(54) 发明名称
钝化合金的冷变形工件的固溶硬化方法，以及通过该方法固溶硬化的构件

(57) 摘要
本发明涉及一种通过钝化合金的冷变形工件的固溶硬化方法，该方法包括：一个第一步骤，在温度T1至少将钢溶解在工件中，该温度T1是高于碳化物和/或氯化物的溶解温度并且低于钝化合金的熔点；以及一个随后的第二步骤，在温度T2将钢和/或氯化物溶解在工件中，该温度T2是低于在钝化合金中形成碳化物和/或氯化物的温度。本发明还涉及一种构件，如使用该方法制备的用于固定螺栓或螺母的锁紧垫圈。
1. 一种通过钝化合金的冷变形工件的固溶化硬用于形成扩张奥氏体和 / 或扩张马氏体的方法，该钝化合金是基于铁、镍和 / 或钼并且包括至少 10％的铬或一种含至少 10.5％的铬的铁基合金。

该方法包括：一个第一步骤，在温度 T1 使用 N2气至少将氮溶解在工件中，该温度 T1 为 1050℃以上并且低于钝化合金的熔点，其中执行在温度 T1 的氮的溶解以得到在 50 μm 至 5mm 范围内的扩散深度；

一个中间步骤，在温度 T1 的溶解步骤后将工件冷却到一个温度，该温度低于在钝化合金中形成碳化物和 / 或氮化物的温度，其中从温度 900℃至 700℃的冷却是至少 60 秒内执行；以及

一个随后的第二步骤，在至少 300℃的温度 T2 将氮和 / 或碳溶解在工件中，该温度 T2 是低于在钝化合金中形成碳化物和 / 或氮化物的温度。

2. 根据权利要求 1 所述的方法，其中在温度 T2 的溶解是从在温度 T1 的溶解冷却后立即发生。

3. 根据权利要求 1 所述的方法，其中该冷却步骤在一种不含氮的惰性气体中发生。

4. 根据权利要求 3 所述的方法，其中除不可避免的杂质外该惰性气体是氩。

5. 根据权利要求 1 所述的方法，其中氮以及碳在温度 T1 溶解。

6. 根据权利要求 1 所述的方法，其中该钝化合金选自包含不锈钢、奥氏体不锈钢、马氏体不锈钢、铁素体不锈钢、沉淀硬化 (PH) 不锈钢或铁素体 - 奥氏体不锈钢的组中。

7. 根据权利要求 1 所述的方法，其中在温度 T2 的溶解是在选自包括基于气体的过程、离子注入、盐浴或等离子体的组的过程中执行。

8. 根据权利要求 1 所述的方法，其中在温度 T2 的溶解是使用气体执行。

9. 根据权利要求 1 所述的方法，其中温度 T1 在 1050℃至 1300℃的范围内。

10. 根据权利要求 1 所述的方法，其中在温度 T1 的溶解后该冷却是在与在温度 T1 的溶解步骤中所用的相同的气体中发生。

11. 根据权利要求 1 所述的方法，其中碳是在温度 T2 溶解，并且温度 T2 为低于 550℃。

12. 根据权利要求 11 所述的方法，其中温度 T2 在 300℃至 530℃的范围内。

13. 根据权利要求 1 所述的方法，其中氮是在温度 T2 溶解，并且温度 T2 为低于 500℃。

14. 根据权利要求 13 所述的方法，其中温度 T2 在 300℃至 470℃的范围内。

15. 根据权利要求 1 所述的方法，其中氮以及碳是在温度 T2 溶解，并且温度 T2 为低于 500℃。

16. 根据权利要求 1 所述的方法，其中在工件中得到至少 5 μm 的扩张奥氏体或扩张马氏体的厚度。

17. 根据权利要求 1 所述的方法，其中该扩张奥氏体区或该扩张马氏体区的硬度为至少 1000HV。

18. 根据权利要求 2 所述的方法，其中在温度 T2 的溶解是在与在温度 T1 的溶解相同的炉中发生。

19. 根据权利要求 1 所述的方法，其中冷变形工件中的冷变形由选自锻造、挤出、成型、拉伸、压延或轧制的一种实际的塑性变形过程，或通过选自车削、铣削、冲孔、研磨或抛光的机械加工过程，或通过这些过程的结合提供。
20. 根据权利要求 1 至 19 中任一项所述的方法，其中该工件具有高达 10mm 的厚度，并且在温度 T1 下用氮饱和。

21. 一种根据权利要求 20 所述的方法固溶硬化的构件，所述构件由基于铁、镍和/或钴并包含至少 10% 铬的用氮饱和的合金形成；且所述构件具有高达 10mm 的厚度，以及厚度至少为 5 μm 且硬度至少为 1000HV 的扩张奥氏体区或扩张马氏体区。

22. 根据权利要求 21 所述的构件，其中该构件是一种用于紧固一个固定零件的不锈钢的锁紧垫圈。

23. 根据权利要求 22 所述的构件，其中该锁紧垫圈具有带径向齿的第一侧以及带凸轮的相对另一侧。
钝化合金的冷变形工件的固溶硬化方法，以及通过该方法
固溶硬化的构件

技术领域
[0001] 本发明涉及一种通过钝化合金的冷变形工件的固溶硬化用于形成扩张奥氏体和 / 或扩张马氏体的方法。该方法提供了其中基本上没有碳化物和 / 或氮化物形成的硬合合金。该方法还提供了耐腐蚀的表面，同时保持从冷变形得到的材料的核心强度。本发明进一步涉及由该方法固溶硬化的构件。这些构件特别地与医学、食品、汽车、化工、石化、制药、船舶、包装、手表、刀具 / 餐具、医疗、能源、纸浆和造纸、采矿、或废水技术领域相关。

背景技术
[0002] 不锈钢和其他钝化合金典型地是具有良好的耐腐蚀性，但具有相对差的摩擦学特征（如粘着磨损特征）的材料。为了解决这个问题，不锈钢和对比合金可以在低温下（低于450℃至550℃）通过溶解氮和 / 或碳进行表面硬化，通过此方法得到的是所谓的扩张奥氏体或可替代的扩张马氏体的区。此区是碳和 / 或氮在奥氏体或马氏体中的过饱和溶体并且相对于碳化物 / 氮化物的形成是亚稳的。这种低温过程可以是基于气体、等离子体或熔盐；气体过程要求使用特定的活化技术，而对于等离子体和盐浴活化是立即实现的并且无需特定的处理。因此在材料中得到一个表面区，该表面区含有大量的氮和 / 或碳，这是由于相对低的过程温度。该材料从而变成表面硬化的并且保留它的耐腐蚀性。然而大多数钝化合金（如不锈钢）不能直接使用氮和 / 或碳固溶硬化，因为这些钝化合金只有一个不可渗透的氧化层（也称为钝化层），这是良好的腐蚀性能的原因，但它阻止了例如氮和碳的溶解。因此要求用于去除这种钝化层的特定技术。这些技术是本领域技术人员已知的。
[0003] 大多数采用的技术部件是在机加工的条件下使用，这是指该材料是不均匀的冷变形（塑性变形）。在许多应用中，这种冷变形从部件强度考虑是所希望的；如果部件不具有由冷变形引起的加工硬化强度增加它将失灵。这产生了一个很大的问题，如果这种冷机加工的部件是在低温过程中表面硬化，那么该表面在吸收氮和 / 或碳后被改变为扩张奥氏体或马氏体。材料中塑性变形（在微观结构中的缺陷）的存在意味着通过氮以及碳与例如铬 (Cr)（其是不锈钢中的合金元素）的反应发展氮化物和碳化物更容易。因此，一定量的 Cr 从固溶体中移出并结合为氮化铬 / 碳化铬。这意味着腐蚀特征恶化，因为更多的铬可用于钝化层的保持。在局部区域内，这种 Cr 消耗明显，并导致在该区域的表面防腐蚀性能的损失。氮化物 / 碳化物的析出被称为敏化。特别是在氮的溶解中，这种现象是非常明显的，因为氮化铬比碳化铬更稳定并且可以在更低的温度下形成。这意味着在低温过程中的温度必须（进一步）降低以避免敏化，这是所不希望的，因为该过程从而进行得更慢。对于不锈钢中极端程度的变形有可能甚至不存在敏化的问题。
[0004] 在冷变形不锈钢工件的低温硬化时，敏化将随着氮和 / 或碳的低温溶解而发生，这发生在低于 550℃的温度下。为了解决在冷变形材料中低温表面硬化时敏化的问题，在真空或氮气气氛下通过所谓的奥氏体化来（在可能的情况下）实现部件的完全退火。完全退火是一种在高于 1020℃（典型地在 1020℃至 1120℃的范围内）的温度下进行的过程。从而
材料中的冷变形消失并且低温溶解可以在没有敏化的风险的情况下进行。但是，该方法导致了冷加工金属的强度降低的问题，这被称为在材料中的所谓的残余效应，即当工件随后低温硬化时，材料变软具有硬的薄表面。通过进行奥氏体化，材料的核心强度降低到退火材料的核心强度，并且此方法要求处理后的部件的核心强度是不太重要的设计参数。

另一种可能是采用碳化过程其中只有碳在低温下溶于该材料，即碳扩散奥氏体的形成。敏化对于碳溶解不像对于氮溶解（渗氮和氯碳共渗）是至关重要的，并且从而导致对耐腐蚀性的影响较小。然而，对于有中等程度的冷变性的部件，即使这仍被认为是有害的。仅采用碳溶解的另一个缺点是得到比氮溶解更低的表面硬度并且组成特征曲线（profile）（硬度）不能以相同的方式调整（参见例如EP1095170B1以及WO2006/136166A1）。


WO2008/124239提出一种中间快速急冷的混合渗碳方法，根据该方法金属工件的碳硬化表面可以通过将该工件同时进行高温渗碳和低温渗碳形成，没有形成碳化物析出物，其中紧接表面高温渗碳，将该工件快速急冷至低于碳化物析出物形成的温度。快速急冷可以使用例如将工件浸渍在水、油或其他冷却介质（如气体或熔盐）中完成。WO2008/124239未能认识到在随后的低温硬化过程中冷变形以及碳化物和/或氮化物的形成这些问题。

对于一种用于硬化钝化合金（如不锈钢）的允许氮和/或碳的低温溶解的方法存在一种需要，其中该方法解决了敏化和/或调整组成特征曲线的问题。

为了克服与冷变形工件的低温渗氮和/或渗碳有关的敏化的问题，现有技术提出首先将材料退火，以便得到部分或全部重结晶，可替代地只有材料的恢复。因此，材料中的冷变形以及从该冷变形得到的强化消失，但另一方面可以进行低温溶解而没有敏化的问题。然而，这种方法不能提供具有高核心强度的部件。

本发明的目的是提供一种方法，该方法允许通过冷变形形成并且制备自钝化合金（特别是不锈钢）的生产低温渗氮和/或渗碳形成扩张奥氏体或扩张马氏体，在工件中未发生敏化并且其中所获得的强化效应相当于或可能甚至大于通过冷变形所得到的强化效应。

发明内容

本发明涉及一种通过钝化合金的冷变形工件的固溶硬化用于形成扩张奥氏体和/或扩张马氏体的方法，该方法包括：一个第一步骤，在温度T1至少将氮溶解在工件中，该温度T1是高于碳化物和/或氮化物的溶解温度并且低于钝化合金的熔点；以及一个随后的第
说明书

二步骤，在温度T2将氮和/或碳溶解在工件中，该温度T2是低于在钝化合金中形成碳化物和/或氮化物的温度。

[0012]第一步骤在温度高于氮化物的溶解温度下将氮溶解在工件中相比材料在低温硬化之前重结晶退火，显著提高了钝化合金（如不锈钢）的硬度强度。氮的高温溶解是在温度高于合金的奥氏体化温度（如至少或高于1050°C）并且低于合金的熔点下完成。此高温渗氮的强化效应出人料想地是足以补偿冷变形消失引起的强度损失，同时使工件在渗氮过程中保持在高温下。此外，高温渗氮允许低温硬化可以在在常温或接近常温的高温下进行，没有产生形成氮化物和/或碳化物的问题，并且更容易在随后的低温表面硬化过程活化材料的钝化表面。因此，加速了硬化层的形成。此外，因为氮存在于固溶体中，得到了更好的腐蚀特征。

[0013]钝化合金的硬化的显著改善可以通过氮的高温溶解随后低温渗氮、渗碳或氮碳共渗获得。其中形成扩张奥氏体或扩张马氏体的任何钝化合金是与本发明有关的，并且不锈钢是优选的，特别是冷变形的奥氏体不锈钢。

[0014]随后的渗氮和/或碳的低温溶解可在材料上进行的随后的第二步骤中，该低温溶解发生在温度低于钝化合金中形成碳化物和/或氮化物的温度，取决于过程如低于450°C至550°C，该第二步骤不包含塑性形变，但具有塑性形变工件的水平的强度。这意味着变质的风险显著降低。由于氮和碳的扩散系数随碳/氮含量的增加而增加，甚至已经在不锈钢固溶体中氮和任选的碳的存在产生比使用现有技术的方法所能够得到的更小的低温过程。因此，在某些实例中钝化合金是一种含有氮和/或碳的不锈钢。

[0015]在本发明中有可能进行钝化材料（并且特别是不锈钢）的甚至强冷变形部件的低温硬化，而没有发生材料的敏化并且不损失强度。使用本发明的方法处理过的冷变形材料甚至可能得到比未经处理的材料显著更好的耐腐蚀性。进行的试验表明通过在高温下（典型地高于1050°C）将氮和任选的碳溶解在不锈钢中得到的强度可以给出一个（核心）强度或衬底承载能力，这足以弥补当通过重结晶除去冷变形同时在渗氮过程中加热并维持高温时发生的强度损失。也就是说，尽管从冷变形得到的强度损失了，这种损失是从通过使用氮和任选的碳进行固溶硬化得到的强度来补偿。甚至相对少量的氮产生强度的显著增加来提供承载能力，这对于耐磨扩展奥氏体是必要的。

[0016]本发明的方法提供具有与冷变形构件至少同样的强度并且同时具有更好的耐腐蚀性的制造构件，并且进一步提供了花费更少时间执行的优势。

[0017]在温度T1以及温度T2的溶解可以使用任何适当的技术执行。例如在温度T1以及温度T2的溶解可以在气体过程中进行，例如使用含氮气体，如氮，优选N2。溶解还可以使用离子注入、盐浴或等离子体进行。优选的是在温度T1以及温度T2的溶解使用气体进行，因为这是一种廉价且有效的解决方案并且因为所有类型的几何形状可以均匀地处理，并存在良好的温度均匀性。此外，使用气体过程是指该过程是在热力学定律的框架内，这是指存在很好地控制的过程条件。采用气体的进一步优势是因为已经出人意料地发现本发明的高温过程使得表面在低温过程中使用气体更容易活化。因此，更容易去除不可渗透的氧化层（钝化层），这是在钝化材料高温溶解后发现的。据推测，这是由于在高温下溶解的氮和任选的碳的存在。

[0018]低温过程可在高温过程后立即进行，但这不是强制的。还可能在变化的时间与地
点来执行这两个过程。如果这些过程是在彼此之后立即进行, 例如在第一和第二溶解步骤之间的冷却步骤, 有可能避免表面的钝化发生并且因此在低温过程之前活化是多余的。因此, 本发明还涉及一个实验其中在温度 T2 的溶解在从温度 T1 冷却后立即进行, 而没有高温过程与低温过程执行之间的表面钝化/活化。这可能是在同一炉中进行。在使用气体时, 当材料被冷却至温度 T2 时, 在低温过程中使用的含有氮和/或碳的气体可以立即供给。然而, 冷却有利地是在冷却过程中使用氮气而没有任何氨来完成。使用气体处理的一个优势是有可能使用气体, 其在低温过程中在温度 T2 不活化表面。此实验的其他优势是硬化过程从而可以变得更便宜且更快。

【0021】本发明的方法的另一优势是由于固溶体中存在氮, 获得更好的腐蚀特征。碳的溶解不会改变腐蚀特征。如果部件是使用氮气完全饱和的, 该材料可被认为是含氮合金。这经常是使用本发明的方法处理过的薄壁工件的情况, 如材料厚度高达 4mm, 如厚度为 2~4mm 的工件。因此使用本发明的方法处理过的不锈钢工件相比仅使用低温过程处理过的工件具有更远更好的耐腐蚀性（参见实例）。本发明的一个方面涉及根据本发明的方法处理过的冷变形金属或合金的薄壁部件或工件。

【0022】对于薄壁部件, 该材料可以是通过高温过程使用氮气完全饱和的。可以得到在厚度中高达几毫米（例如高达约 5mm）的表面区，其中氮是在固溶体中。在这些情况下材料的承载能力将得以提高并且可以与通过冷变形得到的相比较。在本发明的实践中, 在温度 T1 的氮的溶解从得到在 50 μm 至 5mm 范围内的扩散深度, 这允许具有高达约 10mm 的厚度的工件是使用氮气完全饱和的, 以便得到特别强的工件。总体而言, 该方法提供了在工件中得到扩散奥氏体或扩散马氏体的厚度至少为 5 μm, 以及扩散奥氏体或扩散马氏体区的硬度为至少 1000HV, 如超过 1050HV。
含氟气体被认为加速氟化物的形成，所以提供了一种冷却步骤使用惰性气体的更强大且灵活的方法。在无氮惰性气体中冷却还允许 60s 以上的更长冷却时间，但优选冷却是在无氮惰性气体中大于 30s（如小于 10s）执行。

【0024】本发明涉及一种用于固溶硬化铝合金的的冷变形加工的方法，该方法包括以下步骤：

【0025】在温度 T1 至少将氮溶解在工件中，该温度 T1 是高于液氮气温度并且低于氮化合物的熔点。

【0026】在溶解步骤后将工件冷却至一个温度，该温度低于在氮化合物中形成碳化物和 / 或氮化物的温度，其中该冷却步骤在不含氮的惰性气体中发生。

【0027】根据该方面的方法可以自由结合涉及根据第一方面的方法的特征，并且所有这种结合是在本发明中设想到的。例如，在温度 T1 的第一溶解步骤所讨论的所有特征和变型是与根据该第二方面的方法有关的。同样地，该第二方面的方法还可以包括在温度 T2 将氮和 / 或碳溶解在工件中的随后步骤，该温度 T2 是低于在氮化合物中形成碳化物和 / 或氮化物的温度。

【0028】在另一方面，本发明涉及通过根据第一方面或上述另一方面的固溶硬化的构件，任何工件可以在该方法中处理，因为优选的工件是具有高达约 10mm 的厚度，因为这会提供所得到的构件是使用氮。完全饱和的。根据第一方面或上述另一方面的固溶硬化的构件可以用于任何技术领域。例如，相关的领域包括在 switched、汽车、化工、石化、制药、船舶、包装、手表、刀具 / 餐具、医疗、能源、纸浆和造纸、采矿或废水技术的技术领域中使用的构件。特别感兴趣的构件包括阀门（蝶阀，球阀，调节阀），转向螺栓，螺母，垫圈，紧固件，喷嘴，泵，机械部件，半导体 ASML、套圈零件，球轴承和轴承罩，气动零件，膜等等。

【0029】在另一方面，本发明涉及通过根据第一方面或上述另一方面的固溶硬化的构件，其中该构件形成设计对象的外表面积，如夹持件或接柄的夹子，标志牌，支架，箱子的盖子，刀具，手表，或与手柄安装在一起的板或组成台灯的局部的板。

【0030】在另一方面，本发明涉及通过根据第一方面或上述另一方面的固溶硬化的构件，其中该构件是轴承的一部分，例如球轴承的一部分，滚柱轴承的一部分，或轴承罩。

【0031】在另一方面，本发明涉及通过根据第一方面或上述另一方面的固溶硬化的构件，其中该构件是医疗设备，或医疗器械，或牙科设备，或牙科器械的一部分，或是医疗器械或牙科器械。

【0032】在另一方面，本发明涉及通过根据第一方面或上述另一方面的固溶硬化的构件，其中该构件是制药设备的一部分，如板，喷嘴，垫片，管，或网。

【0033】在另一方面，本发明涉及通过根据第一方面或上述另一方面的固溶硬化的构件，其中该构件是车的一部，如盘，排气系统中的零件，过滤器零件，发动机零件，固定装置，手柄，或具有装饰表面的零件。

附图说明
[0034] 图1示出了含氮奥氏体不锈钢的等温转变图（TTT图）。
[0035] 图2a示出了一组锁紧垫圈。
[0036] 图2b示出了一组具有螺栓和螺母的锁紧垫圈。
[0037] 图3示出了现有技术方法处理过的锁紧垫圈（左）以及本发明的方法处理过的锁紧垫圈（右）的显微照片。
[0038] 图4示出了现有技术方法处理过的锁紧垫圈（左）以及本发明的方法处理过的锁紧垫圈（右）的显微照片。
[0039] 图5示出了现有技术方法（左）以及本发明的方法（右）处理过的AISI316样品的显微照片。
[0040] 图6示出了现有技术方法（左）以及本发明的方法（右）处理过的AISI304样品的显微照片。
[0041] 图7示出了现有技术方法以及本发明的方法处理过的不锈钢的硬度特征曲线。
[0042] 图8示出了本发明的方法的两个不同的实施例中处理过的锁紧垫圈。
[0043] 图9示出了现有技术方法（右）以及本发明的方法（左）处理过的AISI316样品的显微照片。
[0044] 定义
[0046] 在本发明的一个方面，“合金元素”可以是指在合金中的金属成分或元素，或在合金的分析中的任何成分。特别地，在本发明的方法中相关的合金包含可以分别使用存在的氮和碳形成氮化物和 / 或碳化物的元素。本发明的方法有利地提供了一个个不含合金元素的氮化物和碳化物的表面。然而，在本发明中还可以设想合金可以仅包含能够形成氮化物和 / 或碳化物的单一金属元素。合金还可以包含其他元素，如非合金元素、合金元素、或非金属元素。能够形成氮化物和 / 或碳化物的合金元素典型地可以是原子提供耐腐蚀性（由于与合金元素形成钝化氧化层）的金属元素。在本发明的背景下所使用的术语“氮化物”以及“碳化物”是指在合金元素与氮以及碳之间分别形成的氮化物和碳化物。示例性的氮化物是氮化铬 CrN 或 Cr2N，虽然术语“氮化物”以及“碳化物”不限于铬的氮化物以及碳化物。
[0047] 通过与合金或金属相连的术语“钝化”应理解为在表面上具有氧化层的合金。作为合金进行处理的结果，合金可以是自钝化或钝化的。属于自钝化合金的组的是对氧具有
很强的亲和力的那些（例如 Cr、Ti、V），包括含有这种合金元素的合金（例如含有至少 10.5% 的 Cr 的基本上是 Fe 基合金的不锈钢）。

通过术语“冷变形”（也称为“冷加工”）应理解为在低于材料的重结晶温度的温度下通过外力在材料中引起的塑性形变。冷变形可以由一种实际的塑性形变提供，如锻造、挤压、出成、拉伸、拉制或轧制，并且还可以通过机械加工（如车削、铣削、冲孔、研磨或抛光等）引起，或通过这些过程的组合引起。

通过术语“敏化”应理解为氯或碳与以其他方式用于在表面上形成保护性氧化层的一种或多种合金元素（例如不锈钢中的铬）进行反应分别形成氯化物和碳化物。当敏化发生时，固溶体中的合金元素（如铬）的游离含量降低到一定程度，该程度不再足以维持一个完整的保护性氧化层，这意味着腐蚀特征恶化。

通过术语“碳化物和 / 或氮化物的溶解温度”应理解为氯化物 / 碳化物不稳定的温度，并且其中已形成的氯化物 / 碳化物溶解。总体而言，包含能够形成氯化物和 / 或碳化物的金属合金元素的合金有一个温度区间，其中在该温度区间当氯以及碳分别存在时可以形成氯化物和 / 或碳化物。因此，高于此温度区间，氯化物和碳化物不会形成，并且已经形成的氯化物 / 碳化物溶解。当氯化物或碳化物存在时，即发生敏化时，这些碳化物总体上只能通过将敏化的金属暴露于奥氏体化温度以下的温度下去除。此外，这种合金具有该温度区间以下的温度，其中氯化物以及碳化物将不会形成，虽然已经在合金中形成的氯化物或碳化物在低温下不会被去除。

奥氏体化温度”典型地是当热处理合金以便溶解碳化物时所用的温度，并且因此“奥氏体化温度”可以对应于“碳化物的溶解温度”。在奥氏体化温度合金是处于奥氏体相。在合金从铁素体向奥氏体发生相变的温度典型地是在比奥氏体化温度稍低的温度。

奥氏体化温度以及在碳合金中形成碳化物和 / 或氮化物的温度总上是本领域技术人员所熟知的。同样地，低于氯化物或碳化物无法形成的温度总上是本领域技术人员已知的。此外，合金的溶化温度总上是本领域技术人员已知的。该温度可能取决于纯合金的组成，并且对于任何给定的组成，这些温度是由本领域技术人员很容易地实验确定的。

提及的合金含量是以重量百分数表示。有关于合金或气体不可避免的杂质的组成自然也可能存在，即使这没有特别提及。

具体实施方式

图 1 示出了含氮奥氏体不锈钢的等温转变图 (TTT 图) 的一个示例；不锈钢具有组成 Fe-19Cr-5Mn-5Ni-3Mo-0.024C-0.69N（来自 J.W.Simmons，博士论文，俄勒冈科技研究院 (Oregon Graduate Institute of Science and Technology)1993 年）。在图 1 中，其中氯化物可能开始形成的温度区间被指示为 “Cr₃N”。在本发明的方法中，因此将氯溶解在钝化合金中的第一步是在奥氏体化温度以下的温度 T1 进行，并且溶解氮和 / 或碳的第二步骤是在其中氯化物和 / 或碳化物可以形成的温度区间以下的温度 T2 进行。因此，温度 T1 高于温度 T2。优选的是工件在温度 T1 的第一溶解步骤后在例如 60 秒的时间范围内冷却至一个温度，该温度低在钝化合金中形成碳化物和 / 或氮化物的温度。因此，工件的钝化合金相对于形成氮化物和 / 或碳化物是稳定的，并且然后可以如所希望的执行第二溶解步
骤。在本发明的背景下，奥氏体化温度还可以被称为“高”温。同样地，低碳化物和/或氮化物形成的温度还被称为“低”温。

[0055] 本发明的方法包括将氮和/或碳溶解在碳化合金中的步骤。溶解氮的步骤还可以被称为“氮的溶解”或“渗氮”，并且同样地溶解碳的步骤还可以被称为“碳的溶解”或“渗碳”。当氮和碳两者都溶解在同一处理步骤中时可以被称为“氮碳共渗”。

[0056] 在某一方面，本发明涉及通过本发明的方法固溶硬化的构件。在本发明的背景下，“处理过的”应广义地理解。特别地，术语“处理过的”是指在构件的制造中已经采用本发明的方法。因此，本发明还涉及使用本发明的方法制造的构件，并且术语“在…处理过的”和“使用…制造的”可以互换使用。本发明的方法可以是在构件的制造中的最后一步，或通过该方法处理过的构件还可以进行进一步的处理步骤以提供最终构件。

[0057] 在本发明的背景下，“薄壁部件”是所具有的尺寸允许该部件使用在本发明的方法中的氮和/或碳完全饱和的部件。因此，“薄壁部件”可以具有材料厚度为，例如在它的高达并包括约10mm的最小尺寸，如约2mm至约4mm的厚度或在从0.2mm至8mm范围内的厚度，或从0.4mm至6mm范围内的厚度，或从0.5mm至5mm范围内的厚度，或从1.5mm至4.5mm范围内的厚度。该方法可用于任何薄壁部件。

[0058] 其中得到一个或多个上述目标的新颖且独特的方式是提供一种通过固溶硬化碳化合金的冷变形工件形成扩张奥氏体和/或扩张马氏体的方法，该方法包括一个第一步骤，在温度T1至少将氮溶解在工件内，该温度T1是高于碳化物和/或氮化物的溶解温度并且低于碳化合金的熔点；以及一个随后的第二步骤，在温度T2将氮和/或碳溶解在工件内，该温度T2是低于在碳化合金内形成碳化物和/或氮化物的温度。

[0059] 本发明特别适用于不锈钢以及类似的合金，其中扩展奥氏体或马氏体可以在低温溶解过程中得到。总体而言，基于铁、镍和/或钼和铬的合金是与该方法相关的。铬含量可能发生变化并且例如可以高达约10%。在其他实例中，铬含量可能是在约10%或至少10%。因此，本发明在一个实例中涉及一种用于固溶硬化不锈钢的冷变形工件的方法。不锈钢中的氮以及任选的碳还可以在以下温度溶解，该温度高于不锈钢的奥氏体化温度，例如存在的合金元素（如铬）的碳化物和/或氮化物的溶解温度。即使相对少量的氮可产生显著的强度增加来提供负荷承载能力，这对于耐磨扩展奥氏体是必要的。在本发明的一个实例中，扩张奥氏体区或扩张马氏体区的硬度是至少1000HV。

[0060] 在本发明的一个实例中，不锈钢是奥氏体钢。这种材料相比例如马氏体不锈钢是相对较软的。因此，氮以及任选的碳在高温过程中溶解对于这种材料是特别有利的。因此，得到的奥氏体钢获得足够的核心强度来弥补强度的损失，这在冷变形消失时发生，并且然后有可能在低温下溶解氮和/或碳，而没有析出物质（如碳化物和/或硫化物）的问题。在本发明的其他实例中，碳化合金中包含不锈钢、奥氏体不锈钢、马氏体不锈钢、铁素体不锈钢、沉淀硬化（PH）不锈钢或铁素体-奥氏体不锈钢的组合；铁素体-奥氏体不锈钢还可以被称为双相不锈钢。

[0061] 氮以及任选的碳（其在不锈钢中在高温过程中溶解）的含量典型地是小于按重量计1%，但是（如果希望的话）可以更高。这可以例如通过施加更高的氮以及任选的碳的活性，例如在气体过程中以更高的氮分压的形式。（在不锈钢中在低温溶解下得到的）氮和/或碳的含量可分别高达按重量计14%以及按重量计6%。
在本发明的一个实例中，温度 T1 是在 1000°C 以上，例如至少 1050°C，或者它可以是至少 1100°C，例如 1120°C 或 1160°C、至少 1200°C、或至少 1250°C。温度的上限是低于处理过的材料的熔点。对于不锈钢，熔点是约 1600°C。在本发明的一个实例中，温度 T1 是低于 1600°C，如低于 1500°C，或低于 1400°C，例如低于 1350°C。在本发明的一个实例中，温度 T1 是在 1050°C 和 1300°C 的范围内，例如在约 1150°C。重要的是，温度高于有关的碳化物和 / 或氮化物（可能潜在地在材料中形成）的溶解度，但低于处理过的材料的熔点。当气体在温度 T1 在溶解中采用时，所用的温度可以考虑气体混合物以及施加的气体压力来选择。

在本发明的另一个实例中，碳在温度 T2 溶解，并且在渗碳过程中温度 T2 是低于 550°C，优选在 300°C 至 530°C 的范围内。

在本发明的又一个实例中，氮在温度 T2 溶解，并且在渗氮过程中温度 T2 是低于 500°C，如低于 470°C，优选在 300°C 至 470°C 的范围内。

在本发明的又一个实例中，氮和碳在温度 T2 溶解，并且在氮碳共渗过程中温度 T2 是低于 500°C，如低于 470°C，优选在 300°C 至 470°C 的范围内。

在本发明的一个实例中，高温溶解是在温度 T1 进行至少 20min，例如至少 30min、或至少 1 小时、或至少 1.5 小时、或至少 2 小时或至少 3 小时、或至少 4 小时、或至少 5 小时、或至少 10 小时或至少 15 小时。原则上没有时间上限，因为在温度 T1 没有形成氮化物或碳化物。在延长的处理中，根据其厚度，材料可以是使用氮以及任选的碳饱和的，即完全碳化的或氮碳共渗的。

在本发明的一个实例中，该方法包括在温度 T1 的溶解步骤后将工件冷却到一个温度的中间步骤，该温度低于在钝化合金中形成碳化物和 / 或氮化物的温度，例如该材料可以在温度 T1 的溶解后冷却至室温。特别优选的是在温度 T2 的第二溶解步骤是在冷却步骤后立即执行的，这将避免工件的钝化，即形成氧化物层。在本发明的一个实例中，冷却发生在与溶解同样的气体中，例如在高压下使用 N₂ 气体冷却，如在 6 巴至 10 巴的范围内，如
在 7 巴或在 8 巴，或在 9 巴。优选的是，冷却发生在不含氨的惰性气体中，如稀有气体，例如氦（He）、氖（Ne）、氩（Ar）、氪（Kr）、氙（Xe）、或氡（Rn），或这些的任何混合物，其中氪是特别优选的。在另一个实例中，冷却在高压下发生在氨中，如在 4 巴至 20 巴的范围内，如在 6 巴至 10 巴的范围内，如在 7 巴或在 8 巴，或在 9 巴。

本发明还涉及使用本发明的方法硬化烧结的用于固定螺栓和螺母的不锈钢的锁紧垫圈（参见图 2a 和图 2b）。锁紧垫圈是相对薄壁的，所以使用本发明的方法硬化锁紧垫圈，得到了锁紧垫圈的强度和耐磨蚀性这两者的显著且必要的改进。在本发明的一个实施例中，锁紧垫圈由带径向槽的第一侧以及带凸轮的相对另一侧（凸轮侧）。锁紧垫圈用于与凸轮彼此相对地成对安装以获得锁紧垫圈效应。它们尤其适合于有效地锁定暴露于极端的振动或动态载荷及腐蚀性的环境中（如盐水）的螺栓组件。因此，强烈要求这些垫圈的强度和耐腐蚀性。

本发明特别适用于不锈钢和类似的合金，其中扩张奥氏体或马氏体可以在低温溶解过程得到。然而，本发明本质上是通用的：在钝化合金，如铁基合金、钴基合金、镍基合金或铬镍合金中使用氮以及任选的碳的高温溶解过程，该过程提供了强度和关于腐蚀、处理速度以及强度的一种改进的低温溶解过程。

下面的实例用附图进一步详细说明了本发明的实例。

通过现有技术的方法和本发明的方法硬化变冷变形的奥氏体不锈钢（AISI316）的键锁紧垫圈。

将两个相同的冷变形奥氏体不锈钢 AISI316L 的键锁紧垫圈进行硬化。图 2 示出了所述键锁紧垫圈 2 的键锁紧垫圈组 1 以及其使用。每个垫圈 2 具有带径向槽 4 的第一侧 3 以及带凸轮 6 的相对另一凸轮侧 5。在键锁紧垫圈组 1 的使用过程中，如所示垫圈 2 被放置为与凸轮侧 5 彼此面对。两个键锁紧垫圈在 440℃的温度下使用氮和碳固溶硬化。一个垫圈使用本发明的方法硬化，即在高温过程中和随后在低温过程中，并且另一个垫圈使用即现有技术的同样的低温过程直接表面硬化。使用光学显微镜分析该垫圈。图 3 和图 4 在左侧示出了仅使用氮碳共渗过程表面硬化的垫圈。氮碳共渗过程的进行是使用含有氮和碳的气体在 440℃的温度下大气压力下持续 16 小时。在含氮区的表面呈现部分敏化（氮化铬沉淀）。变形的衬底出现强烈变形并明显受到了为发展微观结构而采用的蚀刻液的影响。图 4 示出了图 3 的放大版本。

图 3 和图 4 在右侧示出了使用本发明的方法处理过的垫圈。该垫圈暴露在高于 1050℃的温度下的含氧气氛（N₂气体）中并随后在同样的气氛中迅速冷却。因此该材料是完全奥氏体化的并且该材料是用氮气完全饱和的。然后该垫圈使用氮碳共渗过程表面硬化，该氮碳共渗过程的进行是使用含有氮和碳的气体在 440℃的温度下大气压力下持续 16 小时，从而在区域中的表面形成的扩散奥氏体具有厚度为至少 5 μm。氮碳共渗的含氮区没有敏化并且衬底明显没有冷变形。然而两个垫圈的衬底硬度（260–300HV0.5）以及表面硬度（1200–1400HV0.005）实际上是相同的。其中采用本发明的方法的垫圈的耐腐蚀性（在盐雾室中的暴露时间（1S09227））比仅表面硬化的垫圈好很多倍（在空中小观察到腐蚀的时间）。使用本发明的方法处理过的垫圈在 400 小时后没有表现出腐蚀，然而直接低温硬化的垫圈在 20 小时后表现出清晰可见的腐蚀。
[0078] 实例2

[0079] 通过现有技术的方法以及本发明的方法硬化冷变形的奥氏体不锈钢(AISI316)。

[0080] 将冷变形的奥氏体不锈钢AISI316的两个相同的部件（后套圈）在440℃的温度下
使用氮和碳固溶硬化。一个部件使用本发明的方法硬化，即在高温过程中和随后在低温过
程中，并且另一个部件使用同样的低温过程直接表面硬化。图5在左侧示出了一个部件使
用光谱显微镜进行的微观结构分析，其是仅使用氮碳共渗过程表面硬化的，该氮碳共渗过
程的进行是使用含有氮和碳的气体在440℃的温度下大气压力下持续12小时。在氮碳区域
中的外表面呈现部分敏化在最外表面出现明显的CrN析出物。图5在右侧示出了使用本发明
的方法处理过的部件。该部件暴露在高于1050℃的温度下的含氮气氛(N₂气)中并随后在
同样的气体中迅速冷却。然后该部件表面使用低温过程的氮碳共渗过程硬化，该氮碳共渗
过程的进行是使用含有氮和碳的气体在440℃的温度下持续12小时。氮碳共渗的含氮区没
有敏化。然而两个部件的衬底厚度(260~300HV0.5)以及表面硬度(1200~1400HV0.05)实
际上是相同的。在这两种情况下，扩张的奥氏体区的总厚为约20μm。最外层是氮扩张的
奥氏体，而最内层是碳扩张的奥氏体。两个部件的耐腐蚀性是在按重量计14%的次氯酸钠
溶液中测试。使用本发明的方法处理的部件在24小时后没有表现出腐蚀，而直接低温硬
化的部件在10分钟后表现出清晰可见的腐蚀。因此其中采用了本发明的方法的部件的不同
之处在于具有比直接氮碳共渗的工件显著更好的耐腐蚀性。

[0081] 实例3

[0082] 通过现有技术的方法以及本发明的方法硬化冷变形的奥氏体不锈钢AISI304板。

[0083] 将两个相同的冷轧的(变形的)奥氏体不锈钢板AISI304的部件在440℃的温度下
使用氮和碳固溶硬化。一个部件使用本发明的方法硬化，即在高温过程中和随后在低温过
程中，并且另一个部件使用同样的低温过程直接表面硬化。图6在左侧示出了仅使用氮碳
共渗过程表面硬化的另一个部件，该氮碳共渗过程的进行是使用含有氮和碳的气体在440℃
的温度下持续20小时，并随后暴露于按重量计14%的次氯酸钠溶液中30分钟进行腐蚀测
试。图6在右侧示出了使用本发明的方法处理过的部件。该部件暴露在1150℃的温度下
的含氮气氛(N₂气)中30分钟并随后在同样的气体中迅速冷却。然后该部件使用氮碳共渗
过程表面硬化，该氮碳共渗过程的进行是使用含有氮和碳的气体在440℃的温度下持续20
小时。最终该部件通过暴露于按重量计14%的次氯酸钠溶液暴露于腐蚀测试。表面即使经
过16个小时的暴露仍呈现未受腐蚀试验的影响。直接低温硬化的部件在短期暴露/腐蚀
试验(70分钟)后可见明显的腐蚀。因此其中采用了本发明的方法的部件的不同之处在于
具有好得多的耐腐蚀性。

[0084] 实例4

[0085] 通过现有技术的方法以及本发明的方法处理的冷变形的奥氏体不锈钢的硬度特
征曲线。

[0086] 将两个相同的冷变形的奥氏体不锈钢的部件通过现有技术的方法以及根据本发
明的方法处理。将样品暴露于高于1050℃的温度下的含氮气氛(N₂气)或氢气(H₂)气氛
中并随后(对于N₂处理的样品)在氮气或H₂气体中迅速冷却。然后该部件表面使用低温过
程的氮碳共渗过程硬化，该氮碳共渗过程的进行是使用含有氮和碳的气体在440℃的温度
下持续12小时。氮碳共渗的区没有敏化。分析了样品的硬度特征曲线并将结果示于图7。
从图 7 中明显的是，在含氯气氛中高温处理 (“EXPANITE ON HTSN”) 的样品保留材料的核心强度，而在氯气中高温退火 (“EXPANITE ON ANNEALED”) 的核心强度消失。

[0087] 实例 5
[0088] 用氯气高温固溶硬化接着氩气冷却。
[0089] 如在实例 1 中所描述并且示于图 2, 将冷变形的奥氏体不锈钢 (AISI 316L) 的锁紧垫圈暴露于在高于 1050℃的温度下含氯气氛 (Cl₂ 气体), 然后在同样的气氛或氮气气氛中迅速冷却至室温。样品没有进行进一步的表面硬化。部件的耐腐蚀性是在按重量计 14% 的次氯酸钠溶液中进行测试。图 8 表示了在氩气中冷却的三个示例性的锁紧垫圈 (左侧) 以及在氯气中冷却的三个锁紧垫圈 (右侧)。氩气冷却的锁紧垫圈具有比氯气中冷却的锁紧垫圈 (表现出明显的腐蚀迹象) 远远优越的耐腐蚀性。

[0090] 实例 6
[0091] 通过现有技术的方法以及本发明的方法硬化冷变形的奥氏体不锈钢 (AISI 316L) 部件。
[0092] 根据本发明处理过的冷变形的奥氏体不锈钢 AISI 316 的耐腐蚀性与现有技术的方法处理过的类似部件是可比的。腐蚀测试是通过将两个表面硬化的部件浸到按重量计 14% 的次氯酸钠溶液持续 18 小时进行的。
[0093] 图 9 在左侧示出了根据本发明处理过的部件，即在高温过程中和随后在低温过程中，并且另一个部件使用同样的低温过程直接表面硬化。
[0094] 根据本发明处理过的部件的表面即使经过 18 个小时的暴露仍呈现未受腐蚀试验的影响。根据现有技术处理过的部件在短期暴露 (7 分钟) 后观察到腐蚀。因此采用本发明的方法的部件的不同之处在于具有好很多的耐腐蚀性。
图 3

图 4

图 5
图6

硬度特性曲线

（在含氮气氛中高温处理）

- EXPANITE ON HTSN
- EXPANITE ON ANNEALED

（在氨中高温退火）

图7
图 8
图 9