,5 mm vorgesehen ist (Fig. 1).
- 10. Offener, quasi-optischer Resonator nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die äusseren Spiegelflächen (1.2 bzw. 2.2) gegenüber den zentralen Spiegelflächen (1.1 bzw. 2.1) jeweils zurückversetzt sind (Fig. 1).

BESCHREIBUNG

Die Erfindung betrifft einen offenen, quasi-optischen Resonator für elektromagnetische Millimeter- und Submillimeterwellen gemäss dem Oberbegriff des Patentanspruchs 1.

Ein solcher Resonator findet vorzugsweise Verwendung in einer Mikrowellenquelle, welche unter dem Begriff quasi-optisches Gyrotron bekannt und beispielsweise in einem Artikel von T.A. Hargeaves et al., Int. J. Electronics 57, 977 (1984) oder auch in einem Artikel A. Perrenoud et al., Int. J. Electronics 10 57, 985 (1984) beschrieben ist.

In dem in den Artikeln beschriebenen Gyrotron durchsetzt ein von einer Elektronenkanone erzeugter Hochenergieelektronenstrahl den genannten Resonator in der Mitte zwischen den beiden Hohlspiegeln. Aufgrund eines parallel zur Elektronenstrahlachse orientierten starken Magnetfeldes bewegen sich die Elektronen auf spiralförmigen Bahnen mit einer der Zyklotronfrequenz entsprechenden Umlauffrequenz. Diese ist direkt proportional zur Stärke des Magnetfeldes. Bei geeigneter Wahl der Magnetfeldstärke regen die spiralenden Elektronen im Resonator die gewünschten elektromagnetischen Wellen im Millimeteroder Submillimeterbereich an. Diese werden aus dem Resonator ausgekoppelt und dem Ausgang des Gyrotrons zugeführt. Ein wichtiges Anwendungsgebiet wird die Kernfusion sein, wo die Energie der Wellen zur Heizung des Fusionsplasmas dienen

Im allgemeinen entstehen im Resonator TEM_{mnp}-Moden. Die Indizes m und n bezeichnen Transversalmoden, während p für Longitudinalmoden steht (vgl. auch H. Kogelnik, 1966. Modes in Optical Resonators; Lasers, Vol. 1, herausgegeben 30 von A.K. Levine, New York: Marcel Dekker, S. 295). Normalerweise werden in einem Gyrotron nur die TEMoop-Moden selektiert, weil sie die geringsten Diffraktionsverluste aufweisen. Im folgenden sollen der Einfachheit halber auch nur solche Moden betrachtet werden. Gleichwohl gelten alle nachstehen- $_{35}$ den Aussagen auch für die allgemeineren TEM $_{mnp}$ -Moden. Damit die thermische Belastung der Hohlspiegel in einem Hochenergie-Gyrotron nicht zu gross wird (die Feldleistung im Resonator kann einige Megawatt betragen), müssen deren Abmessungen wesentlich grösser als die Wellenlänge der elektro-40 magnetischen Strahlung sein. Ein praktischer Wert für p liegt im Bereich zwischen 40 und 400. Das hat allerdings zur Folge, dass der Frequenzabstand zwischen zwei benachbarten Moden TEM_{00p} und TEM_{00(p+1)} wesentlich kleiner ist als das Instabilitäts-Frequenzband des Gyrotrons. Das wirft das Problem einer 45 Moden-Konkurrenz auf [vgl. z.B. Bondeson et al., Int. J. Infrared Millimeter Waves 9, 309 (1984)].

Nun ist für die meisten Anwendungen die Reinheit der Moden des Gyrotrons von ausschlaggebender Bedeutung.

Numerische Berechnungen zeigen, dass unter geeigneten Be50 dingungen der quasi-optische Resonator auf einer longitudinalen Mode betrieben werden kann. Bei der Wahl eines günstigeren inhomogenen Magnetfeldprofils ist dies nicht mehr der Fall.
Die Effizienz des Energieübertrags aus dem Elektronenstrahl
auf das elektromagnetische Feld wird dann wegen der nichtli55 nearen Modenkonkurrenz herabgesetzt.

Die Erfindung, wie sie im unabhängigen Patentanspruch gekennzeichnet ist, löst die Aufgabe, eine Resonatorstruktur der eingangs genannten Art anzugeben, in welcher eine einzelne, gewünschte Longitudinalmode TEM_{oop} gegenüber ihren benach-60 barten Moden TEM_{ooq} (q = p ± 1 , p ± 2 , ...) bevorzugt und effizient angeregt wird.

Moden sind stehende Wellen im Resonator. Für sie sind die Oberflächen der Hohlspiegel Flächen gleicher Phase. Zudem verschwindet auf ihnen die tangentiale Komponente des elektrischen Feldvektors. Die Oberflächen der Hohlspiegel sind daher Knotenflächen für die Moden. Beim erfindungsgemässen Resonator weisen die Hohlspiegel mehrere stufenförmig gegeneinander versetzte Spiegelflächen auf. In einer solchen Resonator-

3 668 865

struktur bilden sich bevorzugt solche Moden aus, für die der stufenförmige Versatz der einzelnen Spiegelflächen gegeneinander annähernd einem ganzen Vielfachen ihrer halben Wellenlänge entspricht und für die deshalb sämtliche Spiegelflächen Knotenflächen sind. In dem nach der Erfindung die einzelnen Spiegelflächen um ein oder mehrere ganze Vielfache der halben Wellenlänge $\lambda_p/2$ der gewünschten TEM_{oop}-Mode versetzt sind, gilt diese Bedingungen gerade für die gewünschte Mode. Sie gilt dagegen nicht für die zur gewünschten Mode benachbarten Moden TEM₀₀₀. Diese erleiden im erfindungsgemässen Resonator höhere Diffraktionsverluste als in einem Resonator ohne Stufenstruktur. Durch die höheren Diffraktionsverluste ihrer benachbarten Moden TEMoog wird die gewünschte Mode TEMoop im Resonator nach der Erfindung bevorzugt angeregt. Zudem ist die Anregung der gewünschten Mode TEMoop im erfindungsgemässen Resonator wesentlich effizienter als in einem Resonator ohne Stufenstruktur.

Optimale Ergebnisse können durch Verwendung der in den abhängigen Patentansprüchen gekennzeichneten Bemessungsvorschriften erzielt werden. Um genügend grosse Diffraktionsverluste der benachbarten Moden zu erreichen, sollte der totale stufenförmige Versatz der einzelnen Spiegelflächen zwischen 6 und 10 halben Wellenlängen $\lambda_p/2$ der gewünschten TEM_{oop}-Mode betragen. Die Flächen der einzelnen Spiegelflächen sind relativ zueinander mit Vorteil so bemessen, dass auf sie annähernd der gleiche Energiefluss entfällt. Für die Auskopplung der elektromagnetischen Wellen können Schlitze vorgesehen werden

Im folgenden werden Ausführungsformen der Erfindung unter Bezugnahme auf die Zeichnung beispielsweise erläutert. Es zeigt:

Fig. 1 eine bevorzugte Ausführungsform eines Resonators nach der Erfindung in nicht massstabsgetreuer, geschnittener Darstellung mit zwei Hohlspiegeln mit lediglich jeweils zwei gegeneinander versetzten Spiegelflächen,

Fig. 2 die Aufsicht auf einen der Hohlspiegel nach Fig. 1, Fig. 3 in 6 Diagrammen a) bis f) die zeitliche Entwicklung der Modenkonkurrenz in einem Resonator nach der Art von Fig. 1 und

Fig. 4 in geschnittener Darstellung einen Hohlspiegel für einen Resonator nach der Erfindung mit drei gegeneinander versetzten Spiegelflächen.

Der in Fig. 1 dargestellte, offene, quasi-optische Resonator besteht aus zwei identischen, einander gegenüberliegenden, runden Hohlspiegeln 1 und 2. Diese weisen jeweils zwei stufenför- 45 mig gegeneinander versetzte Spiegelflächen 1.1 und 1.2 bzw. 2.1 und 2.2 auf. Die Spiegelflächen 1.1, 1.2, 2.1 und 2.2 sind sphärisch gekrümmt mit annähernd gleichen Krümmungsradien R und sind Knotenflächen der sich im Resonator ausbildenden, stehenden Wellen angepasst. Die Spiegelflächen 1.1 und 1.2 einerseits und die Spiegelflächen 2.1 und 2.2 andererseits sind konzentrisch zueinander angeordnet. Die inneren Spiegelflächen 1.1 und 2.1 sind als durchgehende, zentrale Spiegelflächen ausgebildet. Sie sind von den äusseren Spiegelflächen 1.2 und 2.2 ringförmig umgeben. Der die inneren Spiegelflächen 1.1 und 2.1 begrenzende Radius r_{1.1} bzw. r_{2.1} entspricht dem inneren Radius der äusseren Spiegelflächen 1.2 bzw. 2.2. In den äusseren Spiegelflächen 1.2 und 2.2 sind ringförmige Schlitze 1.3 und 2.3 vorgesehen. Diese dienen zur Auskopplung der elektromagnetischen Wellen aus dem Resonator. Die Schlitze 1.3 und 2.3 brauchen nicht in sich geschlossen zu sein. Sie können von Stegen unterbrochen sein, wie dies aus der in Fig. 2 dargestellten Aufsicht auf einen der Hohlspiegel 1 oder 2 deutlich wird. Über die Stege ergibt sich in vorteilhafter Weise eine mechanische Verbindung zwischen dem innerhalb und ausserhalb der Schlitze liegenden Spiegelbereich. Die Bezugszeichen in Fig. 2 stimmen mit dem entsprechenden Bezugszeichen von Fig. 1 überein.

Damit sich im Resonator zwischen den Hohlspiegeln 1 und 2 die gewünschte Mode TEM_{oop} gegenüber ihren benachbarten Moden TEM_{ooq} bevorzugt ausbilden kann, muss der stufenförmige Versatz h der Spiegelflèächen 1.1 und 1.2 einerseits bzw. der Spiegelflächen 2.1 und 2.2 andererseits gegeneinander, wie bereits erläutert, wenigstens annähernd einem oder mehreren ganzen Vielfachen der halben Wellenlänge $\lambda_P/2$ der gewünschten Mode betragen. Vorzugsweise beträgt er zwischen 6 $\lambda_p/2$ und 10 $\lambda_p/2$.

Der Radius a der Hohlspiegel 1 und 2 sowie ihr gegenseitiger Abstand d sollte eine Fresnelzahl N (definiert als $a^2/(\lambda_p d)$ zwischen 0.5 und 10 ergeben. Weiter sollte der gegenseitige Abstand d der Hohlspiegel 1 und 2 grösser als 50 λ_p sein. Er wird bezüglich der Grundflächen der äusseren Spiegelflächen 1.2 bzw. 2.2 genommen.

Die Flächen der Spiegelflächen 1.1 und 1.2 bzw. 2.1 und 2.2 sind relativ zueinander so bemessen, dass auf sie jeweils annähernd der gleiche Energiefluss entfällt. Dabei sind auch die 20 Schlitze 1.3 bzw. 2.3 sowie ihre durch die Radien r_{1.3.1} und r_{1.3.2} bzw. r_{2.3.1} und r_{2.3.2} bestimmte Breite und Lage in den äusseren Spiegelflächen 1.2 bzw. 2.2 zu berücksichtigen. Die Energieverteilung auf den Spiegeln ist durch eine gauss'sche Verteilung gegeben, so dass der Energiefluss im Zentrum der Hohlspiegel 1, 25 2 grösser ist als am Rand. Deshalb sind die äusseren Spiegelflächen 1.2 bzw. 2.2 flächenmässig grösser als die zentralen Spiegelflächen 1.1 bzw. 2.1.

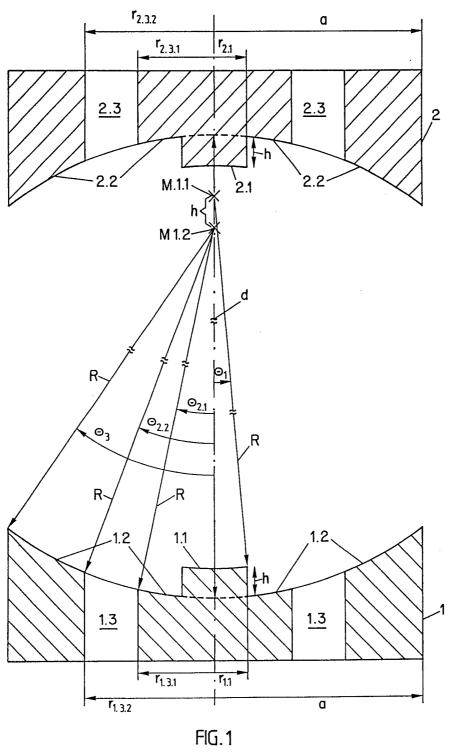
Grundsätzlich kann für jede gewünschte Resonanzfrequenz die Resonatorgeometrie so gewählt werden, dass man ein Optimum bezüglich Diffraktionsverluste und Auskopplung der Energie durch die Schlitze erreicht. Als Beispiel sei die Resonanzfrequenz von 120 GHz mit der entsprechenden Wellenlänge von 2,5 mm betrachtet. Dies entspricht für den Resonator mit den nachfolgend optimierten Grössen einer TEM_{oop} mit p = 287. Für die die Resonatorgeometrie festlegenden Grössen ergeben sich in diesem Fall die folgenden bevorzugten Werte:

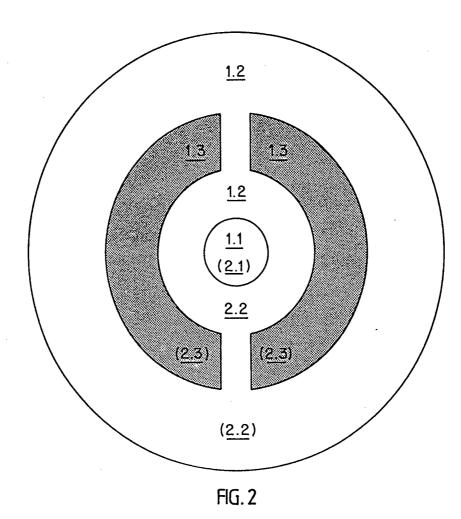
Im gewählten Beispiel beträgt der gegenseitige Versatz h der Spiegelflächen 1.1 und 1.2 bzw. 2.1 und 2.2 etwa 8 $\lambda_p/2$ und der gegenseitige Abstand d der Hohlspiegel 1 und 2 voneinander 144 λ_p . Die Zahl N aus der Beziehung N = $a^2/\lambda_p d$ beträgt hier 5,44. Vorstehend sind hinter den Zahlenangaben für sämtliche Radien noch die Polarwinkel θ_1 , $\theta_{2.1}$, $\theta_{2.2}$ und θ_3 angegeben, unter denen die Ränder der sphärisch gekrümmten Spiegelflächen 1.1 und 2.1 bzw. 2.1 und 2.2 sowie die Ränder der Schlitze 1.3 bzw. 2.3 von ihren um h gegeneinander versetzten Krümmungsmittelpunkten aus erscheinen. Für den Hohlspiegel 1 sind diese Polarwinkel sowie die Krümmungsmittelpunkte in Fig. 1 eingezeichnet. Letztere sind mit $M_{1.1}$ und $M_{1.2}$ bezeichnet.

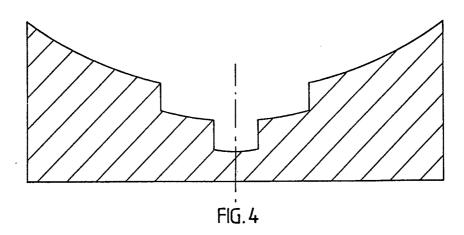
Im beispielsweise betrachteten, speziellen Fall ergeben sich folgende Werte für die Diffraktionsverluste der bevorzugten Mode TEM₀₀₂₈₇ sowie ihrer benachbarten Moden TEM_{00287±1}, ..., 5:

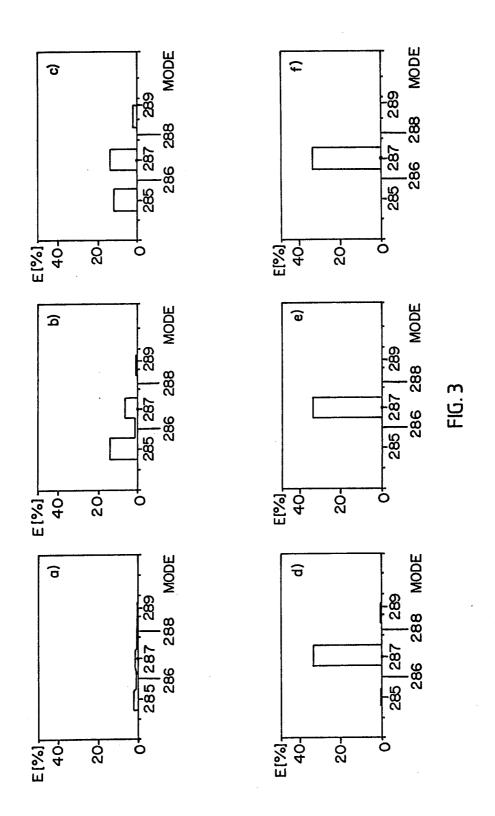
Mode	Diffraktions-Verluste in %
283	51,5
284	33,0
285	17,8
286	7,55
287	3,8
288	8,4
289	22,8
290	46,0
291	57,5
292	57,9

Fig. 3 zeigt in 6 Diagrammen a) bis f) die Ergebnisse einer numerischen Simulation der Konkurrenz der Moden 285 bis 289 in ihrer zeitlichen Abfolge innerhalb einer Zeitspanne von etwa 20 usec. In den einzelnen Diagrammen sind entlang der diskreten Abszisse die Moden TEM₀₀₂₈₅ bis TEM₀₀₂₈₉ aufgetragen. Die Ordinate entspricht jeweils der Effizienz E in % des Energie-übertrags vom Elektronenstrahl auf die einzelnen Moden. Die Diagramme a) bis f) geben die Situation im Resonator zu auf-


einanderfolgenden Zeitpunkten wieder. Nach einer anfänglichen Konkurrenz sämtlicher Moden (vornehmlich in den Diagrammen a) bis c) setzt sich die gewünschte Mode TEM₀₀₂₈₇ schliesslich durch und bleibt praktisch als einzige übrig mit seiner elektronischen Effizienz von 34%. Eine zu Vergleichszwecken vorgenommene Simulation für einen Resonator ohne Stufenstruktur ergab unter sonst gleichen Bedingungen die Dominanz zweier Moden, nämlich der Moden TEM₀₀₂₈₅ und TEM₀₀₂₈₆ und dies auch nur mit einer elektronischen Effizienz von 25%.


Durch die Erfindung können also gewünschte Moden praktisch rein und mit hoher Effizienz erzeugt werden.


Die Hohlspiegel brauchen nach der Erfindung nicht lediglich zwei gegeneinander versetzte Spiegelflächen aufzuweisen.


Sie können auch mit drei oder noch mehr gegeneinander versetzten Spiegelflächen versehen sein. Zudem muss die äussere bzw. müssen die äusseren Spiegelflächen gegenüber der zentralen Spiegelfläche sowie gegeneinander nicht, wie im Beispiel von Fig. 1, zurückversetzt sein. Auch eine umgekehrte Versetzung ist möglich, da sie physikalisch im wesentlichen äquivalent ist. Schliesslich sind Schlitze in den Hohlspiegeln zur Auskopplung der elektromagnetischen Wellen nicht die einzige Möglichkeit, sondern die elektromagnetische Leistung könnte, da der Resonator offen ist, durch Diffraktion an den Spiegelrändern in einer geeigneten Weise gesammelt werden.

In Fig. 4 ist ein Hohlspiegel in geschnittener Darstellung mit drei gegeneinander versetzten Spiegelflächen ohne Schlitze dargestellt. Die Spiegelflächen sind in umgekehrter Weise gegeneinander versetzt wie bei den Holspiegeln 1 und 2 nach Fig. 1.

