US 20230096502A1

a2y Patent Application Publication (o) Pub. No.: US 2023/0096502 A1l

a9y United States

Tadkase et al.

43) Pub. Date: Mar. 30, 2023

(54) SYSTEM TASK MANAGEMENT FOR
COMPUTING SYSTEMS

(71) Applicant: NVIDIA Corporation, Santa Clara, CA
(US)
(72) Inventors: Ashutosh Tadkase, Los Altos Hills, CA
(US); Akash Bellubbi, San Jose, CA
(US); Ian Tramble, Mountain View,
CA (US); Peter Boonstoppel,
Pleasanton, CA (US); Suraj Das, Santa
Clara, CA (US); Ranvijay Singh, Santa
Clara, CA (US); Sever Topan, Burnaby
(CA); Albert Davies, San Jose, CA
(US); Linda Xiong, Milpitas, CA (US);
Sharat Janapareddy, San Jose, CA
(US); Ashkan Vafaee, Austin, TX (US);
Sai Gurrappadi, Santa Clara, CA (US);
Bruce Holmer, Belmont, CA (US);
Vishanth Iyer, San Jose, CA (US);
John Lore, San Jose, CA (US); Ian
Howson, Santa Clara, CA (US); Pulkit
Desai, San Jose, CA (US); Michael
Cox, Menlo Park, CA (US)

(21) Appl. No.: 17/929,674

(22) Filed: Sep. 2, 2022

Related U.S. Application Data

(60) Provisional application No. 63/261,827, filed on Sep.
29, 2021.
Publication Classification
(51) Imt. CL
GO6F 9/48 (2006.01)
GO6F 9/30 (2006.01)
GO6F 9/54 (2006.01)
(52) US. CL
CPC GO6F 9/4881 (2013.01); GOGF 9/30087
(2013.01); GOGF 9/544 (2013.01)
(57) ABSTRACT

One or more embodiments of the present disclosure relate to
executing, by a plurality of compute engines, a plurality of
runnables of a computing application based at least on an
execution schedule and a set of commands associated with
the execution schedule. The execution schedule may be
generated using a compiling system to include the set of
commands. The set of commands may include one or more
individual commands corresponding to one or more timing
fences dictating a timing and order of execution of one or
more individual runnables of the plurality of runnables.

200
~~~~~~~~~~~~~~~~~~~~~~ . #
Application | Runnalle
Data Data
208 208
Compute Execution
Graph{s) {! Consfraints
212 210
Schadule Compiling Engine
202 Scheduling
Engine
Pre-Pracessing Unpackes App 216 intermediate Post-Processing Schedulels)
Engine — Data e - et Schedulels) o Engine vy i
214 220 Debugging 224 =
Engine
228

Instruction Set




US 2023/0096502 A1

Mar. 30, 2023 Sheet 1 of 37

Patent Application Publication

Vi Oi4

P

Bumors |

irpeY

yariy aug

uoRosIe(
sseupuyy

|

Buppnei}

Londa0Iag Buissasoidsid

UiBd afeul / 431

uondenisd
ellsle)

&

uolosiaQ
aoedsssid -

/193

RIE(] JOSLISG




US 2023/0096502 A1

Mar. 30, 2023 Sheet 2 of 37

Patent Application Publication

04100
SRUBUAQ SIDIUBA

gl "Old

|

i

Piald
32044 A1gjeg

§

|

FZAY

5

Buiueld

oARYSY

HONBZIBI0T

i

3

LOISNG J0SUSS s €
i
. % &
SISARUY Uied M uonewisy pesdg
ujBREISGe | jeouBisi g |
Alllll/\ $~
SHOBIPUOT JEBM e




US 2023/0096502 A1

Mar. 30, 2023 Sheet 3 of 37

Patent Application Publication

Ve "Old
92¢
188 UCRoNASY|
|
822

“““““““““““ auibuz

......... 8ig ree BuiBbnasg 44 Fic
Amvmmmww%m subug (s)oinpaipg g1eq] - auibu3
fUISSB0044-1504 slBIpsULLISIU 917 ddy pasoedun fUs$a00i4-3ld
AN auibug
Bunpsyog 202

auifuz Buipdwon sinpsyog

5

0Lz 2ié
siuensuon 1] {siydein
LonNDBxXy ainduion
80¢ 920z
e1eQ Ble(]
ojgeuuny | uonesyddy
N




US 2023/0096502 A1

Mar. 30, 2023 Sheet 4 of 37

Patent Application Publication

Ndo

8¢ ‘Ol

fdO

vid

Nd0

Nda

vana

uondaniad 10890




Patent Application Publication

Mar. 30, 2023 Sheet 5 of 37

<
(
o
&

fio]
23]
<
ra]
<
o i e
] ] Q.
& G o
&) O

w0
£

US 2023/0096502 A1

FiG. 2C



1 &
2 az ‘ot
(=
2]
o
2
m GHOCA | SHOOA | JHOTA [ B8 D0A | SHOOA L W OCUA | S# O0A | 24 D0A | W O0A | O# D0A £Ndo
8
(o]
wn
=) 7F UIRI] CIBUED V¥ SURI CIBlET (i Gliel] eisiEn
OF BB TEhEY PidD
-
= 7¥ SWIEI] BIWET P NENEIEN ENEINEIEE,)
o 08 a0l JepEy NdO
2
7
e 9Nda
S N
= 987
* 7H BUIBIY EIBWEs [ SUiEI] BIBWED 8 SUIEId EIBWEY “
= (7 3014 epey AdO!
=
=
=
m , a3 n0d sod e a0d
2 Ggzwods 1 | T ez wodg 24z yood3 qz22 yood3 242 yood3
[~™
g 28z Ypod3 p4Z Yood3
= yoodg-sndAn
<
=
=
g . 08z . 042



—
« .
S 32 94
['g)
o
(=)
[l
>
-
o
>
o
wn
= ndo Ndo e
W LIDM W T LIDM s 130M | N
I~ O# Z 0# A 0 X N 762
[
(=]
r~
)+
2 Nds Nds
«x SWZ JIOM = SWZ 1I0M e
~ 43 043
>
(S e e
=
“ Ndo NdD Ndd fidd
5 U] IL30OM W T LI0M St J130M St} TLI0M
= s VO LYy P 0# 0 OB Y
S L 30M W L IOM
1#a — At Ndo
SUWLCLIDM e SWLCLIOM e
P4 g = 04 9
N gp67 «/tmam

062

Patent Application Publication



US 2023/0096502 A1

Mar. 30, 2023 Sheet 8 of 37

Patent Application Publication

¢ "9l

AEDIE W5

267

s sy,

a - o . wos § ) .
vo 560 0 59 A A3 vy 599 0
B £ 5 5 k- ¥ kS 2 2
-1 ¥ X L] £ L] L3 .4 k-4

1097 abuey

opun

ey 99i5

doig

oy

00100

fkad:]

BTy

BADRY O}

GG BAEG

21 SARY

RIAnS”epno gIusi

P v

_ QeImMIGRE ™ eprD Qe

Ziapuans epnogleap

GApRGNS PG

/mwm

—

HidouneEp
GNP

fdynnesep

Lk
M1ETYAnRO uRip

st 4




Patent Application Publication  Mar. 30, 2023 Sheet 9 of 37 US 2023/0096502 A1

296~




Patent Application Publication = Mar. 30, 2023 Sheet 10 of 37  US 2023/0096502 A1

VERSION 15.0.0
SCHEDULE 101
HYPEREPOCH]
o [

}

SYNC{

s0(1,{clientGpuY CPU}{clientGpuX.CUDA}Y;
s1{1,{clientGpux:CPU} {clientGpuY . CPU{), clientGpuY . CUDA( 1)},

s2(0 {clientGpuY . CUDA{1)}.{framesync_default_hyperepochD_epochG:CPU(};
s3(0,{clientGpuXCCUDA{1}}, {clientGpuY:CUDA()});

s4(1,{clientGpuY . CPU()} {clientGpuY.CPU(}, framesync_default_hyperepochl_epochC:.CPU(Y;
s5(1,{framesync_defaull_hyperepochl_epochd:CPU(, {clientGpuX.CPUY;

}

FENCE{
f0(s0,1);
f1{s1,1);

}
CLIENT(default:clientGpuY(8)) {
RESOURCES({

CUDA CUDA_STREAMY;

}

FIG. 2H



Patent Application Publication = Mar. 30, 2023 Sheet 11 of 37  US 2023/0096502 A1

CORE(D, 11){
WOF f1;

CUF 13, CUDA_STREAMY:

CUF 11, CUDA_STREAMY:

CUSUB [11: 0 % 1] 2, CUDA_STREAMY, submit(4);
SIG f4:

CALL [11: 0 % 1] testt{3);

SIG 10;

}

}
CLIENT{default:clientGpuX(9)) {
RESQURCES{

CUDA CUDA_STREAMX,;

}

CORE®, 11) {

WOF f5;

CUF 10, CUDA_STREAMX;

CUSUB [11: 0 % 1] 13, CUDA_STREAMX, submit(7);
SIG f1;

}

}
CLIENT{default:-framesync_defaull_hyperepochD_epoch{11)} {
RESOURCES({

]

CORE(D, 1) {
LOG 0(10);

SIG 5.

WOF [11: 0 % 1]#4:
WOF [11: 0 % 1] £2
LOG 1{10);

WUP 100000000(10):
}

}

FIG. 2



US 2023/0096502 A1

Mar. 30, 2023 Sheet 12 of 37

Patent Application Publication

1A%
Bunpayog

anNpayYos
LONNeX

9z¢
aouenbeg
ety

Ve "Old

BiE
sisAjpuy
auibug amndwon

pie
sishjeuy
Ayoieian sjgeuuny

sisjeueled
Buynpeyos

Zie
sisheuy
uonezuocfisies sjgeuuny

Lonessue
aousnbag [Briu

LORBIBLSY) BINPBYIS

uoliesiuep
Yied jeonln

80¢
sisAjeuy
Aouspuada(] sjgruuny

20¢
sishjeuy Bleq uonesyddy

90¢
g12(] Uoneoyddy

R
N 008



Patent Application Publication = Mar. 30, 2023 Sheet 13 of 37  US 2023/0096502 A1

/-364

FIG. 3B

1 Critical Path Node
1 Out-Branch Node

4 In-Branch Node




US 2023/0096502 A1

Mar. 30, 2023 Sheet 14 of 37

Patent Application Publication

|Npaldg
UONND8XT

il
sisAjeuy
gjeqy uoneoyddy

vy Old

¥

Ziv 9iy Lt
UOH3OI9S e ﬁ%mmmmmoo wwmwmﬁﬁma
yourig Uipunog unpaYos

N\ AN

1
SUSIORIBYY) lwe sishjeuy
youeig youelg Bleq uojeoljday

AN

~— Q0¥




US 2023/0096502 A1

Mar. 30, 2023 Sheet 15 of 37

Patent Application Publication

gy "9ld

{ swinds ) { swiz:ndn

E

swegl | W [4d
.




US 2023/0096502 A1

Mar. 30, 2023 Sheet 16 of 37

Patent Application Publication

S
PaUIGIOY)

Busui sinpsyog

SinpaYIg
Atepuooss

UONBIoUIG)

BINpayog
Alepuodsg

BOY
anpeuns Aelwlid

Loneaua)
ajnpayog Aeilg

B1eq
ucneaddy
AlBpuosss

a0g
2R} uoneoyddy
Arewtid

¥,
N 008



US 2023/0096502 A1

Mar. 30, 2023 Sheet 17 of 37

Patent Application Publication

b2
auibug sishjeuy

9

8YD YRaH

9r9
1Byoey) sousnbeg

59
iowoeyy Bunur g

Zi9
subug Buuopuopn

| 4529 Q] e |

Bot swnuny

TN
e

4089 N 1usiO

069
Aowspy paieus

oFEg G 1Usl)

202 £ W3

BUUNY

SNpaYdg

AN

(s}sinpayos

3

4%




Patent Application Publication = Mar. 30, 2023 Sheet 18 of 37  US 2023/0096502 A1

[42]
&
o]
o -3
L83
fap]
(A8
@
< v Qg
]
o0 KT
<1
oo
7 e 5 7
Eé:’;a.w
1 S & R
O



Patent Application Publication = Mar. 30, 2023 Sheet 19 of 37  US 2023/0096502 A1

e e
A e

Request To
Restart
Schedule

-
N - B
| 25
7etT T el - T gN
}.....

Dead-Time
Dead-Time!
FiG. 6C

Schedule,
Responds

STM Stops

Request To
Stop
Schedule




US 2023/0096502 A1

Mar. 30, 2023 Sheet 20 of 37

Patent Application Publication

as ‘oid

i
i

e PLIMG BNDIYDS

SO

i
i

POUIIMS BINPBYIG——emt §]

: “ ,
§ 1 i
5Q “ |
S— UDHMEG SInpaLeg Kenbay S—) ”
Qi | M
” “ HOHMS BINPBUSS 1sanbay 21
i i {
w 3uo(] uoneInByuooaY , ¢l
§ i i
£ai | “ M
3 H {
: : ainbiuoony 0] Sjuel) ongsu— 71
§ i i
¢ 1 §
—paddoig Bnpayns JueLng “ paddo)g apeYns JueUng—— €1
20! “ ”
i { i
e BINPBYDG OIS 0] J5enbey -1 71 !
\a “ M
w “ sinpsung doig o} 1senbey 1L
4444444 0i9
e 229 wajshs
m%wmmwmw WIS slisbeury

Bl




uojeszi] 49 9ld

poe 00¢ 00t 0

US 2023/0096502 A1

[t
(sw) st} LOENOSXT

& %45 G Bl TuoSIACIdIBAC
S
M ¢ %0008 DRI TUCHRIOIA BUI 0aXe
(g\]
M 14 %00°001 JeJfTUORBIOIA BUIpEaD
wn
< SUOHEBIRY SSOI0Y S| LORNDSXT %000 Jed UDIBIOIN LES
<
(g\]
=3 SN Eeeeet 13 %066
Mw Bl UOIN0BXT
= P4 L 0 SN GE'Y69¢ 13 %066
= _ {
S0 G994ty 13 %666
149 "
WJ 150H5$8001d TBpONISNIEL | BITIES B|dLIBS MY ] M BISWEBUUNYPEOY
=

094

Patent Application Publication

LONNGUISI) SWI | LORNISXT



US 2023/0096502 A1

2023 Sheet 22 of 37

30,

Mar.

ication

Publ

Patent Application

49

ol




US 2023/0096502 A1

Mar. 30, 2023 Sheet 23 of 37

Patent Application Publication

H9 "9

{suwieuysuiy
05 8 Oy ¥v av Oy 8C 8C & 2C O€ 8 9 ¥C <2 02 8L 8 ¥ & Ob 8 & v ¢ O

ageinuies

I NdO-uetpsw
ZfldD-uBipaiy
ENdO-uRipal
dO-ueipsl
GlidQ-ueipaty

UV LOIABL S0 DIOSUSSEIBLIES

poNOIRlagAINER; HBUISSE00IIRIJRIALIED (I0SUSSEIR

Wb UnLeAQ

1WBHYBIH 01 WaRg |
I HIY

~ ouaodaiadAy |

WiBHuBiH 0} piomdey yoreeq _ o




Patent Application Publication  Mar. 30, 2023 Sheet 24 of 37  US 2023/0096502 A1

FIG. 6H




Patent Application Publication  Mar. 30, 2023 Sheet 25 of 37  US 2023/0096502 A1

7‘00—~\
Application Data _ RT Engine
706 B - il
3
- Tuning Engine
712
4
¥
Schedule . Verification Engine -
704 714
8
- Testing Engine
718

FIG. 7



US 2023/0096502 A1

Mar. 30, 2023 Sheet 26 of 37

Patent Application Publication

8 ‘Ol

swiumy

BUHILINY

(s}airpeyog

195 LOONASU)

BINPOLOS

aubug
wistuaBeuspy
SnpsLag

AN

908
g1e] uoneoyddy




US 2023/0096502 A1

Mar. 30, 2023 Sheet 27 of 37

Patent Application Publication

6 "I

e

syuesuoy Buiropy siopy JO 2UD U peseg Buieg
Buiaopy 84} ‘SINPSYIS UoRNDeX3 1814 8y uj sdes) siop
108U sendod 04 $ejqruuNy 8y JO $O|qRULINY SIOW 10
au() Buiaopy Butpniou BUApOW 2Y L "ainpayog uonnoexs
pUODaS Y S1RIBUBL) O] JNPBYsS ueHNasx3 1Mt syl AJIpon

§

2069~

waysAg Bugndwon y Ag ssjgeuuny JO Uonoex3
104 8NPAYIS UOHNDSXT 1544 ¥ BUILLSIS(]

006~




US 2023/0096502 A1

Mar. 30, 2023 Sheet 28 of 37

Patent Application Publication

0L "9id

90049~

youeig Buynpsyog sy up
10188 /YL O 8inpeydg

15887 1Y DOSEq SAIgRULINY
UOIINDBYT Uy auiuLelsg

§

,

0019~

sjulessuen Buipunog eio
Buinpayosg aiop JO
youelg SI0p 10 au

I 10 BUQ IO ‘sisisuieied
BUQ) ‘SonBUBIIRIEYD
O IO IO IO BUQD

U 18897 1y peseg yourlg BuInpsyos v 10985

§

)

20019~

sejqeuuny JO 188 8U1 JO se|qeuuny JO 19sqns v
15887 1y JO UoiNoaxs Buinpeyos Yim pejeoossy
sayouelg Bunpayag sidnn ‘sejgRuUny IO
198 ¥ sapnjou] jey | uogeoyddy Bunndwod v Y

PSIBIN0SSY BIB(] UONED

ddy uQ paseg ‘Ajuap

0001 \




US 2023/0096502 A1

Mar. 30, 2023 Sheet 29 of 37

Patent Application Publication

18

Ol

0119~

seuibug synduwior) aidi

i Buisn sejgeuuny

ol JO UOYNISXT 104 SNPBYoS UoHnoexg uy
‘gre(] uoneoyddy sy uQ 19687 1Y posey ‘elRieusn

§

!

20419~

voneoyddy Bunndwon v oy Buipuodsencn
SOIGBULNY JO 2ALEIIDY| BlR( uonedddy sae08Yy

8:\&




US 2023/0096502 A1

Mar. 30, 2023 Sheet 30 of 37

Patent Application Publication

¢k Ol

0249~

SINPBYSS 8y anoaxg

20218~

uoneoyddy Bunndwon v o} Buipuodsasios ssjgeuuny
1O 8AgeaIpY} eleQ uojeDlddy UQ ises Iy peseq

fueg Bunessuad syy ‘ssuibug sindwo sidinyy Buisn
S8IGEUUNY 10 UOIINDBYNT 104 9INPSYIS Y S18iausD)

oomn\




US 2023/0096502 A1

Mar. 30, 2023 Sheet 31 of 37

Patent Application Publication

o

Ol

0019~

BULIO)LCK BU ] UQ) 15897 1Y PasEs] SIUIBASUOT

LONRNDBXT BIOW JO) 8UD U]

(AL SOUBHWON suuIBe(]

3

|

20618~

sajqeuuny sy} o} Buipuodsauion sinpaysg
UONNoaXT Uy U 15887 1y pesey Buleg se|geuuny sy

10 Bunnoaxg sy ‘weishg
ag Aepy 184 SSjqRULNY

Bunndwon v Ag painoexy
1O uonnosx3 Buloyuow

oomn;\x




US 2023/0096502 A1

Mar. 30, 2023 Sheet 32 of 37

Patent Application Publication

vyl 9id

44444444444 4
Byl WBJSAS
bopr ADERY_ -108UBS  Zopl
,,,,,,,,,,, josueg e /V [ ofeid sosueg
™ TUONRIGIA e gy
e ) e s G ok -
- _ . i

.Mmmmm // ~108U8% ~ JBIBB00Y  SUCUdoIOHN H08UBT ~ ﬂ HoReIgiA wosusy

4! \ paadg fBmoN | e AT peeds yap)
josusg | NN | | I08USS
omoseln ™\ |\ ‘ O Ve /7 eon i

ki / o ___Josueg
Smémua/ \ mu R A A o A 7 oS S fepey
//@ - L suoydop
Sl T .14 P
e (shiosuss N sl

““““““ e Gopl \ﬁ « _ {03U8g
o w%cwmww \\\ Jworshs uoisindoid g Qfuosedin
amg \\ (Y \ \ GEbi

i/ Josusg buyss)s - | \ Gop - (shalioquoD
BiBUe , pEvL / \_ eoeua

meﬁm;\ Reydsiqy - ﬁz wewnasy \ ““““““ Y o momwmv,w

vivi v “ 96ki / 9itt
BISLUED pUnoung -~ - auoydoloy (s)euueuy sSajei

%3\\



US 2023/0096502 A1

Mar. 30, 2023 Sheet 33 of 37

Patent Application Publication

grl "Old

8671 vivl FivL 0ivl 86¢1
UNoW Biolen) {sieiswen eiauen BiBWET)
Jouy Buip UNOUNG ~ -punoung — RASIA SPIAA sbuey-Buo

‘gigiue) q w » J

obuey-pIN (

89r1 8%%
eloniEs - BIBuIRD
08IRIG 084815
{ [y U g6t1
sisi / _\/Amvmhw&mu ] Ziri RiBlEN v
JLNOW punoung Blalie]) peleyu abuey-fuo
o Bui <
‘Biouen
sbuey-pip



Patent Application Publication

Mar. 30,2023 Sheet 34 of 37

US 2023/0096502 A1

GNSS Radar Ultrasonic LIDAR MU ,
Sensor(s) §1 Sensor(s} || Sensor(s) || Sensor(s) }| Sensor(s) Macr{ﬁg%ne(s)
1458 1460 1462 1464 1466 1
; E l : E l
{ | ! { {
Stereo Wide View infrared Surround Long/Mid-
Cam(s) Cam{s) Cam(s) Cam(s) Range Cami{s}
1468 1470 1472 1474 1488
| infotgg‘ténem SoC 1404(B) CRU)
1430 S raodp | Wl
1402~
Instrument 612%%8) Gﬁgg) | GPU(s) 0
1 Cluster 1420
1432 Processor(s})
1410 HD Map
| HMI Display Cache(s) 1422 1 1496
1434 1414 ha
Netwaork
Accelerator(s) Interface
ADAS
- System etk e
1438 < ) <
Data Store(s) | Datg Store(s) |
Controller(s) - z é
1436 i e
l | l |
Steering Vibration Speed Brake Propulsion Steering
Sensor(s) |1 Sensor(s) { | Sensor(s) Sensor System System
1440 1442 1444 System 1450 1454
1446
{
Brake Throttle/ Steering
Actuators Accelerator Actuators
1448 1452 1456
e /:’5*'5{%;%;%%?:%3:\}{%*\*?\\ -7
¥ C‘“}W—&* i
CoA M0 AN
N LB
N/ N/

FiG. 14C




US 2023/0096502 A1

ari "Old

{ShuomianN

Mar. 30, 2023 Sheet 35 of 37

] HPBEL L Ohsri |\ ] (Orerl
M Ndd Ndo . NdD
| -
M P 885
§ b §
| § }
I R B - L N
N 77T E172:7 2 WU SR RN i /17
» Ndo d9 RS Nds
E , w T :
P o —
Ll pr—— p— G r—
s BN (0)77:17) Olsrl ™"+ 1" (gleeni
et YOG 310d WIMG 3Dd  fe--dt el UOIMS 310d
991"
(GosyL (VlospL
Nd2 8/¥1 NdD
{s}ipAleg //
~9/%1

Patent Application Publication



Patent Application Publication  Mar. 30, 2023 Sheet 36 of 37  US 2023/0096502 A1

/»1 500
¥
Memory
1304
/O Components
1914
CPU(s)
1506
Power Supply
1516
GPU(s)
1508

Presentation Component(s)

1518
Comm. Interface
1510
Logic Unil(s)
1520
o fs N

FIG. 15



Patent Application Publication  Mar. 30, 2023 Sheet 37 of 37  US 2023/0096502 A1

1600
4

Application Layer
1640

1642

1630

Framework Layer
1620

Job Scheduler Configuration

1638

1636

1610

Grouped Computing Resources
1614

s

Node C.R. Node C.R.
i 1816(2) l"”’ 1616(N)

FiG. 16



US 2023/0096502 A1l

SYSTEM TASK MANAGEMENT FOR
COMPUTING SYSTEMS

RELATED APPLICATION

[0001] This application claims priority to U.S. Provisional
Patent Application No. 63/261,827, filed Sep. 29, 2021, and
titled “DETERMINISTIC SCHEDULING FOR AUTONO-
MOUS MACHINE APPLICATIONS,” the entire contents
of which are incorporated by reference in the present dis-
closure.

BACKGROUND

[0002] On a complex System on a Chip (SoC), the behav-
ior exhibited by components (e.g., software components)
depends on the state of the SoC as exhibited by any number
of factors—such as the state of other software components
(e.g., locks, memory contention, etc.), the state of the
hardware (e.g., caches, physical memory, etc.), a combina-
tion thereof, and/or other factors. Scheduling the execution
of tasks in such a way that satisfies real-time constraints in
such an environment can be difficult.

[0003] For example, dynamic scheduling and preemption
of tasks by engine-specific schedulers leads to a rapid
increase in the size of the state space that may be validated
and certified for timing determinism—which may include
validating worst case behavior with respect to satistying
timing guarantees of the system applications. Furthermore,
existing real-time schedulers are generally centric to Central
Processing Units (CPU) and do not provide ordering and
timing guarantees on heterogeneous hardware platforms
(e.g., hardware platforms that include multiple components
such as Graphics Processing Units (GPU), accelerators,
etc.). For example, priority-based real-time scheduling poli-
cies—such as rate monotonic scheduling and earliest dead-
line first—are dynamic in nature and may involve preemp-
tion, a mechanism well-studied and optimized on CPUs, but
expensive on non-CPU engines (e.g., GPUs, accelerators,
parallel processing units (PPUs), data processing units
(DPUs), vector processing units (VPUs), etc.). Therefore,
using this type of scheduling process, achieving determin-
ism is challenging as the resulting schedule is dynamic and
may not always complete processing within a given time
allocation.

[0004] Static scheduling may generate a static schedule
offline—e.g. perform Task A at time Ta, then perform Task
B at time Tb, then perform Task C at time Tc, and so
on—that is then executed later. However, traditional static
scheduling is often deficient for optimizations across het-
erogeneous hardware platforms. For example, traditional
static scheduling may fail to account for underlying differ-
ences between different types of compute engines that may
be included in heterogenous systems.

[0005] As a result, typical dynamic or static scheduling
may be inadequate for certain scheduling instances, such as
scheduling of systems having multiple different types of
engines and corresponding processes that may have various
safety requirements. Such systems scheduled in this manner
may accordingly not be approved for performing at various
safety integrity levels that require satisfying more stringent
standards.

[0006] An example of such an instance may include large
scale deployment of autonomous or semi-autonomous
machines—such as autonomous or semi-autonomous

Mar. 30, 2023

vehicles, robots, industrial machines, etc. —which may
require the reconciliation of two competing goals: perfor-
mance and safety. For example, perception algorithms that
may be executed by such systems—such as object detection
algorithms, object tracking algorithms, lane and road bound-
ary detection, etc. —are compute intensive, and require
programmers to exploit parallelism between different hard-
ware engines (e.g., central processing units (CPUs), graphics
processing units (GPUs), accelerators, and/or the like). In
order to comply with safety and efficacy requirements,
autonomous or semi-autonomous systems may need to be
deterministic.

SUMMARY

[0007] One or more embodiments of the present disclosure
may relate to management of the execution of tasks (“task
management”). In one or more embodiments, the task man-
agement may include scheduling the execution of tasks by
generating an execution schedule of the tasks corresponding
to the computing applications. The execution schedule may
indicate execution sequencing and/or timing of the tasks. In
these or other embodiments, the schedule may be generated
such that different compute engines (e.g., GPUs, CPUs,
accelerators, VPUs, DPUs, PPUs, etc.) of the runtime sys-
tem are able to manage the execution of corresponding tasks
with limited oversight by a central compute engine (e.g., a
CPU). For example, as discussed in detail in the present
disclosure, a synchronization primitive fencing framework
may be established in which the different compute engines
may determine when to execute their correspondingly
scheduled tasks based on timing fences of synchronization
primitives. In these or other embodiments the scheduling
may be deterministic such that worst case behavior of the
executing systems may be validated for timing guarantees
and such that the schedule may be followed (e.g., the order
and the timing may be followed) on a consistent basis in
multiple runs of the schedule.

[0008] In these or other embodiments, the task manage-
ment may include executing the tasks by a runtime system
that may include multiple compute engines. The execution
may be based on the generated execution schedule with
limited oversight, such as discussed above.

[0009] In these or other embodiments, the task manage-
ment may include monitoring the execution of the tasks to
verify that the generated schedule is being followed. For
example, the monitoring may include monitoring compli-
ance with execution timing constraints associated with tasks,
compliance with execution sequence constraints associated
with the tasks and/or health of at least a portion of the
runtime system. In these or other embodiments, the task
management may include performing one or more remedial
operations based on the monitoring.

[0010] Additionally or alternatively, the task management
may include controlling which schedules are being imple-
mented at certain times such that the task management may
also include controlling execution of the modules or com-
puting applications and their underlying runnables or tasks.
In these or other embodiments, the task management may
include performing one or more quality assurance operations
with respect to one or more of: the execution schedules, the
execution of the execution schedules, underlying code of the
computing applications, or any combination thereof.
[0011] Additionally or alternatively, the task management
may include gathering and storing information related to



US 2023/0096502 A1l

runs of the execution schedule. In these or other embodi-
ments, the task management may include performing an
analysis of the gathered information. The analysis may
include determining one or more performance metrics or
characteristics associated with implementation of the execu-
tion schedule based on the gathered information. Addition-
ally or alternatively, the task management may include
performing one or more operations that may adjust the
execution schedule based on the analysis.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present systems and methods for sensor data
processing are described in detail in the present disclosure
with reference to the attached drawing figures, wherein:
[0013] FIGS. 1A and 1B illustrate an example data flow
diagram for a sensor processing pipeline of an ego-machine,
in accordance with one or more embodiments of the present
disclosure;

[0014] FIG. 2A illustrates an example system associated
with generating execution schedules associated with one or
more computing applications, according to one or more
embodiments of the present disclosure;

[0015] FIG. 2B illustrates an example of various compute
engines that may be used in the performance of a process
associated with an object perception computing application,
in accordance with one or more embodiments of the present
disclosure;

[0016] FIG. 2C illustrates an example embodiment of a
compute graph, according to one or more embodiments of
the present disclosure;

[0017] FIG. 2D illustrates example visualizations of
hyper-epochs and resource allocation, according to one or
more embodiments of the present disclosure;

[0018] FIG. 2E includes an example compute graph that
may be generated based on multiple compute graphs asso-
ciated with a same hyper-epoch, according to one or more
embodiments of the present disclosure;

[0019] FIG. 2F illustrates an example Graphical User
Interface (GUI) that may be used to schedule debugging,
according to one or more embodiments of the present
disclosure;

[0020] FIG. 2G illustrates an example Directed Acyclic
Graph (DAG) in which a corresponding schedule may be
split, according to one or more embodiments of the present
disclosure;

[0021] FIGS. 2H and 21 illustrate code of an example
execution schedule, according to one or more embodiments
of the present disclosure;

[0022] FIG. 3A illustrates an example bubble scheduling
process related to performing bubble scheduling, according
to one or more embodiments of the present disclosure;
[0023] FIG. 3B illustrates example illustrations related to
the bubble scheduling process of FIG. 3A, according to one
or more embodiments of the present disclosure;

[0024] FIG. 4A illustrates an example branch and bound
(BNB) scheduling process related to performing BNB
scheduling, according to one or more embodiments of the
present disclosure;

[0025] FIG. 4B illustrates example illustrations related to
the bubble scheduling process of FIG. 4A, according to one
or more embodiments of the present disclosure;

Mar. 30, 2023

[0026] FIG. 5 illustrates an example partitioning process
related to scheduling one or more secondary applications,
according to one or more embodiments of the present
disclosure;

[0027] FIG. 6A illustrates an example system associated
with executing execution schedules associated with one or
more computing applications, according to one or more
embodiments of the present disclosure;

[0028] FIG. 6B illustrates an example representation of an
execution schedule, according to one or more embodiments
of the present disclosure;

[0029] FIG. 6C illustrates an example process of a sched-
ule switch, according to one or more embodiments of the
present disclosure,

[0030] FIG. 6D illustrates an example communication
process related to schedule switching, according to one or
more embodiments of the present disclosure;

[0031] FIGS. 6E-6H illustrate example visualizations of
runtime information, according to one or more embodiments
of the present disclosure;

[0032] FIG. 7 illustrates an example QA system config-
ured to perform one or more schedule QA operations,
according to one or more embodiments of the present
disclosure;

[0033] FIG. 8 illustrates an overall task management sys-
tem, according to one or more embodiments of the present
disclosure;

[0034] FIG. 9 illustrates an example method for generat-
ing an execution schedule based on a bubble sorting process
according to one or more embodiments of the present
disclosure;

[0035] FIG. 10 illustrates an example method for gener-
ating an execution schedule based on a branch and bound
(BNB) process, according to one or more embodiments of
the present disclosure;

[0036] FIG. 11 illustrates an example method for gener-
ating an execution schedule using an instruction set, accord-
ing to one or more embodiments of the present disclosure;
[0037] FIG. 12 illustrates an example method for system
task management, according to one or more embodiments of
the present disclosure;

[0038] FIG. 13 illustrates an example method for moni-
toring the execution of the tasks by a runtime system,
according to one or more embodiments of the present
disclosure;

[0039] FIG. 14A is an illustration of an example autono-
mous vehicle, in accordance with some embodiments of the
present disclosure;

[0040] FIG. 14B is an example of camera locations and
fields of view for the example autonomous vehicle of FIG.
14A, in accordance with some embodiments of the present
disclosure;

[0041] FIG. 14C is a block diagram of an example system
architecture for the example autonomous vehicle of FIG.
14A, in accordance with some embodiments of the present
disclosure;

[0042] FIG. 14D is a system diagram for communication
between cloud-based server(s) and the example autonomous
vehicle of FIG. 14 A, in accordance with some embodiments
of the present disclosure;

[0043] FIG. 15 is a block diagram of an example comput-
ing device suitable for use in implementing some embodi-
ments of the present disclosure; and



US 2023/0096502 A1l

[0044] FIG. 16 is a block diagram of an example data
center suitable for use in implementing some embodiments
of the present disclosure.

DETAILED DESCRIPTION

[0045] Computing systems may be configured to perform
work (e.g., computing processes, tasks, operations, func-
tions, etc.). In these or other embodiments, the work may be
dictated by one or more computing applications.

[0046] In the present disclosure, a computing application
may generally include a set of tasks that correspond to
operations organized for performance with respect to execu-
tion of process. In some embodiments, the computing appli-
cation may be implemented as code and/or routines config-
ured to allow or enable a computing system to perform its
corresponding set of tasks (e.g., the computing applications
may include a set of computer-readable instructions).
[0047] In these or other embodiments, a computing appli-
cation may include one or more modules. The modules may
respectively include a particular set of tasks organized to
perform a respective process. The overall process of a
computing application may accordingly include the respec-
tive processes of the modules included therein. Further,
reference to a “computing application” may accordingly
refer to the modules and/or tasks associated therewith with
the understanding that a single module may also be consid-
ered a computing application. As such, reference to a
“computing application” may refer to a single module or
may correspond to multiple modules. Further, one or more
computing applications may include one or more sub-
computing applications. In addition, in various portions of
the present disclosure “computing applications™ and “mod-
ules” may be referenced together (e.g., as follows “comput-
ing applications or modules™) or may be referenced alone
without referring to the other. Instances in which one is
referred to alone without the other are not meant to be
limiting such that the concepts in the text that refers to one
alone may also apply to the other that is not specifically
mentioned.

[0048] As discussed in detail in the present disclosure, one
or more embodiments of the present disclosure relate to the
management of tasks of computing applications that may be
executed by a heterogenous computing system. In the pres-
ent disclosure, a “heterogenous computing system” may
include multiple software and/or hardware engines (referred
to generally as “compute engines”) configured to operate
together in the performance of computing work. For
example, the heterogenous computing system may perform
work across a set of compute engines that may include one
or more: operating system processes, virtual machines,
systems on chip, Central Processing Units (CPUS), Graphics
Processing Units (GPUs), hardware accelerators (e.g., a
deep learning accelerator (DLA), a programmable vision
accelerator (PVA), etc.), or any combination thereof.
[0049] Further, in the present disclosure, reference to a
“runnable” may include an atomic unit of work, such as an
engine specific task or operation or a submitter task or
operation (e.g., a CPU may have a submitter runnable that
triggers another runnable on another engine, such as a GPU
or accelerator—in such an example, the GPU or accelerator
task may be referred to as a submittee runnable or task).
Further, in some embodiments, an “engine specific task”
may refer to tasks that may run only on a particular engine
or resource. As such, a runnable may correspond to a

Mar. 30, 2023

function level boundary that is constrained to a single
engine, while the collective tasks of a computing application
or module may be executed using any number of different
runnables and/or engines or resources. Further, a runnable
may accordingly be a type of task. In many examples given
in the present disclosure, runnables are discussed and
described. However, such description is not meant to be
limiting in that such description may apply to tasks and
corresponding task management that may not necessarily be
considered runnables.

[0050] One or more embodiments of the present disclosure
may relate to management of the execution of tasks (“task
management”). In one or more embodiments, the task man-
agement may include scheduling the execution of tasks by
generating an execution schedule of the tasks corresponding
to the computing applications. The execution schedule may
indicate execution sequencing and/or timing of the tasks.
For example, the execution schedule may indicate an execu-
tion order of the tasks, which engine may execute a respec-
tive task, and/or timing constraints with respect to the tasks
(e.g., how much time is allotted for each respective task
and/or timing regarding when the respective tasks should
begin and/or end). In these or other embodiments the sched-
uling may be deterministic such that worst case behavior of
the executing systems may be validated for timing guaran-
tees and such that the schedule may be followed (e.g., the
order and the timing may be followed) on a consistent basis
in multiple runs of the schedule.

[0051] In these or other embodiments, the task manage-
ment may include executing the tasks by a runtime system
that may include multiple compute engines. The execution
may be based on the generated execution schedule. Further,
the execution schedule may be generated such that the
different compute engines of the runtime system are able to
manage the execution of corresponding tasks with limited
oversight by a central compute engine. For example, as
discussed in detail in the present disclosure, a synchroniza-
tion primitive fencing framework may be established in
which the different compute engines may determine when to
execute their correspondingly scheduled tasks based on
timing fences of synchronization primitives.

[0052] In these or other embodiments, the task manage-
ment may include monitoring the execution of the tasks to
verify that the generated schedule is being followed. For
example, the monitoring may include monitoring compli-
ance with execution timing constraints associated with tasks,
compliance with execution sequence constraints associated
with the tasks and/or health of at least a portion of the
runtime system (e.g., of a system task manager configured to
help direct execution of the tasks). In these or other embodi-
ments, the task management may include performing one or
more remedial operations based on the monitoring.

[0053] Additionally or alternatively, the task management
may include controlling which schedules are being imple-
mented at certain times such that the task management may
also include controlling execution of the modules or com-
puting applications and their underlying runnables or tasks.
In these or other embodiments, the task management may
include performing one or more quality assurance operations
with respect to one or more of: the execution schedules, the
execution of the execution schedules, underlying code of the
computing applications, or any combination thereof.
[0054] Additionally or alternatively, the task management
may include gathering and storing information related to



US 2023/0096502 A1l

runs of the execution schedule. In these or other embodi-
ments, the task management may include performing an
analysis of the gathered information. The analysis may
include determining one or more performance metrics or
characteristics associated with implementation of the execu-
tion schedule based on the gathered information. Addition-
ally or alternatively, the task management may include
performing one or more operations that may adjust the
execution schedule based on the analysis.

[0055] One or more of the embodiments disclosed herein
may relate to the task management of computing applica-
tions that may be performed by ego-machines, which may
include any applicable machine or system that is capable of
performing one or more autonomous or semi-autonomous
operations. Example ego-machines may include, but are not
limited to, vehicles (land, sea, space, and/or air), robots,
robotic platforms, etc. By way of example, the ego-machine
computing applications may include one or more applica-
tions that may be executed by an autonomous vehicle or
semi-autonomous vehicle, such as an example autonomous
vehicle 1400 (alternatively referred to herein as “vehicle
1400” or “ego-vehicle 1400) described with respect to FIGS.
14A-14D. In the present disclosure, reference to an “autono-
mous vehicle” or “semi-autonomous vehicle” may include
any vehicle that may be configured to perform one or more
autonomous navigation or driving operations. As such, such
vehicles may also include vehicles in which an operator is
required or in which an operator may perform such opera-
tions as well.

[0056] The systems and methods described herein may be
used by, without limitation, non-autonomous vehicles, semi-
autonomous vehicles (e.g., in one or more adaptive driver
assistance systems (ADAS)), piloted and un-piloted robots
or robotic platforms, warehouse vehicles, off-road vehicles,
vehicles coupled to one or more trailers, flying vessels,
boats, shuttles, emergency response vehicles, motorcycles,
electric or motorized bicycles, aircraft, construction
vehicles, underwater craft, drones, and/or other vehicle
types. Further, the systems and methods described herein
may be used for a variety of purposes, by way of example
and without limitation, for machine control, machine loco-
motion, machine driving, synthetic data generation, model
training, perception, augmented reality, virtual reality,
mixed reality, robotics, security and surveillance, simulation
and digital twinning, autonomous or semi-autonomous
machine applications, deep learning, environment simula-
tion, object or actor simulation and/or digital twinning, data
center processing, conversational Al, light transport simu-
lation (e.g., ray-tracing, path tracing, etc.), collaborative
content creation for 3D assets, cloud computing and/or any
other suitable applications.

[0057] Disclosed embodiments may be comprised in a
variety of different systems such as automotive systems
(e.g., a control system for an autonomous or semi-autono-
mous machine, a perception system for an autonomous or
semi-autonomous machine), systems implemented using a
robot, aerial systems, medial systems, boating systems,
smart area monitoring systems, systems for performing deep
learning operations, systems for performing simulation
operations, systems for performing digital twin operations,
systems implemented using an edge device, systems incor-
porating one or more virtual machines (VMs), systems for
performing synthetic data generation operations, systems
implemented at least partially in a data center, systems for

Mar. 30, 2023

performing conversational Al operations, systems for host-
ing real-time streaming applications, systems for presenting
one or more of virtual reality content, augmented reality
content, or mixed reality content, systems for performing
light transport simulation, systems for performing collab-
orative content creation for 3D assets, systems implemented
at least partially using cloud computing resources, and/or
other types of systems.

[0058] In some embodiments, the task management may
relate to the scheduling, execution, and/or monitoring of
tasks that correspond to a sensor processing pipeline of an
ego-machine. For instance, FIGS. 1A and 1B illustrate an
example data flow diagram for a sensor processing pipeline
100 of an ego-machine, in accordance with one or more
embodiments of the present disclosure.

[0059] For example, FIGS. 1A and 1B illustrate various
different computing applications that may perform one or
more processes based on sensor data 102 captured by one or
more sensors. In the illustrated example, the processes
performed by the applications of the sensor pipeline 100
may be used to obtain information and/or make determina-
tions that may be used by a vehicle dynamics control (VDC)
system to determine and implement control decisions.
[0060] In some embodiments, the generated and/or
received sensor data 102 may include, without limitation,
sensor data from any of the sensors of the vehicle 1400 of
FIG. 14 (and/or other vehicles, machines, or objects, such as
robotic devices, water vessels, aircraft, trains, construction
equipment, VR systems, AR systems, etc., in some
examples). In some embodiments, the sensor data 102 may
be obtained from sensors that are disposed on or otherwise
associated with an ego-machine. Additionally or alterna-
tively, the sensor data 102 may be obtained from one or more
other ego-machines and/or information sources, such as
sensors disposed on or otherwise associated with static
objects, such as sensors of a security system, in a parking
garage, in a smart cities application (e.g., sensors distributed
throughout a location or region), traffic monitoring sensors,
and/or the like.

[0061] By way of example and not limitation, the sensor
data 102 may include data obtained from one or more
sensors including: one or more LIDAR (LIght Detection
And Ranging) sensors, one or more cameras (stereo camera
(s), wide-view camera(s) (e.g., fisheye cameras), infrared
camera(s), surround camera(s) (e.g., 360 degree cameras),
long-range and/or mid-range camera(s) etc.), one or more
global navigation satellite systems (GNSS) sensors (e.g.,
Global Positioning System sensor(s)), one or more inertial
measurement unit (IMU) sensors (e.g., accelerometer(s),
gyroscope(s), magnetic compass(es), magnetometer(s),
etc.), one or more speed sensors (e.g., for measuring the
speed of the ego-machine), one or more RADAR (RAdio
Detection And Ranging) sensors, one or more ultrasonic
sensors, one or more microphones etc.

[0062] Although reference is primarily made herein to
real-world sensor data, this is not intended to be limiting,
and the sensor data may alternatively or additionally be
generated by any of the sensors of the ego-machine, another
machine, and/or another system (e.g., a virtual vehicle in a
simulated environment, a robotics system, a drone system,
etc.). In some examples, the sensor data may include the
sensor data generated by one or more forward-facing sen-
sors, side-view sensors, and/or rear-view sensors. In
embodiments, any number of sensors may be used to incor-



US 2023/0096502 A1l

porate multiple fields of view (e.g., the fields of view of the
long-range cameras 1498, the forward-facing stereo camera
1468, and/or the forward facing wide-view camera 1470 of
FIG. 14B) and/or sensory fields (e.g., of a LIDAR sensor
1464, a RADAR sensor 1460, etc.).

[0063] The sensor data may be useful for performing any
number of operations for a current operating mode or state
of the ego-machine. As indicated in the present disclosure,
such operations may be dictated by one or more computing
applications. For non-limiting examples, as illustrated in
FIGS. 1A and 1B, the computing applications and corre-
sponding processes may include sensor data pre-processing,
drivable freespace detection, object perception, path percep-
tion, sensor blindness or visibility distance detection, track-
ing, lane graph generation, distance and/or speed estimation,
localization, RADAR tracking, safety force field computa-
tions (and/or other object or collision avoidance computa-
tions), sensor fusion, object in path analysis (OIPA), wait
condition detection, behavior planning, vehicle dynamics
control, and/or other computing applications.

[0064] Although the present disclosure may be described
with respect to an example autonomous vehicle 1400, this is
not intended to be limiting. For example, the systems and
methods described herein may be used by, without limita-
tion, non-autonomous vehicles, semi-autonomous vehicles
(e.g., in one or more advanced driver assistance systems
(ADAS)), piloted and un-piloted robots or robotic platforms,
warehouse vehicles, off-road vehicles, vehicles coupled to
one or more trailers, flying vessels, boats, shuttles, emer-
gency response vehicles, motorcycles, electric or motorized
bicycles, aircraft, construction vehicles, underwater craft,
drones, and/or other vehicle types. In addition, although one
or more aspects of the present disclosure may be described
with respect to or in the context of task management of
ego-machines, this is not intended to be limiting, and the
systems and methods described herein may be used in
applicable context where task management over a heterog-
enous system may be used. Examples of other fields of
application may include augmented reality, virtual reality,
mixed reality, robotics, security and surveillance, autono-
mous or semi-autonomous machine applications, industrial
equipment technologies (e.g., refineries, control systems,
etc.), medical device technologies (e.g., surgical equipment,
medical device implants, etc.), aerodynamic and/or aero-
space technologies, defense equipment technologies (e.g.,
rockets, satellites, drones, etc.), and/or any other technology
spaces where scheduling may be used to distribute the
performance of processing related to computing applications
between and among various compute engines.

[0065] Further, it should be understood that this and other
arrangements described herein are set forth only as
examples. Other arrangements and elements (e.g., machines,
interfaces, functions, orders, groupings of functions, etc.)
may be used in addition to or instead of those shown, and
some elements may be omitted altogether. Further, many of
the elements described herein are functional entities that
may be implemented as discrete or distributed components
or in conjunction with other components, and in any suitable
combination and location. Various functions described
herein as being performed by entities may be carried out by
hardware, firmware, and/or software. For instance, various
functions may be carried out by a processor executing
instructions stored in memory. Additionally or alternatively,
various functions may be carried out by a processing system

Mar. 30, 2023

that may be hardwired to perform one or more of the
functions. In some embodiments, the systems, methods, and
processes described herein may be executed using similar
components, features, and/or functionality to those of
example autonomous vehicle 1400 of FIGS. 14A-14D,
example computing device 1500 of FIG. 15, and/or example
data center 1600 of FIG. 16.

[0066] Further, the example embodiments described with
respect to the Figures of the present disclosure are described
in the context of scheduling runnables or tasks of computing
applications, but such a description is not meant to be
limiting. The principles and disclosures. herein may relate to
the scheduling of any other applicable type of task or sets of
tasks associated with any sort of computing process.
[0067] Referring now to FIG. 2A, FIG. 2A illustrates an
example system 200 associated with generating execution
schedules associated with one or more computing applica-
tions, according to one or more embodiments of the present
disclosure. The system 200 may include a schedule compil-
ing engine 202 (“compiler 202”) in some embodiments.
[0068] The compiler 202 may include code and routines
configured to allow a computing system to perform one or
more operations. Additionally or alternatively, the compiler
may be implemented using hardware including one or more
processors, central processing units (CPUs) graphics pro-
cessing units (GPUs), data processing units (DPUs), parallel
processing units (PPUs), microprocessors (e.g., to perform
or control performance of one or more operations), field-
programmable gate arrays (FPGA), application-specific
integrated circuits (ASICs), and/or other processor types. In
some other instances, the compiler 202 may be implemented
using a combination of hardware and software. As such, the
compiler 202 and/or the computing system on which the
compiler 202 may be implemented may be referred to as a
compiling system in some embodiments. In the present
disclosure, operations described as being performed by the
compiler 202 may include operations that the compiler 202
may direct a corresponding computing system to perform. In
these or other embodiments, the compiler 202 may be
implemented by one or more computing devices, such as
that described in further detail with respect to FIG. 15.
[0069] The compiler 202 may be configured to generate
one or more execution schedules 204 (“schedule(s) 204”). In
the example embodiment, the schedules 204 may indicate
execution sequencing and/or timing of runnables of a cor-
responding computing application or module. For example,
a particular schedule 204 of a particular computing appli-
cation may indicate an execution order of the runnables of
the particular computing application, which engine may
execute a respective runnable, and/or timing constraints with
respect to the runnables (e.g., how much time is allotted for
each respective runnable and/or timing regarding when the
respective runnables should begin and/or end). In these or
other embodiments one or more of the schedules 204 may be
static (e.g., determined offline and prior to runtime) and
deterministic such that the runnables may execute in the
same order during every iteration, which may allow for
worst case behavior of the executing systems to be validated
for timing guarantees. By contrast, a dynamic schedule that
may be generated during runtime may not be verifiable as
being deterministic. Reference to operations happening
“during runtime” in the present disclosure may relate to
operations that occur while a corresponding runtime system
is executing runnables and/or tasks.



US 2023/0096502 A1l

[0070] In some embodiments, each schedule 204 may
correspond to a respective computing application. Further,
given that some computing applications may include one or
more modules included therein, one or more schedules 204
may include one or more sub-schedules that respectively
correspond to respective modules or sub-applications of a
computing application.

[0071] In some embodiments, the compiler 202 may be
configured to generate one or more of the schedules 204 with
respect to a heterogenous runtime system (“runtime sys-
tem”) that may include multiple compute engines, such as
described in the present disclosure. In order to effectively
execute the sets of operations (e.g., runnables or tasks) of the
computing applications or modules, various resources of the
runtime system may be used. Examples of the resources may
include hardware resources (e.g., a deep learning accelerator
(DLA), an artificial intelligence (Al) accelerator, a program-
mable vision accelerator (PVA) (which may include one or
more direct memory access (DMA) systems and/or one or
more vector processors (VPUs)), a GPU(s), a CPU(s), a
VPU(s), a PPU(s), a DPU(s), etc.), software resources (e.g.,
CUDA streams, accelerator queues, etc.), and/or scheduling
mutexes.

[0072] By way of example, FIG. 2B illustrates an example
of various compute engines that may be used in the perfor-
mance of a process associated with an object perception
computing application 250 (“object perception app 2507), in
accordance with one or more embodiments of the present
disclosure. In FIG. 2B, each block may correspond to a
runnable of the object perception app 250 and may indicate
which type of compute engine may execute the correspond-
ing runnable.

[0073] Returning to FIG. 2A, more than one computing
application or module may use the limited resources of the
runtime system such that a challenge of scheduling is to
complete the operations of each computing application or
module—including each runnable within each computing
application or module—using the resources of the runtime
system. As such, to perform each runnable of each comput-
ing application or module, various different resources may
be required and/or these same resources may be required for
different computing applications or tasks thereof.

[0074] Additionally or alternatively, in some embodi-
ments, the schedules 204 may need to comply with any
number of time constraints, safety constraints, efficacy con-
straints, and/or resource constraints (e.g., hardware and/or
software constraints) associated with the corresponding run-
time system and/or the computing applications or modules
that may be executed by the runtime system (e.g., as
indicated in execution constraints 210 included in the app
data 206, discussed in further detail in the present disclo-
sure). As such, due to time constraints, safety constraints,
and hardware/software resource constraints, in some
instances, each of the runnables of a given schedule 204 may
need to be mapped in the given schedule 204 to available
resources in such a way that one or more (e.g., all) con-
straints associated therewith are satisfied. The compiler 202
may be configured to generate one or more of the schedules
204 within this framework to account for one or more of the
above-enumerated constraints, as compared to other more
traditional scheduling systems.

[0075] For instance, as described herein, in traditional
scheduling systems, there may be either static scheduling or
dynamic scheduling. For example, in traditional dynamic

Mar. 30, 2023

scheduling, the system may use a queue, and a runtime
scheduler may dynamically determine the ordering of the
tasks using the queue as well as priority, first in first out
(FIFO), round robin, etc., and may determine the tasks for
the compute engines during runtime. These types of systems
may use preemption, which adds to the complexity of the
system as certain tasks are sent back to the queue due to a
current task not having completed processing. In this way,
the determinism of the system is reduced or removed, as
certain tasks may not be completed, or may be completed
later than required to satisfy safety or efficacy constraints.

[0076] In addition, the compiler 202 may be configured to
generate the schedules 204 such that the schedules 204 may
include static ordering in which everything is executed in
order. Due to the static nature of the resulting schedules 204,
and the lack of preemption, one or more of the schedules 204
may be deterministic such that the same schedule 204 may
be used over and over again (e.g., over hundreds, thousands,
or millions of hours of operation) with minimal or reduced
missed timing or performance targets (e.g., one error or
missed target per hundred or thousand hours of operation).

[0077] In addition, the generated schedules 204 may sup-
port multiple processes on a heterogeneous platform that is
extensible to multiple SoCs, multiple virtual machines
(VMs), and/or the like. For example, in some embodiments,
the schedules 204 may be generated such that each compute
engine associated therewith may have one or more queues of
runnables available or ready to execute (referred to as
“queues” or “processing queues”). As discussed in further
detail in the present disclosure, these queues may be blocked
and unblocked using various synchronization techniques to
orchestrate performance of the work to help ensure a target
behavior of an overall application (e.g. to ensure that data
dependencies between runnables or tasks are satisfied or to
help ensure that a runnable or task always has exclusive
access to a compute engine to improve determinism of the
system). The queues may be blocked and unblocked by
inserting fences between the runnables, where a fence may
represent a discrete state (snapshot) of an underlying syn-
chronization primitive. In some embodiments, a synchroni-
zation primitive’s state may be advanced by signaling it.
When a synchronization primitive’s state has not reached the
fence’s snapshot, the fence operates as a barrier and does not
allow work to proceed. When the synchronization primi-
tive’s state is ahead of the fence snapshot, the fence does not
block work in the queue. As also discussed in further detail
in the present disclosure, the compiler 202 may thus deter-
mine where to fence or insert synchronization primitives and
how to use them intelligently such that the runtime system
executes the computing applications within a given time-
frame in a deterministic way. Further, in the present disclo-
sure, reference to a “fence” may also refer to the corre-
sponding synchronization primitive in some embodiments.
Additionally, synchronization primitives on which fences
may be generated may be referred to as “sync objects.”

[0078] In some embodiments, the compiler 202 may be
configured to generate the schedules 204 based on comput-
ing application data 206 (“app data 206”). The app data 206
may correspond to each of one or more computing applica-
tions in some embodiments. In these or other embodiments,
the app data 206 may include information related to gener-
ating respective schedules 204 for the corresponding com-
puting applications.



US 2023/0096502 A1l

[0079] For example, in some embodiments, the app data
206 may include runnable (or task) data 208. The runnable
data 208 may indicate the runnables that may be associated
with a corresponding computing application. In these or
other embodiments, the app data 206 may generally include
code (e.g., source code) of the corresponding computing
application and the runnable data 208 may include the
respective code that corresponds to the respective runnables.
[0080] The app data 206 may include one or more execu-
tion constraints 210. The execution constraints 210 may
include one or more constraints that may be directly related
to one or more of the runnables (“runnable constraints™). For
example, the runnable constraints may include parameters
related to when and/or how the runnables may be executed
and may include, by way of example, dependencies between
the runnables, resource constraints corresponding to respec-
tive compute engine types that may be used for execution of
the runnables, other resources that may be required for
execution of the runnables (e.g., memory constraints, etc.),
and respective timing constraints of the runnables.

[0081] Additionally or alternatively, the execution con-
straints 210 may include one or more general execution
constraints for the corresponding computing application. For
example, the general execution constraints may include, but
are not limited to, generally what resources may be used to
execute the corresponding computing application or mod-
ules—e.g., including which modules or computing applica-
tions may share resources and which modules or computing
applications may have resource partitioning assigned
thereto, such as discussed in further detail in the present
disclosure—how many different modules or processes are
included in the corresponding computing application, how
often to repeat the operations of the corresponding comput-
ing application, and/or the distribution of the runnables
among a time basis.

[0082] In these or other embodiments, the general execu-
tion constraints may include constraints associated with the
runtime system that is to execute the processes of the
computing applications. These constraints may exist to
comply with various safety and/or efficacy criteria that may
be applied to the underlying system that is to execute the
computing applications. For example, the runtime system
may have various constraints associated therewith such as
latency constraints, worst case response time constraints,
throughput constraints, determinism constraints, program
flow monitoring constraints, system verification constraints,
safety standards or constraints, interrupt management con-
straints, shared resource constraints, concurrency con-
straints, Freedom-From-Interference (FFI) constraints, and/
or other constraints or considerations. Some example safety
constraints may be those included in the safety standards of
ISO 26262 including various automotive safety integrity
levels (ASILs) and/or efficacy criteria with respect to track-
ing an object over time (e.g., if tracking is not performed in
accordance with the frame rate, the object tracker may end
up with higher latency or not capable of providing data that
is reliable for real-time or near real-time execution), etc.
[0083] Additionally or alternatively, the general execution
constraints may include constraints regarding a total amount
of time that may be allowed to execute all of the runnables
associated with a module and/or computing application (or
sub-application). This time basis may be referred to as an
“epoch” for the corresponding set of runnables or tasks. In
these or other embodiments, the epoch may be based on a

Mar. 30, 2023

refresh rate of input data used by the set of runnables of the
corresponding computing application. Further, in the present
disclosure, reference to an “epoch” may also refer to execu-
tion of the runnables associated therewith.

[0084] For example, a particular computing application
may include a particular set of runnables or tasks (e.g.,
corresponding to a particular module) that uses data (e.g.,
sensor data) that has a refresh rate of 30 hertz (e.g., the
component that generates the corresponding data may be, as
a non-limiting example, a sensor, such as a camera that
operates at a frame rate of 30 frames per second (fps)). In
some embodiments, the app data 206 that corresponds to the
particular computing application may accordingly indicate
that an epoch related to completion of the particular set of
runnables is 33.3 milliseconds (ms).

[0085] Additionally or alternatively, the general execution
constraints may include a completion frequency that may
indicate a frequency at which the set of runnables may need
to be repeatedly executed to allow for the processing of new
input data as it is received. The completion frequency may
be based on the input data refresh rate and/or the epoch. For
example, the completion frequency for the particular set of
runnables discussed above may be 30 Hz or once every 33.3
ms based on the refresh rate of 30 Hz and the epoch duration
of 33.3 ms.

[0086] In these or other embodiments, the general con-
straints may include fractional resource mapping con-
straints. For example, the identified constraints may indicate
a respective percentage of one or more resources that may be
needed or targeted for execution of the computing applica-
tions. During the scheduling discussed in the present dis-
closure, the compiler 202 may be configured to select
runnables during the determination of which runnable to run
on which resource according to the indicated usage percent-
age. For example, the compiler 202 may select a collection
of runnables that occupy a percentage of that resource that
is less than or equal to the indicated percentage.

[0087] As indicated in the present disclosure, a computing
application may include multiple modules or sub-applica-
tions. Further, different modules or sub-applications may use
different types of data (e.g., data from different sources, such
as from different sensors) that may correspond to different
refresh rates. As such, in some embodiments, a particular
computing application that includes multiple modules or
sub-applications may have multiple completion deadlines
and/or completion frequencies that may respectively corre-
spond to the different modules or sub-applications included
therein. As discussed in detail in the present disclosure, the
compiler 202 may be configured to account for such cir-
cumstances in the generation of the schedules 204.

[0088] In some embodiments, one or more elements of the
app data 206 may be organized as one or more compute
graphs 212. The respective compute graphs 212 may respec-
tively correspond to one or more computing applications. In
general, the compute graphs 212 may indicate the frame-
work for scheduling execution of the workload of the
corresponding computing applications.

[0089] In these or other embodiments, the compute graphs
212 may have a graph structure that may include nodes that
represent and indicate the runnables of the respective com-
puting applications to which the compute graphs 212 cor-
respond. The graph structure may also indicate one or more
runnable constraints of the runnables included therein. For
example, edges between nodes in the compute graph 212



US 2023/0096502 A1l

may indicate dependencies between the corresponding run-
nables. In the present disclosure, the terms “node” and
“runnable” (or “task”) may be used interchangeably with
respect to compute graphs at times such that reference to a
“node” of a compute graph may also refer to the correspond-
ing runnable or task, or vice versa.

[0090] Additionally or alternatively, the nodes may have
certain labels associated therewith (or encoded thereto) that
indicate other runnable parameters. By way of example, but
not limitation, the nodes may have associated therewith
timing labels that may indicate a runtime (e.g., a worst case
execution time (WCET)) of the runnables In some embodi-
ments, the WCET may be determined by an tuning engine,
such as described at least with respect to FIG. 7.

[0091] In these or other embodiments, the nodes may
include resource labels that may indicate which resources or
resource types may be required for execution of one or more
of the runnables. Additionally or alternatively, the resource
labels may indicate fractional resource mapping associated
with the computing application, such as discussed in the
present disclosure.

[0092] As another example, the node labels and/or edges
of the compute graph 212 may indicate relationships
between submitter and submittee runnables. Submitter run-
nables may include runnables that may be executed on one
compute engine (e.g., a CPU) but that may trigger the
execution of another runnable on another compute engine
(e.g., on a GPU or accelerator). The triggered runnables may
be the submittee runnables. Further, nodes that correspond to
submitter runnables may be referred to as “submitter nodes”
and nodes that correspond to submittee runnables may be
referred to as “submittee nodes.”

[0093] Additional examples of labels associated with
nodes may include exclusivity labels that may indicate that
the corresponding runnables are mutually exclusive. Mutu-
ally exclusive runnables may have a constraint associated
therewith such that other runnables marked therewith may
not run concurrently with each other. This may be performed
using custom resources in the compute graph 212, and the
output schedule may capture the exclusivity, but may not
include any indication that such exclusivity exists. This
ability to mutually exclude any set of runnables and/or
corresponding modules to run concurrently may improve the
performance of the final schedule during its runtime. For
example, if a set of runnables are intensive on the memory,
and the memory bus becomes the bottleneck (and increases
the execution time of each task), mutual exclusion may help
guarantee that they do not run concurrently—thereby
improving the execution time of all the runnables involved.

[0094] In some embodiments, one or more of the compute
graphs 212 may be generated as a directed acyclic graph
(DAG) or other graph structure. FIG. 2C illustrates an
example embodiment of a compute graph 260 that may be
configured as a DAG, according to one or more embodi-
ments of the present disclosure. The compute graph 260 may
include nodes related to runnables A, A', B, D, and E that
may correspond to an associated computing application. The
edges and corresponding arrows between the nodes may
indicate the dependencies between the corresponding run-
nables. For example, the edges from A to B and from A to
A' may indicate that both runnables B and A' depend on
runnable A. Further, the edges from both B and A' to D may
indicate that D depends on both B and A".

Mar. 30, 2023

[0095] In addition, the nodes of the compute graph 260
may include various labels that may indicate other con-
straints associated with the corresponding runnables. For
example, the labels may indicate a type of compute engine
that may be required for executing the corresponding run-
nable. Additionally or alternatively, the labels may indicate
the respective WCETs of the corresponding runnables. In
addition, the labeling of A and A' and/or the compute engine
types associated with A and A' may indicate that A' is a
submittee runnable of A such that the labeling may also
indicate that A is a submitter runnable and that A' is a
corresponding submittee runnable of A.

[0096] Returning to FIG. 2A, in some embodiments, the
compiler 202 may receive the app data 206 and generate one
or more schedules 204 using the associated data. In some
embodiments, the app data 206 that may be obtained (e.g.,
received, accessed, etc.) by the compiler 202 may be rep-
resented in one or more configuration files such as, without
limitation, a YAML or JSON file. In these or other embodi-
ments, one or more of the configuration files may represent
runnable data 208, execution constraints 210, and/or com-
pute graphs 212 of the app data 206.

[0097] In these or other embodiments, the schedules 204
may be organized according to timing frames. The timing
frames may be the total amount of time of execution of the
runnables of a particular schedule 204. In these or other
embodiments, the timing frames may correspond to the
epochs of computing applications to be scheduled, such as
indicated in the execution constraints 210 of the app data
206.

[0098] However, as described in the present disclosure, in
some instances, a computing application that may corre-
spond to a particular schedule 204 may include multiple
modules having different epochs. Additionally or alterna-
tively, a particular schedule 204 may be generated for more
than one computing application, which may also have dif-
ferent epochs.

[0099] For example, a first module may have a first epoch
that corresponds to first input data that has a first refresh rate
and a second module may have a second epoch that corre-
sponds to second input data that has a second refresh rate.
The first and second epochs may differ. As such, in some
embodiments, all runnables of the first module must be
finished within a first timing frame that corresponds to the
first refresh rate (e.g., before the next set of first input data
is obtained) and all runnables of the second module must be
finished within a second timing frame that corresponds to
the second refresh rate (e.g., before the next set of second
input data is obtained). However, given that the epochs may
differ for the first and second modules, scheduling them to
use the same resources may result in collisions, which may
compromise the execution of the corresponding modules.
[0100] In some embodiments, resource partitioning may
be used during the scheduling to account for different
epochs. The resource partitioning may provide different sets
of resources to each time basis or epoch to guarantee there
is no collision. As an example, a CPU1, a CPU2, and a GPU
of the runtime system may be assigned to the first module,
and a CPU3 may be assigned to the second module. How-
ever, in many instances resource partitioning may not be
practical or as efficient. For example, there may be only x
number of CPU cores (e.g., 12) and 1 GPU, so if those
resources need to be shared over multiple time bases, this
may become a challenge.



US 2023/0096502 A1l

[0101] In some embodiments, a hyper-epoch may be used
to address the challenge of generating a schedule for mul-
tiple modules having different epochs. The hyper-epoch may
provide a mechanism in which the different epochs are
grouped together in a manner such that the same resources
may be shared between different modules having different
epochs.

[0102] In particular, the total amount of time of the hyper-
epoch may be based on the longest epoch of the multiple
epochs in which the shorter time frames associated with the
shorter epochs are repeated a certain number of times such
that the hyper-epoch time is greater than or equal to the
longest epoch of the multiple epochs, but less than twice the
longest epoch. In these or other embodiments, a least
common multiple of the different epoch frequencies of the
different epochs that may be included in the hyper-epoch
may be used to determine the hyper-epoch size.

[0103] Forexample, FIG. 2D illustrates an example hyper-
epoch 270 that combines an epoch 272 of a module with an
epoch 274 of another module. In the illustrated example, the
epoch 274 may be three times as long as the epoch 272. As
such, in the illustrated example, the hyper-epoch 270 may be
configured such that the epoch 272 may be repeated three
times while the epoch 274 is only executed once. As such,
these four epochs (three epochs 272 and one epoch 274) may
be scheduled together, and at each hyper-epoch 270, the
runnables may be spawned again (although one hyper-epoch
may include multiple instances of runnables corresponding
to grouped epochs of a single data source (e.g., sensor) type,
as an example).

[0104] FIG. 2D illustrates another example hyper-epoch
280 that corresponds to two different modules may be one in
which an epoch 282 of a corresponding first module of the
two modules is 1.5 times longer than an epoch 284 of a
corresponding second module of the two modules. In this
example, the hyper-epoch may include two instances of the
epoch 284 such as illustrated.

[0105] FIG. 2D also illustrates an example visualization
286 of resource sharing using hyper-epochs and resource
partitioning. In the example visualization 286, a camera-data
based module (“camera module”) and a RADAR-data based
module (“RADAR module”) are in the same hyper-epoch. In
such an example, the camera-data runnables may be com-
pleted in the time frame spread across all engines, and the
RADAR-data runnables may also be executed over the
course of the entire hyper-epoch. In the visualization 286, a
vehicle dynamic control (VDC) is also illustrated as includ-
ing numerous epochs. The VDC is illustrated as correspond-
ing to a separate resource partition different from resource
partitions of the camera module and the RADAR module. In
embodiments, there may be task data dependencies across
resource partitions, but not timing dependencies across
different resource partitions.

[0106] As such, in some embodiments, the compute
engines in the runtime system may be split into resource
partitions for scheduling purposes—as described herein—to
contain one or more hardware resources to certain modules.
Additionally or alternatively, modules and/or computing
applications that need access to shared hardware resources
(e.g, that are part of a shared sensor processing pipeline)
may be included in the same resource partition. Generation
of one or more schedules 204 based on a hyper-epoch is
discussed in further detail in the present disclosure.

Mar. 30, 2023

[0107] In some instances, the timing frames and a corre-
sponding sync (using some channel such as a TCP/IP, or
PCle) that may be performed—e.g., at the end of the timing
frames, before the start of one or more specified runnables
and/or at the end of one or more specified runnables—may
allow for multiple SoC scheduling to ensure that both SoCs
are operating on input for a same or similar point in time.
Further, by dividing the execution into frames, the schedule
may be quantized to provide synchronization points. The
synchronization may help ensure that one SoC does not run
ahead of the other if the workload is asymmetrically divided
between the two and/or if they operate at different speeds.

[0108] In some embodiments, the compiler 202 may
include, by way of example but not limitation, a pre-
processing engine 214 (“pre-processor 214”), a scheduling
engine 216 (“scheduler 216”), and post-processing engine
218 (“post-processor 218”). One or more of these engines
may include code and routines configured to allow a com-
puting system to perform one or more operations. Addition-
ally or alternatively, one or more of these engines may be
implemented using hardware including one or more proces-
sors, central processing units (CPUs) graphics processing
units (GPUs), data processing units (DPUs), parallel pro-
cessing units (PPUs), microprocessors (e.g., to perform or
control performance of one or more operations), field-
programmable gate arrays (FPGA), application-specific
integrated circuits (ASICs), and/or other processor types. In
some other instances, one or more of these engines may be
implemented using a combination of hardware and software.
As such, in some embodiments, one or more of these engines
may be configured as or part of a corresponding computing
system. In the present disclosure, operations described as
being performed by one of these engines may include
operations that the corresponding engine may direct a cor-
responding computing system to perform. Further, the spe-
cific discussion and separation of these engines is to help
facilitate the explanation of certain operations performed by
the compiler 202 and is not meant to a be a limiting
implementation.

[0109] The pre-processor 214 may be configured to per-
form pre-processing on the received app data 206 in prepa-
ration for operations performed by the scheduler 216. For
example, in some embodiments, the pre-processor 214 may
be configured to unpack the app data 206 into a simplified
form to generate unpacked app data 220. For instance,
unpacking of the app data 206 may include identifying one
or more modules and/or computing applications that are to
be scheduled in a particular schedule 204.

[0110] In these or other embodiments, the unpacking may
include identifying the different constraints associated with
the modules or computing applications that are to be sched-
uled (e.g., as indicated by the execution constraints 210. For
example, the identified constraints may include timing con-
straints (e.g., WCET of individual runnables, timing frames
(e.g., epochs, hyper-epochs, etc.)). Additionally or alterna-
tively, the identified constraints may include dependencies
between runnables and/or modules, including identifying
submitter and corresponding submittee runnables. In these
or other embodiments, the identified constraints may include
resource constraints that may indicate which resources may
be used by which runnables. Additionally or alternatively,
the identified constraints may include resource sharing or
partitioning constraints, which may indicate which modules



US 2023/0096502 A1l

or computing applications may share resources and which
modules or computing applications may have resource par-
titioning assigned thereto.

[0111] In these or other embodiments, the unpacking may
include identifying compute graphs associated with the
modules that are to be scheduled. In these or other embodi-
ments, the unpacking may include organizing the compute
graphs of the corresponding modules. The organizing may
be based on the timing constraints and/or resource sharing
[0112] For example, two modules having different epochs
may be indicated as sharing the same resources such that a
hyper-epoch may correspond to the two modules. In these or
other embodiments, the compute graphs of the two modules
may be unpacked based on the structure of the hyper-epoch.
[0113] For example, FIG. 2E includes an example overall
compute graph 290 that may be generated by the pre-
processor 214 based on multiple compute graphs associated
with a same hyper-epoch that corresponds to two separate
modules, according to one or more embodiments of the
present disclosure. In particular, the overall compute graph
290 may include two instances of a compute graph 294
(instances 294a and 294b) and one instance of a compute
graph 292. The hyper-epoch 280 of FIG. 2D may be an
example of the hyper-epoch associated with the overall
compute graph 290 in that epochs 284a and 2845 of the
hyper-epoch 280 may correspond to the compute graphs
294q and 2945, respectively, and in that the epoch 282 of the
hyper-epoch 280 may correspond to the compute graph 292.
[0114] As illustrated in FIG. 2E, two instances of the
compute graph 294 may be included in the overall compute
graph 290 based on the corresponding hyper-epoch 280
including two epochs 284 of the corresponding module.
Further, one instance of the compute graph 292 may be
included in the overall compute graph 290 based on the
corresponding hyper-epoch 280 including one epoch 282 of
the corresponding module. Additionally, the instances 294a
and 2945, and the compute graph 292 may be unrolled to
have the timing constraints of their corresponding epochs in
the overall compute graph 290, which may be represented
based on their placement in the overall compute graph 290
with respect to each other. The pre-processing performed by
the pre-processor 214 may accordingly be performed with
respect to the overall compute graph 290 as a whole instead
of the compute graphs 294 and 292 individually.

[0115] The scheduling engine 216 may be configured to
determine an intermediate execution schedule 224 (“inter-
mediate schedule 224”) based on the unpacked app data 220.
For example, the scheduling engine 216 may be configured
to determine which runnables to run when and by which
compute engines based on the unrolled graph structure(s)
and the respective execution constraints of the runnables
included in the unpacked app data 220. The intermediate
schedule 224 may reflect the determined orders. By way of
example, FIG. 2C illustrates an example representation 262
of the scheduling of the runnables of the compute graph 260
of FIG. 2C. The representation 262 is meant to illustrate
information that may be included in an intermediate sched-
ule but does not necessarily indicate the actual format of
such information.

[0116] In some embodiments, the intermediate schedule
224 may be generated according to a high-level program-
ming language. For example, in some embodiments, the
intermediate schedule 224 may include a list (e.g., a Python
list) that designates the order of runnables on each respective

Mar. 30, 2023

compute engine. In these or other embodiments, the run-
nables may be represented as a programming object (e.g., a
Python object) in which the respective runnable objects
include information about the respective dependencies of
their corresponding runnables.

[0117] In these or other embodiments, the scheduling
engine 216 may be configured to perform one or more
optimization operations in generating the intermediate
schedule 224. The optimization operations may be per-
formed to reduce or minimize the total execution time of the
underlying modules or computing applications while satis-
fying the corresponding constraints. In some embodiments,
the scheduling engine 216 may be configured to perform the
scheduling in an iterative manner in which the scheduling
engine 216 may generate different iterations of the interme-
diate schedule 224 and then seek to find ways to improve the
intermediate schedule 224 by sorting and organizing the
runnables.

[0118] For example, in some embodiments, the scheduling
engine 216 may be configured to sort and organize runnables
according to a bubble scheduling algorithm to perform the
schedule optimization. In general, the bubble scheduling
may include identifying time slots for the execution of
runnables. At each time slot, a determination of the available
resources may be made, and the scheduling engine 216 may
determine where the corresponding runnables should be
executed. For example, if there are 5 CPUs (or CPU cores),
and 1 CPU runnable is scheduled already, the scheduling
engine 216 may know that there are 4 CPUs available at that
time, and may find a suitable runnable for that time slot on
one or more of the CPUs. In some embodiments, the bubble
scheduling may include one or more operations described at
least with respect to FIGS. 3A-3B.

[0119] Additionally or alternatively, as another example,
the scheduling engine 216 may be configured to sort and
organize runnables according to a branch and bound (BNB)
scheduling algorithm to perform the schedule optimization.
In general, the BNB scheduling may include identifying
different possible scheduling branches that may occur due to
branches in the graph structure. In the present disclosure,
“scheduling branches” may include possible permutations of
runnable execution orders that may be determined based on
one or more of the execution constraints of the graph
structure. In some embodiments, the BNB scheduling may
include one or more operations described at least with
respect to FIGS. 4A-4B.

[0120] In these or other embodiments, the scheduling
engine 216 may be configured to include one or more
partitioning processes with respect to generating the inter-
mediate schedule 224. The partitioning processes may be
used to inject modules (and their corresponding runnables)
that may be separate from the main computing application in
the schedule. The injection may accordingly allow for
independence between the corresponding runnables. For
example, the partitioning may be such that modules associ-
ated with different safety levels (e.g., different ASIL’s) than
the main computing application and/or quality management
(QM) modules may be injected in the intermediate schedule
224 such that the scheduling of the main computing appli-
cation and the other modules and/or computing applications
may be performed together. Further explanation regarding
the partitioning is given at least with respect to FIG. 5.

[0121] Additionally or alternatively, in some embodi-
ments, the scheduling engine 216 may include a debugging



US 2023/0096502 A1l

engine 228. The debugging engine 228 may be configured to
help facilitate user review/input with respect to generation of
the intermediate schedule 224. For example, in some
embodiments, the debugging engine 228 may be configured
to cause the generation of a graphical user interface (GUI)
that provides a representation of the intermediate schedule
224 in its current iteration. For example, the intermediate
schedule 224 may be represented in a manner similar to the
representation 262 of a schedule in FIG. 2C.

[0122] In these or other embodiments, the representation
may provide indications of runnable dependencies. The GUI
may include any number of applicable visualizations, such
as visualizations of DAGs—e.g., such as illustrated in FIG.
2C——current schedule iterations, etc. Further, the GUI may
allow for users to zoom in or out on the visualization to
allow for a closer analysis of sub portions of the schedule
and/or other representations, and/or to allow for an overall
assessment of the schedule and/or representations as a
whole.

[0123] The debugging engine 228 may allow for user
input related to placement of runnables in the intermediate
schedule 224. For example, the GUI may be configured such
that a user may select and move a representation of a
runnable from one location in the schedule to another. For
instance, a user may move a runnable to an illustrated bubble
in the schedule.

[0124] In these or other embodiments, the debugging
engine 228 may be configured to direct movement of
runnables that may be consistent with one or more moving
constraints. For example, certain moving constraints may be
implemented to account for the heterogenous nature of the
runtime system that may execute the finalized schedule that
is being compiled. Examples of these execution constraints
are discussed in the present disclosure, such as in the context
of bubble scheduling and/or BNB scheduling. In some
embodiments, the debugging engine 228 may direct move-
ment according to the movement constraints by (e.g., only)
allowing movement that complies with the movement con-
straints. Additionally or alternatively, the directing of the
movement may include providing indications or warnings
advising that a potential move may violate one or more of
the movement constraints. In these or other embodiments, a
notification of the type of potential violation may be pre-
sented.

[0125] In some embodiments, the debugging engine 228
may be configured to pause the generation of the interme-
diate schedule 224. For example, the debugging engine may
be configured to pause the generation after an iteration has
been generated. In some embodiments, the pausing may be
in response to a user input.

[0126] In these or other embodiments, the pausing may be
an automatic pausing that is caused by the debugging engine
228. For example, during the iterative generation of the
intermediate schedule 224, the debugging engine 228 may
be configured to pause the process in response to one or
more conditions. The one or more conditions may include a
standard breakpoint after a certain number of iterations. In
these or other embodiments, the conditions may include a
certain number of iterations in which the total runtime of the
schedule has not improved by a threshold amount. Addi-
tionally or alternatively, the conditions may include single-
stepping in which one scheduling decision is made at a
time—e.g., where the scheduling decision includes sched-
uling one runnable on a particular engine at a particular time

Mar. 30, 2023

and/or in a particular order. In these or other embodiments,
the debugging engine 228 may accordingly pause the sched-
uling after each step in instances in which single-stepping is
invoked.

[0127] The pausing may allow the user to analyze the
current iteration of the intermediate schedule 224 and pro-
vide input that may help the automated process become
more efficient. For example, the visualization may allow the
user to identify potential issues and/or improvements in the
schedule that may have been missed by the automated
process. The user may then accordingly provide input that
may change the current iteration.

[0128] In these or other embodiments, the debugging
engine 228 may be configured to resume the automated
generation process, but in which the schedule being ana-
lyzed by the automated process includes one or more
proposed user changes. Such pausing and resuming of the
compiling to allow for the interjection of user input.
[0129] Additionally or alternatively, the debugging engine
228 may be configured to log the steps taken during a
debugging session to a file. The file may then be used to
resume debugging in some embodiments. In these or other
embodiments, the file may be used to derive improvements
that may be made to the automated scheduling operations.
For example, the file may be used to determine if there are
certain types of scheduling decisions that are made by the
automated process that are also overridden over a threshold
percentage of the time. Additionally or alternatively, the file
may be used to identify certain types of manual schedule
changes that may be better identified and used by the
automated process.

[0130] As indicated in the present disclosure, in some
embodiments the debugging engine 228 may be configured
to cause the generation and/or presentation of a GUI that
may allow for performing the debugging operations. FIG. 2F
illustrates an example GUI 240 that may be generated by the
debugging engine 228, according to one or more embodi-
ments of the present disclosure. In some embodiments, the
GUI 240 may include a canvas portion 242 (“canvas 242”).
The canvas 242 may provide a visual depiction of the
runnables across a timeline 244 that may indicate when the
corresponding runnables may be scheduled. In addition, the
canvas 242 may visually depict to which resource the
runnables may be scheduled based on the placement of the
runnables in rows of a resource axis 246 that may indicate
the different resources to which the runnables may be
scheduled.

[0131] The visual depiction of the runnables may also
include other indications corresponding to the runnables.
For example, the indications may include labels identifying
the different runnables. In addition, the size of the runnable
depictions along the timeline 244 may indicate execution
times (e.g., WCET’s) of the corresponding runnables. In
these or other embodiments, the runnables may be depicted
in a manner that indicates dependencies between runnables
(e.g., parent/child relationships, submitter/submittee rela-
tionships, etc.). Additionally or alternatively, the canvas 242
may be the portion at which users may move runnables (e.g.,
drag and drop runnables), move the depiction of the sched-
ule along the timeline 244 to view different portions of the
schedule, zoom with respect to the depicted schedule, etc.
[0132] In some embodiments, the GUI 240 may include a
search bar 248. The search bar 248 may allow for searching
for various elements. Examples of the elements that may be



US 2023/0096502 A1l

searched may include, by way of example and not limitation,
specific runnables, specific modules, specific computing
applications, specific locations within the schedule (e.g.,
specific portions of the timeline 244), specific compute
engines, specific hyper-epochs, specific epochs, etc. In these
or other embodiments, the search bar 248 may indicate
suggestions for searches and may provide such indications
(e.g., via a dropdown list, a popup, etc.).

[0133] Additionally or alternatively, the GUI 240 may
include a queue field 252 (“queue 252”). The queue 252 may
indicate which runnables are next as far as scheduling
decisions. As such, the queue 252 may provide a mechanism
for a user to view which runnable or runnables may be on
deck for being added to the schedule, as depicted in the
canvas 242. In some embodiments, the GUI 240 may be
such that a user may drag a runnable from the queue 252 to
the canvas 242 such that the user may manually add run-
nables to the schedule. In these or other embodiments, the
GUI 240 may be such that a user may reorder the runnables
in the queue 252 to change the order of which runnable may
apply to the next scheduling decision.

[0134] In these or other embodiments, the GUI 240 may
include an epoch field 254. The epoch field 254 may indicate
which epoch or hyper-epoch is currently being depicted on
the canvas 242. In these or other embodiments, the epoch
field 254 may allow for users to select between epochs
and/or hyper-epochs such that the user may select between
which epoch or hyper-epoch may be depicted on the canvas
242.

[0135] Additionally or alternatively, the GUI 240 may
include a toolbar 256. The toolbar 256 may include one or
more selectable graphical elements (e.g., buttons) config-
ured to allow a user to select a function or operation for the
compiler or the debugging engine to perform. For example,
as illustrated in FIG. 2F, some example functions may
include finalizing the schedule, saving the current state of
the schedule, centering the canvas depiction of the schedule,
rooting runnables (e.g., indicating that selected runnables
are not to be moved), uprooting runnables (e.g., indicating
that selected runnables are to be moved), compiling the
schedule (e.g., such as described with respect to the post-
processing engine 218 described in the present disclosure),
stepping through schedule generation (e.g., stepping through
scheduling decisions), stepping back from schedule genera-
tion (e.g., stepping back to before a most recent scheduling
decision), undoing one or more operations (e.g., one or more
manually performed or automatically performed scheduling
decisions), and/or changing visual depictions (e.g., changing
colors). These examples are not meant to be limiting or
provide a fully comprehensive list of functions that may be
performed or included in the toolbar 256.

[0136] Returning to FIG. 2A, in some instances, the
debugging engine 228 may result in creation of an improved
intermediate schedule 224 than if only automated processes
were used by leveraging both automated schedule genera-
tion techniques with the ability to provide user input. Fur-
ther, the debugging engine 228 may result in obtaining a
decided upon intermediate schedule 224 more quickly than
if only the automated process were to be used.

Mar. 30, 2023

[0137] The post-processing engine 218 (“post-processor
218”) may be configured to perform one or more post
processing operations with respect to the intermediate
schedule 224 to generate a corresponding schedule 204. In
some embodiments, the post-processing operations may be
based on an instruction set 226.

[0138] The instruction set 226 may define a set of instruc-
tions that the runtime system may be able to execute. In
some embodiments, the instruction set 226 may define a
low-overhead, flexible protocol for enforcing compiler gen-
erated (e.g., heterogeneous, distributed) static scheduling at
runtime. The instruction set 226 may be used to define a
low-level programming language that may be executed by
the runtime system such that the schedules 204 may be
written in the low-level language. Further, the instruction set
226 may be configured such that it is universal with respect
to all the different types of compute engines that may be
included in the runtime system, which may help facilitate
generating and implementing the schedule 204 with respect
to heterogenous systems.

[0139] Insome embodiments, the low-level language may
be a Domain Specific Language (DSL) that may be an
assembly-like language that corresponds to the runtime
system. As such, the execution schedule may be written and
formatted as a type of assembly code, where each command
includes an opcode and operands corresponding to sched-
uling and synchronization actions, that is formatted such that
it may be read and executed by the runtime system. In some
embodiments, all synchronization may be performed by the
runtime system executing the schedule in the form of
commands from the instruction set 226. Such a framework
may be such that authors of the computing applications may
not need to manage any synchronization manually inside
runnables while writing the corresponding code.

[0140] In these or other embodiments, the instruction set
226 may include generic commands that may correspond to
the control of execution of the runnables. The generic
commands may be generic in that they may be applicable for
running CPU runnables, submitting accelerator runnables,
waiting on fences from CPU/accelerators, signaling fences
on CPU/accelerators, synchronizing across processes,
resources and SoCs, logging metadata for performance
analysis, and/or the like.

[0141]
instruction set 226 may include one or more of: instantia-

By way of example, the generic commands of the

tions of synchronization primitives that may operate as
fences that are used to trigger execution of runnables on
various compute engines, instructions that call and enqueue
runnables on various compute engines, instructions that
enqueue fences on various compute engines to block sub-
sequently enqueued runnables from executing, instructions
that signal fences in order to unblock previously fenced
runnables, instructions related to wait times (e.g., that block
runnables until a defined amount of time has passed), etc. By
way of example and not limitation, the instruction set 226
may include one or more instructions similar to or the same
as those illustrated in TABLE 1.



US 2023/0096502 A1l Mar. 30, 2023

13
TABLE 1
Command Stands For Syntax Description Example
WOF Wait on Fence WOF <fence> Wait on fence. WOF f1
CALL Call Function CALL <func*> Call a given CPU CALL runnable0
runnable function.
SIG Signal Fence SIG <fence> Signal (unblock) fence.  SIG fl
CUF CUDA Fence  CUF <fence> Insert a fence on CUDA CUF {1
<stream*> stream. CUDA__STREAMO
CUSUB  CUDA Submit CUSUB <fence> Call CUDA submitter CUSUB f1
<stream*> <func*> funnable that submits N CUDA_STREAMO
CUDA kernels on stream submitterQ
and return fence that will
be signaled on the last
kernels completion.
DLAF DLA Fence DLAF <fence> Insert a fence on the DLAF f1
<handle*> queue of a NvMediaDla DLA__HANDLEO
handle.
DLASUB DLA Submit DLASUB <fence> Call DLA submitter DLASUB {1
<handle*> <func*> runnable that submits N DLA__HANDLEO
DLA tasks on dla submitter0
handles queue and return
fence that will be
signaled on the last DLA
tasks completion.
WUP Wait Until WUP <IMM> Wait until next multiple WUP 33333333
Period of IMM nanoseconds.
WUT Wait Until WUT <IMM> Wait until time IMM WUT 33333333
Time nanoseconds has passed
from hyperpochs start.
[0142] The instruction set 226 configured as described opposed to low level language that runtime is written in

herein may provide for a modular approach to static sched-
uling. For example, instruction sets have long been used to
interface between hardware and software. Similarly, using
an instruction set to enforce a deterministic schedule for an
application allows for the schedule enforcement to become
programmable—e.g., in the sense that the runtime system
can be programmed to wait or signal any dependency and
enforce any static schedule. This may help allow a simple
instruction set to express complicated scheduling behavior
(e.g., mutual exclusion, deadlock resolution, frame-level
synchronization and isolation, relay between QM and ASIL,
etc.) using a small number of instructions.

[0143] For example, the runtime system may spawn one
thread per compute engine per client (e.g., operating system
process). Therefore, two runnables on the same compute
engine may be scheduled on different threads and, in this
case, the compiler 202 (e.g., via the post-processor 218) may
ensure a deterministic execution order by adding appropriate
fences with respect to synchronization primitives. As
another example, the different streams may run concurrently
on a certain compute engine such as a GPU. In order to
ensure deterministic execution of kernels on the GPU the
compiler 202 (e.g., via the post-processor 218) may insert
appropriate fences to ensure deterministic execution of
kernels on the GPU. Finally, CUDA jobs on a particular
CUDA Stream are executed in the order of submission. As
such, the use of the fences may help ensure that the submits
to the CUDA stream are deterministic such that the corre-
sponding kernel execution is also deterministic. Although
CUDA is referenced, a different parallel computing platform
and API may be used in additional or alternatively, without
departing from the scope of the present disclosure.

[0144] In addition, the instruction set 226 may enforce
strict separation between compiler and runtime, may allow
a compiler writer to experiment/iterate quickly in high-level
language suited to compiler writing (e.g., Python) as

(e.g., C/C++). The instruction set 226 may allow compiler
writers to add scheduling features without changing or being
familiar with any runtime code. In these or other embodi-
ments, the instruction set 226 may be RISC-like (e.g.,
minimal), allowing the distributed runtime (which may be
on a critical path of application) to be simple with relatively
low-overhead to reduce or minimize the performance impact
of the compiler 202, while also reducing the amount of
certain types of code (e.g., ASIL code) that may need to be
written and verified. Additionally or alternatively, the use of
the instruction set 226 may be such that the code of the
computing applications may not need to address synchro-
nization, as mentioned in the present disclosure, which may
simplify the computing application code and/or make it
easier to scale.

[0145] In some embodiments, the post-processor 218 may
be configured to translate the intermediate schedule 224 into
a finalized execution schedule (e.g., a corresponding sched-
ule 204) that is formatted according to the low-level lan-
guage defined by the instruction set 226. For example, the
post-processor 218 may be configured to translate the lists of
runnables in the intermediate schedule 224—that may be
generated and formatted according to a high-level program-
ming language (e.g., Python)—into corresponding com-
mands of the instruction set 226. The post-processor 218
may accordingly be configured to translate the intermediate
execution schedule 224 from a high-level language and
format to the low-level language and format of the instruc-
tion set 226.

[0146] As indicated in the present disclosure, the com-
mands may dictate the execution timing and/or order of the
runnables by the runtime system using fences that may
correspond to certain states corresponding to synchroniza-
tion primitives. In some embodiments, the translating may
include inserting fence instructions from the instruction set
226 in the schedule to enforce data dependencies and mutual



US 2023/0096502 A1l

exclusion guarantees between runnables. In these or other
embodiments, the translating may also include inserting
instructions to execute and submit runnables. The inserted
instructions may operate as timing instructions that may help
allow for controlling the timing and/or synchronization of
execution of the runnables.

[0147] In some embodiments, the fence instructions may
include instructions to wait on fences (pre-fences) and signal
fences (post-fences). Pre-fence instructions may correspond
to a synchronization condition that must be met prior to a
particular task or runnable being able to execute. Pre-fence
instructions may correspond to ordering constraints on same
compute engines, but also with respect to the overall run-
nables where no dependency exists. For example, a pre-
fence instruction may indicate that the runnable associated
therewith may not start execution until a prior runnable on
the same engine has completed execution and/or another
runnable that the runnable relies upon for execution from
another engine has completed execution. Post-fence instruc-
tions may relate to changing respective fence values of
respective fences following execution of corresponding run-
nables. The post-fence instructions may accordingly be used
to trigger pre-fence instruction conditions. Additionally or
alternatively, pre-fence instructions and/or post-fence
instructions may include the creation of a corresponding
fence.

[0148] By way of example, a particular fence may be
instantiated as a particular integer value of aa counter stored
at a particular memory location. In these or other embodi-
ments, the pre-fence instructions for a particular runnable or
task may be that the particular runnable waits to execute
until the integer value at the particular memory location is a
particular value. In these or other embodiments, post-fence
instructions of a preceding or ancestor runnable of the
particular runnable may be to increment the integer value at
the particular location. The post-fence instructions of the
preceding runnables of the particular runnable may be such
that the value of the particular synchronization primitive is
incremented such that the particular value is reached to
cause the particular runnable to execute in its scheduled
order. The memory location backing a fence may be read and
incremented by various compute engines.

[0149] As a further example, with reference to the sched-
ule representation 262 of FIG. 2C, the post-processor 218
may be configured to insert fence instructions to enforce the
schedule of the representation 262. For instance, the post-
processor 218 may be configured to generate a pre-fence
instruction for runnable B with respect to runnable A and a
corresponding post-fence instruction for runnable A. The
pre-fence instruction for runnable B may be such that
runnable B does not execute until a corresponding fence
satisfies a condition. The corresponding post-fence instruc-
tion for runnable A may be such that, upon finishing execu-
tion, the fence that corresponds to the pre-fence instruction
for runnable B is modified (e.g., incremented) such that the
fence satisfies the condition for runnable B. Similar instruc-
tions may be generated to enforce the execution order of the
schedule of the representation 262.

[0150] In these or other embodiments, the post-processor
218 may be configured to remove duplicate fences, which
may help improve or optimize the process. For example,
because runnable D directly relies on runnable B and
runnable A', and indirectly relies on runnable A (e.g., via the
dependency of B and A' on A), the post-processor 218 may

Mar. 30, 2023

initially generate three pre-fences for runnable D, one for
each of runnable B, A", and A. However, the post-processor
218 may filter out one or more of the pre-fences, such as to
remove the pre-fence corresponding to runnable A, as run-
nables B and A' already have a pre-fence corresponding to
runnable A, and thus a pre-fence for runnable A with respect
to runnable D would be repetitive.

[0151] The use of fences in this manner may allow for
cross-engine dependencies to be expressed and controlled,
where each dependency is represented by a particular fence
value that can be waited on (by multiple engines) and/or
signaled during runtime. The compiler 202 (e.g., via the
post-processor 218) may accordingly automatically generate
the correct sequence of fences to enforce dependencies, and
memory locations used for fences may be reused to enforce
multiple dependencies in a schedule to reduce or minimize
the memory footprint at runtime and simplify the schedule
for readability/debugability. In these or other embodiments,
the fence instructions may include timestamping fences
when they are triggered which can then be monitored for
proof of execution and can be used as a heartbeat for the
scheduler, as discussed in further detail in the present
disclosure.

[0152] For example, conventional synchronization
approaches, like semaphores, condvars, mutexes, etc., are
CPU-specific. Whereas, other hardware engines have their
own synchronization primitives (e.g., a GPU may have
CUDA events). Fences, on the other hand, may be config-
ured as an abstraction over synchronization primitives that
can be understood by many compute engines through a
unified interface (signal, wait, etc.), which allows for syn-
chronization and interoperability that may not be achievable
using other scheduling approaches used for scheduling of
homogenous systems. Because the fences are understood by
all compute engines, using fences allows for avoiding a
costly CPU round trip to translate from one engine’s sync
primitive to another’s. Further, the automatic generation of
the fences by the compiler 202 to enforce the dependencies
may also help improve separation/modularity between com-
piler and runtime components.

[0153] In some embodiments, a frame-sync and/or cross-
SoC-sync may be implemented in the generation of the
schedule 204 by the post-processor 218. For example,
runnables may be required to execute at a specific frequency,
which may not be known in advance. In addition, to ensure
that if there’s any slippage for any reason, runnables execut-
ing in other processes/SoCs should not “run ahead” without
waiting. To account for this, a frame-sync process for
performing synchronization may be implemented. In some
embodiments, the frame-sync process may include injecting
a frame sync runnable that is injected at the beginning of
each frame. As such, at the end of each frame of execution,
the timing instructions of the schedule 204 may be such that
the frame-sync runnable waits for a certain fence before
proceeding with the next frame. Having this separate process
for synchronization may allow for more efficient synchro-
nization between multiple processes. By contrast, the alter-
native may involve the synchronization being done by one
of the client processes, which, if it fails, may create a single
point of failure in the system. This frame-sync may also
simplify implementation since these frame-sync processes
behave almost the same as just another client in the system,
requiring little to no special handling. The frame-sync
process itself unblocks the other clients by signaling them,



US 2023/0096502 A1l

waits for signals from the clients, and then waits for the
precise time needed for executing at the correct frequency
before repeating the cycle again. For example, after run-
nables of an epoch complete, one runnable at the end of
epoch may be waiting for the other runnables to complete,
and a runnable at the beginning of a next epoch may be
waiting for a signal from the frame-sync runnable of the
prior epoch before beginning the next epoch.

[0154] In some instances, the runtime system may not be
able to support an entire schedule as generated—e.g., the
compute graph associated with the generated schedule may
not be supported all at once by the runtime system. In these
or other embodiments, the compiler 202 may be configured
to split the corresponding schedule up among steps such
that, e.g., every n frames a first runnable is executed, and
every n+1 frames of another runnable is executed. This may
be supported on a single compute engine, or across multiple
compute engines. As such, runnables may be scheduled with
different frequency in the same time domain in a static
schedule.

[0155] For example, FIG. 2G illustrates an example DAG
296 in which a corresponding schedule may be split, accord-
ing to one or more embodiments of the present disclosure.
For instance, in FIG. 2G, runnable B may be executed every
n frames, and runnable C may be executed every n+l
frames. This same practice may be performed for runnables
D and E. As such, even where the resources are not adequate
to support each runnable at each time instance or epoch, the
compiler 202 may generate a schedule using a round robin
approach that still complies with various constraints. This
process allows for the ability to deterministically skip cer-
tain runnables per frame while still maintaining suitable to
maximum engine utilization. The group of runnables with
tasks that have a different cadence may be treated as one task
in the time domain during resource allocation, and, at
compile time, it may be statically determined which run-
nable to run for a particular frame.

[0156] The finalized schedules 204 that may be generated
using the instruction set 226 may be obtained and executed
by the corresponding runtime system. In some embodi-
ments, the instructions in the schedules 204 may be executed
by the runtime system in multiple operating system (OS)
threads running simultaneously. Each thread may execute a
different portion of the schedules 204 as dictated by the
instructions included therein. Each thread may execute run-
nables (on the thread’s respective CPU core) and submit
runnables to run on other compute engines. Execution
timing (e.g., synchronization) between runnables across
compute engines may be achieved by executing the timing
(e.g., fence) instructions in the schedules 204. As such, the
instruction set 226 may allow the runtime system to be
decentralized—e.g., each thread may execute its instructions
in isolation and system wide synchronization may be
achieved by execution, by the various compute engines of
the runtime system, of the commands that may be generated
using the instruction set 226 and included in the schedules
204. By way of example, FIGS. 2H and 21 illustrate code of
an example schedule 204 that includes commands that
control the execution of runnables in which the commands
are based on an instruction set such as the instruction set
226.

[0157] According to some embodiments of the present
disclosure, one or more schedule quality assurance (QA)
tools may be used to help ensure that the schedules 204

Mar. 30, 2023

satisfy corresponding requirements. In some embodiments,
the QA tools may include one or more tools that are
configured to assess and/or modify the schedules 204. For
example, in some embodiments, the QA tools may include
one or more of a schedule verification engine configured to
verify that one or more of the schedules 204 comply with
corresponding constraints, or a schedule testing engine
configured to perform one or more tests of one or more of
the schedules 204 with respect to runtime operations. Fur-
ther detail regarding the schedule verification engine and the
schedule testing engine are given at least with respect to
FIG. 7.

[0158] Additionally or alternatively, the QA tools may
include one or more tools that are configured to help
improve the app data 206 that may correspond to the
schedules and/or generation of the schedules. For example,
in some embodiments, the schedule QA tools may include
one or more of an autotuning engine—such as described in
the present disclsure—or a runtime check engine configured
to analyze underlying code of the computing applications
associated with the app data 206 for elements that may cause
difficulties in executing the schedules 204. Further detail
regarding the runtime check engine and the tuning engine
are also given at least with respect to FIG. 7.

[0159] In these or other embodiments, the QA tools may
include a deadlock resolving operation that may be per-
formed by the compiler 202. For example, in some embodi-
ments, the compiler 202 (e.g., via the post-processor 218)
may be configured to inserting a runnable in the schedules
204 in which the inserted runnable is configured to resolve
situations that may result in deadlocks. Such a runnable may
be referred to as a “deadlock resolver.” In some cases, the
deadlock resolver may be used to account for deadlocks
where a submit operation takes place for a runnable before
the runnable it relies upon has completed. For example,
compute engines may have a queue in front of them and may
only process runnables in the order in which the tasks are
submitted to the hardware queues. Even where there are
multiple runnables, if the submitter runnables do not take
place in the proper way, deadlocking may occur. For
example, where task A has to run before task B, but task B
is submitted before task A, a deadlock may occur due to the
underlying constraint. As such, when generating the sched-
ules 204, this constraint may be taken into account. For
example, even if tasks are split amongst multiple hardware
queues, the current hardware setup may not allow for
determining what the post-fence values will be at compile
time for any of the accelerators. The fences of the accelera-
tors may be semaphores (e.g., an increasing integer), and the
integer value from the accelerators may be unknown. As
such, in some embodiments, a deadlock resolver may be
used as a bridge between controlled integer values and
uncontrolled integer values—e.g., by exposing a controlled
value that can be reliably waited on while also waiting on
one or more uncontrolled values.

[0160] Modifications, additions, or omissions may be
made to the embodiments and examples described herein
with respect to FIGS. 2A-2E without departing from the
scope of the present disclosure. For example, it should be
understood that this and other arrangements described herein
are set forth only as examples. Other arrangements and
elements (e.g., machines, interfaces, functions, orders,
groupings of functions, etc.) may be used in addition to or
instead of those shown, and some elements may be omitted



US 2023/0096502 A1l

altogether. Further, many of the elements described herein
are functional entities that may be implemented as discrete
or distributed components or in conjunction with other
components, and in any suitable combination and location.
Various functions described herein as being performed by
entities may be carried out by hardware, firmware, and/or
software. For instance, various functions may be carried out
by a processor executing instructions stored in memory. In
some embodiments, the systems, methods, and processes
described herein may be executed using similar components,
features, and/or functionality to those of example autono-
mous vehicle 1400 of FIGS. 14A-14D, example computing
device 1500 of FIG. 15, and/or example data center 1600 of
FIG. 16.

[0161] In addition, in some embodiments, the operations
performed with respect to the system 200 may be performed
“offline” in that they may be performed prior to execution of
the schedules 204. For example, the app data 206 may be
determined offline as well as the schedules 204. By contrast,
the runtime system may correspond to processes executed
during deployment—e.g., during the deployment of the
schedules 204 in a deterministic fashion in real-time or near
real-time.

[0162] FIG. 3A illustrates an example bubble scheduling
process 300 (“process 300”) related to performing bubble
scheduling, according to one or more embodiments of the
present disclosure. The process 300 may be performed by
any suitable system, apparatus, or device using any combi-
nation of hardware, firmware, and/or software. For instance,
various operations may be carried out by one or more
processors executing instructions stored in memory. The
operations of the process 300 may also be embodied as
computer-usable instructions stored on computer storage
media. Additionally or alternatively, one or more of the
operations of the process 300 may be provided by a stand-
alone application, a service or hosted service (standalone or
in combination with another hosted service), or a plug-in to
another product, to name a few. By way of example, in some
embodiments, one or more operations of the process 300
may be performed by the compiler 202 described with
respect to FIG. 2A. In these or other embodiments, one or
more operations may be performed by one or more com-
puting devices, such as that described in further detail at
least with respect to FIG. 15.

[0163] As indicated in the present disclosure, in general,
the bubble scheduling may include identifying time slots for
the execution of runnables. At each time slot, a determina-
tion of the available resources may be made, and the
compiler may determine where the corresponding runnables
should be executed.

[0164] In some embodiments, the process 300 may
include an application data analysis operation 302 (“data
analysis 302”). In general, the data analysis 302 may include
one or more operations that may be performed with respect
to application data 306 (“app data 306). In some embodi-
ments, the app data 206 and/or the unpacked app data 220
of FIG. 2A may be examples of the app data 306. As such,
the app data 306 may include computing application or
module information such as runnables included therein,
runnable dependencies, one or more compute graphs, execu-
tion constraints, etc., which may be used to obtain one or
more scheduling parameters 316. The scheduling parameters
316 may be used by a schedule generation operation 320 of
the process 300 to generate an execution schedule 304

Mar. 30, 2023

(“schedule 304”). The schedule(s) 204 and/or the interme-
diate schedule 224 of FIG. 2A may be examples of the
schedule 304.

[0165] In some embodiments, the data analysis 302 may
include a runnable dependency analysis 308 (“dependency
analysis 308”). The dependency analysis 308 may analyze
the app data 306 to determine dependencies between the
runnables of the app data. The dependencies may include
ancestor/dependent relationships between runnables. Addi-
tionally or alternatively, the dependencies may include sub-
mitter/submittee relationships between runnables. In some
embodiments, the determined dependencies may be
included in the scheduling parameters 316.

[0166] By way of example, FIG. 3B illustrates an example
compute graph 360 (which may be the same as the compute
graph 260 of FIG. 2C). The dependency analysis 308 may
determine—e.g., based on the edges in the compute graph
360—that node A is a parent node of node A' and that node
A is a parent node of node D. The dependency analysis may
also accordingly determine—either explicitly or implicitly
through the linked parent/child relationships—that node A is
an ancestor node of node D. Similar dependencies may be
determined with respect to the other nodes of the compute
graph 360. Additionally or alternatively, the dependency
analysis 308 may identify the submitter/submittee relation-
ship between nodes A and A' based on the node labeling
and/or the compute engine designations associated with
those nodes.

[0167] As indicated in the present disclosure, in the pres-
ent disclosure, the terms “node” and “runnable” may be used
interchangeably with respect to compute graph 360 at times
such that reference to a “node” of a compute graph may also
refer to the corresponding runnable, or vice versa. For
example, reference to “node A” may also refer to runnable
A, to which node A corresponds.

[0168] Additionally or alternatively, the scheduling
parameters 316 associated with the dependency analysis 308
may include respective coupling constraints (“couplings™)
between corresponding submitter/submittee nodes (submit-
ter/submittee nodes or runnables that correspond to each
other may also be referred to as “submitter/submittee pairs”
or “submitter/submittee sets™). The couplings may include
ensuring that a submittee node is scheduled following its
corresponding submitter node. The coupling may also be
such that submitter/submittee pairs are moved together such
that the submitter is always scheduled before the submittee.

[0169] The couplings may also be such that a first pro-
cessing queue of submitter runnables on a submitter com-
pute engine matches a second processing queue of corre-
sponding submittee runnables on a submittee compute
engine. For example, a processing queue of a submitter
compute engine may include submitter runnables A, B, and
C. Further, a corresponding processing queue of a corre-
sponding submittee compute engine may include submittee
runnables A', B', and C' which may respectively correspond
to submitter runnables A, B, and C. The coupling may
accordingly require that the order of submittee runnables A',
B', and C' in the submittee compute engine follow the same
order of the submitter runnables A, B, and C in the submitter
compute engine. For instance, if the processing queue of the
submitter compute engine was ordered “C, B, A”—meaning
that C is to be executed before B, which is to be executed



US 2023/0096502 A1l

before A—the processing queue of the submittee compute
engine would need to be “C', B', A" to satisfy the coupling
constraints.

[0170] In some embodiments, the data analysis 302 may
include a critical path identification 310. The critical path
identification 310 may include identifying a critical path of
a corresponding compute graph that may be included in or
represented by the app data 306. The critical path may be the
longest path through the corresponding compute graph from
the beginning to the end according to runnable dependencies
indicated by the compute graph. As such, the critical path
may indicate the minimally longest sequence of runnables
that correspond to the compute graph— and consequently its
corresponding module(s) or computing applications. In
some embodiments, the critical path may be identified based
on the dependencies identified during the dependency analy-
sis 308. In some embodiments, the determined critical path
may be included in the scheduling parameters 316

[0171] By way of example, returning to FIG. 3B, FIG. 3B
illustrates an example critical path 362 of the compute graph
360. In the illustrated example, the critical path 362 may
include nodes A, A', and D due to the dependencies and
WCET’s of these nodes indicating that this is the longest
path through the compute graph 360. For example, although
other paths may include just as many nodes (e.g., a path that
includes A, B, and D or a path that includes A, A", and E),
these paths may not be the critical path because their
collective WCETs may be 4 ms each whereas the collective
WCET of the critical path 362 may be 5 ms.

[0172] Returning to FIG. 3A, the data analysis 302 may
include a runnable categorization analysis 312 (“categori-
zation analysis 312”) in some embodiments. The categori-
zation analysis 312 may categorize nodes (and consequently
their corresponding runnables) into different categories that
may include critical path nodes, in-branch nodes, and out-
branch nodes. In some embodiments, the determined cat-
egorizations may be included in the scheduling parameters
316.

[0173] Nodes that are part of a critical path identified in
critical path identification 310 may be categorized as critical
path nodes. In these or other embodiments, submittee nodes
of submitter nodes that are included in the critical path may
be categorized as critical path nodes as well, even in
instances where the submittee nodes would not technically
be part of the critical path.

[0174] In these or other embodiments, nodes that are
ancestor nodes of critical path nodes (e.g., nodes from which
at least one critical path node may depend) but that are not
part of the critical path may be categorized as in-branch
nodes. Remaining nodes that are not categorized as critical
path nodes or as in-branch nodes may be categorized as
out-branch nodes.

[0175] By way of example, referring to FIG. 3B, based on
the categorization analysis 312, nodes A, A', and D may be
categorized as critical path nodes. Further, node B may be
categorized as an in-branch node and node E may be
categorized as an out-branch node.

[0176] Returning to FIG. 3A, in some embodiments, the
data analysis may include a runnable hierarchy analysis 314
(“hierarchy analysis 314”). The hierarchy analysis 314 may
identify hierarchal levels of nodes (and consequently their
respective runnables) in the compute graph. The respective
hierarchal levels of the respective nodes may be based on a
number of ancestor nodes of the respective nodes. For

Mar. 30, 2023

example, if a root node of the graph structure is given a
hierarchal level 0, then all its children may be given a
hierarchal level 1, the children nodes of the children nodes
(e.g., the grandchild nodes of the root node) would be given
a hierarchal level 2, and so on. For example, referring again
to FIG. 3B, the hierarchy analysis 314 applied to the
compute graph 360 may be such that node A may be given
level 0, nodes B and A' may be given level 1, and nodes D
and E may be given level 2. In some embodiments, the
determined hierarchal levels may be included in the sched-
uling parameters 316.

[0177] In these or other embodiments, the data analysis
may include a compute engine analysis 318. The compute
engine analysis 318 may be configured to determine, based
on the app data 306, one or more compute engine constraints
that may be associated with the runnables. For example, the
compute engine analysis may determine which types of
compute engines may be used to execute which runnables.
In these or other embodiments, the scheduling parameters
316 may include one or more of the determined compute
engine constraints.

[0178] As indicated in the present disclosure, the schedule
generation 320 may be configured to generate the schedule
304 based on the scheduling parameters 316 obtained from
the data analysis 302. In some embodiments, the schedule
generation 320 may include initial sequence generation 322
and scheduling 324.

[0179] The initial sequence generation 322 may include
generating an initial execution sequence of nodes or run-
nables (“initial sequence 326”). In some embodiments, the
initial sequence 326 may be a serial sequence of all the
nodes of the compute graph. Placement of the nodes in the
initial sequence 326 may be based on the categories, depen-
dencies, hierarchal levels and/or couplings of the nodes.
[0180] For example, in some embodiments, node place-
ment in the initial sequence 326 based on node categories
may be based on prioritizations between critical path nodes,
in-branch nodes, and out-branch nodes. The prioritization
may be such that, in general, critical path nodes may be
prioritized higher than in-branch nodes and in-branch nodes
may be prioritized higher than out-branch nodes. Accord-
ingly, in some embodiments, the placement of the nodes in
the initial sequence 326 may be such that nodes correspond-
ing to a higher priority category may be scheduled sooner in
the initial sequence 326 than other nodes that correspond to
a lower priority category when possible. The prioritization
based on the critical path nodes may be such that the initial
sequence 326 is a critical path dominant sequence. Such a
prioritization may additionally prioritize the critical path
with respect to the bubble scheduling.

[0181] Additionally or alternatively, node placement in the
initial sequence 326 based on hierarchal levels of the nodes
(“node levels”) may include scheduling nodes such that
nodes that are within a particular level are scheduled within
a certain number of timeslots from each other. Such sched-
uling may help ensure that nodes of similar levels are
somewhat grouped together in the initial sequence 326.
[0182] In these or other embodiments, node placement in
the initial sequence 326 based on node dependencies may
include scheduling ancestor nodes sooner than their respec-
tive child nodes. Additionally or alternatively, placement of
the nodes in the initial sequence 326 based on node cou-
plings may include scheduling submitter/submittee pairs
together. In these or other embodiments, the scheduling of



US 2023/0096502 A1l

submitter/submittee pairs together may include placing a
submittee node after—e.g., immediately after—its corre-
sponding submitter node in the initial sequence 326.
[0183] By way of example, FIG. 3B illustrates an initial
sequence 364. The initial sequence 364 may be a critical
path dominant sequence. For example, the initial sequence
364 may be generated based on the critical path 362 of the
compute graph 360 such that the critical path 362 is priori-
tized in the initial sequence 364. As illustrated in FIG. 3B,
the initial sequence 364 may be a critical path

[0184] The scheduling 324 may determine the schedule
304 based on the initial sequence 326 and the scheduling
parameters 316. For example, in some embodiments, the
scheduling 324 may be based on node order in the initial
sequence 326. For instance, the nodes of the initial sequence
326 may be numbered (e.g., ranked) in sequential order
starting from the first node (e.g., earliest scheduled) to the
last node (e.g., latest scheduled) in the initial sequence 326.
[0185] The scheduling 324 may begin by iteratively
scheduling the nodes across multiple compute engines start-
ing with the first node (e.g., highest ranked node) in the
initial sequence 326. In some embodiments, the scheduling
324 may continue to move through the nodes of the initial
sequence 326 to schedule the runnables of the subsequent
nodes in a similar manner to determine an initially generated
interim schedule.

[0186] For example, referring to FIG. 3B, the scheduling
324 may be configured to first determine which compute
engine may execute node A of the compute graph A due to
node A being the first node in the initial sequence 364. In
some embodiments, the scheduling 324 may make this
decision based on which compatible compute engine may be
earliest available. For instance, node A is indicated as having
a resource constraint of being executed by a CPU. As such,
the scheduling of node A may be based on the earliest
available CPU.

[0187] In these or other embodiments, the scheduling 324
may be configured to determine one or more permutations or
combinations of resources that may be available, required,
or eligible to execute node A. Additionally or alternatively,
the scheduling 324 may be configured to select the permu-
tation or combination that may be earliest available.
[0188] For example, the resource constraints of node A
may be such that node A may need a CPU and a CUDA
stream for execution. Further, a list of available compute
engines may indicate that a CPU4 and a CPUS are available
at time T=5 and that a CPU3 is available at time T=3 and that
a CUDA-STREAMO is available at those times as well. In
such an example, some example combinations may include
(CPU3, CUDA_STREAMO, T=3), (CPU4, CUDA_
STREAMO, T=5), (CPUS, CUDA_STREAMO, T=5). In this
example, node A may be scheduled to be executed by CPU3
using CUDA_STREAMO based on this being the earliest
available permutation.

[0189] In these or other embodiments, the scheduling 324
may be configured to weigh different permutations based on
one or more additional or alternative factors. For example,
current utilization of resources and/or resource fragmenta-
tion may be used to weigh the permutations. For instance, a
first permutation that includes a heavily used resource in
general but that has an earlier available time than a second
permutation that includes a less used resource may be
weighted lower than the second permutation. In such an
example, the second permutation may be selected over the

Mar. 30, 2023

first permutation in some instances even though the first
permutation may be available first.

[0190] Returning to FIG. 3A, in some embodiments, the
scheduling 324 may be configured to identity “bubbles” in
the interim schedule. A bubble may be a period of time
within the interim schedule in which one or more compute
engines may be available to execute a runnable (e.g., a
period of time during which the one or more compute
engines would be idle). In these or other embodiments, the
scheduling 324 may be configured to modify the interim
schedule by attempting to remove as many bubbles as
possible by determining whether one or more runnables may
be scheduled within a bubble that is earlier than where the
runnables may currently be scheduled.

[0191] In these or other embodiments, the moving of
runnables to populate bubbles may be subject to one or more
moving constraints. In some embodiments, the moving
constraints may be based on one or more of the scheduling
parameters 316.

[0192] For example, the moving constraints may include
one or more dependency constraints. The dependency con-
straints may require that child nodes are not moved in a
manner in which they begin execution before their corre-
sponding parent nodes have finished execution in some
embodiments. In these or other embodiments, the depen-
dency constraints may include one or more common
resource constraints associated with child and parent nodes.
For example, there may be communication context switch-
ing overhead (e.g., communication delays) associated with
child nodes executing on compute engines different from
their parent nodes. As such, in some embodiments, the
dependency constraints may indicate that child runnables be
scheduled on the same compute engine as their correspond-
ing parent runnables if possible.

[0193] Additionally or alternatively, the moving con-
straints may include a submitter/submitee constraint. The
submitter/submittee constraint may require that submitter/
submitee pairs be moved together in a manner that satisfies
the coupling constraints. For instance, submitter/submittee
pairs may be moved together such that the processing
queues of submitter runnables on a submitter compute
engine match the processing queues of corresponding sub-
mittee runnables on a corresponding submittee compute
engine, such as described in the present disclosure.

[0194] Additionally or alternatively, the moving con-
straints may include a level constraint. For example, in some
embodiments, the scheduling 324 may be configured to not
move respective runnables in a manner that would place
them with other runnables that have hierarchal levels further
than a threshold amount away from that of the respective
runnables. For instance, in some embodiments, the level
constraints of respective runnables may be based on the
number of runnables having the same hierarchal level as the
respective runnables. For instance, “x” number of runnables
may have a hierarchal level “y.” A particular runnable
having hierarchal level “y” may have a corresponding level
constraint that restrains movement of the particular runnable
beyond “x” number of time slots from its current location.
[0195] In some embodiments, the scheduling 324 may be
configured to continue to modify the interim schedule until
all the execution constraints included in the app data 306 are
satisfied. Additionally or alternatively, the scheduling 324
may continue to make modifications until the improvements
no longer satisfy an improvement threshold. In these or other



US 2023/0096502 A1l

embodiments, the scheduling 324 may continue to make
modifications until a certain amount of time has passed.
Upon finishing making modifications, the scheduling 324
may output the settled upon schedule as the schedule 304. In
some embodiments, the schedule 304 may accordingly be
optimized using the process 300. It is noted that reference to
an “optimized schedule” or to optimizing a schedule in the
present disclosure does not necessarily mean the absolute
best schedule possible, but instead refers to a schedule that
is generated using an optimization process configured to
improve a schedule to reach at least a suitable schedule—
e.g., a schedule that satisfies various constraints of the
system.

[0196] The bubble scheduling process 300 implemented
as described in the present disclosure may include the ability
to schedule a runnable across multiple hardware engines
and/or software resources concurrently. The bubble sched-
uling process 300 further support scheduling a runnable
while obeying queuing constraints exposed by programming
models of GPUs, DLAs, PVAs, etc.

[0197] Modifications, additions, or omissions may be
made to the bubble scheduling process 300 without depart-
ing from the scope of the present disclosure. For example,
the order of one or more of the operations described may
vary than the order in which they were described or are
illustrated. Further, each operation may include more or
fewer operations than those described. In addition, the
delineation of the operations and eclements is meant for
explanatory purposes and is not meant to be limiting with
respect to actual implementations.

[0198] FIG. 4A illustrates an example branch and bound
(BNB) scheduling process 400 (“BNB process 400”) related
to performing BNB scheduling, according to one or more
embodiments of the present disclosure. The BNB process
400 may be performed by any suitable system, apparatus, or
device using any combination of hardware, firmware, and/or
software. For instance, various operations may be carried
out by one or more processors executing instructions stored
in memory. The operations of the BNB process 400 may also
be embodied as computer-usable instructions stored on
computer storage media. Additionally or alternatively, one
or more of the operations of the BNB process 400 may be
provided by a standalone application, a service or hosted
service (standalone or in combination with another hosted
service), or a plug-in to another product, to name a few. By
way of example, in some embodiments, one or more opera-
tions of the BNB process 400 may be performed by the
compiler 202 (e.g., by the scheduling engine 216 of the
compiler 202) described with respect to FIG. 2A. In these or
other embodiments, one or more operations may be per-
formed by one or more computing devices, such as that
described in further detail at least with respect to FIG. 15.
[0199] In general, the BNB process 400 may include one
or more operations that may be performed with respect to
application data 406 (“app data 406”). In some embodi-
ments, the app data 206 and/or the unpacked app data 220
of FIG. 2A may be examples of the app data 406. As such,
the app data 406 may include computing application or
module information such as runnables included therein,
runnable dependencies, one or more compute graphs, execu-
tion constraints, etc., which may be used to generate an
execution schedule 404 (“schedule 404”). The schedule(s)
204 and/or the intermediate schedule 224 of FIG. 2A may be
examples of the schedule 404.

Mar. 30, 2023

[0200] As indicated in the present disclosure, in general,
the BNB process 400 may include identifying different
possible scheduling options for computing applications or
modules that may occur due to branches in their correspond-
ing compute graphs. For example, in some embodiments,
the BNB process 400 may generally incrementally move
through a compute graph of the app data 406 (e.g., starting
at a root node of the compute graph) and scheduling nodes
as they are encountered. However, in some instances, one or
more nodes in the compute graph may be branching nodes
that may correspond to branches in the compute graph may
be such that more than one scheduling option may be
possible. Such options may be referred to as “scheduling
branches.” In some embodiments, the branching may be
from the perspective of the current timing location within
the schedule generation.

[0201] By way of example, FIG. 4B illustrates an example
compute graph 460 (which may be the same as the compute
graph 260 of FIG. 2C or the compute graph 360 of FIG. 3B).
As illustrated, the compute graph 460 may include a node A
that is a branching node that has a child node B and a child
node A' that both depend from node A but not from each
other such that the compute graph 460 may branch out from
the node A to both nodes B and A". In such an example, after
scheduling node A the current timing location within the
schedule may be 1 ms. In such an example, possible sched-
uling branches may include 1) a first permutation in which
both nodes B and A' are scheduled to begin execution at the
1 ms point in time, 2) a second permutation in which node
A is scheduled to begin execution at the 1 ms point in time
and in which node B begins execution later than the 1 ms
point in time, and 3) a third permutation in which node B is
scheduled to begin execution at the 1 ms point in time and
in which node A begins execution later than the 1 ms point
in time. FIG. 4B illustrates these different scheduling
branches with a scheduling branch 450 representing the first
permutation, a scheduling branch 452 representing the sec-
ond permutation, and a scheduling branch 454 representing
the third permutation.

[0202] Returning to FIG. 4A, in some embodiments, the
BNB process 400 include a branch analysis 408. The branch
analysis 408 may include identification of potential sched-
uling branches with respect to the branching node most
recently scheduled during the BNB process 400. In these or
other embodiments, the scheduling branch identification
may include identifying as respective scheduling branches,
different permutations of schedules that may be possible
from the branching node. In some embodiments, the per-
mutations may only include a certain number of levels
below the branching node. For example, the permutations
may only include nodes one level below the branching node
(e.g., child nodes of the branching node) or nodes within two
levels below the branching node (e.g., child nodes and
grandchild nodes of the branching node).

[0203] In these or other embodiments, the branch analysis
408 may include determining or identifying one or more
branch characteristics 410 of each of one or more of the
identified scheduling branches. In some embodiments, the
one or more branch characteristics 410 may include respec-
tive total execution times of the scheduling branches. Addi-
tionally or alternatively, the one or more branch character-
istics may include runnable placement. For example, in
some embodiments, certain runnables (e.g., critical path
runnables) may have a higher scheduling prioritization than



US 2023/0096502 A1l

other runnables. In some embodiments, the branch charac-
teristics may be used to identify where such runnables are
located in the scheduling order associated with the different
branches. In these or other embodiments, the branch char-
acteristics may include weighting of the different scheduling
branches based on the runnable placements in which sched-
uling branches that schedule higher prioritized runnables
may be weighted higher than scheduling branches that
schedule higher prioritized runnables later.

[0204] In some embodiments, a respective total execution
time of a respective scheduling branch may be determined
by identifying a minimum possible amount of time that it
may take to execute all the runnables if the respective
scheduling branch were to be selected. In these or other
embodiments, the total execution time may be determined
by relaxing one or more execution constraints of the remain-
ing unscheduled runnables. For example, in some embodi-
ments, dependency constraints may be relaxed such that the
total execution times may be determined by adding all the
execution times of the remaining unscheduled runnables.
Additionally or alternatively, in determining the total execu-
tion times, it may be assumed that all child runnables that
immediately depend from a same parent runnable may be
executed at the same time, even if other execution con-
straints may limit such implementations. Note that the term
“minimum” with respect to the total execution times may
not refer to the absolute or actual minimum amount of time
for execution, but instead a determined minimum execution
time according to certain calculation parameters that may be
used.

[0205] Relaxing the constraints as indicated in the present
disclosure may allow for a quick analysis regarding which
total execution times may be longest. For example, upon
relaxing dependency constraints and packing all GPU work
back to back on a particular GPU, it may be determined that
the total schedule cannot be smaller than 60 ms. But, in a
same setup, if all DLLA work is packed back to back on a
DLA it may be determined that the total schedule length
cannot be smaller than 65 ms. As indicated and discussed in
further detail in the present disclosure, the largest of such
determinations may be selected to prune out branches.
[0206] By way of example, referring again to FIG. 4B, a
total execution time of the scheduling branch 450 may be
determined as being 5 ms by adding up the longest possible
execution time through the compute graph 460 from node A
to the end of the compute graph if the scheduling branch 450
were used. In particular, the longest execution time for the
scheduling branch 450 is the sum of the execution times of
nodes A, A', and D. The execution time of node B may be
ignored because it is shorter than that of A' and in the
scheduling branch 450, nodes B and A' are scheduled
concurrently. Further, the assumption may be made that
nodes E and D are executed at the same time such that the
execution time of node E may be ignored since it is shorter
than that of node D. As other examples, the total execution
times of the scheduling branches 452 and 454 may each be
6 ms due to nodes A' and B being scheduled serially instead
of concurrently in those scheduling branches.

[0207] Returning to FIG. 4A, in some embodiments, the
branch characteristics 410 may additionally or alternatively
include execution constraint compliance. For example, it
may be determined whether the respective branches violate
dependency constraints and/or submitter/submittee con-
straints.

Mar. 30, 2023

[0208] In some embodiments, the BNB process 400 may
include an application data analysis 402 that may be similar
or analogous to the application data analysis 302 of FIG. 3A.
For example, the application data analysis 402 may include
one or more of a runnable dependency analysis, critical path
identification, a runnable categorization analysis, a runnable
hierarchy analysis, and/or a compute engine analysis such as
described at least with respect to FIGS. 3A and 3B. In these
or other embodiments, the application data analysis 402 may
be used to determine one or more scheduling parameters
417, which may be similar or analogous to the scheduling
parameters 316 of FIG. 3A.

[0209] In general, the BNB process 400 may be config-
ured to build the schedule 404 by selecting scheduling
branches based on a branch selection 412. The branch
selection 412 may include eliminating one or more of the
identified scheduling branches from consideration according
to one or more bounding constraints 416 that may be applied
with respect to the respective scheduling branches. In the
present disclosure reference to “elimination” of a scheduling
branch from consideration may include identifying a sched-
uling branch and then removing the scheduling branch from
consideration. Additionally or alternatively, reference to
“elimination” of a scheduling branch from consideration
may include ignoring the possibility of the scheduling
branch even existing.

[0210] In some embodiments, the bounding constraints
416 may be based on certain heuristics that may accordingly
help avoid searching spaces with less likelihood of optimal-
ity. In these or other embodiments, the bounding constraints
416 may include one or more of a total time constraint, a
runtime constraint, a bubble avoidance constraint, a depen-
dency constraint, and/or a submitter/submittee constraint.
Further, although the bounding constraints 416 are depicted
as being separate from the branch characteristics 410 in FIG.
4A, as indicated in the present disclosure, in one or more
instances, one or more of the bounding constraints 416 may
be determined based on one or more of the branch charac-
teristics 410. In addition, in some embodiments, one or more
of the bounding constraints 416 may be based on one or
more of the scheduling parameters 417, such as described in
the present disclosure.

[0211] In some embodiments, the total time constraint
may be such that any scheduling branches that have a
respective total execution time (such as determined in the
branch analysis 408) that is greater than the total time
constraint are removed from consideration. In some embodi-
ments, the total time constraint may be determined based on
the respective total execution times of the scheduling
branches. For example, the total time constraint may be the
lowest total execution time of the total execution times of the
scheduling branches. Additionally or alternatively, the BNB
process 400 may be an iterative process and the total time
constraint may be the lower of the total execution time of a
previously determined interim schedule or the lowest total
execution time of the total execution times of the scheduling
branches currently being analyzed.

[0212] By way of example, referring again to FIG. 4B, in
this example, the total time constraint with respect to the
branching at node A (and consequently with respect to the
scheduling branches 450, 452, and 454) may be 5 ms (which
may be determined based on a previous scheduling iteration
as discussed in further detail in the present disclosure).
Accordingly, the scheduling branches 452 and 454 may be



US 2023/0096502 A1l

eliminated from consideration because they have total
execution times greater than 5 ms. Additionally, at this
juncture the scheduling branch 450 may not be eliminated
because it is currently determined that its total execution
time may be less than or equal to 5 ms. As also illustrated
in FIG. 4B, similar types of elimination may be performed
with respect to other scheduling branches.

[0213] In some embodiments, the runtime constraint may
include a minimum execution time of runnables to trigger
the generation of a scheduling branch. For example, if two
child runnables of a parent runnable (e.g., as indicated by
dependency information included in the scheduling param-
eters 417) each have execution times that are less than the
minimum execution time, rather than identifying multiple
corresponding scheduling branches from their correspond-
ing parent runnable, one of the potential scheduling
branches may be used and the others may be ignored. By
way of illustration, referring to FIG. 4B, if the runtime
constraint was 3 ms, then rather than identifying and choos-
ing between the scheduling branches 450, 452, and 454, one
of those branches would merely be scheduled. In some
embodiments, the one that would be scheduled may just be
based on the order that the nodes A' and B are encountered
during the BNB process 400.

[0214] As another example regarding the runtime con-
straints, if a parent runnable has three child runnables and
two of the three child runnables have execution times that
are less than the minimum execution time, the scheduling
branches that may be analyzed and/or identified may all
have the same execution scheduling with respect to the two
child runnables that have execution times that are smaller
than the minimum execution time. As such, scheduling
branches that correspond to different permutations of these
two child runnables may be dismissed.

[0215] In some embodiments, the runtime constraint may
be determined based on a runtime percentile of the run-
nables. For example, in some instances, the runtime con-
straint may be set at the 90? percentile (as a non-limiting
example) runtime such that branching may only occur with
respect to the top 10% longest running runnables. In some
embodiments, the BNB process 400 may be an iterative
process and the runtime constraint may be adjusted during
different iterations. Further, the results of previous iterations
may be used to inform the decisions of current iterations
[0216] For example, during a first iteration, a first interim
schedule may be determined using a first runtime constraint
that corresponds to the 90” percentile runtime. The first
interim schedule may also include a first total runtime
associated therewith. Additionally, the first total runtime
may be used as an initial total time constraint for a second
iteration of the BNB process 400, which may eliminate one
or more scheduling branches more quickly. Further, the
second iteration may use a lower percentile runtime (e.g.,
80 percentile) as the runtime constraint. In some embodi-
ments, the BNB process 400 may continue such a process by
lowering the percentile runtime for each subsequent itera-
tion. The process of starting with a relatively high runtime
constraint and moving toward lower runtime constraints
(e.g., by moving from higher to lower percentile runtimes)
may help improve the efficiency of the BNB process 400.
For instance, in the example above, the first iteration may be
performed relatively quickly because the high runtime con-
straint may result in relatively little scheduling branches to
analyze. Further, by using the first total runtime as the initial

Mar. 30, 2023

total time constraint of the second iteration, branches that
may have not been eliminated otherwise during the second
iteration had the first iteration not been run first may be
eliminated, which may decrease the amount of time to
perform the second iteration.

[0217] In some embodiments, the bubble avoidance con-
straint may include avoiding analyzing scheduling branches
that may include avoidable scheduling bubbles. As indicated
in the present disclosure with respect to the bubble sched-
uling, a “bubble” may be a period of time within the
intermediate schedule in which one or more compute
engines may be available to execute a runnable (e.g., a
period of time during which the one or more compute
engines would be idle). Reference to an “avoidable” sched-
uling bubble may refer to bubbles at which a runnable is not
scheduled but could be scheduled while still satisfying
certain execution constraints (e.g., dependency constraints).
Conversely, what would be considered an “unavoidable”
bubble may include bubbles at which no runnables may be
scheduled because doing so would violate one or more
execution constraints. The bubble avoidance constraint may
improve the efficiency of the BNB scheduling 400 by
reducing the number of scheduling branches that may be
analyzed or explored.

[0218] In some embodiments, the dependency constraint
may include eliminating scheduling branches that may vio-
late dependency restrictions (in which the dependencies may
be indicated in the scheduling parameters 417). For
example, the dependency constraint may be such that
descendent nodes may not be scheduled before correspond-
ing ancestor nodes due to the dependency of the descendent
nodes on the ancestor nodes.

[0219] Additionally or alternatively, the submitter/submit-
tee constraint may be such that coupling constraints asso-
ciated with submitter/submittee runnable sets are met, such
as described in the present disclosure with respect to the
bubble scheduling. For example, the compute graph may
include a submitter node A, a submitter node B, and a
submitter node C. The submitter node A may have a corre-
sponding submittee node A', the submitter node B may have
a corresponding submittee node B', and the submitter node
C may have a corresponding submittee node C'. The sub-
mitter/submittee constraint may be such that only scheduling
branches in which the order of submittee nodes A', B', and
C' in a submittee queue is the same as the order of the
corresponding submitter nodes A, B, and C in a correspond-
ing submitter queue. For instance, a scheduling branch with
a submitter queue “ABC” and a submittee queue “A'C'B™
would violate the submitter/submittee constraint and accord-
ingly would be eliminated from consideration.

[0220] Inthese or other embodiments, the branch selection
412 may be based on one or more of the scheduling
parameters 417 related to a critical path associated with the
app data 406. For example, branches that are more critical
path dominant may have a higher selection weight than
branches in which the critical path is less dominant. For
instance, branches in which the scheduling of critical path
nodes is such that they are prioritized higher than in-branch
nodes or out-branch nodes may have a higher priority than
other branches in which this is not as much the case.
Similarly, branches in which the scheduling of in-branch
nodes is such that they are prioritized higher than out-branch
nodes may have a higher priority than other branches in
which this is not as much the case.



US 2023/0096502 A1l

[0221] In some embodiments, as indicated in the present
disclosure the BNB process 400 may be configured to
perform multiple scheduling iterations to improve the
interim schedule until all the execution constraints included
in the app data 406 are satisfied. Additionally or alterna-
tively, the BNB process 400 may continue to perform the
iterations until the improvements no longer satisfy an
improvement threshold. In these or other embodiments, the
BNB process 400 may continue to iterate until a certain
amount of time has passed. Upon finishing the iterations, the
BNB process 400 may output the settled upon schedule as
the schedule 404. In some embodiments, the schedule 404
may accordingly be optimized using the BNB process 400.
[0222] For example, in some embodiments, the BNB
process 400 may follow a depth-first search technique. In
such embodiments, the BNB process 400 may start sched-
uling at the root node of the compute graph and may
generate an initial schedule by applying the branch analysis
408 to identify potential scheduling branches at branching
nodes as they are encountered. In these or other embodi-
ments, the initial schedule generation may include selecting
one schedule branch at each encountered branching node
moving from the root node—e.g., based on one or more of
the bounding constraints 416—and so on until reaching the
end of the compute graph. At this point, the initial schedule
may be a valid schedule and may be one large scheduling
branch. In some embodiments, the branch analysis 408 may
be applied to the initial schedule to determine a total
execution time associated therewith, which may be used as
the total time constraint, which may not have had a value
prior to the initial schedule generation.

[0223] In these or other embodiments, the BNB process
400 may then backtrack up one level (e.g., to a branching
node) and apply the branch analysis 408 at that branching
node to identify potential scheduling branches from the now
encountered branching node. In some embodiments, the
backtracking may also be based on the critical path in that
backtracking to critical path nodes may be prioritized higher
than to in-branch nodes or out-branch nodes. Similarly,
backtracking to in-branch nodes may be prioritized higher
than to out-branch nodes.

[0224] The BNB process 400 may then apply the branch
selection 412 to the scheduling branches that correspond to
the backtracked to node to determine whether one of those
branches may yield a better (e.g., faster) schedule than the
initial schedule. If so, the branch selection 412 may select a
branch that does yield a better schedule. Alternatively, the
BNB process 400 may backtrack to another node and make
the same determination. The BNB process 400 may perform
or repeat this type of process to continually attempt to
identify a better schedule. In response to identifying a better
schedule, the BNB process 400 may then obtain a new
schedule that may be an interim schedule. In some embodi-
ments, the BNB process 400 may continue to attempt to
identify a better schedule until the improvements no longer
satisfy an improvement threshold. In these or other embodi-
ments, the BNB process 400 may continue to attempt to
identify a better schedule until a certain amount of time has
passed. Upon finishing searching for a better schedule, the
BNB process 400 may output the settled upon schedule as
the schedule 404.

[0225] The BNB process 400 as described in the present
disclosure may accordingly employ a branch and bound
scheduling approach while accounting for challenges asso-

Mar. 30, 2023

ciated with static scheduling for heterogenous runtime sys-
tems. For example, the bounding constraints may help
account for serialization constraints of certain compute
engines, such as GPUs and accelerators through the use of
the submitter/submittee constraints. Further, the greedy
scheduling based on the runtime constraints may help reduce
the amount of processing and/or time used to perform the
scheduling.

[0226] Modifications, additions, or omissions may be
made to the BNB process 400 without departing from the
scope of the present disclosure. For example, the order of
one or more of the operations described may vary than the
order in which they were described or are illustrated. Fur-
ther, each operation may include more or fewer operations
than those described. In addition, the delineation of the
operations and elements is meant for explanatory purposes
and is not meant to be limiting with respect to actual
implementations.

[0227] FIG. 5 illustrates an example partitioning schedul-
ing process 500 (“partitioning process 500”) related to
scheduling one or more secondary computing applications
with respect to a primary computing application, according
to one or more embodiments of the present disclosure. The
partitioning process 500 may be performed by any suitable
system, apparatus, or device using any combination of
hardware, firmware, and/or software. For instance, various
operations may be carried out by one or more processors
executing instructions stored in memory. The operations of
the partitioning process 500 may also be embodied as
computer-usable instructions stored on computer storage
media. Additionally or alternatively, one or more of the
operations of the partitioning process 500 may be provided
by a standalone application, a service or hosted service
(standalone or in combination with another hosted service),
or a plug-in to another product, to name a few. By way of
example, in some embodiments, one or more operations of
the partitioning process 500 may be performed by the
compiler 202 (e.g., by the scheduling engine 216 of the
compiler 202) described with respect to FIG. 2A. In these or
other embodiments, one or more operations may be per-
formed by one or more computing devices, such as that
described in further detail at least with respect to FIG. 15.
[0228] In general, reference to a “primary computing
application” may refer to a computing application for which
an execution schedule is being generated and in which
schedules of one or more other computing applications that
are generally smaller than the primary computing applica-
tion are being injected in one or more portions of the
execution schedule of the primary computing application.
Similarly, reference to a “secondary computing application”
may be with respect to computing applications whose sched-
ules are being injected in that of the primary computing
application.

[0229] Examples of secondary computing applications
may include applications that belong to different safety
levels as the primary computing application. Additionally or
alternatively, the secondary applications may include one or
more QM applications. The QM applications may include
computing processes that may be configured to verify that
one or more of the computing applications that are also
scheduled are operating in a certain manner. Such inclusion
of such processes may be based on certain quality control
requirements—e.g., safety requirements for certain ego-
machine operations. The partitioning process 500 is config-



US 2023/0096502 A1l

ured to provide a mechanism for scheduling secondary
applications with primary applications in a manner that
allows for computing resources to be shared between the
two, while also satisfying requirements that may be associ-
ated with the secondary applications—e.g., while satisfying
different robustness requirements between the primary
application and the secondary applications. The partitioning
process 500 may accordingly help improve the efficiency of
processing secondary applications.

[0230] For example, other techniques may include a com-
plete resource separation between execution of secondary
applications and primary applications. However, such a
technique may result in the secondary application designated
resources being underutilized. Another technique is to com-
pletely separate the execution (and consequently the sched-
uling) of the secondary applications and the primary appli-
cations. However, such a technique may cause resource
downtime as execution is switched and may limit the ability
to execute the primary applications as often as desired or
required.

[0231] In some embodiments, the partitioning process 500
may include secondary schedule generation 512. The sec-
ondary schedule generation 512 may include generating a
secondary schedule 518 based on secondary application data
516 (“secondary app data 516). The secondary app data 516
may be similar or analogous to the other app data discussed
herein (e.g., the app data 206, 306, and/or 406 described
with respect to FIGS. 2A, 3A, and 4A). Similarly, the
secondary schedule 518 may be similar or analogous to
other execution schedules described herein (e.g., the sched-
ules 204, 224, 304 and/or 404 described with respect to
FIGS. 2A, 3A, and 4A), but may relate directly to a
corresponding secondary application.

[0232] In some embodiments, the secondary schedule
generation 512 may include generating the secondary sched-
ule 518 according to any applicable technique. For example,
in some embodiments, the secondary schedule generation
512 may include the bubble process 300 described with
respect to FIGS. 3A and 3B. Additionally or alternatively,
the secondary schedule generation 512 may include the
BNB process 400 described with respect to FIGS. 4A and
4B.

[0233] The partitioning process 500 may also include
primary schedule generation 502. The primary schedule
generation 502 may include generating a primary schedule
508 based on primary application data 506 (“primary app
data 506). The primary app data 506 may be similar or
analogous to the other app data discussed herein (e.g., the
app data 206, 306, and/or 406 described with respect to
FIGS. 2A, 3A, and 4A) and may relate to one or more
primary computing applications.

[0234] In some embodiments, the primary schedule gen-
eration 502 may include generating the primary schedule
508 according to any applicable technique. For example, in
some embodiments, the primary schedule generation 502
may include the bubble process 300 described with respect
to FIGS. 3A and 3B. Additionally or alternatively, the
primary schedule generation 502 may include the BNB
process 400 described with respect to FIGS. 4A and 4B.
[0235] In these or other embodiments, the primary sched-
ule generation 502 may also include inserting a bubble into
the primary schedule 508 (referred to herein as a “secondary
bubble”). As described further in the present disclosure, the
secondary bubble may be inserted to allow for insertion of

Mar. 30, 2023

the secondary schedule 518 into the primary schedule 508.
As such, in some embodiments, the size of the secondary
bubble may be based on the length of the secondary schedule
518 in some embodiments. For instance, the secondary
bubble may correspond to the same amount of time as the
secondary schedule 518.

[0236] Additionally or alternatively, the secondary bubble
may be sized to allow for modifications to the secondary
application that may be associated with the secondary sched-
ule 518 (which may result in changes to the secondary
schedule 518). For example, the secondary bubble may be
sized to be a certain percentage longer than the total execu-
tion time of the secondary schedule 518.

[0237] In these or other embodiments, the secondary
bubble may be sized based on a heuristic that relates to
secondary schedule lengths in general. For instance, a heu-
ristic may be determined for a maximum possible length of
execution frames of QM applications by analyzing multiple
QM applications (e.g., a library of QM applications) and the
secondary bubble may be sized according to the determined
maximum size in instances in which the secondary applica-
tion may include a QM application. In these or other
embodiments, the secondary bubble may be scheduled like
arunnable in a corresponding frame during the generation of
the primary schedule 508. It is noted that reference to and
use of the term an “maximum” in the present disclosure does
not necessarily mean an absolute maximum that may be
possible, but instead refers to a value that may be determined
using some sort of process configured to obtain a value that
may be used as a “maximum” value for certain calculations
or determinations.

[0238] The partitioning process 500 may include schedule
linking 510 in some embodiments. The schedule linking 510
may include combining the primary schedule 508 with the
secondary schedule 518 to generate a combined schedule
504. The combined schedule 504 may be similar or analo-
gous to other execution schedules described herein with
respect to its structure and configuration (e.g., the schedules
204, 224, 304 and/or 404 described with respect to FIGS.
2A, 3A, and 4A). In some embodiments, the combining of
the primary schedule 508 and the secondary schedule 518
may include injecting the secondary schedule 518 into the
secondary bubble of the primary schedule 508 that is gen-
erated for the secondary schedule 518.

[0239] Modifications, additions, or omissions may be
made to the partitioning process 500 without departing from
the scope of the present disclosure. For example, the number
of secondary schedules that may injected into the primary
schedule and/or the number of times that a respective
secondary schedule may be injected into the primary sched-
ule may vary. Additionally or alternatively, the number of
secondary bubbles that may be included in the primary
schedule may accordingly vary.

[0240] In addition, the order of one or more of the opera-
tions described may vary than the order in which they were
described or are illustrated. Further, each operation may
include more or fewer operations than those described. In
addition, the delineation of the operations and elements is
meant for explanatory purposes and is not meant to be
limiting with respect to actual implementations.

[0241] FIG. 6A illustrates an example system 600 associ-
ated with executing execution schedules associated with one
or more computing applications, according to one or more
embodiments of the present disclosure. The system 600 may



US 2023/0096502 A1l

include a runtime system 608, a monitoring engine 612, and
a schedule management engine 610 (“schedule manager
610”), in some embodiments. In general, the system 600
may relate to the execution of one or more schedules, such
as a schedule 604, which may be analogous or similar to the
schedules 204 described in the present disclosure. In some
embodiments, the monitoring engine 612, the schedule
manager 610, and/or the runtime system 608 may be con-
figured to access the schedule 604 via a shared memory that
may store the schedule 604. Additionally or alternatively, the
schedule 604 may be provided to the monitoring engine 612,
the schedule manager 610, and/or the runtime system 608.
[0242] In general, the runtime system 608 may be config-
ured as a user-space scheduler that operates above the
OS—thus alleviating the scheduling burden from the sepa-
rate controls of the OS and the hardware engines. In addi-
tion, in these or other embodiments, the runtime system 608
may be non-preemptive, such that all runnables may be
completed atomically and downstream runnables may not be
called or executed until all prior runnables—e.g., runnables
having associated dependencies—are executed.

[0243] The runtime system 608 being configured as indi-
cated in the present disclosure may help overcome some
issues associated with traditional systems. For example, an
issue with traditional systems is that each compute engine
may require its own scheduler, with an operating system
(OS) scheduler on top of that, which each expose different
scheduling controls and/or are not configured for control. In
such systems, determinism may not be achievable through
dynamic scheduling methods, and thus safety and efficacy
constraints are not able to be met with enough validation to
comply with strict safety requirements associated with
autonomous or semi-autonomous machines.

[0244] Insome embodiments, the runtime system 608 may
be configured as and/or included in a heterogenous comput-
ing system that includes multiple hardware and/or software
resources and corresponding compute engines, such as
described in the present disclosure. In some embodiments,
the computing system that corresponds to the runtime sys-
tem may be referred to as an “execution computing system”
or “an execution system.” Additionally, the runtime system
608 may be configured to execute the schedule 604. As
indicated in the present disclosure, the schedule 604 may be
in the form of a set of commands (“command set”) generated
based on an instruction set such that the schedule 604 is
extensible and may be executed by multiple clients 620 of
the runtime (illustrated in FIG. 6 A as clients 620a, 6205, and
620c¢).

[0245] The clients 620 may correspond to operating sys-
tem processes that may include one or more runnables that
are included in the schedule 604. Each runnable within a
client may run on any compute engine. By way of example
and not limitation, referring to a schedule 662 of FIG.
6B—which is analogous to the schedule representation 262
of FIG. 2C—runnables A, A', and E may correspond to client
620a executing in one operating system process. Further,
runnable B of the schedule 662 may correspond to the client
6205. In addition, runnable E of the schedule 662 may
correspond to the client 620c.

[0246] Returning to FIG. 6A, the runtime system 608 may
include a system task management module (STM) 622,
which may implement a master process related to executing
the schedule 604 and/or one or more other schedules as
described in further detail in the present disclosure. The

Mar. 30, 2023

STM 622 may receive the schedule 604 and its correspond-
ing command set. The STM 622 may be configured to
dispatch the portions of the command set to the clients 620
that respectively pertain to the clients 620 to respective
runtime libraries 624 of the clients 620 (e.g., a runtime
library 624a of client 620a, a runtime library 6245 of the
client 6205, and a runtime library 624c¢ of the client 620c¢).
For example, referring back to FIG. 6B, a first subset of the
command set that corresponds to runnables A, A', and E may
be dispatched to the runtime library 624a, a second subset of
the command set that corresponds to runnable B may be
dispatched to the runtime library 62454, and a third subset of
the command set that corresponds to runnable D may be
dispatched to the library 624c.

[0247] Application code 626 that respectively corresponds
to the computing application associated with the schedule
604 may also be provided to the clients 620 and may be used
by the clients 620 to register the runnables with the corre-
sponding runtime libraries 624. In these or other embodi-
ments, the clients 620 may then execute its own schedule of
its assigned runnables based on the instructions and regis-
tration in its corresponding runtime library 624, which may
handle the execution of the corresponding runnables.

[0248] As indicated in the present disclosure, the instruc-
tions may be simple, in embodiments, and may indicate the
synchronization primitives—such as to “wait on Fence A,”
“trigger Fence B,” “call function C,” “call submitter D,”
“signal Fence E,” etc. In some embodiments, the fences may
be stored and managed in a shared memory 630. The shared
memory 630 may be accessible by all of the clients and the
STM 622 and may include the memory locations of the
synchronization primitives (and corresponding fences)
included in the schedule 604. Such a shared memory may
allow for cross-engine, cross chip, and/or cross-process
synchronization between the different clients without
involvement from an overseeing engine or process, such as
the STM 622 being executed on a CPU. This ability of a
user-level scheduler to work across multiple processes
improves isolation, which may improve for safety.

[0249] Once each client 620 receives a corresponding
command set, the runtime system 608 may spawn, and the
runtime system 608 may call back runnables based on how
the schedule 604 is provided. Each runnable may correspond
to one or more events (e.g., a start time and an end time), and
each event may be logged in a runtime log 640 in some
embodiments. In these or other embodiments, frame start
and frame end for hyper epochs and epochs may be logged
in the runtime log 640. Additionally or alternatively, other
operations or events may be logged in the runtime log 640,
such as special events and clock timestamps and profiling
markers. Examples of the special events may include a
critical failure in the scheduling system itself (e.g. for black
box recording) certain points in the execution that may be
marked (e.g., by a user) for tracing the computing applica-
tion’s execution. Clock timestamps may be used to do offline
clock conversions (e.g., similar to clock mappings described
in the present disclosure) for analytics—e.g., dGPU time-
stamps may be based on a different clock and accordingly in
a different time domain than CPU timestamps. The conver-
sions may be used for normalizing the timestamps to gen-
erate a single timeline. Profiling markers may be used for
measuring performance of the execution—e.g., how long
did it take to initialize, how much memory does the opera-



US 2023/0096502 A1l

tions of the STM 622 take, how long do different sections of
the schedule manager 610 take to execute, etc.

[0250] The runtime log 640 may be passed through to the
analysis engine 642, which may analyze execution of the
computing application associated with the schedule 604.
Further discussion is given in the present disclosure with
respect to the analysis engine 642.

[0251] In some implementations, each client 620 may be
in a cooperative mode, such that if one client 620 makes a
mistake it may have a downstream effect on other clients 620
depending on the safety rating. As such, ASIL clients may be
required to be in sync, which is possible using the systems
and methods of the present disclosure—e.g., the use of
fences and the command sets may allow for such synchro-
nization. However, for non-ASIL clients, such as quality
management clients, overrun or misbehavior may not be
acceptable due to different safety requirements.

[0252] In some embodiments, the schedule manager 610
may include code and routines configured to allow a com-
puting system to perform one or more operations. Addition-
ally or alternatively, the schedule manager 610 may be
implemented using hardware including one or more proces-
sors, central processing units (CPUs) graphics processing
units (GPUs), data processing units (DPUs), parallel pro-
cessing units (PPUs), microprocessors (e.g., to perform or
control performance of one or more operations), field-
programmable gate arrays (FPGA), application-specific
integrated circuits (ASICs), and/or other processor types. In
some other instances, the schedule manager 610 may be
implemented using a combination of hardware and software.
As such, the schedule manager 610 and/or the computing
system on which the schedule manager 610 may be imple-
mented may be referred to as a managing system in some
embodiments. In the present disclosure, operations
described as being performed by the schedule manager 610
may include operations that the schedule manager 610 may
direct a corresponding computing system to perform.

[0253] The schedule manager 610 may be configured to
manage the execution of the schedule 604 by the runtime
system 608. For example, the schedule manager 610 may be
configured to direct the runtime system 608 to execute the
schedule 604.

[0254] In these or other embodiments, the schedule man-
ager 610 may be configured to select the schedule 604 for
execution among one or more other schedules. In these or
other embodiments, the schedule manager 610 may be
configured to direct switching between schedules that may
be executed by the runtime system 608. Such a feature may
help allow for switching execution of different computing
applications by switching corresponding schedules

[0255] For example, in the context of autonomous opera-
tions performed by an ego-machine—such as the autono-
mous vehicle 1400 of FIGS. 14A-14D—different schedules
may be generated that correspond to different driving func-
tions, modes, or autonomy levels (e.g., L1, L2, L3, etc.). In
such an example, a driving mode may include a parking
mode, an unparking mode, a driving mode, a highway
driving mode, an urban driving mode, etc. As such, rather
than having a single schedule generated for all different
driving modes, different schedules may be generated to
optimize the schedule for the particular modules and/or
computing applications that are used and/or are most impor-
tant for each different driving mode. As such, a parking

Mar. 30, 2023

mode schedule may be generated, an unparking mode sched-
ule may be generated, and so on.

[0256] These schedule switches (which may be mapped to
modality switches) may occur at any time, such as based on
user input (e.g., user selecting “drive,” user selecting “drive”
and the current location is on a highway, user selecting
“drive” and the current location is in an urban environment,
user selecting to “park™ or “unpark,” robot entering “inven-
tor picking mode,” robot entering “cleaning mode,” etc.). In
operation, the runtime system 608 may switch between
different schedules in real-time or near real-time, to execute
one schedule at a time, to have each schedule available at
initialization, to have the application exist in the same or in
different VMs, and/or to allow switching across different
SoCs of a multi-SoC configuration.

[0257] In some embodiments, the schedule manager 610
may be configured to account for such changes. The sched-
ule manager 610 may accordingly allow a compiler (e.g., the
compiler 202 of FIG. 2A) to compile the application data
associated with different computing applications separately
to generate the different schedules. In these or other embodi-
ments, each schedule may have a unique ID to be able to
differentiate between and identify the different schedules.
[0258] In some embodiments, the STM 622 may accept
multiple schedules during initialization and execute sched-
ules one at a time chosen by the schedule manager 610,
which may be instructed by an external application using
switch API’s, in some embodiments. When it is determined
that a schedule change is desired—e.g., based on a received
input—the schedule manager 610 may talk with the STM
622 to execute the schedule changes using, by way of
example, scheduler switch APIs. The functioning phases
may include a full or partial initialization, a complete swap,
a partial swap, and/or an exit, as illustrated in TABLE 2.

TABLE 2

PHASE FEATURE DESCRIPTION

—

Full/Partial Init System Initialization procedure

2 Complete Swap Schedule execution comes to a complete stop.
After that, execution can restart with any
different schedule.

Schedule execution of some entity does not
stop. Only the rest of the entities are disabled/
enalbed during execution.

System exit procedure

3 Partial Swap

4 Exit

[0259] During a schedule switch, the schedule manager
610 (or another entity) may request to stop execution of the
current schedule and the STM 622 may stop the schedule
and respond back to the schedule manager 610. The sched-
ule manager 610 may then request to restart the STM 622
with a new schedule. FIG. 6C illustrates an example process
650 of a schedule switch, according to one or more embodi-
ments of the present disclosure.

[0260] Returning to FIG. 6A, during a full or partial
initialization, the schedules may be initialized and registered
(e.g., the processes that are to be spawned, the runnables to
be registered, etc. may be initialized). Further, in instances
in which more than one schedule is to be executed or in
which a schedule includes one or more sub-schedules, once
a schedule or sub-schedules is registered, the schedule
manager 610 may direct that such registered schedules begin
execution while waiting for the remaining schedules to
begin or finish initialization and registration.



US 2023/0096502 A1l

[0261] During a partial swap, the schedule manager 610
may direct that a portion of the schedule be stopped (e.g.,
one or more hyper-epochs of the schedule), while keeping
the rest of the schedule (e.g., the other hyper-epochs) active.
Once the portion of schedule is stopped, another subset of
the schedule may be swapped in and started, all while the
rest of the schedule continues operating with little to no
interference.

[0262] Such a partial stop may be used in instances in
which certain parameters may be met. For example, the
partial swap may be invoked with respect to keeping certain
safety functions executing—e.g., at all times according to
some regulations—or to reduce latency for such functions,
or in instances in which deadtime may not be tolerated.
[0263] For a complete swap, the schedule manager 610
may direct that the entire schedule be brought to a halt and
an entire new schedule may be swapped in and started. In
these or other embodiments, the complete swap may include
waiting for the hyper-epochs of the schedule being stopped
to complete by running to completion or No-Oping all future
runnables after the reception of the schedule stop signal.
This may result in some dead time in some instances. A
complete swap may allow for completely different execution
configurations for the previous and next schedules (e.g.,
hyper-epoch configurations can be different (resource
assignment/period of hyper-epochs/epochs can change, run-
nables can be different, etc.).

[0264] During an exit, the schedule manager 610 may
inform the STM 622 to stop the currently executing sched-
ule, and the STM 622 may stop the schedule—e.g., after all
hyper-epochs have finished running for a current frame—
then the STM 622 may inform the schedule manager 610
that the schedule stop is complete. At this time, the schedule
manager 610 may receive an indication that the runtime
system 608 is ready to exit the corresponding schedule, and
the runtime system 608, the STM 622, and the schedule
manager 610 may exit.

[0265] In some embodiments, the monitoring engine 612
may include code and routines configured to allow a com-
puting system to perform one or more operations. Addition-
ally or alternatively, the monitoring engine 612 may be
implemented using hardware including one or more proces-
sors, central processing units (CPUs) graphics processing
units (GPUs), data processing units (DPUs), parallel pro-
cessing units (PPUs), microprocessors (e.g., to perform or
control performance of one or more operations), field-
programmable gate arrays (FPGA), application-specific
integrated circuits (ASICs), and/or other processor types. In
some other instances, the monitoring engine 612 may be
implemented using a combination of hardware and software.
As such, the monitoring engine 612 and/or the computing
system on which the monitoring engine 612 may be imple-
mented may be referred to as a monitoring system in some
embodiments. In the present disclosure, operations
described as being performed by the monitoring engine 612
may include operations that the monitoring engine 612 may
direct a corresponding computing system to perform.
[0266] In some embodiments, the monitoring engine 612
may be configured as a program flow monitor (PFM)
configured to monitor one or more operations related to
execution of the schedule 604 by the runtime system 608. In
some embodiments, the monitoring may be performed dur-
ing runtime while the runnables corresponding to the execu-
tion schedule are being executed.

Mar. 30, 2023

[0267] In some embodiments the monitoring engine 612
may include a timing checker 644 that may be configured to
determine whether one or more timing constraints of the
runnables are being met. In these or other embodiments, the
monitoring engine 612 may include a sequence checker 646
configured to determine whether the runnables are being
executed in the sequence dictated by the schedule 604.
Additionally or alternatively, the monitoring engine 612
may include an STM health checker 648 that may be
configured to monitor health of the STM 622.

[0268] In some embodiments, the monitoring engine 612
may be implemented on a monitoring computing system that
may be at least partially separate from the computing system
that corresponds to the runtime system 608. Additionally or
alternatively, the monitoring computing system may be part
of the execution system that corresponds to the runtime
system 608.

[0269] Insome embodiments, the timing checker 644 may
be configured to determine whether one or more of the
timing constraints of the runnables are being met based on
the schedule 604. For example, the timing checker 644 may
be configured to compare a scheduled runtime, a scheduled
start time, and/or a scheduled finish time of a particular
runnable, as indicated in the schedule 604, against an actual
runtime, an actual start time, and/or an actual finish time of
the particular runnable. For instance, in some embodiments,
determining whether the execution of the particular runnable
satisfies the corresponding particular timing constraint
includes determining one or more of: whether completion of
the particular runnable occurred after a scheduled finish time
of the particular runnable as indicated by the schedule 604;
whether initialization of the particular runnable occurred
before a scheduled start time of the particular runnable as
indicated by the schedule 604; whether a duration of execu-
tion of the particular runnable was greater than a scheduled
runtime of the particular runnable of the particular runnable
as indicated by the schedule 604; whether the duration of
execution of the particular runnable was less than the
scheduled runtime of the particular runnable of the particular
runnable as indicated by the schedule 604; whether the
duration of execution of the particular runnable was equal to
the scheduled runtime of the particular runnable as indicated
by the schedule 604, and/or whether a runnable has been
skipped (e.g., based on not receiving a timestamp associated
with the runnable after a threshold amount of time after the
runnable is expected to be finished). In some embodiments,
one or more of the above-recited determinations may be
made with respect to each of one or more frames associated
with the schedule 604—e.g., after one or more epochs and/or
hyper-epochs associated with frames or sub-frames of the
schedule 604. In these or other embodiments, it may be
determined whether the frames and/or sub-frames begin or
end on time.

[0270] In these or other embodiments, the timing checker
644 may be configured to determine whether the respective
runnables satisfy their respective timing constraints based on
one or more timestamps that correspond to completion of the
respective runnables. The timestamps may indicate times
associated with execution of the runnables such as runnable
start times and/or runnable finish times. In some embodi-
ments, the timestamps may be communicated by the STM
622 to the timing checker 644. In some embodiments, the
timestamps may be generated with the triggering of post-
fences that correspond to the respective runnables. In these



US 2023/0096502 A1l

or other embodiments, the fences and corresponding
memory locations accordingly may include the timestamps
that correspond to the executed runnables. In these or other
embodiments, the STM 622 may be configured to monitor
the fences included in the shared memory and the corre-
sponding timestamps and may communicate the timestamps
to the timing checker 644.

[0271] In some embodiments, the timestamps may corre-
spond to frames of the schedule 604. For example, a
timestamp that corresponds to a start of a particular frame
may be considered as a reference time or time zero “t0” with
respect to the particular frame and subsequent timestamps
that correspond to runnables executed during the particular
frame may be considered subsequent times “tl . . . tn”
associated with the particular frame. Once the particular
frame has completed, in some embodiments, the reference
time may reset. In some embodiments, one or more frame
timestamps may be used to determine whether the corre-
sponding frames start or end on time.

[0272] In some embodiments, the monitoring engine 612
may operate based on a different clock than the STM 622.
Additionally or alternatively, in some embodiments (e.g.,
given the heterogenous nature of the runtime system 608),
the clock used by the STM 622 may be different from the
clock used by one or more of the clients 620. According to
one or more embodiments of the present disclosure, the
timing checker 644 may be configured to normalize time-
stamps given with respect to execution of the runnables
based on one or more mappings between clocks that are
associated with the STM 622, the monitoring engine 612,
and/or the clients 620.

[0273] In these or other embodiments, the mappings may
be determined by comparing clock counts of the different
engines at one or more different points in time and mapping
the counts to each other. Such a mapping may allow for use
of a normalized clock that is normalized with respect to all
of'the compute engines. In some embodiments, the STM 622
and/or the monitoring engine 612 may be configured to
perform the mappings.

[0274] Additionally or alternatively, in some embodi-
ments, the mappings may be performed periodically during
execution by the runtime system 608 to help ensure accuracy
of the mappings. For example, in some embodiments, the
mappings may be performed after a certain number of
frames. Additionally or alternatively, the mappings may be
performed after every frame.

[0275] The mappings of the clocks may allow for ensuring
that runnables are satisfying timing constraints in a heterog-
enous computing system by providing a manner to normal-
ize the different clocks of the different compute engines.
Additionally or alternatively, the mappings may allow for
the monitoring engine 612 to correspond to a different
system than the execution system that corresponds to the
runtime system 608. Such separation may help maintain the
integrity of the monitoring engine 612 in that the monitoring
engine 612 may be able to detect problems associated with
the execution system while also being insulated from such
problems.

[0276] An example of using the mappings and timestamps
to determine whether the runnables satisfy their respective
timing constraints is given as follows. For example, during
execution of the schedule 604, a first timestamp may be
obtained by the timing checker 644. In some embodiments,
the first timestamp may be communicated to the timing

Mar. 30, 2023

checker 644 by the STM 622. The first timestamp may
correspond to execution of a particular runnable. For
example, the first timestamp may correspond to a beginning
time or an ending time of execution of the particular
runnable. In addition, the first timestamp may be based on a
first clock that corresponds to a particular client 620—and
corresponding compute engine—of the runtime system 608
that executes the particular runnable. In some embodiments,
the particular compute engine may correspond to the STM
622 and accordingly the first clock may be the same clock
used by the STM 622. Additionally or alternatively, the
particular compute engine may be different from that which
corresponds to the STM 622 such that the first clock may be
different from that used by the STM 622.

[0277] In some embodiments, the first timestamp may be
“based on” the first clock in that the first timestamp may be
in the same time domain as the first clock—e.g., the first
timestamp value may correspond to the time domain used by
the first clock—for example, in instances in which the STM
622 may use the first clock. Additionally or alternatively, the
first timestamp may be “based on” the first clock in that the
first timestamp may be determined based on a mapping
between the first clock and another clock. For example, the
STM 622 may be running on a different clock than the first
clock and may obtain an intermediate timestamp that cor-
responds to the first clock. In some embodiments, the first
timestamp may be obtained based on an intermediate map-
ping between the first clock and the clock of the STM 622
by mapping the intermediate timestamp to the clock of the
STM 622.

[0278] In these or other embodiments, the timing checker
644 may be configured to determine a second timestamp that
corresponds to a second clock of the monitoring engine 612.
In these or other embodiments, the determining of the
second timestamp may be based on the first timestamp and
a mapping between the first clock and the second clock. For
example, in instances in which the first clock corresponds to
the STM 622, the determining of the second timestamp may
be obtained by mapping the first timestamp to the second
clock based on a direct mapping between the first clock and
the second clock. Additionally or alternatively, in instances
in which the first clock does not correspond to the STM 622,
the second timestamp may be obtained by mapping the first
timestamp to the second clock based on a mapping between
the first clock and the clock of the STM 622. In such
instances, the first timestamp may be determined based on
the intermediate mapping between the first clock and the
clock of the STM 622 such that the mapping between the
first clock and the second clock in such instances may
include the intermediate mapping between the first clock and
the clock of STM 622 and the mapping between the clock of
the STM 622 and the second clock.

[0279] In the present disclosure, the mappings are
described with respect to being from the perspective of the
STM 622 and/or the monitoring engine 612. However, the
present disclosure is not limited to only such implementa-
tions. For example, in some embodiments, a separate engine
(e.g., separate hardware module) may be configured to
determine mappings between its clock and the other clocks.
In these or other embodiments, the separate engine may be
configured to obtain and/or normalize all of the timestamps
based on such mappings. Additionally or alternatively, the
separate engine may provide the normalized timestamps to



US 2023/0096502 A1l

the monitoring engine 612 such that the timing checker 644
may use the normalized timestamps in the timing compli-
ance determinations.

[0280] In these or other embodiments, the timing checker
644 may be configured to determine whether execution of
the particular runnable satisfies a corresponding timing
constraint based on the second timestamp and the schedule
604. For example, the second timestamp may correspond to
when the particular runnable ended execution. In some
embodiments, the timing checker 644 may be configured to
compare the second timestamp to a determined start time of
the frame of the particular runnable—which may correspond
to the second clock as well and in some embodiments may
be based on a timestamp associated with execution of a
frame-sync runnable such as described in the present dis-
closure. Based on the comparison, the timing checker 644
may be able to determine an amount of time that has passed
from when the frame began to when the particular runnable
ended. Further, the determined amount of time may be
compared against an expected amount of time included in
the schedule 604 corresponding to when in the frame the
particular runnable is scheduled to end to determine whether
the particular runnable finished before its scheduled time,
after its scheduled time or at its scheduled time.

[0281] As another example with the second timestamp
corresponding to when the particular runnable ended execu-
tion, the second timestamp may be compared against a
timestamp associated with the particular runnable beginning
execution—which may also correspond to the second clock
via the mappings—to determine an execution duration of the
particular runnable. The determined execution duration of
the particular runnable may be compared against that sched-
uled in the schedule 604 to determine whether the particular
runnable overran, completed early, or completed at the
scheduled time.

[0282] As another example, the second timestamp may
correspond to when the particular runnable started execu-
tion. In some embodiments, the timing checker 644 may be
configured to determine whether the particular runnable
started early, late, or on time based on a comparison between
the second timestamp and the frame start time and the
scheduled start time in the schedule 604.

[0283] In some instances, one or more runnables may not
satisfy their respective timing constraints, but the overall
frame may still be within the timing constraints. For
example, in some instances a first runnable may have a
shorter execution duration than scheduled and may finish
earlier than scheduled. Further, a second runnable that is
subsequent to the first runnable may have a longer execution
duration than scheduled but may still finish on time due to
the first runnable finishing early. Therefore, even though the
second runnable technically violated an individual timing
constraint, the overall frame did not violate its correspond-
ing timing constraints. In some embodiments, the timing
checker 644 may accordingly be configured to differentiate
between frame timing violations and individual runnable
timing violations. As discussed in further detail in the
present disclosure, the monitoring engine 612 may be con-
figured to perform one or more remedial operations in
response to a timing violation. In some of these embodi-
ments, the remedial operations may not be performed in
response to one or more individual runnable timing viola-
tions in response to the corresponding frame still satistying
its timing constraints.

Mar. 30, 2023

[0284] The sequence checker 646 may be configured to
determine whether the execution of the runnables satisfies
the execution order of the runnables included in the schedule
604. In some embodiments, the sequence checker 646 may
be configured to determine whether the execution order is
satisfied based on hash values that correspond to execution
of the runnables. For example, a particular hash value may
be calculated upon completion of a particular runnable.
[0285] In some embodiments, the particular hash value
may be determined based on hash values that correspond to
previously executed runnables as well as a unique value for
the particular runnable. In these or other embodiments, the
hash value may be based on a frame number of a frame that
corresponds to the particular runnable.

[0286] By way of example, in some embodiments, a hash
value that corresponds to all of a particular runnable’s parent
runnables may be used as a hash seed value for the particular
runnable. Additionally or alternatively, the hash value that
corresponds to the previous runnable that was executed on
the same compute engine may be used as another hash seed
value of the particular runnable. In some embodiments, the
hash seed values may be combined into a single hash seed
value. In these or other embodiments, the hash for the
particular runnable may be determined using the hash values
corresponding therewith and based on additional informa-
tion corresponding to the particular runnable. In some
embodiments, the hash values of respective runnables may
be calculated by the corresponding runnables and commu-
nicated as seed values to the next applicable runnable.
[0287] The sequence checker 644 may be configured to
compare the calculated hash value against an expected hash
value that may be what the expected value of the hash would
be if the particular runnable and its previously executed
runnables executed in the order dictated by the execution
schedule. The comparison may accordingly allow the
sequence checker 644 to determine whether the execution
order has been followed. In some embodiments, the STM
622 may be configured to communicate the expected hash
values to the sequence checker 644.

[0288] Additionally or alternatively, the sequence checker
644 may be configured to determine types of sequence
violations based on the hash value. For example, the hash
value may be used to determine whether a dependency
constraint has been met. For instance, if one or more parent
runnables of a particular runnable did not finish executing
prior to initiation of execution of the particular runnable, the
hash seed value associated with the parent runnables of the
particular runnable would be incorrect or incomplete. There-
fore, in instances in which the hash for the particular
runnable is incorrect, the expected hash seed may be com-
pared against the actual hash seed to determine whether the
sequence violation was a dependency violation.

[0289] As another example, another sequence violation
may be that a particular runnable was executed out of order
on its corresponding compute engine. In such an instance,
since the previous runnable on the same compute engine
would provide a hash seed value to the particular runnable,
the hash associated with the particular runnable would be
incorrect. Similar to that described in the present disclosure,
the expected hash seed values and actual hash seed values
may be compared to determine whether the sequence vio-
lation was an out of order violation. Such comparisons of
hash values and/or hash seed values may also indicate that
a runnable was skipped.



US 2023/0096502 A1l

[0290] In these or other embodiments, the sequence
checker 644 may be configured to perform sequence check-
ing at the beginning or ending of each runnable. Additionally
or alternatively, the sequence checker 644 may be config-
ured to perform the sequence checking at the beginning or
ending of frames and/or sub-frames. In these or other
embodiments, the sequence checker 644 may perform the
sequence checking after a particular threshold overrun time
period has occurred after the runnables, frames, and/or
sub-frames.

[0291] In some embodiments, in addition or alternatively
to, the sequence checker 644 may be configured to deter-
mine whether one or more of the runnables violated
sequence constraints based on timestamps associated with
the runnables. In some embodiments, the timestamps may be
similar to those described in the present disclosure. In these
or other embodiments, the timestamps may be subject to one
or more mapping operations such as described in the present
disclosure.

[0292] In some embodiments, the sequence checker 644
may be configured to determine one or more sequence
violations by comparing timestamps of runnables. For
example, a first runnable may depend on a second runnable
such that the second runnable should finish before the first
runnable begins. Accordingly, a start time timestamp of the
first runnable may be compared against an end time time-
stamp of the second runnable to determine whether the
second runnable in fact started after the first runnable
finished. Similar types of timestamp comparisons may be
made to determine whether one or more runnables were
skipped, or executed out of order.

[0293] The health checker 648 may be configured to
determine whether the runtime system 608 has an execution
issue via a heartbeat mechanism. For example, the health
checker 648 may be configured to determine whether the
runtime system 608 has an execution issue based on moni-
toring communications received from the STM 622. For
example, the STM 622 may be configured to communicate
information to the monitoring engine 612 on a regular basis,
such as timestamps and/or hash values. The health checker
648 may be configured to monitor the amount of time since
a most recent communication was received. In these or other
embodiments, the health checker may be configured to
determine whether an execution issue is present based on
whether the amount of time since a most recent communi-
cation was received and before a subsequent communication
has been received exceeds a duration threshold.

[0294] For example, the health checker 648 may be con-
figured to compare a current time against a timestamp that
corresponds to when the most recent communication was
received—e.g., based on a timestamp associated with the
most recent communication—to determine the amount of
time that has passed since the most recent communication
was received (“passage time”). The health checker 648 may
be configured to determine if the passage time is greater than
a threshold amount. In response to determining that the
passage time is greater than the threshold amount, the health
checker 648 may determine that the STM 622 and/or another
component of the runtime system 608 has experienced an
error, such as hanging out or erroring out. In some embodi-
ments, the threshold may be based on an amount of propa-
gation time between the STM 622 and the health checker
648 and/or a certain amount of time that would be expected
between STM communications. In these or other embodi-

Mar. 30, 2023

ments, the threshold may be based on determined maximum
propagation times of STM communications from the STM
622 to the monitoring engine 612 and/or a maximum accept-
able amount of time between STM communications. The
maximum acceptable amount of time may include an
expected duration between STM communications plus a
certain margin and/or plus the maximum propagation times
of STM communications.

[0295] In some embodiments, the expected duration
between STM communications may be based on the sched-
ule 604. For example, as indicated in the present disclosure,
the STM 622 may communicate timestamps to the moni-
toring engine 612 in response to completion of runnables. As
such, the duration between STM communications may cor-
respond to scheduled runnable execution times included in
the schedule 604. Further, the expected duration may also
change depending on the scheduled execution time of the
currently executing or expected to be executing runnable—
e.g., as indicated by the schedule 604. Additionally or
alternatively, the expected duration may be based on timing
frames of the schedule 604. For instance, the expected
duration may be the total amount of time scheduled in the
schedule 604 for a particular frame that is currently being
executed.

[0296] In some embodiments, the monitoring engine 612
may be configured to monitor one or more other processes
that may correspond to the runtime system 608. For
example, in some embodiments, the monitoring engine 612
may be in communication with the schedule manager 610
(not expressly illustrated in FIG. 6A) and may be informed
of schedule switches that may be initiated by the schedule
manager 610. In these or other embodiments, the monitoring
engine 612 may be configured to determine whether the
STM 622 has properly executed the schedule switch.
[0297] For example, FIG. 6D illustrates an example com-
munication process 670 (“process 6707) that may be per-
formed between the schedule manager 610, the STM 622,
and the monitoring engine 612 related to schedule switch-
ing, according to one or more embodiments of the present
disclosure. The process 670 may begin at time T1 at which
the schedule manager 610 sends a request to stop the current
schedule to the STM 622 and the monitoring engine 612. At
time T2, the STM 622 may forward, to the monitoring
engine 612, the request received from the schedule manager
610 to stop execution of the current schedule. The monitor-
ing engine 612 may accordingly verify at time T2 that the
STM 622 received the request to stop the current schedule
as the monitoring engine 612 has received the request from
both the STM 622 and the schedule manager 610.

[0298] At time T3, the STM 622 may send a notification
to the monitoring engine 612 and to the schedule manager
610 indicating that the STM 622 has stopped the current
schedule. The monitoring engine 612 may accordingly
verify at time T3 that the STM 622 in fact stopped executing
the current schedule.

[0299] At time T4, the schedule manager 610 may instruct
the clients 620 (or application) to reconfigure for the sched-
ule switch. At time TS, the clients 620 may confirm recon-
figuration.

[0300] At time T6 the schedule manager 610 sends a
request to execute the schedule switch to the STM 622 and
the monitoring engine 612. At time T7, the STM 622 may
forward, to the monitoring engine 612, the request received
from the schedule manager 610 to execute the schedule



US 2023/0096502 A1l

switch. The monitoring engine 612 may accordingly verity
at time T7 that the STM 622 received the request to execute
the schedule switch.

[0301] At time T8, the STM 622 may send a notification
to the monitoring engine 612 and to the schedule manager
610 indicating that the STM 622 has executed the schedule
switch. The monitoring engine 612 may accordingly verity
at time T8 that the STM 622 in fact executed the schedule
switch.

[0302] The monitoring engine 612 may determine that the
STM 622 did not successfully execute the schedule switch
in response to not receiving one or more of the expected
communications from the STM 622. As such, the process
670 may be used to determine whether the STM 622
successfully executes schedule switches.

[0303] Returning to FIG. 6A, in some embodiments, the
monitoring engine 612 may be configured to ensure that
secondary applications (e.g., QM applications) are being
executed properly by the runtime system 608. For example,
the monitoring engine 612 may be configured to deter-
mine—e.g., based on one or more secondary frames
included in the schedule 604—a time at which one or more
secondary applications should be run. In these or other
embodiments, the STM 622 may report to the monitoring
engine 612 when a secondary application has started. The
monitoring engine 612 may accordingly verify that the
secondary application began at its scheduled time. In these
or other embodiments, the STM 622 may report to the
monitoring engine 612 when the secondary application has
finished. The monitoring engine 612 may accordingly verify
that the secondary application end at its scheduled time
using the schedule 604. Additionally or alternatively, the
STM 622 may report to the monitoring engine 612 when the
STM 622 has begun disabling the secondary application
following completion of the secondary application. The
monitoring engine 612 may accordingly verify that the
secondary application began being disabled. In these or
other embodiments, the STM 622 may report to the moni-
toring engine 612 when the STM 622 has finished disabling
the secondary application following completion of the sec-
ondary application. The monitoring engine 612 may accord-
ingly verify that the secondary application finished being
disabled.

[0304] Similar to with the process 670, the monitoring
engine 612 may determine that the STM 622 did not
successfully and/or properly execute the secondary applica-
tion in response to not receiving one or more of the corre-
sponding expected communications from the STM 622. As
such, in some embodiments, the above process described
with respect to secondary execution may be used to deter-
mine whether the STM 622 successfully executes secondary
applications.

[0305] The monitoring engine 612 may be configured to
cause performance of one or more remedial operations in
response to identifying one or more problems associated
with execution of the schedule 604—e.g., in response to
identifying one or more timing violations, sequence viola-
tions, STM health issues, schedule switching problems,
and/or secondary application execution problems. In some
embodiments, the monitoring engine 612 may cause perfor-
mance of one or more of the remedial operations by directly
performing or directing performance of the remedial opera-
tions. In these or other embodiments, the monitoring engine
612 may cause performance of the remedial operations by

Mar. 30, 2023

reporting the identified one or more problems to an error
handler, which may then cause or direct performance of one
or more of the remedial operations. Additionally or alterna-
tively, reporting of the one or more problems to the error
handler may be considered a remedial operation.

[0306] In some embodiments, the remedial operations
may include causing a modification of the schedule 604.
Causing a modification of the schedule 604 may include
generating a report outlining one or more of the identified
problems. Additionally or alternatively, causing a modifica-
tion may include providing indications of the problems to
the compiler such that the compiler may correct the prob-
lems. For example, in response to one or more timing
violations, the compiler may be configured to use more
relaxed timing constraints (if possible) to help remedy the
timing violations.

[0307] Additionally or alternatively, the remedial opera-
tions may include providing a report of the identified prob-
lems to the analysis engine 642, which may perform one or
more analysis operations as discussed in the present disclo-
sure. In these or other embodiments, the report may be
included in the runtime log 640.

[0308] In these or other embodiments, the remedial opera-
tions may include initiating a safety protocol. For example,
as discussed above, in some embodiments, the schedule 604
may relate to autonomous operations performed by an
ego-machine, such as an autonomous vehicle. In some
instances, a failure of one or more of the autonomous
operations may result in less than desirable results—e.g.,
initiate a schedule switch/stop to direct the ego-machine to
do a minimal risk maneuver and/or to disable primary
system and fall back to backup system. As such, the safety
protocol may include performing an emergency operation
that moves the ego-machine out of harms way and causes the
ego-machine to stop.

[0309] Insomeembodiments, the analysis engine 642 may
include code and routines configured to allow a computing
system to perform one or more operations. Additionally or
alternatively, the analysis engine 642 may be implemented
using hardware including one or more processors, central
processing units (CPUs) graphics processing units (GPUs),
data processing units (DPUs), parallel processing units
(PPUs), microprocessors (e.g., to perform or control perfor-
mance of one or more operations), field-programmable gate
arrays (FPGA), and/or application-specific integrated cir-
cuits (ASICs). In some other instances, the analysis engine
642 may be implemented using a combination of hardware
and software. As such, the analysis engine 642 and/or the
computing system on which the analysis engine 642 may be
implemented may be referred to as an analysis system in
some embodiments. In the present disclosure, operations
described as being performed by the analysis engine 642
may include operations that the analysis engine 642 may
direct a corresponding computing system to perform.
[0310] As indicated in the present disclosure, the comple-
tion of events that correspond to execution of runnables may
be logged in the runtime log 640. In some embodiments, the
runtime log 640 may include a log of when each runnable
actually started and ended. Further, the analysis engine 642
may be configured to analyze such execution.

[0311] For example, the analysis engine 642 may compile
the information about runnable start and stop times from one
or more execution runs of the schedule 604 by the runtime
system 608. Based on the information, the analysis engine



US 2023/0096502 A1l

642 may be configured to extract information such as actual
runnable execution times of one or more of the runnables—
e.g., average execution times of respective runnables over a
set of execution runs, max execution times of respective
runnables over a set of execution runs, min execution times
of respective runnables over a set of execution runs, etc.,
which runnables are overrunning, which epochs or hyper-
epochs are running longer than scheduled (also referred to as
“overrunning”), a percentage of overruns over a set of
execution runs, a total number of overruns over a set of
execution runs, etc.

[0312] Additionally or alternatively, such metrics associ-
ated with runnables may also be determined with respect to
frames, sub-frames, etc. For example, it may be determined
as whether frames are under running or over running,
resource utilization of frames, are frames executing when
scheduled, etc.

[0313] Additionally or alternatively, the extracted infor-
mation may include one or more execution time distribu-
tions that may indicate a distribution of the total execution
time with respect to different runnables. For instance, a
particular execution time distribution may indicate the per-
centage of time taken by one or more respective runnables
of the total execution time of the execution run. In these or
other embodiments, another execution time distribution may
indicate the amount or percentage of time each compute
engine is executing runnables during the execution run.
[0314] In these or other embodiments, the analysis engine
642 may be configured to analyze such obtained information
with respect to expected information. For example, the
actual runnable execution times may be compared against
corresponding calculated worst case execution times
(WCET) to determine an accuracy level of one or more of
the WCETs. Additionally or alternatively, the execution time
distributions may be used to determine whether certain
runnables are disproportionately using resources or time. In
these or other embodiments, the execution time distributions
may indicate whether certain compute engines are being
overutilized or underutilized.

[0315] Insome embodiments, the analysis engine 642 may
be configured to cause the generation and/or display of one
or more visualizations of the runtime information that may
be included and obtained from the runtime log 640 by the
analysis engine and/or derived by the analysis engine 642
from the runtime log information. For example, FIGS.
6E-6H illustrate example visualizations of runtime informa-
tion that may be obtained by (including derived by) the
analysis engine 642, according to one or more embodiments
of the present disclosure.

[0316] Additionally or alternatively, an analysis of over-
runs may be performed by the runtime log 640. The overrun
analysis may be used to determine whether certain compute
resources have issues or whether the underlying runnables
have issues. For example, a disproportionate amount of
overruns that correspond to a particular compute engine may
indicate that the particular compute engine is having prob-
lems. Conversely, a particular runnable having overruns
when other runnables that are executed by the same compute
engine do not have overruns may indicate that the particular
runnable may be problematic.

[0317] Inthese or other embodiments, the analysis may be
used to analyze the schedule 604. For example, an analysis
of runnable execution times may indicate that certain run-
nable execution times are significantly shorter than the

Mar. 30, 2023

allocated time in the schedule 604 for such runnables.
Additionally or alternatively, the analysis of runnable execu-
tion times may indicate that other runnable execution times
are longer than the allocated time in many instances (e.g., in
a threshold percentage of the time). Additionally as indi-
cated in the present disclosure, the analysis may indicate that
the schedule 604 may overutilize or underutilize certain
compute engines. Additionally or alternatively, the analysis
may indicate that certain epochs or hyper-epochs are longer
than needed or not long enough.

[0318] Insomeembodiments, the analysis engine 642 may
be configured to perform one or more modification opera-
tions based on the analysis of the runtime information
included in the runtime log 640. For example, the analysis
engine 642 may be configured to adjust one or more factors
included in application data that is used to generate the
schedule 604. For instance, the analysis engine 642 may
adjust one or more respective WCETs of one or more
runnables in corresponding runnable data based on the
analysis. Additionally or alternatively, the analysis engine
642 may be configured to adjust one or more execution
constraints such as epoch times, hyper-epoch times, com-
pute engine utilizations, etc. In these or other embodiments,
the analysis engine 642 may indicate to the compiler and/or
a user direct adjustments that may be made to the schedule
604. Further, in some instances, the runtime information
may indicate which runnables may be contending on
resources and interfering with each other. In these or other
embodiments, the modification operations may include
mutually excluding the scheduling of such runnables.

[0319] Modifications, additions, or omissions may be
made to the embodiments and examples described herein
with respect to FIGS. 6A-6H without departing from the
scope of the present disclosure. For example, it should be
understood that this and other arrangements described herein
are set forth only as examples. Other arrangements and
elements (e.g., machines, interfaces, functions, orders,
groupings of functions, etc.) may be used in addition to or
instead of those shown, and some elements may be omitted
altogether. Further, many of the elements described herein
are functional entities that may be implemented as discrete
or distributed components or in conjunction with other
components, and in any suitable combination and location.
Various functions described herein as being performed by
entities may be carried out by hardware, firmware, and/or
software. For instance, various functions may be carried out
by a processor executing instructions stored in memory. In
some embodiments, the systems, methods, and processes
described herein may be executed using similar components,
features, and/or functionality to those of example autono-
mous vehicle 1400 of FIGS. 14A-14D, example computing
device 1500 of FIG. 15, and/or example data center 1600 of
FIG. 16.

[0320] FIG. 7 illustrates an example QA system 700
configured to perform one or more schedule QA operations,
according to one or more embodiments of the present
disclosure. In the example of FIG. 7, the QA system 700 may
include one or more of a runtime check engine 710 (“RT
engine 710”), a tuning engine 712, a verification engine 714,
or a testing engine 716. In some embodiments, the QA
system 700 may be configured to perform the QA analysis
with respect to application data 706 (“app data 706”") and/or
a schedule 704. The app data 206 of FIG. 2A may be an



US 2023/0096502 A1l

example of the app data 706 and the schedule 204 or the
intermediate schedule 224 of FIG. 2A may be an example of
the schedule 704.

[0321] One or more of these engines of the QA system 700
may include code and routines configured to allow a com-
puting system to perform one or more operations. Addition-
ally or alternatively, one or more of these engines may be
implemented using hardware including one or more proces-
sors, central processing units (CPUs) graphics processing
units (GPUs), data processing units (DPUs), parallel pro-
cessing units (PPUs), microprocessors (e.g., to perform or
control performance of one or more operations), field-
programmable gate arrays (FPGA), and/or application-spe-
cific integrated circuits (ASICs). In some other instances,
one or more of these engines may be implemented using a
combination of hardware and software. As such, in some
embodiments, one or more of these engines may be config-
ured as or part of a corresponding computing system. In the
present disclosure, operations described as being performed
by one of these engines may include operations that the
corresponding engine may direct a corresponding comput-
ing system to perform. Further, the specific discussion and
separation of these engines is to help facilitate the explana-
tion of certain operations performed by the QA system 700
and is not meant to a be a limiting implementation.

[0322] The RT engine 710 may be configured to perform
a dynamic analysis with respect to the code of a computing
application (e.g., the code of one or more runnables of the
computing application) that may be included in the app data
706. In general, the RT engine 710 may be configured to
identify portions of the code that may cause problems
associated with executing the computing application accord-
ing to the schedule 704.

[0323] For example, the schedule 704 may dictate syn-
chronization and scheduling of runnables of the computing
application. Additionally, in some instances, the code of
computing applications may attempt to handle such syn-
chronization. However, the synchronization included in the
code may be inconsistent with the schedule 704, which may
lead to issues such as deadlocks.

[0324] The RT engine 710 may accordingly be configured
to identify elements of the computing application code that
may cause such issues and may provide a message indicat-
ing that such portions may be or are prohibited or incom-
patible with a target use of the computing application. The
indication may accordingly allow a developer of the com-
puting application to make changes accordingly.

[0325] Some examples of types of code elements that the
RT engine 710 may be configured to identify are synchro-
nization APIs that may be configured to perform synchro-
nization operations. For example, one or more different
CUDA APIs may perform some sort of synchronization,
which may be implicit or explicit. As such, in some embodi-
ment, the RT engine 710 may be configured to identify
CUDA APIs as being potentially problematic (e.g., flag such
sections as being prohibited or incompatible).

[0326] Another example of code clements that the RT
engine 710 may be configured to identify may include a
runnable that is not indicated as a submitter runnable sub-
mitting work to a submittee compute engine, such as a GPU.
Runnables that are not indicated as submitter runnables may
include runnables whose work and related work is desig-
nated in the app data 706 as being strictly performed by a
CPU. As such, if such a runnable submits work to a GPU,

Mar. 30, 2023

this may be inconsistent with the corresponding execution
constraints used to generate the schedule 704. Therefore, the
RT engine 710 may be configured to identify and flag such
elements as being potentially problematic.

[0327] Other examples of code eclements that may be
identified as potentially problematic may include looking for
certain memory allocations during runtime that may affect
determinism. For example, checking whether any GPU
memory is pinned (not-pageable), which may negatively
affect determinism because page swaps may be performed
randomly during runtime.

[0328] The tuning engine 712 may be configured to tune
one or more of the schedule 704 and/or the application data
706. For example, as indicated in the present disclosure, the
tuning engine 712 may be configured to determine and/or
modify one or more respective WCETs of one or more
runnables.

[0329] In some embodiments, the tuning engine 712 may
be configured to use the schedule 704 and/or a compute
graph of the app data 706 to execute one runnable at a time
in order to determine the WCET for that particular runnable.
For example, where the schedule 704 includes multiple
runnables on multiple different compute engines at any one
time, the tuning engine 712 may only execute one runnable
on one compute engine at a time, and the other runnables
scheduled at that time may be delayed—e.g., pushed out for
serial execution on their respective engine—such that the
WCET for the current runnable may be computed without
any system interference or latency from other runnables.
[0330] Forexample, referring back to FIG. 6B, runnable B
may be scheduled to execute at a same time as runnables A’
according to the schedule 662. However, the tuning engine
712 may only execute B, or only execute A' at one time in
order to measure the WCET for the particular runnable on
the compute engine without interference. In these or other
embodiments, the tuning engine 712 may be configured to
perform multiple different iterations of multiple different
compute tasks for a particular runnable to determine the
WCET. In some embodiments, the tuning engine 712 may be
configured to select a certain percentile number of execution
times as the WCET.

[0331] In these or other embodiments, the tuning engine
712 may be configured to test runnable runtimes based on a
parallel execution as dictated by the schedule 704 instead of
serializing the schedule 704. Additionally or alternatively,
rather than explicitly directing a parallel execution, the
tuning engine 712 may be configured to access a runtime log
(although not explicitly illustrated in FIG. 7), such as the
runtime log 640 of FIG. 6A, to compare the serialized
runtimes with the parallelized runtimes.

[0332] By profiling the single runnable in this way and
comparing the profile with the profile of the same runnable
when executed in a concurrent setting the tuning engine 712
may be configured to determine interferences. For example,
in response to an actual runtime of a runnable being higher
than the WCET runtime that may be calculated by the tuning
engine 712 for that runnable, the tuning engine 712 may
determine that at least some of the parallel processing of
other runnables may be interfering with the execution of that
runnable. In these or other embodiments, the tuning engine
712 may be configured to adjust one or more respective
WCETs based on the further analysis. For example, based on
the concurrent analysis, one or more WCETs may be
adjusted downward or upward.



US 2023/0096502 A1l

[0333] Additionally or alternatively, the tuning engine 712
may be configured to automatically adjust the percentiles
used to determine the WCETs based on the comparison
between concurrent and serial executions. For example, the
comparison may indicate that the runnables are consistently
finishing substantially sooner than their calculated WCET’s
such that the percentile used to determine the WCETs may
be lowered. Conversely, the comparison may indicate that
the runnables are consistently overrunning such that the
percentile used to determine the WCETs may be raised.
Additionally or alternatively, the tuning engine 712 may be
configured to perform a regression analysis and/or a linear
multivariate analysis to determine the WCETs. Such analy-
ses and percentile applications may be performed with
respect to WCETs determined using a serial execution, a
parallel execution, or a combination of the two. In some
embodiments, a compiler—such as the compiler 202 of FIG.
2A—may be configured to determine a new schedule based
on changes made to the WCETs.

[0334] Additionally, although not expressly illustrated in
FIG. 7, the operations of the tuning engine 712 with respect
to making adjustments may be based on interactions of the
tuning engine 712 with one or more other components. For
example, the tuning engine 712 may interact with a com-
piler, a runtime system, an analysis engine and/or the
application data to automate this tuning process end to
end—e.g., the tuning engine 712 may run the compiler to
produce the serial/parallel schedules (parallel based on BSA/
BNB), then uses those schedules to launch applications on
the target, extracts the logs from the run, runs them through
the analysis engine, gets the execution times to either tune
the input DAG/Schedule or to do further analysis as indi-
cated. Additionally or alternatively, the tuning engine 712
may be configurable for each of one or more of these
operations.

[0335] The verification engine 714 may be configured to
verify that the scheduling included in the schedule 704 is
consistent with the execution constraints included in the app
data 706. Additionally or alternatively, the verification
engine 714 may be configured to verify that the schedule 704
is deterministic in that the execution order of the runnables
is consistent across multiple executions. In these or other
embodiments, the verification engine 714 may be configured
to check for one or more different errors including deter-
minism errors, dependency errors, post-fence errors, dead-
lock errors, fence signaling errors (“sig fence errors™) and/or
timing violation errors.

[0336] Checking for determinism errors may include
checking whether the execution order of runnables in every
compute engine is the same in all runs of the schedule 704.
For example, two runnables, R1 & R2, may be scheduled for
a particular resource (e.g., CPU, GPU, DLA, etc.) such that
R2 is scheduled after R1. A determinism error may occur in
response to R2 executing prior to R1 in a run of the schedule
704.

[0337] Checking for dependency errors may include
checking whether all parent runnables have finished execu-
tion prior to their respective child runnables beginning
execution. For example, a runnable R3 may be a parent
runnable of a runnable R4 such that runnable R4 depends on
R3. A dependency error may occur in response to R4
beginning execution prior to R3 finishing execution.
[0338] Checking for post-fence errors may include check-
ing whether wait instructions in the schedule 704 corre-

Mar. 30, 2023

sponding to waiting on certain fence values of fences are
executed prior to the corresponding fence values being
posted. For example, a wait instruction W may be such that
W is not to be executed until a fence F has a value V
associated therewith. A post-fence error may occur in
response to the wait instruction W executing when the value
of F is not V. Therefore, a post-fence error may be identified
in response to a fence value is being waited on prior to the
fence value being submitted.

[0339] Checking for sig fence errors may include checking
whether fence value changes are consistent with scheduled
changes. For example, to determine whether increments in
integers used as fence values conform with scheduled
strides.

[0340] Checking for deadlock errors may include check-
ing whether every compute engine indicated in the schedule
704 runs to completion as scheduled. Checking for timing
violations may include checking to see if every runnable
starts at the time allocated in the schedule 704.

[0341] In some embodiments, the verification engine 714
may be configured to simulate execution of the schedule 704
to check for errors. In these or other embodiments, the
simulation may be performed in a virtual environment that
includes a virtual rendering of the runtime system that is to
execute the schedule 704. In some embodiments, the virtual
rendering of the runtime system may include generating
virtual compute engines and corresponding compute
resources. For example, different threads spawned by the
runtime may be modeled as virtual resources. Additionally
or alternatively, as another example, streams of certain
compute engines—e.g., GPU streams—may also be mod-
eled as virtual resources. In these or other embodiments,
linear execution units may be modeled as virtual resources
as well. The term “linear” may indicate that two consecutive
instructions—e.g., two consecutive runnables—on a par-
ticular resource (e.g., compute engine and/or corresponding
threads or streams) are guaranteed to have a happens before
relationship such that “linear execution units” may be
resources that have such a linear requirement. A “happens
before” relationship may be that one execution unit executes
before the other in the relationship. In these or other embodi-
ments, the verification engine 714 may be configured to read
the instructions—e.g., such as those included in an com-
mand set such as described in the present disclosure—
included in the schedule 704 and to cause the instructions to
be executed in the virtual environment.

[0342] Additionally or alternatively, the simulation may
include using certain parameters to help facilitate the simu-
lating. For example, in some embodiments, each virtual
compute engine may be completely isolated from the other
virtual compute engines to ensure that the virtual compute
engines do not interfere with each other, which may help
allow for checking for determinism errors. Additionally or
alternatively, the signaling performed in the simulation may
be modeled as being instantaneous. In these or other
embodiments, vector clocks may be used to simulate the
timestamps. The vector clocks may include integer values
that respectively correspond clock values associated with the
different virtual compute engines. Additionally or alterna-
tively, all of the synchronization primitives may be modeled
as global objects.

[0343] The simulation may include iterating through the
various resources and executing the corresponding instruc-
tions associated therewith. In some embodiments, the iter-



US 2023/0096502 A1l

ating may include cooperative yielding in the threads for
simplicity. In these or other embodiments, the simulation
may include executing an infinite while loop that iteratively
works through the instructions associated with the different
resources. For example, the while loop may start with a first
resource that is indicated as executing the first runnable of
the schedule 704—e.g., thread 1 of a CPU 1, or stream 1 of
GPU 1—and may execute the instructions associated there-
with—e.g., the instructions associated with the correspond-
ing runnable. The while loop may check to see if corre-
sponding signaling has occurred for that resource—e.g., if
one or more fence values have been signaled to indicate
moving to another runnable. In response to fence values
being signaled, the while loop may continue working
through the instructions and corresponding resources. For
example, when a post-fence is signaled, the corresponding
fence may be set to ungate the corresponding wait on fence
instructions that waits on this fence, which may trigger the
execution of one or more corresponding runnables.

[0344] In these or other embodiments, every time an
instruction is executed on a resource, a corresponding vector
clock may be incremented. For example, every event (sig-
nal, wait, task start, task end etc.) in the simulated system
may be logged with its corresponding vector clock. Every
time an engine signals another compute engine, the vector
clock of the receiving compute engine may be updated.
Further, in some embodiments, every fence may store the
timestamp of when it was signaled (e.g., via a post-fence
operation) and, when the post-fence is signaled, the current
timestamp of the runnable that triggers the post-fence may
be stored with the fence. Similarly, when a wait on fence
instruction finishes it may update its timestamp with the max
of current timestamp or the timestamp of the corresponding
sync object. In these or other embodiments, every compute
engine may maintain its last runnable vector clock.

[0345] Additionally or alternatively, vector clocks associ-
ated with different resources may be configured based on the
resources. For example, the instructions on a CUDA stream
may be populated on the fly vs instructions for an underlying
compute engine, which may be available at program load.
Therefore, in some embodiments, CUDA instructions may
have two vector clocks associated therewith—the record
vector clock when the submit was done and the play vector
clock when the kernel was executed.

[0346] In some embodiments, the verification engine 714
may be configured to check for one or more of the errors
discussed above based on the vector clocks. For example, a
vector clock V1 being less than a vector clock V2
(“V1<V2”) may indicate that a runnable R1 corresponding
to V1 finished before a runnable R2 corresponding to V2
started. Dependency errors may accordingly be identified by
comparing child vector clocks to their corresponding parent
vector clocks to determine whether the parent vector clocks
are less than their corresponding child vector clocks. In the
present disclosure, V1<V2 if all elements of V1<=V2 and at
least one element of V1<V2 and likewise for V1>V2.
[0347] As another example, concurrency of vector clocks
may indicate that determinism between the corresponding
runnables may not be guaranteed. Therefore, determinism
errors may be identified by checking whether two runnables
that are not scheduled at the same time have concurrent
vector clock values—e.g., vector clock V1 associated with
runnable R1 may be considered concurrent to vector clock
V2 of R2 (as noted by “V1|[V2”) in response to V1 being

Mar. 30, 2023

equal to V2—e.g., V1|[V2 indicates that V1 is concurrent
with V2; if V1 is not less than V2 and V1 is not greater than
V2.

[0348] As another example, a vector clock V3 may cor-
respond to a post-fence operation of a fence that results in
the fence triggering a particular wait instruction W, which
may have a corresponding vector clock V4. Therefore, V3
being less than V4 may indicate that the wait instruction W
(that corresponds to V4) did not execute prior to the post-
fence operation that corresponds to V3. As such, in some
embodiments, post-fence errors may be identified by check-
ing whether triggering post-fence values occur prior to their
corresponding wait operation execution—e.g., in the
example above by checking whether V3<V4.

[0349] Timing violation errors may be identified by com-
paring the vector clocks associated with the respective
runnables to scheduled execution times of the corresponding
runnables. For example, a timing violation error may be
identified in response to the vector clock corresponding to a
start time of a particular runnable not having a value that
corresponds to its scheduled start time.

[0350] Deadlock errors may be identified by determining
whether every compute engine runs to completion during the
simulation. In some embodiments, this determination may
be made by determining whether every compute engine
executed its corresponding command set. As indicated in the
present disclosure, in some embodiments, a sig fence error
may be raised in response to fence changes being inconsis-
tent with scheduled changes.

[0351] As such, in some embodiments, the verification
engine 714 may be used to certify that the schedule 704
works, that there are no deadlocks, and/or that the schedule
704 is safe to execute, in some embodiments. Further, all of
the streams and hardware engines may be simulated in
software, and the instructions may be simulated to model an
ideal runtime system. Further, such use of the verification
engine 714 may be used to get around the safety burden of
certifying a compiler in that the verification engine 714 may
operate as a theoretical checker for the schedule 704. The
verification engine 714 may therefore verify that user con-
straints are matched and that the operating paradigm in
which the scheduling is operating is matched.

[0352] The testing engine 716 may be configured to test
execution of the schedule 704 by a runtime system (e.g., the
runtime system 608 of FIG. 6A). In some embodiments, the
testing engine 716 may be configured to instantiate a dummy
client in the runtime system. For example, the dummy client
may be similar to the clients 620 of FIG. 1A, except rather
than including actual application code—such as app code
626—the dummy client may include dummy code. The
dummy client may also include a dummy runtime library
that is configured to execute the command set of the sched-
ule 704 with respect to the dummy code, such as described
at least with respect to FIG. 6A.

[0353] The dummy code may be configured to mimic the
operations of the computing application associated with the
schedule 704. The mimicking of the operations may include
mimicking the runtimes of runnables, the memory accessing
of the runnables, the fence signaling etc., without having to
actually execute the computing application. The dummy
code may therefore allow for testing of runtime handling of
the schedule 704 without having to actually execute the
underlying computing application.



US 2023/0096502 A1l

[0354] For example, to mimic runtimes, the dummy code
may have execution times that correspond to WCETs of
corresponding runnables. For instance, dummy code for a
particular runnable with a WCET of 5 ms may include a loop
that executes for 5 ms. The mimicking of memory calls and
fence signaling may include triggering the dummy opera-
tions of the dummy code based on the command set of the
schedule 704 as loaded in the dummy runtime library.
[0355] The use of the dummy client may accordingly be
used to test for potential issues that may occur when
executing the schedule 704 on the runtime system. For
example, the testing may indicate whether cross engine
interference may occur between two or more compute
engines.

[0356] In addition, in some embodiments, the dummy
code may help facilitate the testing of error handling. For
example, in some embodiments, the testing engine 716 may
be configured to perform different testing iterations with
different versions of dummy code. The different versions
may include having one or more runnables have different
runtimes—e.g., longer or shorter than their respective
WCETs. Additionally or alternatively, the dummy code may
simulate an application crash. The different versions of
dummy code may accordingly be used to determine what the
runtime system does in different error scenarios. In these or
other embodiments, the testing of the different error sce-
narios may also be used to determine how an STM of the
runtime system (e.g. the STM 622 of FIG. 6A) and/or a
monitoring engine (e.g., the monitoring engine 612 of FIG.
6A) handles errors. For instance, the testing may allow for
a determination as to how the monitoring engine may
respond to execution errors such as runnable overruns, frame
overruns, execution order violations etc. similar to fault
injection testing, but without involving the actual applica-
tion code.

[0357] In these or other embodiments, the testing may
indicate whether the STM is able to handle the errors or if
the STM enters an error state. In these or other embodi-
ments, the testing may therefore also be used to determine
how well the monitoring engine may monitor the health of
the STM.

[0358] In these or other embodiments, the dummy code
may correspond to multiple different computing applications
and/or secondary applications. In these or other embodi-
ments, the testing engine 716 may accordingly be configured
to inject errors and/or provide a testing platform with respect
to the performance of schedule switches.

[0359] As indicated in the present disclosure, the testing
engine 716 may accordingly facilitate the testing of one or
more operations of a runtime system and/or one or more
related operations without having to run actual computing
application code. This may allow for ecasier testing of
different scenarios rather than having to make changes to
actual computing application code, which may be much
more complex and time consuming than making changes to
dummy code.

[0360] Modifications, additions, or omissions may be
made to the embodiments and examples described herein
with respect to FIG. 7 without departing from the scope of
the present disclosure. For example, it should be understood
that this and other arrangements described herein are set
forth only as examples. Other arrangements and elements
(e.g., machines, interfaces, functions, orders, groupings of
functions, etc.) may be used in addition to or instead of those

Mar. 30, 2023

shown, and some elements may be omitted altogether.
Further, many of the elements described herein are func-
tional entities that may be implemented as discrete or
distributed components or in conjunction with other com-
ponents, and in any suitable combination and location.
Various functions described herein as being performed by
entities may be carried out by hardware, firmware, and/or
software. For instance, various functions may be carried out
by a processor executing instructions stored in memory. In
some embodiments, the systems, methods, and processes
described herein may be executed using similar components,
features, and/or functionality to those of example autono-
mous vehicle 1400 of FIGS. 14A-14D, example computing
device 1500 of FIG. 15, and/or example data center 1600 of
FIG. 16.

[0361] FIG. 8 illustrates an overall task management sys-
tem 800 (“system 800”), according to one or more embodi-
ments of the present disclosure. The illustration of system
800 in FIG. 8 illustrates example interactions between
different aspects of the present disclosure discussed herein.

[0362] For example, the system 800 may include a sched-
ule compiling engine 802 (“compiler 802”), which may be
similar or analogous to the compiler 202 of FIG. 2A. The
compiler 802 may be configured to generate one or more
schedules 804 based on application data 806 and/or an
instruction set 826. The application data 806 may be similar
or analogous to the app data 206 of FIG. 2A, the instruction
set 826 may be similar or analogous to the instruction set
226 of FIG. 2A and the schedules 804 may be similar or
analogous to the schedules 204 of FIG. 2A. Additionally or
alternatively, the compiler 802 may be configured to gen-
erate the schedule 804 according to one or more of the
operations described at least with respect to FIGS. 2A-5.

[0363] Inthese or other embodiments, the system 800 may
include a runtime system 808 that may be similar or analo-
gous to the runtime system 608 of FIG. 6A. The runtime
system 808 may be configured to execute the schedule 804,
such as described with respect to FIG. 6A.

[0364] Additionally or alternatively, the system 800 may
include a monitoring engine 812 that may be similar or
analogous to the monitoring engine 612 of FIG. 6A. The
monitoring engine 812 may accordingly be configured to
monitor runtime operations of the runtime system 808, such
as described with respect to FIGS. 6A-6D.

[0365] Inthese or other embodiments, the system 800 may
include a schedule management engine 810 that may be
similar or analogous to the schedule management engine
610 of FIG. 6A. The schedule management engine 610 may
accordingly be configured to the execution of different
schedules 804 by the runtime system 808, such as described
with respect to FIGS. 6A-6D.

[0366] Additionally or alternatively, the system 800 may
include a runtime log 840 and an analysis engine 842, which
may be similar or analogous to the runtime log 640 and the
analysis engine 642 of FIG. 6A. The analysis engine 842
may accordingly be configured to perform statistical analy-
sis and/or corresponding remedial operations based on run-
time data that may be included in the runtime log 840, such
as described with respect to FIGS. 6A and 6E-6H.

[0367] Inthese or other embodiments, the system 800 may
include a QA system 820 that may be similar or analogous
to the QA system 700 of FIG. 7. The QA system 820 may
accordingly be configured to perform one or more QA



US 2023/0096502 A1l

operations with respect to generation and/or execution of the
schedules 804, such as described with respect to FIG. 7.

[0368] Modifications, additions, or omissions may be
made to the embodiments and examples described herein
with respect to FIG. 8 without departing from the scope of
the present disclosure. For example, it should be understood
that this and other arrangements described herein are set
forth only as examples. Other arrangements and elements
(e.g., machines, interfaces, functions, orders, groupings of
functions, etc.) may be used in addition to or instead of those
shown, and some elements may be omitted altogether.
Further, many of the elements described herein are func-
tional entities that may be implemented as discrete or
distributed components or in conjunction with other com-
ponents, and in any suitable combination and location.
Various functions described herein as being performed by
entities may be carried out by hardware, firmware, and/or
software. For instance, various functions may be carried out
by a processor executing instructions stored in memory. In
some embodiments, the systems, methods, and processes
described herein may be executed using similar components,
features, and/or functionality to those of example autono-
mous vehicle 1400 of FIGS. 14A-14D, example computing
device 1500 of FIG. 15, and/or example data center 1600 of
FIG. 16.

[0369] FIG. 9 illustrates an example method 900 for
generating an execution schedule based on a bubble sorting
process according to one or more embodiments of the
present disclosure. The method 900 may be performed by
any suitable system, apparatus, or device using any combi-
nation of hardware, firmware, and/or software. For instance,
various operations may be carried out by one or more
processors executing instructions stored in memory. The
operations of the method 900 may also be embodied as
computer-usable instructions stored on computer storage
media. Additionally or alternatively, one or more of the
operations of the method 900 may be provided by a stand-
alone application, a service or hosted service (standalone or
in combination with another hosted service), or a plug-in to
another product, to name a few. By way of example, in some
embodiments, one or more operations of the method 900
may be performed by the schedule compiling engine 202
described with respect to FIG. 2A. In these or other embodi-
ments, one or more operations may be performed by one or
more computing devices, such as that described in further
detail at least with respect to FIG. 15. In these or other
embodiments, one or more operations of the method 900
may be performed by a computing system disposed on an
ego-machine, such as a vehicle as described at least with
respect to FIGS. 14A-14D. Additionally or alternatively, one
or more of the operations of the method 900 may correspond
to the process 300 described with respect to FIG. 3A.

[0370] In some embodiments, the method 900, at block
B902, may include determining a first execution schedule
for execution of runnables by a computing system. In some
embodiments, the computing system may include or may
correspond to a runtime system, such as described in the
present disclosure. Additionally or alternatively, the com-
puting system may be a heterogenous computing system,
such as described in the present disclosure. In these or other
embodiments, the runnables may correspond to a process
(e.g., computing application) executed using the computing
system.

Mar. 30, 2023

[0371] In these or other embodiments, one or more of the
interim schedules described with respect to FIG. 3A may be
examples of the first execution schedule. In these or other
embodiments, the first execution schedule may be deter-
mined based on an initial sequence of tasks, such as, by way
of example and not limitation, described above with respect
to determining an initial interim schedule based on the initial
sequence 326 described at least with respect to FIG. 3A. In
these or other embodiments, the initial sequence of tasks
may be determined based on a critical path, such as, for
example, discussed at least with respect to FIG. 3A. In these
or other embodiments, the first execution schedule may be
determined based on individual rankings of one or more of
the runnables, such as described at least with respect to FIG.
3A (e.g., based on rankings determined based on placement
in the initial sequence and/or based on respective relation-
ships of the one or more runnables with respect to a critical
path within a compute graph that includes the runnables).

[0372] Atblock B904, the first execution schedule may be
modified to generate a second execution schedule. In some
embodiments, the modifying may include moving one or
more runnables of the runnables to populate one or more
gaps (e.g., bubbles) in the first execution schedule. In these
or other embodiments, the moving may be based on one or
more moving constraints, such as one or more of the moving
constraints described at least with respect to FIG. 3A.

[0373] For example, the moving constraints may include
one or more of: a dependency constraint that prevents child
runnables from being scheduled to begin execution prior to
corresponding parent runnables finishing execution, a level
constraint that restrains movement of the one or more
runnables based at least on hierarchal levels associated with
the one or more runnables as indicated by a compute graph
that includes the plurality of runnables, or a coupling con-
straint related to at least one first runnable for execution on
a first compute engine of the plurality of compute engines
that triggers execution of at least one second runnable on a
second compute engine of the compute engines of the
computing system (e.g., in which the first runnable is a
submitter runnable and the second runnable is a submittee
runnable). In these or other embodiments, the coupling
constraint may require one or more of: that the at least one
first runnable and the at least one second runnable are moved
together or requires that a first processing queue that
includes the at least one first runnable and that is on the first
compute engine matches a second processing queue that
includes the at least one second runnable and that is on the
second compute engine.

[0374] Modifications, additions, or omissions may be
made to the method 900 without departing from the scope of
the present disclosure. For example, the order of one or more
of'the operations described may vary than the order in which
they were described or are illustrated. Further, each opera-
tion may include more or fewer operations than those
described. In addition, the delineation of the operations and
elements is meant for explanatory purposes and is not meant
to be limiting with respect to actual implementations. For
instance, in some embodiments, the method 900 may
include one or more operations of the process 300 described
with respect to FIG. 3 A that may not be explicitly discussed
with respect to the method 900. Additionally, one or more of
any of the other operations described in the present disclo-
sure with respect any of the other FIGS. may be included in
the method 900 in some instances.



US 2023/0096502 A1l

[0375] FIG. 10 illustrates an example method 1000 for
generating an execution schedule based on a branch and
bound (BNB) process according to one or more embodi-
ments of the present disclosure. The method 1000 may be
performed by any suitable system, apparatus, or device
using any combination of hardware, firmware, and/or soft-
ware. For instance, various operations may be carried out by
one or more processors executing instructions stored in
memory. The operations of the method 1000 may also be
embodied as computer-usable instructions stored on com-
puter storage media. Additionally or alternatively, one or
more of the operations of the method 1000 may be provided
by a standalone application, a service or hosted service
(standalone or in combination with another hosted service),
or a plug-in to another product, to name a few. By way of
example, in some embodiments, one or more operations of
the method 1000 may be performed by the schedule com-
piling engine 202 described with respect to FIG. 2A. In these
or other embodiments, one or more operations may be
performed by one or more computing devices, such as that
described in further detail at least with respect to FIG. 15. In
these or other embodiments, one or more operations of the
method 1000 may be performed by a computing system
disposed on an ego-machine, such as a vehicle as described
at least with respect to FIGS. 14A-14D. Additionally or
alternatively, one or more of the operations of the method
1000 may correspond to the process 400 described with
respect to FIG. 4A.

[0376] In some embodiments, the method 1000, at block
B1002, may include identifying, based on application data
associated with a computing application that includes a set
of runnables, multiple scheduling branches associated with
scheduling execution of at least a subset of runnables of the
set of runnables. In some embodiments, by way of example
and not limitation, one or more operations of the branch
analysis 408 of FIG. 4A may be performed to identify the
scheduling branches.

[0377] At block B1004, a scheduling branch may be
selected from the scheduling branches. In these or other
embodiments, the scheduling branch may be selected based
at least on one or more branch characteristics, one or more
scheduling parameters, and/or one or more bounding con-
straints, such as, for example and not by way of limitation,
described above with respect to FIG. 4A. For instance, in
some embodiments, the scheduling branch may be selected
based at least on a coupling constraint that is applied to
related runnables of at least the subset of runnables. The
related runnables may include a first runnable that is desig-
nated for execution on a first compute engine and that
triggers execution of a second runnable on a second compute
engine (e.g., in which the first runnable is a submitter
runnable and the second runnable is a submittee runnable).
In these or other embodiments, the coupling constraint may
requires that a first processing queue that includes the first
runnable and that is on the first compute engine matches a
second processing queue that includes the second runnable
and that is on the second compute engine.

[0378] Additionally or alternatively, the selecting of the
scheduling branch may be based at least on one or more of:
a total time constraint related to respective execution times
of'the of scheduling branches; a runtime constraint related to
minimum execution times of runnables that may trigger a
scheduling branch; a bubble avoidance constraint related to
avoiding scheduling gaps (e.g., bubbles); a dependency

Mar. 30, 2023

constraint related to avoiding runnable dependency viola-
tions; or scheduling prioritization with respect to a critical
path within a compute graph that includes the set of run-
nables. In these or other embodiments, the selecting of the
scheduling branch may be based at least on an execution
time of the scheduling branch. One or more operations of
such selection are given in further detail at least with respect
to the description of the process 400 of FIG. 4A.

[0379] Atblock B1006, an execution schedule of the set of
runnables may be determined based at least on the sched-
uling branch. For example, an execution schedule may be
generated such as at least described above with respect to the
process 400 of FIG. 4A. In some embodiments, the execu-
tion schedule may be for execution of the runnables by a
computing system. In some embodiments, the computing
system may include or may correspond to a runtime system,
such as described in the present disclosure. Additionally or
alternatively, the computing system may be a heterogenous
computing system, such as described in the present disclo-
sure.

[0380] Modifications, additions, or omissions may be
made to the method 1000 without departing from the scope
of the present disclosure. For example, the order of one or
more of the operations described may vary than the order in
which they were described or are illustrated. Further, each
operation may include more or fewer operations than those
described. In addition, the delineation of the operations and
elements is meant for explanatory purposes and is not meant
to be limiting with respect to actual implementations. For
instance, in some embodiments, the method 1000 may
include one or more operations of the process 400 described
with respect to FIG. 4A that may not be explicitly discussed
with respect to the method 1000. Additionally, one or more
of any of the other operations described in the present
disclosure with respect any of the other FIGS. may be
included in the method 1000 in some instances.

[0381] FIG. 11 illustrates an example method 1100 for
generating an execution schedule using an instruction set,
according to one or more embodiments of the present
disclosure. The method 1100 may be performed by any
suitable system, apparatus, or device using any combination
of hardware, firmware, and/or software. For instance, vari-
ous operations may be carried out by one or more processors
executing instructions stored in memory. The operations of
the method 1100 may also be embodied as computer-usable
instructions stored on computer storage media. Additionally
or alternatively, one or more of the operations of the method
1100 may be provided by a standalone application, a service
or hosted service (standalone or in combination with another
hosted service), or a plug-in to another product, to name a
few. By way of example, in some embodiments, one or more
operations of the method 1100 may be performed by the
schedule compiling engine 202 described with respect to
FIG. 2A. In these or other embodiments, one or more
operations may be performed by one or more computing
devices, such as that described in further detail at least with
respect to FIG. 15. In these or other embodiments, one or
more operations of the method 1100 may be performed by
a computing system disposed on an ego-machine, such as a
vehicle as described at least with respect to FIGS. 14A-14D.

[0382] In some embodiments, the method 1100, at block
B1102, may include receiving application data indicative of
runnables corresponding to a computing application. The



US 2023/0096502 A1l

various instances of application data described in the present
disclosure may be examples of the received application data.
[0383] At block B1104, an execution schedule for execu-
tion of the runnables using multiple compute engines may be
generated based at least on the application data. The execu-
tion schedule may include one or more commands corre-
sponding to one or more timing fences. The one or more
timing fences may dictate a timing and order of execution
between at least a first runnable and a second runnable of the
of runnables. In some embodiments, the commands may be
based on an instruction set, such as described at least with
respect to FIG. 2A. Additionally or alternatively, by way of
example and not limitation, one or more of the operations
described with respect to the post-processing engine 216 of
FIG. 2A may be used to generate the execution schedule.
[0384] Insome embodiments, the execution schedule may
be for execution of the runnables by a computing system. In
some embodiments, the computing system may include or
may correspond to a runtime system, such as described in
the present disclosure. Additionally or alternatively, the
computing system may be a heterogenous computing sys-
tem, such as described in the present disclosure.

[0385] Modifications, additions, or omissions may be
made to the method 1100 without departing from the scope
of the present disclosure. For example, the order of one or
more of the operations described may vary than the order in
which they were described or are illustrated. Further, each
operation may include more or fewer operations than those
described. In addition, the delineation of the operations and
elements is meant for explanatory purposes and is not meant
to be limiting with respect to actual implementations. Addi-
tionally, one or more of any of the other operations described
in the present disclosure with respect any of the FIGS. may
be included in the method 1100 in some instances.

[0386] FIG. 12 illustrates an example method 1200 for
system task management, according to one or more embodi-
ments of the present disclosure. The method 1200 may be
performed by any suitable system, apparatus, or device
using any combination of hardware, firmware, and/or soft-
ware. For instance, various operations may be carried out by
one or more processors executing instructions stored in
memory. The operations of the method 1200 may also be
embodied as computer-usable instructions stored on com-
puter storage media. Additionally or alternatively, one or
more of the operations of the method 1200 may be provided
by a standalone application, a service or hosted service
(standalone or in combination with another hosted service),
or a plug-in to another product, to name a few. By way of
example, in some embodiments, one or more operations of
the method 1200 may be performed by one or more elements
depicted in FIG. 8. In these or other embodiments, one or
more operations may be performed by one or more com-
puting devices, such as that described in further detail at
least with respect to FIG. 15. In these or other embodiments,
one or more operations of the method 1200 may be per-
formed by a computing system disposed on an ego-machine,
such as a vehicle as described at least with respect to FIGS.
14A-14D.

[0387] In some embodiments, the method 1200, at block
B1202, may include generating an execution schedule for
execution of runnables using multiple compute engines. In
some embodiments, the execution schedule may be gener-
ated based at least on application data indicative of run-
nables corresponding to a computing application. The vari-

Mar. 30, 2023

ous instances of application data described in the present
disclosure may be examples of the received application data.
In some embodiments, the execution schedule may be
generated by a schedule compiling engine, such as, by way
of example and not limitation, the schedule compiling
engine 202 of FIG. 2A.

[0388] The execution schedule may include one or more
commands corresponding to one or more timing fences. The
one or more timing fences may dictate a timing and order of
execution between at least a first runnable and a second
runnable of the of runnables. In some embodiments, the
commands may be based on an instruction set, such as
described at least with respect to FIG. 2A. Additionally or
alternatively, by way of example and not limitation, one or
more of the operations described with respect to the post-
processing engine 216 of FIG. 2A may be used to generate
the execution schedule. Additionally, in some embodiments,
one or more of the operations described with respect to one
or more of FIGS. 2A-2D, FIGS. 3A and 3B, FIGS. 4A and
4B, FIG. 5, or FIGS. 9-11 may be used to generate and/or
determine the execution schedule.

[0389] At block B1204, the execution schedule may be
executed by a computing system. In some embodiments, the
computing system may include or may correspond to a
runtime system, such as described in the present disclosure.
Additionally or alternatively, the computing system may be
a heterogenous computing system, such as described in the
present disclosure. In some embodiments, by way of
example and not limitation, the execution of the computing
system may include one or more operations described with
respect to FIG. 6A.

[0390] Modifications, additions, or omissions may be
made to the method 1200 without departing from the scope
of the present disclosure. For example, the order of one or
more of the operations described may vary than the order in
which they were described or are illustrated. Further, each
operation may include more or fewer operations than those
described. In addition, the delineation of the operations and
elements is meant for explanatory purposes and is not meant
to be limiting with respect to actual implementations.
[0391] For instance, in some embodiments, the method
1200 may include one or more operations described with
respect to one or more of the elements described with respect
to FIG. 8 that may not be explicitly discussed with respect
to the method 1200. Additionally, one or more of any of the
other operations described in the present disclosure with
respect any of the other FIGS. may be included in the
method 1200 in some instances.

[0392] FIG. 13 illustrates an example method 1300 for
monitoring the execution of runnables, according to one or
more embodiments of the present disclosure. The method
1300 may be performed by any suitable system, apparatus,
or device using any combination of hardware, firmware,
and/or software. For instance, various operations may be
carried out by one or more processors executing instructions
stored in memory. The operations of the method 1300 may
also be embodied as computer-usable instructions stored on
computer storage media. Additionally or alternatively, one
or more of the operations of the method 1300 may be
provided by a standalone application, a service or hosted
service (standalone or in combination with another hosted
service), or a plug-in to another product, to name a few. By
way of example, in some embodiments, one or more opera-
tions of the method 1300 may be performed by the moni-



US 2023/0096502 A1l

toring engine 612 of FIG. 6A. In these or other embodi-
ments, one or more operations may be performed by one or
more computing devices, such as that described in further
detail at least with respect to FIG. 15. In these or other
embodiments, one or more operations of the method 1300
may be performed by a computing system disposed on an
ego-machine, such as a vehicle as described at least with
respect to FIGS. 14A-14D.

[0393] In some embodiments, the method 1300, at block
B1302, may include monitoring execution of runnables that
may be executed by a computing system. In some embodi-
ments, the computing system may include or may corre-
spond to a runtime system, such as described in the present
disclosure. Additionally or alternatively, the computing sys-
tem may be a heterogenous computing system, such as
described in the present disclosure. In these or other embodi-
ments, the executing of the runnables may be based at least
on an execution schedule corresponding to the runnables.
Additionally or alternatively, the monitoring may include
monitoring compliance with the execution schedule.
[0394] In some embodiments, the monitoring may include
monitoring timing of execution of the runnables—e.g., in
which the execution schedule may indicate the timing the
runnables are scheduled to follow. For instance, in some
embodiments, by way of example and not limitation, one or
more operations performed by the timing checker 644 of
FIG. 6 A may be included in the monitoring.

[0395] Additionally or alternatively, in some embodi-
ments, the monitoring may include monitoring one or more
sequences of execution of the runnables—e.g., in which the
execution schedule may indicate which order the runnables
are scheduled to follow. For instance, in some embodiments,
by way of example and not limitation, one or more opera-
tions performed by the sequence checker 646 of FIG. 6A
may be included in the monitoring.

[0396] Additionally or alternatively, in some embodi-
ments, the monitoring may include monitoring the health of
at least a portion of the computing system executing the
runnables—e.g., monitoring the health of a system task
management module, such as the STM 622 of FIG. 6A. For
instance, in some embodiments, by way of example and not
limitation, one or more operations performed by the health
checker 648 of FIG. 6 A may be included in the monitoring.
[0397] At block B1304, compliance with respect to one or
more execution constraints may be determined based at least
on the monitoring. For example, it may be determined
whether one or more timing constraints have been met
and/or are being met, such as, by way of example and not
limitation, described with respect to the timing checker 644
of FIG. 6A. Additionally or alternatively, it may be deter-
mined whether one or more sequence constraints corre-
sponding to runnable execution order have been met and/or
are being met, such as, by way of example and not limita-
tion, described with respect to the sequence checker 646 of
FIG. 6A. In these or other embodiments, it may be deter-
mined whether one or more health metrics corresponding to
operation of the at least portion of the computing system
have been met and/or are being met, such as, by way of
example and not limitation, described with respect to the
health checker 648 of FIG. 6A.

[0398] Modifications, additions, or omissions may be
made to the method 1300 without departing from the scope
of the present disclosure. For example, the order of one or
more of the operations described may vary than the order in

Mar. 30, 2023

which they were described or are illustrated. Further, each
operation may include more or fewer operations than those
described. In addition, the delineation of the operations and
elements is meant for explanatory purposes and is not meant
to be limiting with respect to actual implementations.
[0399] For instance, in some embodiments, the method
1300 may include one or more operations of the monitoring
engine 612 described with respect to FIG. 6A that may not
be explicitly discussed with respect to the method 1300. For
instance, the method 1300 may include performance of one
or more remedial operations, such as, by way of example
and not limitation, described with respect to the monitoring
engine 612 of FIG. 6A. Additionally, one or more of any of
the other operations described in the present disclosure with
respect any of the other FIGS. may be included in the
method 1300 in some instances.

Example Autonomous Vehicle

[0400] FIG. 14A is an illustration of an example autono-
mous vehicle 1400, in accordance with some embodiments
of the present disclosure. The autonomous vehicle 1400
(alternatively referred to herein as the “vehicle 1400”") may
include, without limitation, a passenger vehicle, such as a
car, a truck, a bus, a first responder vehicle, a shuttle, an
electric or motorized bicycle, a motorcycle, a fire truck, a
police vehicle, an ambulance, a boat, a construction vehicle,
an underwater craft, a drone, a vehicle coupled to a trailer,
and/or another type of vehicle (e.g., that is unmanned and/or
that accommodates one or more passengers). Autonomous
vehicles are generally described in terms of automation
levels, defined by the National Highway Traffic Safety
Administration (NHTSA), a division of the US Department
of Transportation, and the Society of Automotive Engineers
(SAE) “Taxonomy and Definitions for Terms Related to
Driving Automation Systems for On-Road Motor Vehicles”
(Standard No. J3016-201806, published on Jun. 15, 2018,
Standard No. J3016-201609, published on Sep. 30, 2016,
and previous and future versions of this standard). The
vehicle 1400 may be capable of functionality in accordance
with one or more of Level 3-Level 5 of the autonomous
driving levels. The vehicle 1400 may be capable of func-
tionality in accordance with one or more of Level 1-Level 5
of the autonomous driving levels. For example, the vehicle
1400 may be capable of driver assistance (Level 1), partial
automation (Level 2), conditional automation (Level 3),
high automation (Level 4), and/or full automation (Level 5),
depending on the embodiment. The term “autonomous,” as
used herein, may include any and/or all types of autonomy
for the vehicle 1400 or other machine, such as being fully
autonomous, being highly autonomous, being conditionally
autonomous, being partially autonomous, providing assis-
tive autonomy, being semi-autonomous, being primarily
autonomous, or other designation.

[0401] The vehicle 1400 may include components such as
a chassis, a vehicle body, wheels (e.g., 2, 4, 6, 8, 18, etc.),
tires, axles, and other components of a vehicle. The vehicle
1400 may include a propulsion system 1450, such as an
internal combustion engine, hybrid electric power plant, an
all-electric engine, and/or another propulsion system type.
The propulsion system 1450 may be connected to a drive
train of the vehicle 1400, which may include a transmission,
to enable the propulsion of the vehicle 1400. The propulsion
system 1450 may be controlled in response to receiving
signals from the throttle/accelerator 1452.



US 2023/0096502 A1l

[0402] A steering system 1454, which may include a
steering wheel, may be used to steer the vehicle 1400 (e.g.,
along a desired path or route) when the propulsion system
1450 is operating (e.g., when the vehicle is in motion). The
steering system 1454 may receive signals from a steering
actuator 1456. The steering wheel may be optional for full
automation (Level 5) functionality.

[0403] The brake sensor system 1446 may be used to
operate the vehicle brakes in response to receiving signals
from the brake actuators 1448 and/or brake sensors.

[0404] Controller(s) 1436, which may include one or more
system on chips (SoCs) 1404 (FIG. 14C) and/or GPU(s),
may provide signals (e.g., representative of commands) to
one or more components and/or systems of the vehicle 1400.
For example, the controller(s) may send signals to operate
the vehicle brakes via one or more brake actuators 1448, to
operate the steering system 1454 via one or more steering
actuators 1456, to operate the propulsion system 1450 via
one or more throttle/accelerators 1452. The controller(s)
1436 may include one or more onboard (e.g., integrated)
computing devices (e.g., supercomputers) that process sen-
sor signals, and output operation commands (e.g., signals
representing commands) to enable autonomous driving and/
or to assist a human driver in driving the vehicle 1400. The
controller(s) 1436 may include a first controller 1436 for
autonomous driving functions, a second controller 1436 for
functional safety functions, a third controller 1436 for arti-
ficial intelligence functionality (e.g., computer vision), a
fourth controller 1436 for infotainment functionality, a fifth
controller 1436 for redundancy in emergency conditions,
and/or other controllers. In some examples, a single con-
troller 1436 may handle two or more of the above function-
alities, two or more controllers 1436 may handle a single
functionality, and/or any combination thereof.

[0405] The controller(s) 1436 may provide the signals for
controlling one or more components and/or systems of the
vehicle 1400 in response to sensor data received from one or
more sensors (e.g., sensor inputs). The sensor data may be
received from, for example and without limitation, global
navigation satellite systems sensor(s) 1458 (e.g., Global
Positioning System sensor(s)), RADAR sensor(s) 1460,
ultrasonic sensor(s) 1462, LIDAR sensor(s) 1464, inertial
measurement unit (IMU) sensor(s) 1466 (e.g., accelerometer
(s), gyroscope(s), magnetic compass(es), magnetometer(s),
etc.), microphone(s) 1496, stereo camera(s) 1468, wide-
view camera(s) 1470 (e.g., fisheye cameras), infrared cam-
era(s) 1472, surround camera(s) 1474 (e.g., 360 degree
cameras), long-range and/or mid-range camera(s) 1498,
speed sensor(s) 1444 (e.g., for measuring the speed of the
vehicle 1400), vibration sensor(s) 1442, steering sensor(s)
1440, brake sensor(s) (e.g., as part of the brake sensor
system 1446), and/or other sensor types.

[0406] One or more of the controller(s) 1436 may receive
inputs (e.g., represented by input data) from an instrument
cluster 1432 of the vehicle 1400 and provide outputs (e.g.,
represented by output data, display data, etc.) via a human-
machine interface (HMI) display 1434, an audible annun-
ciator, a loudspeaker, and/or via other components of the
vehicle 1400. The outputs may include information such as
vehicle velocity, speed, time, map data (e.g., the HD map
1422 of FIG. 14C), location data (e.g., the vehicle’s 1400
location, such as on a map), direction, location of other
vehicles (e.g., an occupancy grid), information about objects
and status of objects as perceived by the controller(s) 1436,

Mar. 30, 2023

etc. For example, the HMI display 1434 may display infor-
mation about the presence of one or more objects (e.g., a
street sign, caution sign, traffic light changing, etc.), and/or
information about driving maneuvers the vehicle has made,
is making, or will make (e.g., changing lanes now, taking
exit 34B in two miles, etc.).

[0407] The vehicle 1400 further includes a network inter-
face 1424 which may use one or more wireless antenna(s)
1415 and/or modem(s) to communicate over one or more
networks. For example, the network interface 1424 may be
capable of communication over LTE, WCDMA, UMTS,
GSM, CDMA2000, etc. The wireless antenna(s) 1415 may
also enable communication between objects in the environ-
ment (e.g., vehicles, mobile devices, etc.), using local area
network(s), such as Bluetooth, Bluetooth LE, Z-Wave, Zig-
Bee, etc., and/or low power wide-area network(s) (LP-
WANS5), such as LoRaWAN, SigFox, etc.

[0408] FIG. 14B is an example of camera locations and
fields of view for the example autonomous vehicle 1400 of
FIG. 14A, in accordance with some embodiments of the
present disclosure. The cameras and respective fields of
view are one example embodiment and are not intended to
be limiting. For example, additional and/or alternative cam-
eras may be included and/or the cameras may be located at
different locations on the vehicle 1400.

[0409] The camera types for the cameras may include, but
are not limited to, digital cameras that may be adapted for
use with the components and/or systems of the vehicle 1400.
The camera(s) may operate at automotive safety integrity
level (ASIL) B and/or at another ASIL. The camera types
may be capable of any image capture rate, such as 60 frames
per second (fps), 120 fps, 240 fps, etc., depending on the
embodiment. The cameras may be capable of using rolling
shutters, global shutters, another type of shutter, or a com-
bination thereof. In some examples, the color filter array
may include a red clear clear clear (RCCC) color filter array,
a red clear clear blue (RCCB) color filter array, a red blue
green clear (RBGC) color filter array, a Foveon X3 color
filter array, a Bayer sensors (RGGB) color filter array, a
monochrome sensor color filter array, and/or another type of
color filter array. In some embodiments, clear pixel cameras,
such as cameras with an RCCC, an RCCB, and/or an RBGC
color filter array, may be used in an effort to increase light
sensitivity.

[0410] In some examples, one or more of the camera(s)
may be used to perform advanced driver assistance systems
(ADAS) functions (e.g., as part of a redundant or fail-safe
design). For example, a Multi-Function Mono Camera may
be installed to provide functions including lane departure
warning, traffic sign assist and intelligent headlamp control.
One or more of the camera(s) (e.g., all of the cameras) may
record and provide image data (e.g., video) simultaneously.
[0411] One or more of the cameras may be mounted in a
mounting assembly, such as a custom designed (3-D printed)
assembly, in order to cut out stray light and reflections from
within the car (e.g., reflections from the dashboard reflected
in the windshield mirrors) which may interfere with the
camera’s image data capture abilities. With reference to
wing-mirror mounting assemblies, the wing-mirror assem-
blies may be custom 3-D printed so that the camera mount-
ing plate matches the shape of the wing-mirror. In some
examples, the camera(s) may be integrated into the wing-
mirror. For side-view cameras, the camera(s) may also be
integrated within the four pillars at each corner of the cabin.



US 2023/0096502 A1l

[0412] Cameras with a field of view that include portions
of the environment in front of the vehicle 1400 (e.g.,
front-facing cameras) may be used for surround view, to
help identify forward facing paths and obstacles, as well aid
in, with the help of one or more controllers 1436 and/or
control SoCs, providing information critical to generating an
occupancy grid and/or determining the preferred vehicle
paths. Front-facing cameras may be used to perform many
of the same ADAS functions as LIDAR, including emer-
gency braking, pedestrian detection, and collision avoid-
ance. Front-facing cameras may also be used for ADAS
functions and systems including [Lane Departure Warnings
(LDW), Autonomous Cruise Control (ACC), and/or other
functions such as traffic sign recognition.

[0413] A variety of cameras may be used in a front-facing
configuration, including, for example, a monocular camera
platform that includes a CMOS (complementary metal oxide
semiconductor) color imager. Another example may be a
wide-view camera(s) 1470 that may be used to perceive
objects coming into view from the periphery (e.g., pedes-
trians, crossing traffic or bicycles). Although only one wide-
view camera is illustrated in FIG. 14B, there may any
number of wide-view cameras 1470 on the vehicle 1400. In
addition, long-range camera(s) 1498 (e.g., a long-view ste-
reo camera pair) may be used for depth-based object detec-
tion, especially for objects for which a neural network has
not yet been trained. The long-range camera(s) 1498 may
also be used for object detection and classification, as well
as basic object tracking.

[0414] One or more stereo cameras 1468 may also be
included in a front-facing configuration. The stereo camera
(s) 1468 may include an integrated control unit comprising
a scalable processing unit, which may provide a program-
mable logic (FPGA) and a multi-core micro-processor with
an integrated CAN or Ethernet interface on a single chip.
Such a unit may be used to generate a 3-D map of the
vehicle’s environment, including a distance estimate for all
the points in the image. An alternative stereo camera(s) 1468
may include a compact stereo vision sensor(s) that may
include two camera lenses (one each on the left and right)
and an image processing chip that may measure the distance
from the vehicle to the target object and use the generated
information (e.g., metadata) to activate the autonomous
emergency braking and lane departure warning functions.
Other types of stereo camera(s) 1468 may be used in
addition to, or alternatively from, those described herein.
[0415] Cameras with a field of view that include portions
of the environment to the side of the vehicle 1400 (e.g.,
side-view cameras) may be used for surround view, provid-
ing information used to create and update the occupancy
grid, as well as to generate side impact collision warnings.
For example, surround camera(s) 1474 (e.g., four surround
cameras 1474 as illustrated in FIG. 14B) may be positioned
to on the vehicle 1400. The surround camera(s) 1474 may
include wide-view camera(s) 1470, fisheye camera(s), 360
degree camera(s), and/or the like. Four example, four fisheye
cameras may be positioned on the vehicle’s front, rear, and
sides. In an alternative arrangement, the vehicle may use
three surround camera(s) 1474 (e.g., left, right, and rear),
and may leverage one or more other camera(s) (e.g., a
forward-facing camera) as a fourth surround view camera.
[0416] Cameras with a field of view that include portions
of the environment to the rear of the vehicle 1400 (e.g.,
rear-view cameras) may be used for park assistance, sur-

Mar. 30, 2023

round view, rear collision warnings, and creating and updat-
ing the occupancy grid. A wide variety of cameras may be
used including, but not limited to, cameras that are also
suitable as a front-facing camera(s) (e.g., long-range and/or
mid-range camera(s) 1498, stereo camera(s) 1468), infrared
camera(s) 1472, etc.), as described herein.

[0417] FIG. 14C is a block diagram of an example system
architecture for the example autonomous vehicle 1400 of
FIG. 14A, in accordance with some embodiments of the
present disclosure. It should be understood that this and
other arrangements described herein are set forth only as
examples. Other arrangements and elements (e.g., machines,
interfaces, functions, orders, groupings of functions, etc.)
may be used in addition to or instead of those shown, and
some elements may be omitted altogether. Further, many of
the elements described herein are functional entities that
may be implemented as discrete or distributed components
or in conjunction with other components, and in any suitable
combination and location. Various functions described
herein as being performed by entities may be carried out by
hardware, firmware, and/or software. For instance, various
functions may be carried out by a processor executing
instructions stored in memory.

[0418] Each of the components, features, and systems of
the vehicle 1400 in FIG. 14C are illustrated as being
connected via bus 1402. The bus 1402 may include a
Controller Area Network (CAN) data interface (alternatively
referred to herein as a “CAN bus”). A CAN may be a
network inside the vehicle 1400 used to aid in control of
various features and functionality of the vehicle 1400, such
as actuation of brakes, acceleration, braking, steering, wind-
shield wipers, etc. A CAN bus may be configured to have
dozens or even hundreds of nodes, each with its own unique
identifier (e.g., a CAN ID). The CAN bus may be read to find
steering wheel angle, ground speed, engine revolutions per
minute (RPMs), button positions, and/or other vehicle status
indicators. The CAN bus may be ASIL B compliant.

[0419] Although the bus 1402 is described herein as being
a CAN bus, this is not intended to be limiting. For example,
in addition to, or alternatively from, the CAN bus, FlexRay
and/or Ethernet may be used. Additionally, although a single
line is used to represent the bus 1402, this is not intended to
be limiting. For example, there may be any number of busses
1402, which may include one or more CAN busses, one or
more FlexRay busses, one or more Ethernet busses, and/or
one or more other types of busses using a different protocol.
In some examples, two or more busses 1402 may be used to
perform different functions, and/or may be used for redun-
dancy. For example, a first bus 1402 may be used for
collision avoidance functionality and a second bus 1402 may
be used for actuation control. In any example, each bus 1402
may communicate with any of the components of the vehicle
1400, and two or more busses 1402 may communicate with
the same components. In some examples, each SoC 1404,
each controller 1436, and/or each computer within the
vehicle may have access to the same input data (e.g., inputs
from sensors of the vehicle 1400), and may be connected to
a common bus, such the CAN bus.

[0420] The vehicle 1400 may include one or more con-
troller(s) 1436, such as those described herein with respect
to FIG. 14A. The controller(s) 1436 may be used for a
variety of functions. The controller(s) 1436 may be coupled
to any of the various other components and systems of the
vehicle 1400, and may be used for control of the vehicle



US 2023/0096502 A1l

1400, artificial intelligence of the vehicle 1400, infotainment
for the vehicle 1400, and/or the like.

[0421] The vehicle 1400 may include a system(s) on a
chip (SoC) 1404. The SoC 1404 may include CPU(s) 1406,
GPU(s) 1408, processor(s) 1410, cache(s) 1412, accelerator
(s) 1414, data store(s) 1416, and/or other components and
features not illustrated. The SoC(s) 1404 may be used to
control the vehicle 1400 in a variety of platforms and
systems. For example, the SoC(s) 1404 may be combined in
a system (e.g., the system of the vehicle 1400) with an HD
map 1422 which may obtain map refreshes and/or updates
via a network interface 1424 from one or more servers (e.g.,
server(s) 1478 of FI1G. 14D).

[0422] The CPU(s) 1406 may include a CPU cluster or
CPU complex (alternatively referred to herein as a
“CCPLEX”). The CPU(s) 1406 may include multiple cores
and/or L2 caches. For example, in some embodiments, the
CPU(s) 1406 may include eight cores in a coherent multi-
processor configuration. In some embodiments, the CPU(s)
1406 may include four dual-core clusters where each cluster
has a dedicated .2 cache (e.g., a 2 MB L2 cache). The
CPU(s) 1406 (e.g., the CCPLEX) may be configured to
support simultaneous cluster operation enabling any com-
bination of the clusters of the CPU(s) 1406 to be active at
any given time.

[0423] The CPU(s) 1406 may implement power manage-
ment capabilities that include one or more of the following
features: individual hardware blocks may be clock-gated
automatically when idle to save dynamic power; each core
clock may be gated when the core is not actively executing
instructions due to execution of WFI/WFE instructions; each
core may be independently power-gated; each core cluster
may be independently clock-gated when all cores are clock-
gated or power-gated; and/or each core cluster may be
independently power-gated when all cores are power-gated.
The CPU(s) 1406 may further implement an enhanced
algorithm for managing power states, where allowed power
states and expected wakeup times are specified, and the
hardware/microcode determines the best power state to enter
for the core, cluster, and CCPLEX. The processing cores
may support simplified power state entry sequences in
software with the work offloaded to microcode.

[0424] The GPU(s) 1408 may include an integrated GPU
(alternatively referred to herein as an “iGPU”). The GPU(s)
1408 may be programmable and may be efficient for parallel
workloads. The GPU(s) 1408, in some examples, may use an
enhanced tensor instruction set. The GPU(s) 1408 may
include one or more streaming microprocessors, where each
streaming microprocessor may include an [.1 cache (e.g., an
L1 cache with at least 96 KB storage capacity), and two or
more of the streaming microprocessors may share an 1.2
cache (e.g., an .2 cache with a 512 KB storage capacity). In
some embodiments, the GPU(s) 1408 may include at least
eight streaming microprocessors. The GPU(s) 1408 may use
compute application programming interface(s) (API(s)). In
addition, the GPU(s) 1408 may use one or more parallel
computing platforms and/or programming models (e.g.,
NVIDIA’s CUDA).

[0425] The GPU(s) 1408 may be power-optimized for best
performance in automotive and embedded use cases. For
example, the GPU(s) 1408 may be fabricated on a Fin
field-effect transistor (FinFET). However, this is not
intended to be limiting and the GPU(s) 1408 may be
fabricated using other semiconductor manufacturing pro-

Mar. 30, 2023

cesses. Each streaming microprocessor may incorporate a
number of mixed-precision processing cores partitioned into
multiple blocks. For example, and without limitation, 64
PF32 cores and 32 PF64 cores may be partitioned into four
processing blocks. In such an example, each processing
block may be allocated 16 FP32 cores, 8 FP64 cores, 16
INT32 cores, two mixed-precision NVIDIA TENSOR
COREs for deep learning matrix arithmetic, an L.O instruc-
tion cache, a warp scheduler, a dispatch unit, and/or a 64 KB
register file. In addition, the streaming microprocessors may
include independent parallel integer and floating-point data
paths to provide for efficient execution of workloads with a
mix of computation and addressing calculations. The
streaming microprocessors may include independent thread
scheduling capability to enable finer-grain synchronization
and cooperation between parallel threads. The streaming
microprocessors may include a combined .1 data cache and
shared memory unit in order to improve performance while
simplifying programming.

[0426] The GPU(s) 1408 may include a high bandwidth
memory (HBM) and/or a 16 GB HBM2 memory subsystem
to provide, in some examples, about 900 GB/second peak
memory bandwidth. In some examples, in addition to, or
alternatively from, the HBM memory, a synchronous graph-
ics random-access memory (SGRAM) may be used, such as
a graphics double data rate type five synchronous random-
access memory (GDDRS).

[0427] The GPU(s) 1408 may include unified memory
technology including access counters to allow for more
accurate migration of memory pages to the processor that
accesses them most frequently, thereby improving efficiency
for memory ranges shared between processors. In some
examples, address translation services (ATS) support may be
used to allow the GPU(s) 1408 to access the CPU(s) 1406
page tables directly. In such examples, when the GPU(s)
1408 memory management unit (MMU) experiences a miss,
an address translation request may be transmitted to the
CPU(s) 1406. In response, the CPU(s) 1406 may look in its
page tables for the virtual-to-physical mapping for the
address and transmits the translation back to the GPU(s)
1408. As such, unified memory technology may allow a
single unified virtual address space for memory of both the
CPU(s) 1406 and the GPU(s) 1408, thereby simplifying the
GPU(s) 1408 programming and porting of applications to
the GPU(s) 1408.

[0428] In addition, the GPU(s) 1408 may include an
access counter that may keep track of the frequency of
access of the GPU(s) 1408 to memory of other processors.
The access counter may help ensure that memory pages are
moved to the physical memory of the processor that is
accessing the pages most frequently.

[0429] The SoC(s) 1404 may include any number of
cache(s) 1412, including those described herein. For
example, the cache(s) 1412 may include an [.3 cache that is
available to both the CPU(s) 1406 and the GPU(s) 1408
(e.g., that is connected both the CPU(s) 1406 and the GPU(s)
1408). The cache(s) 1412 may include a write-back cache
that may keep track of states of lines, such as by using a
cache coherence protocol (e.g., MEI, MESI, MSI, etc.). The
L3 cache may include 4 MB or more, depending on the
embodiment, although smaller cache sizes may be used.
[0430] The SoC(s) 1404 may include an arithmetic logic
unit(s) (ALU(s)) which may be leveraged in performing
processing with respect to any of the variety of tasks or



US 2023/0096502 A1l

operations of the vehicle 1400—such as processing DNNs.
In addition, the SoC(s) 1404 may include a floating point
unit(s) (FPU(s))—or other math coprocessor or numeric
coprocessor types—for performing mathematical operations
within the system. For example, the SoC(s) 104 may include
one or more FPUs integrated as execution units within a
CPU(s) 1406 and/or GPU(s) 1408.

[0431] The SoC(s) 1404 may include one or more accel-
erators 1414 (e.g., hardware accelerators, software accelera-
tors, or a combination thereof). For example, the SoC(s)
1404 may include a hardware acceleration cluster that may
include optimized hardware accelerators and/or large on-
chip memory. The large on-chip memory (e.g., 4 MB of
SRAM), may enable the hardware acceleration cluster to
accelerate neural networks and other calculations. The hard-
ware acceleration cluster may be used to complement the
GPU(s) 1408 and to off-load some of the tasks of the GPU(s)
1408 (e.g., to free up more cycles of the GPU(s) 1408 for
performing other tasks). As an example, the accelerator(s)
1414 may be used for targeted workloads (e.g., perception,
convolutional neural networks (CNNs), etc.) that are stable
enough to be amenable to acceleration. The term “CNN,” as
used herein, may include all types of CNNs, including
region-based or regional convolutional neural networks
(RCNNs) and Fast RCNNs (e.g., as used for object detec-
tion).

[0432] The accelerator(s) 1414 (e.g., the hardware accel-
eration cluster) may include a deep learning accelerator(s)
(DLA). The DLA(s) may include one or more Tensor
processing units (TPUs) that may be configured to provide
an additional ten trillion operations per second for deep
learning applications and inferencing. The TPUs may be
accelerators configured to, and optimized for, performing
image processing functions (e.g., for CNNs, RCNNs, etc.).
The DLA(s) may further be optimized for a specific set of
neural network types and floating point operations, as well
as inferencing. The design of the DLA(s) may provide more
performance per millimeter than a general-purpose GPU,
and vastly exceeds the performance of a CPU. The TPU(s)
may perform several functions, including a single-instance
convolution function, supporting, for example, INTS,
INT16, and FP16 data types for both features and weights,
as well as post-processor functions.

[0433] The DLA(s) may quickly and efficiently execute
neural networks, especially CNNs, on processed or unpro-
cessed data for any of a variety of functions, including, for
example and without limitation: a CNN for object identifi-
cation and detection using data from camera sensors; a CNN
for distance estimation using data from camera sensors; a
CNN for emergency vehicle detection and identification and
detection using data from microphones; a CNN for facial
recognition and vehicle owner identification using data from
camera sensors; and/or a CNN for security and/or safety
related events.

[0434] The DLA(s) may perform any function of the
GPU(s) 1408, and by using an inference accelerator, for
example, a designer may target either the DLA(s) or the
GPU(s) 1408 for any function. For example, the designer
may focus processing of CNNs and floating point operations
on the DLA(s) and leave other functions to the GPU(s) 1408
and/or other accelerator(s) 1414.

[0435] The accelerator(s) 1414 (e.g., the hardware accel-
eration cluster) may include a programmable vision accel-
erator(s) (PVA), which may alternatively be referred to

Mar. 30, 2023

herein as a computer vision accelerator. The PVA(s) may be
designed and configured to accelerate computer vision algo-
rithms for the advanced driver assistance systems (ADAS),
autonomous driving, and/or augmented reality (AR) and/or
virtual reality (VR) applications. The PVA(s) may provide a
balance between performance and flexibility. For example,
each PVA(s) may include, for example and without limita-
tion, any number of reduced sy computer (RISC) cores,
direct memory access (DMA), and/or any number of vector
processors.

[0436] The RISC cores may interact with image sensors
(e.g., the image sensors of any of the cameras described
herein), image signal processor(s), and/or the like. Each of
the RISC cores may include any amount of memory. The
RISC cores may use any of a number of protocols, depend-
ing on the embodiment. In some examples, the RISC cores
may execute a real-time operating system (RTOS). The
RISC cores may be implemented using one or more inte-
grated circuit devices, application specific integrated circuits
(ASICs), and/or memory devices. For example, the RISC
cores may include an instruction cache and/or a tightly
coupled RAM.

[0437] The DMA may enable components of the PVA(s)
to access the system memory independently of the CPU(s)
1406. The DMA may support any number of features used
to provide optimization to the PVA including, but not limited
to, supporting multi-dimensional addressing and/or circular
addressing. In some examples, the DMA may support up to
six or more dimensions of addressing, which may include
block width, block height, block depth, horizontal block
stepping, vertical block stepping, and/or depth stepping.

[0438] The vector processors may be programmable pro-
cessors that may be designed to efficiently and flexibly
execute programming for computer vision algorithms and
provide signal processing capabilities. In some examples,
the PVA may include a PVA core and two vector processing
subsystem partitions. The PVA core may include a processor
subsystem, DMA engine(s) (e.g., two DMA engines), and/or
other peripherals. The vector processing subsystem may
operate as the primary processing engine of the PVA, and
may include a vector processing unit (VPU), an instruction
cache, and/or vector memory (e.g., VMEM). A VPU core
may include a digital signal processor such as, for example,
a single instruction, multiple data (SIMD), very long instruc-
tion word (VLIW) digital signal processor. The combination
of'the SIMD and VLIW may enhance throughput and speed.

[0439] Each of the vector processors may include an
instruction cache and may be coupled to dedicated memory.
As a result, in some examples, each of the vector processors
may be configured to execute independently of the other
vector processors. In other examples, the vector processors
that are included in a particular PVA may be configured to
employ data parallelism. For example, in some embodi-
ments, the plurality of vector processors included in a single
PVA may execute the same computer vision algorithm, but
on different regions of an image. In other examples, the
vector processors included in a particular PVA may simul-
taneously execute different computer vision algorithms, on
the same image, or even execute different algorithms on
sequential images or portions of an image. Among other
things, any number of PVAs may be included in the hard-
ware acceleration cluster and any number of vector proces-
sors may be included in each of the PVAs. In addition, the



US 2023/0096502 A1l

PVA(s) may include additional error correcting code (ECC)
memory, to enhance overall system safety.

[0440] The accelerator(s) 1414 (e.g., the hardware accel-
eration cluster) may include a computer vision network
on-chip and SRAM, for providing a high-bandwidth, low
latency SRAM for the accelerator(s) 1414. In some
examples, the on-chip memory may include at least 4 MB
SRAM, consisting of, for example and without limitation,
eight field-configurable memory blocks, that may be acces-
sible by both the PVA and the DLA. Each pair of memory
blocks may include an advanced peripheral bus (APB)
interface, configuration circuitry, a controller, and a multi-
plexer. Any type of memory may be used. The PVA and
DLA may access the memory via a backbone that provides
the PVA and DLA with high-speed access to memory. The
backbone may include a computer vision network on-chip
that interconnects the PVA and the DL A to the memory (e.g.,
using the APB).

[0441] The computer vision network on-chip may include
an interface that determines, before transmission of any
control signal/address/data, that both the PVA and the DLA
provide ready and valid signals. Such an interface may
provide for separate phases and separate channels for trans-
mitting control signals/addresses/data, as well as burst-type
communications for continuous data transfer. This type of
interface may comply with ISO 26262 or IEC 61508 stan-
dards, although other standards and protocols may be used.

[0442] In some examples, the SoC(s) 1404 may include a
real-time ray-tracing hardware accelerator, such as described
in U.S. patent application Ser. No. 16/101,232, filed on Aug.
10, 2018. The real-time ray-tracing hardware accelerator
may be used to quickly and efficiently determine the posi-
tions and extents of objects (e.g., within a world model), to
generate real-time visualization simulations, for RADAR
signal interpretation, for sound propagation synthesis and/or
analysis, for simulation of SONAR systems, for general
wave propagation simulation, for comparison to LIDAR
data for purposes of localization and/or other functions,
and/or for other uses. In some embodiments, one or more
tree traversal units (TTUs) may be used for executing one or
more ray-tracing related operations.

[0443] The accelerator(s) 1414 (e.g., the hardware accel-
erator cluster) have a wide array of uses for autonomous
driving. The PVA may be a programmable vision accelerator
that may be used for key processing stages in ADAS and
autonomous vehicles. The PVA’s capabilities are a good
match for algorithmic domains needing predictable process-
ing, at low power and low latency. In other words, the PVA
performs well on semi-dense or dense regular computation,
even on small data sets, which need predictable run-times
with low latency and low power. Thus, in the context of
platforms for autonomous vehicles, the PVAs are designed
to run classic computer vision algorithms, as they are
efficient at object detection and operating on integer math.

[0444] For example, according to one embodiment of the
technology, the PVA is used to perform computer stereo
vision. A semi-global matching-based algorithm may be
used in some examples, although this is not intended to be
limiting. Many applications for Level 3-5 autonomous driv-
ing require motion estimation/stereo matching on-the-fly
(e.g., structure from motion, pedestrian recognition, lane
detection, etc.). The PVA may perform computer stereo
vision function on inputs from two monocular cameras.

Mar. 30, 2023

[0445] Insome examples, the PVA may be used to perform
dense optical flow. According to process raw RADAR data
(e.g., using a 4D Fast Fourier Transform) to provide Pro-
cessed RADAR. In other examples, the PVA is used for time
of flight depth processing, by processing raw time of flight
data to provide processed time of flight data, for example.

[0446] The DLA may be used to run any type of network
to enhance control and driving safety, including for example,
a neural network that outputs a measure of confidence for
each object detection. Such a confidence value may be
interpreted as a probability, or as providing a relative
“weight” of each detection compared to other detections.
This confidence value enables the system to make further
decisions regarding which detections should be considered
as true positive detections rather than false positive detec-
tions. For example, the system may set a threshold value for
the confidence and consider only the detections exceeding
the threshold value as true positive detections. In an auto-
matic emergency braking (AEB) system, false positive
detections would cause the vehicle to automatically perform
emergency braking, which is obviously undesirable. There-
fore, only the most confident detections should be consid-
ered as triggers for AEB. The DLA may run a neural network
for regressing the confidence value. The neural network may
take as its input at least some subset of parameters, such as
bounding box dimensions, ground plane estimate obtained
(e.g. from another subsystem), inertial measurement unit
(IMU) sensor 1466 output that correlates with the vehicle
1400 orientation, distance, 3D location estimates of the
object obtained from the neural network and/or other sensors
(e.g., LIDAR sensor(s) 1464 or RADAR sensor(s) 1460),
among others.

[0447] The SoC(s) 1404 may include data store(s) 1416
(e.g., memory). The data store(s) 1416 may be on-chip
memory of the SoC(s) 1404, which may store neural net-
works to be executed on the GPU and/or the DLA. In some
examples, the data store(s) 1416 may be large enough in
capacity to store multiple instances of neural networks for
redundancy and safety. The data store(s) 1412 may comprise
L2 or L3 cache(s) 1412. Reference to the data store(s) 1416
may include reference to the memory associated with the
PVA, DLA, and/or other accelerator(s) 1414, as described
herein.

[0448] The SoC(s) 1404 may include one or more proces-
sor(s) 1410 (e.g., embedded processors). The processor(s)
1410 may include a boot and power management processor
that may be a dedicated processor and subsystem to handle
boot power and management functions and related security
enforcement. The boot and power management processor
may be a part of the SoC(s) 1404 boot sequence and may
provide runtime power management services. The boot
power and management processor may provide clock and
voltage programming, assistance in system low power state
transitions, management of SoC(s) 1404 thermals and tem-
perature sensors, and/or management of the SoC(s) 1404
power states. Each temperature sensor may be implemented
as a ring-oscillator whose output frequency is proportional
to temperature, and the SoC(s) 1404 may use the ring-
oscillators to detect temperatures of the CPU(s) 1406, GPU
(s) 1408, and/or accelerator(s) 1414. If temperatures are
determined to exceed a threshold, the boot and power
management processor may enter a temperature fault routine
and put the SoC(s) 1404 into a lower power state and/or put



US 2023/0096502 A1l

the vehicle 1400 into a chauffeur to safe stop mode (e.g.,
bring the vehicle 1400 to a safe stop).

[0449] The processor(s) 1410 may further include a set of
embedded processors that may serve as an audio processing
engine. The audio processing engine may be an audio
subsystem that enables full hardware support for multi-
channel audio over multiple interfaces, and a broad and
flexible range of audio I/O interfaces. In some examples, the
audio processing engine is a dedicated processor core with
a digital signal processor with dedicated RAM.

[0450] The processor(s) 1410 may further include an
always on processor engine that may provide necessary
hardware features to support low power sensor management
and wake use cases. The always on processor engine may
include a processor core, a tightly coupled RAM, supporting
peripherals (e.g., timers and interrupt controllers), various
1/O controller peripherals, and routing logic.

[0451] The processor(s) 1410 may further include a safety
cluster engine that includes a dedicated processor subsystem
to handle safety management for automotive applications.
The safety cluster engine may include two or more processor
cores, a tightly coupled RAM, support peripherals (e.g.,
timers, an interrupt controller, etc.), and/or routing logic. In
a safety mode, the two or more cores may operate in a
lockstep mode and function as a single core with comparison
logic to detect any differences between their operations.
[0452] The processor(s) 1410 may further include a real-
time camera engine that may include a dedicated processor
subsystem for handling real-time camera management.
[0453] The processor(s) 1410 may further include a high-
dynamic range signal processor that may include an image
signal processor that is a hardware engine that is part of the
camera processing pipeline.

[0454] The processor(s) 1410 may include a video image
compositor that may be a processing block (e.g., imple-
mented on a microprocessor) that implements video post-
processing functions needed by a video playback application
to produce the final image for the player window. The video
image compositor may perform lens distortion correction on
wide-view camera(s) 1470, surround camera(s) 1474, and/or
on in-cabin monitoring camera sensors. In-cabin monitoring
camera sensor is preferably monitored by a neural network
running on another instance of the Advanced SoC, config-
ured to identify in cabin events and respond accordingly. An
in-cabin system may perform lip reading to activate cellular
service and place a phone call, dictate emails, change the
vehicle’s destination, activate or change the vehicle’s info-
tainment system and settings, or provide voice-activated
web surfing. Certain functions are available to the driver
only when the vehicle is operating in an autonomous mode,
and are disabled otherwise.

[0455] The video image compositor may include
enhanced temporal noise reduction for both spatial and
temporal noise reduction. For example, where motion occurs
in a video, the noise reduction weights spatial information
appropriately, decreasing the weight of information pro-
vided by adjacent frames. Where an image or portion of an
image does not include motion, the temporal noise reduction
performed by the video image compositor may use infor-
mation from the previous image to reduce noise in the
current image.

[0456] The video image compositor may also be config-
ured to perform stereo rectification on input stereo lens
frames. The video image compositor may further be used for

Mar. 30, 2023

user interface composition when the operating system desk-
top is in use, and the GPU(s) 1408 is not required to
continuously render new surfaces. Even when the GPU(s)
1408 is powered on and active doing 3D rendering, the video
image compositor may be used to offload the GPU(s) 1408
to improve performance and responsiveness.

[0457] The SoC(s) 1404 may further include a mobile
industry processor interface (MIPI) camera serial interface
for receiving video and input from cameras, a high-speed
interface, and/or a video input block that may be used for
camera and related pixel input functions. The SoC(s) 1404
may further include an input/output controller(s) that may be
controlled by software and may be used for receiving /O
signals that are uncommitted to a specific role.

[0458] The SoC(s) 1404 may further include a broad range
of peripheral interfaces to enable communication with
peripherals, audio codecs, power management, and/or other
devices. The SoC(s) 1404 may be used to process data from
cameras (e.g., connected over Gigabit Multimedia Serial
Link and Ethernet), sensors (e.g., LIDAR sensor(s) 1464,
RADAR sensor(s) 1460, etc. that may be connected over
Ethernet), data from bus 1402 (e.g., speed of vehicle 1400,
steering wheel position, etc.), data from GNSS sensor(s)
1458 (e.g., connected over Ethernet or CAN bus). The
SoC(s) 1404 may further include dedicated high-perfor-
mance mass storage controllers that may include their own
DMA engines, and that may be used to free the CPU(s) 1406
from routine data management tasks.

[0459] The SoC(s) 1404 may be an end-to-end platform
with a flexible architecture that spans automation levels 3-5,
thereby providing a comprehensive functional safety archi-
tecture that leverages and makes efficient use of computer
vision and ADAS techniques for diversity and redundancy,
provides a platform for a flexible, reliable driving software
stack, along with deep learning tools. The SoC(s) 1404 may
be faster, more reliable, and even more energy-efficient and
space-efficient than conventional systems. For example, the
accelerator(s) 1414, when combined with the CPU(s) 1406,
the GPU(s) 1408, and the data store(s) 1416, may provide
for a fast, efficient platform for level 3-5 autonomous
vehicles.

[0460] The technology thus provides capabilities and
functionality that cannot be achieved by conventional sys-
tems. For example, computer vision algorithms may be
executed on CPUs, which may be configured using high-
level programming language, such as the C programming
language, to execute a wide variety of processing algorithms
across a wide variety of visual data. However, CPUs are
oftentimes unable to meet the performance requirements of
many computer vision applications, such as those related to
execution time and power consumption, for example. In
particular, many CPUs are unable to execute complex object
detection algorithms in real-time, which is a requirement of
in-vehicle ADAS applications, and a requirement for prac-
tical Level 3-5 autonomous vehicles.

[0461] In contrast to conventional systems, by providing a
CPU complex, GPU complex, and a hardware acceleration
cluster, the technology described herein allows for multiple
neural networks to be performed simultaneously and/or
sequentially, and for the results to be combined together to
enable Level 3-5 autonomous driving functionality. For
example, a CNN executing on the DLA or dGPU (e.g., the
GPU(s) 1420) may include a text and word recognition,
allowing the supercomputer to read and understand traffic



US 2023/0096502 A1l

signs, including signs for which the neural network has not
been specifically trained. The DLA may further include a
neural network that is able to identify, interpret, and provides
semantic understanding of the sign, and to pass that semantic
understanding to the path planning modules running on the
CPU Complex.

[0462] As another example, multiple neural networks may
be run simultaneously, as is required for Level 3, 4, or 5
driving. For example, a warning sign consisting of “Caution:
flashing lights indicate icy conditions,” along with an elec-
tric light, may be independently or collectively interpreted
by several neural networks. The sign itself may be identified
as a traffic sign by a first deployed neural network (e.g., a
neural network that has been trained), the text “Flashing
lights indicate icy conditions” may be interpreted by a
second deployed neural network, which informs the vehi-
cle’s path planning software (preferably executing on the
CPU Complex) that when flashing lights are detected, icy
conditions exist. The flashing light may be identified by
operating a third deployed neural network over multiple
frames, informing the vehicle’s path-planning software of
the presence (or absence) of flashing lights. All three neural
networks may run simultaneously, such as within the DLA
and/or on the GPU(s) 1408.

[0463] In some examples, a CNN for facial recognition
and vehicle owner identification may use data from camera
sensors to identify the presence of an authorized driver
and/or owner of the vehicle 1400. The always on sensor
processing engine may be used to unlock the vehicle when
the owner approaches the driver door and turn on the lights,
and, in security mode, to disable the vehicle when the owner
leaves the vehicle. In this way, the SoC(s) 1404 provide for
security against theft and/or carjacking.

[0464] In another example, a CNN for emergency vehicle
detection and identification may use data from microphones
1496 to detect and identify emergency vehicle sirens. In
contrast to conventional systems, that use general classifiers
to detect sirens and manually extract features, the SoC(s)
1404 use the CNN for classifying environmental and urban
sounds, as well as classifying visual data. In a preferred
embodiment, the CNN running on the DLA is trained to
identify the relative closing speed of the emergency vehicle
(e.g., by using the Doppler Effect). The CNN may also be
trained to identify emergency vehicles specific to the local
area in which the vehicle is operating, as identified by GNSS
sensor(s) 1458. Thus, for example, when operating in
Europe the CNN will seek to detect European sirens, and
when in the United States the CNN will seek to identify only
North American sirens. Once an emergency vehicle is
detected, a control program may be used to execute an
emergency vehicle safety routine, slowing the vehicle, pull-
ing over to the side of the road, parking the vehicle, and/or
idling the vehicle, with the assistance of ultrasonic sensors
1462, until the emergency vehicle(s) passes.

[0465] The vehicle may include a CPU(s) 1418 (e.g.,
discrete CPU(s), or dCPU(s)), that may be coupled to the
SoC(s) 1404 via a high-speed interconnect (e.g., PCle). The
CPU(s) 1418 may include an X86 processor, for example.
The CPU(s) 1418 may be used to perform any of a variety
of functions, including arbitrating potentially inconsistent
results between ADAS sensors and the SoC(s) 1404, and/or
monitoring the status and health of the controller(s) 1436
and/or infotainment SoC 1430, for example.

Mar. 30, 2023

[0466] The vehicle 1400 may include a GPU(s) 1420 (e.g.,
discrete GPU(s), or dGPU(s)), that may be coupled to the
SoC(s) 1404 via a high-speed interconnect (e.g., NVIDIA’s
NVLINK). The GPU(s) 1420 may provide additional arti-
ficial intelligence functionality, such as by executing redun-
dant and/or different neural networks, and may be used to
train and/or update neural networks based on input (e.g.,
sensor data) from sensors of the vehicle 1400.

[0467] The vehicle 1400 may further include the network
interface 1424 which may include one or more wireless
antennas 1415 (e.g., one or more wireless antennas for
different communication protocols, such as a cellular
antenna, a Bluetooth antenna, etc.). The network interface
1424 may be used to enable wireless connectivity over the
Internet with the cloud (e.g., with the server(s) 1478 and/or
other network devices), with other vehicles, and/or with
computing devices (e.g., client devices of passengers). To
communicate with other vehicles, a direct link may be
established between the two vehicles and/or an indirect link
may be established (e.g., across networks and over the
Internet). Direct links may be provided using a vehicle-to-
vehicle communication link. The vehicle-to-vehicle com-
munication link may provide the vehicle 1400 information
about vehicles in proximity to the vehicle 1400 (e.g.,
vehicles in front of, on the side of, and/or behind the vehicle
1400). This functionality may be part of a cooperative
adaptive cruise control functionality of the vehicle 1400.
[0468] The network interface 1424 may include a SoC that
provides modulation and demodulation functionality and
enables the controller(s) 1436 to communicate over wireless
networks. The network interface 1424 may include a radio
frequency front-end for up-conversion from baseband to
radio frequency, and down conversion from radio frequency
to baseband. The frequency conversions may be performed
through well-known processes, and/or may be performed
using super-heterodyne processes. In some examples, the
radio frequency front end functionality may be provided by
a separate chip. The network interface may include wireless
functionality for communicating over LTE, WCDMA,
UMTS, GSM, CDMA2000, Bluetooth, Bluetooth LE, Wi-
Fi, Z-Wave, ZigBee, LoRaWAN, and/or other wireless pro-
tocols.

[0469] The vehicle 1400 may further include data store(s)
1428 which may include off-chip (e.g., off the SoC(s) 1404)
storage. The data store(s) 1428 may include one or more
storage elements including RAM, SRAM, DRAM, VRAM,
Flash, hard disks, and/or other components and/or devices
that may store at least one bit of data.

[0470] The vehicle 1400 may further include GNSS sensor
(s) 1458. The GNSS sensor(s) 1458 (e.g., GPS, assisted GPS
sensors, differential GPS (DGPS) sensors, etc.), to assist in
mapping, perception, occupancy grid generation, and/or
path planning functions. Any number of GNSS sensor(s)
1458 may be used, including, for example and without
limitation, a GPS using a USB connector with an Ethernet
to Serial (RS-232) bridge.

[0471] The vehicle 1400 may further include RADAR
sensor(s) 1460. The RADAR sensor(s) 1460 may be used by
the vehicle 1400 for long-range vehicle detection, even in
darkness and/or severe weather conditions. RADAR func-
tional safety levels may be ASIL B. The RADAR sensor(s)
1460 may use the CAN and/or the bus 1402 (e.g., to transmit
data generated by the RADAR sensor(s) 1460) for control
and to access object tracking data, with access to Ethernet to



US 2023/0096502 A1l

access raw data in some examples. A wide variety of
RADAR sensor types may be used. For example, and
without limitation, the RADAR sensor(s) 1460 may be
suitable for front, rear, and side RADAR use. In some
example, Pulse Doppler RADAR sensor(s) are used.
[0472] The RADAR sensor(s) 1460 may include different
configurations, such as long range with narrow field of view,
short range with wide field of view, short range side cov-
erage, etc. In some examples, long-range RADAR may be
used for adaptive cruise control functionality. The long-
range RADAR systems may provide a broad field of view
realized by two or more independent scans, such as within
a 140 m range. The RADAR sensor(s) 1460 may help in
distinguishing between static and moving objects, and may
be used by ADAS systems for emergency brake assist and
forward collision warning. Long-range RADAR sensors
may include monostatic multimodal RADAR with multiple
(e.g., six or more) fixed RADAR antennae and a high-speed
CAN and FlexRay interface. In an example with six anten-
nae, the central four antennae may create a focused beam
pattern, designed to record the vehicle’s 1400 surroundings
at higher speeds with minimal interference from traffic in
adjacent lanes. The other two antennae may expand the field
of view, making it possible to quickly detect vehicles
entering or leaving the vehicle’s 1400 lane.

[0473] Mid-range RADAR systems may include, as an
example, a range of up to 1460 m (front) or 80 m (rear), and
a field of view of up to 42 degrees (front) or 1450 degrees
(rear). Short-range RADAR systems may include, without
limitation, RADAR sensors designed to be installed at both
ends of the rear bumper. When installed at both ends of the
rear bumper, such a RADAR sensor systems may create two
beams that constantly monitor the blind spot in the rear and
next to the vehicle.

[0474] Short-range RADAR systems may be used in an
ADAS system for blind spot detection and/or lane change
assist.

[0475] The vehicle 1400 may further include ultrasonic
sensor(s) 1462. The ultrasonic sensor(s) 1462, which may be
positioned at the front, back, and/or the sides of the vehicle
1400, may be used for park assist and/or to create and update
an occupancy grid. A wide variety of ultrasonic sensor(s)
1462 may be used, and different ultrasonic sensor(s) 1462
may be used for different ranges of detection (e.g., 2.5 m, 4
m). The ultrasonic sensor(s) 1462 may operate at functional
safety levels of ASIL B.

[0476] The vehicle 1400 may include LIDAR sensor(s)
1464. The LIDAR sensor(s) 1464 may be used for object and
pedestrian detection, emergency braking, collision avoid-
ance, and/or other functions. The LIDAR sensor(s) 1464
may be functional safety level ASIL B. In some examples,
the vehicle 1400 may include multiple LIDAR sensors 1464
(e.g., two, four, six, etc.) that may use Ethernet (e.g., to
provide data to a Gigabit Ethernet switch).

[0477] In some examples, the LIDAR sensor(s) 1464 may
be capable of providing a list of objects and their distances
for a 360-degree field of view. Commercially available
LIDAR sensor(s) 1464 may have an advertised range of
approximately 1400 m, with an accuracy of 2 cm-3 cm, and
with support for a 1400 Mbps Ethernet connection, for
example. In some examples, one or more non-protruding
LIDAR sensors 1464 may be used. In such examples, the
LIDAR sensor(s) 1464 may be implemented as a small
device that may be embedded into the front, rear, sides,

Mar. 30, 2023

and/or corners of the vehicle 1400. The LIDAR sensor(s)
1464, in such examples, may provide up to a 120-degree
horizontal and 35-degree vertical field-of-view, with a 200 m
range even for low-reflectivity objects. Front-mounted
LIDAR sensor(s) 1464 may be configured for a horizontal
field of view between 45 degrees and 135 degrees.

[0478] In some examples, LIDAR technologies, such as
3D flash LIDAR, may also be used. 3D Flash LIDAR uses
a flash of a laser as a transmission source, to illuminate
vehicle surroundings up to approximately 200 m. A flash
LIDAR unit includes a receptor, which records the laser
pulse transit time and the reflected light on each pixel, which
in turn corresponds to the range from the vehicle to the
objects. Flash LIDAR may allow for highly accurate and
distortion-free images of the surroundings to be generated
with every laser flash. In some examples, four flash LIDAR
sensors may be deployed, one at each side of the vehicle
1400. Available 3D flash LIDAR systems include a solid-
state 3D staring array LIDAR camera with no moving parts
other than a fan (e.g., a non-scanning LIDAR device). The
flash LIDAR device may use a 5 nanosecond class I (eye-
safe) laser pulse per frame and may capture the reflected
laser light in the form of 3D range point clouds and
co-registered intensity data. By using flash LIDAR, and
because flash LIDAR is a solid-state device with no moving
parts, the LIDAR sensor(s) 1464 may be less susceptible to
motion blur, vibration, and/or shock.

[0479] The vehicle may further include IMU sensor(s)
1466. The IMU sensor(s) 1466 may be located at a center of
the rear axle of the vehicle 1400, in some examples. The
IMU sensor(s) 1466 may include, for example and without
limitation, an accelerometer(s), a magnetometer(s), a gyro-
scope(s), a magnetic compass(es), and/or other sensor types.
In some examples, such as in six-axis applications, the IMU
sensor(s) 1466 may include accelerometers and gyroscopes,
while in nine-axis applications, the IMU sensor(s) 1466 may
include accelerometers, gyroscopes, and magnetometers.
[0480] In some embodiments, the IMU sensor(s) 1466
may be implemented as a miniature, high performance
GPS-Aided Inertial Navigation System (GPS/INS) that
combines micro-electro-mechanical systems (MEMS) iner-
tial sensors, a high-sensitivity GPS receiver, and advanced
Kalman filtering algorithms to provide estimates of position,
velocity, and attitude. As such, in some examples, the IMU
sensor(s) 1466 may enable the vehicle 1400 to estimate
heading without requiring input from a magnetic sensor by
directly observing and correlating the changes in velocity
from GPS to the IMU sensor(s) 1466. In some examples, the
IMU sensor(s) 1466 and the GNSS sensor(s) 1458 may be
combined in a single integrated unit.

[0481] The vehicle may include microphone(s) 1496
placed in and/or around the vehicle 1400. The microphone
(s) 1496 may be used for emergency vehicle detection and
identification, among other things.

[0482] The vehicle may further include any number of
camera types, including stereo camera(s) 1468, wide-view
camera(s) 1470, infrared camera(s) 1472, surround camera
(s) 1474, long-range and/or mid-range camera(s) 1498,
and/or other camera types. The cameras may be used to
capture image data around an entire periphery of the vehicle
1400. The types of cameras used depends on the embodi-
ments and requirements for the vehicle 1400, and any
combination of camera types may be used to provide the
necessary coverage around the vehicle 1400. In addition, the



US 2023/0096502 A1l

number of cameras may differ depending on the embodi-
ment. For example, the vehicle may include six cameras,
seven cameras, ten cameras, twelve cameras, and/or another
number of cameras. The cameras may support, as an
example and without limitation, Gigabit Multimedia Serial
Link (GMSL) and/or Gigabit Ethernet. Each of the camera
(s) is described with more detail herein with respect to FIG.
14A and FIG. 14B.

[0483] The vehicle 1400 may further include vibration
sensor(s) 1442. The vibration sensor(s) 1442 may measure
vibrations of components of the vehicle, such as the axle(s).
For example, changes in vibrations may indicate a change in
road surfaces. In another example, when two or more
vibration sensors 1442 are used, the differences between the
vibrations may be used to determine friction or slippage of
the road surface (e.g., when the difference in vibration is
between a power-driven axle and a freely rotating axle).
[0484] The vehicle 1400 may include an ADAS system
1438. The ADAS system 1438 may include a SoC, in some
examples. The ADAS system 1438 may include autono-
mous/adaptive/automatic cruise control (ACC), cooperative
adaptive cruise control (CACC), forward crash warning
(FCW), automatic emergency braking (AEB), lane departure
warnings (LDW), lane keep assist (LKA), blind spot warn-
ing (BSW), rear cross-traffic warning (RCTW), collision
warning systems (CWS), lane centering (L.C), and/or other
features and functionality.

[0485] The ACC systems may use RADAR sensor(s)
1460, LIDAR sensor(s) 1464, and/or a camera(s). The ACC
systems may include longitudinal ACC and/or lateral ACC.
Longitudinal ACC monitors and controls the distance to the
vehicle immediately ahead of the vehicle 1400 and auto-
matically adjust the vehicle speed to maintain a safe distance
from vehicles ahead. Lateral ACC performs distance keep-
ing, and advises the vehicle 1400 to change lanes when
necessary. Lateral ACC is related to other ADAS applica-
tions such as LCA and CWS.

[0486] CACC uses information from other vehicles that
may be received via the network interface 1424 and/or the
wireless antenna(s) 1415 from other vehicles via a wireless
link, or indirectly, over a network connection (e.g., over the
Internet). Direct links may be provided by a vehicle-to-
vehicle (V2V) communication link, while indirect links may
be infrastructure-to-vehicle (I2V) communication link. In
general, the V2V communication concept provides informa-
tion about the immediately preceding vehicles (e.g., vehicles
immediately ahead of and in the same lane as the vehicle
1400), while the 12V communication concept provides infor-
mation about traffic further ahead. CACC systems may
include either or both 12V and V2V information sources.
Given the information of the vehicles ahead of the vehicle
1400, CACC may be more reliable and it has potential to
improve traffic flow smoothness and reduce congestion on
the road.

[0487] FCW systems are designed to alert the driver to a
hazard, so that the driver may take corrective action. FCW
systems use a front-facing camera and/or RADAR sensor(s)
1460, coupled to a dedicated processor, DSP, FPGA, and/or
ASIC, that is electrically coupled to driver feedback, such as
a display, speaker, and/or vibrating component. FCW sys-
tems may provide a warning, such as in the form of a sound,
visual warning, vibration and/or a quick brake pulse.
[0488] AEB systems detect an impending forward colli-
sion with another vehicle or other object, and may auto-

Mar. 30, 2023

matically apply the brakes if the driver does not take
corrective action within a specified time or distance param-
eter. AEB systems may use front-facing camera(s) and/or
RADAR sensor(s) 1460, coupled to a dedicated processor,
DSP, FPGA, and/or ASIC. When the AEB system detects a
hazard, it typically first alerts the driver to take corrective
action to avoid the collision and, if the driver does not take
corrective action, the AEB system may automatically apply
the brakes in an effort to prevent, or at least mitigate, the
impact of the predicted collision. AEB systems, may include
techniques such as dynamic brake support and/or crash
imminent braking.

[0489] LDW systems provide visual, audible, and/or tac-
tile warnings, such as steering wheel or seat vibrations, to
alert the driver when the vehicle 1400 crosses lane markings.
A LDW system does not activate when the driver indicates
an intentional lane departure, by activating a turn signal.
LDW systems may use front-side facing cameras, coupled to
a dedicated processor, DSP, FPGA, and/or ASIC, that is
electrically coupled to driver feedback, such as a display,
speaker, and/or vibrating component.

[0490] LKA systems are a variation of LDW systems.
LKA systems provide steering input or braking to correct the
vehicle 1400 if the vehicle 1400 starts to exit the lane.

[0491] BSW systems detects and warn the driver of
vehicles in an automobile’s blind spot. BSW systems may
provide a visual, audible, and/or tactile alert to indicate that
merging or changing lanes is unsafe. The system may
provide an additional warning when the driver uses a turn
signal. BSW systems may use rear-side facing camera(s)
and/or RADAR sensor(s) 1460, coupled to a dedicated
processor, DSP, FPGA, and/or ASIC, that is electrically
coupled to driver feedback, such as a display, speaker, and/or
vibrating component.

[0492] RCTW systems may provide visual, audible, and/
or tactile notification when an object is detected outside the
rear-camera range when the vehicle 1400 is backing up.
Some RCTW systems include AEB to ensure that the vehicle
brakes are applied to avoid a crash. RCTW systems may use
one or more rear-facing RADAR sensor(s) 1460, coupled to
a dedicated processor, DSP, FPGA, and/or ASIC, that is
electrically coupled to driver feedback, such as a display,
speaker, and/or vibrating component.

[0493] Conventional ADAS systems may be prone to false
positive results which may be annoying and distracting to a
driver, but typically are not catastrophic, because the ADAS
systems alert the driver and allow the driver to decide
whether a safety condition truly exists and act accordingly.
However, in an autonomous vehicle 1400, the vehicle 1400
itself must, in the case of conflicting results, decide whether
to heed the result from a primary computer or a secondary
computer (e.g., a first controller 1436 or a second controller
1436). For example, in some embodiments, the ADAS
system 1438 may be a backup and/or secondary computer
for providing perception information to a backup computer
rationality module. The backup computer rationality moni-
tor may run a redundant diverse software on hardware
components to detect faults in perception and dynamic
driving tasks. Outputs from the ADAS system 1438 may be
provided to a supervisory MCU. If outputs from the primary
computer and the secondary computer conflict, the supervi-
sory MCU must determine how to reconcile the conflict to
ensure safe operation.



US 2023/0096502 A1l

[0494] In some examples, the primary computer may be
configured to provide the supervisory MCU with a confi-
dence score, indicating the primary computer’s confidence
in the chosen result. If the confidence score exceeds a
threshold, the supervisory MCU may follow the primary
computer’s direction, regardless of whether the secondary
computer provides a conflicting or inconsistent result.
Where the confidence score does not meet the threshold, and
where the primary and secondary computer indicate differ-
ent results (e.g., the conflict), the supervisory MCU may
arbitrate between the computers to determine the appropriate
outcome.

[0495] The supervisory MCU may be configured to run a
neural network(s) that is trained and configured to deter-
mine, based on outputs from the primary computer and the
secondary computer, conditions under which the secondary
computer provides false alarms. Thus, the neural network(s)
in the supervisory MCU may learn when the secondary
computer’s output may be trusted, and when it cannot. For
example, when the secondary computer is a RADAR-based
FCW system, a neural network(s) in the supervisory MCU
may learn when the FCW system is identifying metallic
objects that are not, in fact, hazards, such as a drainage grate
or manhole cover that triggers an alarm. Similarly, when the
secondary computer is a camera-based LDW system, a
neural network in the supervisory MCU may learn to
override the LDW when bicyclists or pedestrians are present
and a lane departure is, in fact, the safest maneuver. In
embodiments that include a neural network(s) running on
the supervisory MCU, the supervisory MCU may include at
least one of a DLA or GPU suitable for running the neural
network(s) with associated memory. In preferred embodi-
ments, the supervisory MCU may comprise and/or be
included as a component of the SoC(s) 1404.

[0496] In other examples, ADAS system 1438 may
include a secondary computer that performs ADAS func-
tionality using traditional rules of computer vision. As such,
the secondary computer may use classic computer vision
rules (if-then), and the presence of a neural network(s) in the
supervisory MCU may improve reliability, safety and per-
formance. For example, the diverse implementation and
intentional non-identity makes the overall system more
fault-tolerant, especially to faults caused by software (or
software-hardware interface) functionality. For example, if
there is a software bug or error in the software running on
the primary computer, and the non-identical software code
running on the secondary computer provides the same
overall result, the supervisory MCU may have greater con-
fidence that the overall result is correct, and the bug in
software or hardware on primary computer is not causing
material error.

[0497] In some examples, the output of the ADAS system
1438 may be fed into the primary computer’s perception
block and/or the primary computer’s dynamic driving task
block. For example, if the ADAS system 1438 indicates a
forward crash warning due to an object immediately ahead,
the perception block may use this information when iden-
tifying objects. In other examples, the secondary computer
may have its own neural network which is trained and thus
reduces the risk of false positives, as described herein.

[0498] The vehicle 1400 may further include the infotain-
ment SoC 1430 (e.g., an in-vehicle infotainment system
(IVD)). Although illustrated and described as a SoC, the
infotainment system may not be a SoC, and may include two

Mar. 30, 2023

or more discrete components. The infotainment SoC 1430
may include a combination of hardware and software that
may be used to provide audio (e.g., music, a personal digital
assistant, navigational instructions, news, radio, etc.), video
(e.g., TV, movies, streaming, etc.), phone (e.g., hands-free
calling), network connectivity (e.g., LTE, Wi-Fi, etc.), and/
or information services (e.g., navigation systems, rear-park-
ing assistance, a radio data system, vehicle related informa-
tion such as fuel level, total distance covered, brake fuel
level, oil level, door open/close, air filter information, etc.)
to the vehicle 1400. For example, the infotainment SoC
1430 may radios, disk players, navigation systems, video
players, USB and Bluetooth connectivity, carputers, in-car
entertainment, Wi-Fi, steering wheel audio controls, hands
free voice control, a heads-up display (HUD), an HMI
display 1434, a telematics device, a control panel (e.g., for
controlling and/or interacting with various components,
features, and/or systems), and/or other components. The
infotainment SoC 1430 may further be used to provide
information (e.g., visual and/or audible) to a user(s) of the
vehicle, such as information from the ADAS system 1438,
autonomous driving information such as planned vehicle
maneuvers, trajectories, surrounding environment informa-
tion (e.g., intersection information, vehicle information,
road information, etc.), and/or other information.

[0499] The infotainment SoC 1430 may include GPU
functionality. The infotainment SoC 1430 may communicate
over the bus 1402 (e.g., CAN bus, Ethernet, etc.) with other
devices, systems, and/or components of the vehicle 1400. In
some examples, the infotainment SoC 1430 may be coupled
to a supervisory MCU such that the GPU of the infotainment
system may perform some self-driving functions in the event
that the primary controller(s) 1436 (e.g., the primary and/or
backup computers of the vehicle 1400) fail. In such an
example, the infotainment SoC 1430 may put the vehicle
1400 into a chauffeur to safe stop mode, as described herein.

[0500] The vehicle 1400 may further include an instru-
ment cluster 1432 (e.g., a digital dash, an electronic instru-
ment cluster, a digital instrument panel, etc.). The instrument
cluster 1432 may include a controller and/or supercomputer
(e.g., a discrete controller or supercomputer). The instru-
ment cluster 1432 may include a set of instrumentation such
as a speedometer, fuel level, oil pressure, tachometer, odom-
eter, turn indicators, gearshift position indicator, seat belt
warning light(s), parking-brake warning light(s), engine-
malfunction light(s), airbag (SRS) system information,
lighting controls, safety system controls, navigation infor-
mation, etc. In some examples, information may be dis-
played and/or shared among the infotainment SoC 1430 and
the instrument cluster 1432. In other words, the instrument
cluster 1432 may be included as part of the infotainment
SoC 1430, or vice versa.

[0501] FIG. 14D is a system diagram for communication
between cloud-based server(s) and the example autonomous
vehicle 1400 of FIG. 14A, in accordance with some embodi-
ments of the present disclosure. The system 1476 may
include server(s) 1478, network(s) 1490, and vehicles,
including the vehicle 1400. The server(s) 1478 may include
a plurality of GPUs 1484(A)-1484(H) (collectively referred
to herein as GPUs 1484), PCle switches 1482(A)-1482(H)
(collectively referred to herein as PCle switches 1482),
and/or CPUs 1480(A)-1480(B) (collectively referred to
herein as CPUs 1480). The GPUs 1484, the CPUs 1480, and
the PCle switches may be interconnected with high-speed



US 2023/0096502 A1l

interconnects such as, for example and without limitation,
NVLink interfaces 1488 developed by NVIDIA and/or PCle
connections 1486. In some examples, the GPUs 1484 are
connected via NVLink and/or NVSwitch SoC and the GPUs
1484 and the PCle switches 1482 are connected via PCle
interconnects. Although eight GPUs 1484, two CPUs 1480,
and two PCle switches are illustrated, this is not intended to
be limiting. Depending on the embodiment, each of the
server(s) 1478 may include any number of GPUs 1484,
CPUs 1480, and/or PCle switches. For example, the server
(s) 1478 may each include eight, sixteen, thirty-two, and/or
more GPUs 1484.

[0502] The server(s) 1478 may receive, over the network
(s) 1490 and from the vehicles, image data representative of
images showing unexpected or changed road conditions,
such as recently commenced road-work. The server(s) 1478
may transmit, over the network(s) 1490 and to the vehicles,
neural networks 1492, updated neural networks 1492, and/or
map information 1494, including information regarding
traffic and road conditions. The updates to the map infor-
mation 1494 may include updates for the HD map 1422,
such as information regarding construction sites, potholes,
detours, flooding, and/or other obstructions. In some
examples, the neural networks 1492, the updated neural
networks 1492, and/or the map information 1494 may have
resulted from new training and/or experiences represented in
data received from any number of vehicles in the environ-
ment, and/or based on training performed at a datacenter
(e.g., using the server(s) 1478 and/or other servers).
[0503] The server(s) 1478 may be used to train machine
learning models (e.g., neural networks) based on training
data. The training data may be generated by the vehicles,
and/or may be generated in a simulation (e.g., using a game
engine). In some examples, the training data is tagged (e.g.,
where the neural network benefits from supervised learning)
and/or undergoes other pre-processing, while in other
examples the training data is not tagged and/or pre-pro-
cessed (e.g., where the neural network does not require
supervised learning). Training may be executed according to
any one or more classes of machine learning techniques,
including, without limitation, classes such as: supervised
training, semi-supervised training, unsupervised training,
self-learning, reinforcement learning, federated learning,
transfer learning, feature learning (including principal com-
ponent and cluster analyses), multi-linear subspace learning,
manifold learning, representation learning (including spare
dictionary learning), rule-based machine learning, anomaly
detection, and any variants or combinations therefor. Once
the machine learning models are trained, the machine learn-
ing models may be used by the vehicles (e.g., transmitted to
the vehicles over the network(s) 1490, and/or the machine
learning models may be used by the server(s) 1478 to
remotely monitor the vehicles.

[0504] In some examples, the server(s) 1478 may receive
data from the vehicles and apply the data to up-to-date
real-time neural networks for real-time intelligent inferenc-
ing. The server(s) 1478 may include deep-learning super-
computers and/or dedicated Al computers powered by GPU
(s) 1484, such as a DGX and DGX Station machines
developed by NVIDIA. However, in some examples, the
server(s) 1478 may include deep learning infrastructure that
use only CPU-powered datacenters.

[0505] The deep-learning infrastructure of the server(s)
1478 may be capable of fast, real-time inferencing, and may

Mar. 30, 2023

use that capability to evaluate and verify the health of the
processors, software, and/or associated hardware in the
vehicle 1400. For example, the deep-learning infrastructure
may receive periodic updates from the vehicle 1400, such as
a sequence of images and/or objects that the vehicle 1400
has located in that sequence of images (e.g., via computer
vision and/or other machine learning object classification
techniques). The deep-learning infrastructure may run its
own neural network to identify the objects and compare
them with the objects identified by the vehicle 1400 and, if
the results do not match and the infrastructure concludes that
the Al in the vehicle 1400 is malfunctioning, the server(s)
1478 may transmit a signal to the vehicle 1400 instructing a
fail-safe computer of the vehicle 1400 to assume control,
notify the passengers, and complete a safe parking maneu-
ver.

[0506] For inferencing, the server(s) 1478 may include the
GPU(s) 1484 and one or more programmable inference
accelerators (e.g., NVIDIA’s TensorRT). The combination
of GPU-powered servers and inference acceleration may
make real-time responsiveness possible. In other examples,
such as where performance is less critical, servers powered
by CPUs, FPGAs, and other processors may be used for
inferencing.

Example Computing Device

[0507] FIG. 15 is a block diagram of an example comput-
ing device(s) 1500 suitable for use in implementing some
embodiments of the present disclosure. Computing device
1500 may include an interconnect system 1502 that directly
or indirectly couples the following devices: memory 1504,
one or more central processing units (CPUs) 1506, one or
more graphics processing units (GPUs) 1508, a communi-
cation interface 1510, input/output (/O) ports 1512, input/
output components 1514, a power supply 1516, one or more
presentation components 1518 (e.g., display(s)), and one or
more logic units 1520. In at least one embodiment, the
computing device(s) 1500 may comprise one or more virtual
machines (VMs), and/or any of the components thereof may
comprise virtual components (e.g., virtual hardware com-
ponents). For non-limiting examples, one or more of the
GPUs 1508 may comprise one or more vGPUs, one or more
of'the CPUs 1506 may comprise one or more vCPUs, and/or
one or more of the logic units 1520 may comprise one or
more virtual logic units. As such, a computing device(s)
1500 may include discrete components (e.g., a full GPU
dedicated to the computing device 1500), virtual compo-
nents (e.g., a portion of a GPU dedicated to the computing
device 1500), or a combination thereof.

[0508] Although the various blocks of FIG. 15 are shown
as connected via the interconnect system 1502 with lines,
this is not intended to be limiting and is for clarity only. For
example, in some embodiments, a presentation component
1518, such as a display device, may be considered an 1/O
component 1514 (e.g., if the display is a touch screen). As
another example, the CPUs 1506 and/or GPUs 1508 may
include memory (e.g., the memory 1504 may be represen-
tative of a storage device in addition to the memory of the
GPUs 1508, the CPUs 1506, and/or other components). In
other words, the computing device of FIG. 15 is merely
illustrative. Distinction is not made between such categories
as “workstation,” “server,” “laptop,” “desktop,” “tablet,”
“client device,” “mobile device,” “hand-held device,”
“game console,” “electronic control unit (ECU),” “virtual



US 2023/0096502 A1l

reality system,” and/or other device or system types, as all
are contemplated within the scope of the computing device
of FIG. 15.

[0509] The interconnect system 1502 may represent one or
more links or busses, such as an address bus, a data bus, a
control bus, or a combination thereof. The interconnect
system 1502 may include one or more bus or link types, such
as an industry standard architecture (ISA) bus, an extended
industry standard architecture (EISA) bus, a video electron-
ics standards association (VESA) bus, a peripheral compo-
nent interconnect (PCI) bus, a peripheral component inter-
connect express (PCle) bus, and/or another type of bus or
link. In some embodiments, there are direct connections
between components. As an example, the CPU 1506 may be
directly connected to the memory 1504. Further, the CPU
1506 may be directly connected to the GPU 1508. Where
there is direct, or point-to-point connection between com-
ponents, the interconnect system 1502 may include a PCle
link to carry out the connection. In these examples, a PCI
bus need not be included in the computing device 1500.
[0510] The memory 1504 may include any of a variety of
computer-readable media. The computer-readable media
may be any available media that may be accessed by the
computing device 1500. The computer-readable media may
include both volatile and nonvolatile media, and removable
and non-removable media. By way of example, and not
limitation, the computer-readable media may comprise com-
puter-storage media and communication media.

[0511] The computer-storage media may include both
volatile and nonvolatile media and/or removable and non-
removable media implemented in any method or technology
for storage of information such as computer-readable
instructions, data structures, program modules, and/or other
data types. For example, the memory 1504 may store
computer-readable instructions (e.g., that represent a pro-
gram(s) and/or a program element(s), such as an operating
system. Computer-storage media may include, but is not
limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which may be used to
store the desired information and which may be accessed by
computing device 1500. As used herein, computer storage
media does not comprise signals per se.

[0512] The computer storage media may embody com-
puter-readable instructions, data structures, program mod-
ules, and/or other data types in a modulated data signal such
as a carrier wave or other transport mechanism and includes
any information delivery media. The term “modulated data
signal” may refer to a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, the computer storage media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of any of the above should
also be included within the scope of computer-readable
media.

[0513] The CPU(s) 1506 may be configured to execute at
least some of the computer-readable instructions to control
one or more components of the computing device 1500 to
perform one or more of the methods and/or processes
described herein. The CPU(s) 1506 may each include one or

Mar. 30, 2023

more cores (e.g., one, two, four, eight, twenty-eight, sev-
enty-two, etc.) that are capable of handling a multitude of
software threads simultaneously. The CPU(s) 1506 may
include any type of processor, and may include different
types of processors depending on the type of computing
device 1500 implemented (e.g., processors with fewer cores
for mobile devices and processors with more cores for
servers). For example, depending on the type of computing
device 1500, the processor may be an Advanced RISC
Machines (ARM) processor implemented using Reduced
Instruction Set Computing (RISC) or an x86 processor
implemented using Complex Instruction Set Computing
(CISC). The computing device 1500 may include one or
more CPUs 1506 in addition to one or more microprocessors
or supplementary co-processors, such as math co-proces-
SOIS.

[0514] In addition to or alternatively from the CPU(s)
1506, the GPU(s) 1508 may be configured to execute at least
some of the computer-readable instructions to control one or
more components of the computing device 1500 to perform
one or more of the methods and/or processes described
herein. One or more of the GPU(s) 1508 may be an
integrated GPU (e.g., with one or more of the CPU(s) 1506
and/or one or more of the GPU(s) 1508 may be a discrete
GPU. In embodiments, one or more of the GPU(s) 1508 may
be a coprocessor of one or more of the CPU(s) 1506. The
GPU(s) 1508 may be used by the computing device 1500 to
render graphics (e.g., 3D graphics) or perform general
purpose computations. For example, the GPU(s) 1508 may
be used for General-Purpose computing on GPUs (GPGPU).
The GPU(s) 1508 may include hundreds or thousands of
cores that are capable of handling hundreds or thousands of
software threads simultaneously. The GPU(s) 1508 may
generate pixel data for output images in response to render-
ing commands (e.g., rendering commands from the CPU(s)
1506 received via a host interface). The GPU(s) 1508 may
include graphics memory, such as display memory, for
storing pixel data or any other suitable data, such as GPGPU
data. The display memory may be included as part of the
memory 1504. The GPU(s) 1508 may include two or more
GPUs operating in parallel (e.g., via a link). The link may
directly connect the GPUs (e.g., using NVLINK) or may
connect the GPUs through a switch (e.g., using NVSwitch).
When combined together, each GPU 1508 may generate
pixel data or GPGPU data for different portions of an output
or for different outputs (e.g., a first GPU for a first image and
a second GPU for a second image). Each GPU may include
its own memory, or may share memory with other GPUs.

[0515] In addition to or alternatively from the CPU(s)
1506 and/or the GPU(s) 1508, the logic unit(s) 1520 may be
configured to execute at least some of the computer-readable
instructions to control one or more components of the
computing device 1500 to perform one or more of the
methods and/or processes described herein. In embodi-
ments, the CPU(s) 1506, the GPU(s) 1508, and/or the logic
unit(s) 1520 may discretely or jointly perform any combi-
nation of the methods, processes and/or portions thereof.
One or more of the logic units 1520 may be part of and/or
integrated in one or more of the CPU(s) 1506 and/or the
GPU(s) 1508 and/or one or more of the logic units 1520 may
be discrete components or otherwise external to the CPU(s)
1506 and/or the GPU(s) 1508. In embodiments, one or more
of the logic units 1520 may be a coprocessor of one or more
of'the CPU(s) 1506 and/or one or more of the GPU(s) 1508.



US 2023/0096502 A1l

[0516] Examples of the logic unit(s) 1520 include one or
more processing cores and/or components thereof, such as
Data Processing Units (DPUs), Tensor Cores (TCs), Tensor
Processing Units (TPUs), Pixel Visual Cores (PVCs), Vision
Processing Units (VPUs), Graphics Processing Clusters
(GPCs), Texture Processing Clusters (TPCs), Streaming
Multiprocessors (SMs), Tree Traversal Units (TTUs), Arti-
ficial Intelligence Accelerators (AlAs), Deep Learning
Accelerators (DLAs), Arithmetic-Logic Units (ALUs),
Application-Specific Integrated Circuits (ASICs), Floating
Point Units (FPUs), input/output (I/O) elements, peripheral
component interconnect (PCI) or peripheral component
interconnect express (PCle) elements, and/or the like.

[0517] The communication interface 1510 may include
one or more receivers, transmitters, and/or transceivers that
enable the computing device 1500 to communicate with
other computing devices via an electronic communication
network, included wired and/or wireless communications.
The communication interface 1510 may include components
and functionality to enable communication over any of a
number of different networks, such as wireless networks
(e.g., Wi-Fi, Z-Wave, Bluetooth, Bluetooth LE, ZigBee,
etc.), wired networks (e.g., communicating over Ethernet or
InfiniBand), low-power wide-area networks (e.g.,
LoRaWAN, SigFox, etc.), and/or the Internet. In one or more
embodiments, logic unit(s) 1520 and/or communication
interface 1510 may include one or more data processing
units (DPUs) to transmit data received over a network and/or
through interconnect system 1502 directly to (e.g., a
memory of) one or more GPU(s) 1508.

[0518] The /O ports 1512 may enable the computing
device 1500 to be logically coupled to other devices includ-
ing the I/O components 1514, the presentation component(s)
1518, and/or other components, some of which may be built
in to (e.g., integrated in) the computing device 1500. Illus-
trative I/O components 1514 include a microphone, mouse,
keyboard, joystick, game pad, game controller, satellite dish,
scanner, printer, wireless device, etc. The I/O components
1514 may provide a natural user interface (NUI) that pro-
cesses air gestures, voice, or other physiological inputs
generated by a user. In some instances, inputs may be
transmitted to an appropriate network element for further
processing. An NUI may implement any combination of
speech recognition, stylus recognition, facial recognition,
biometric recognition, gesture recognition both on screen
and adjacent to the screen, air gestures, head and eye
tracking, and touch recognition (as described in more detail
in the present disclosure) associated with a display of the
computing device 1500. The computing device 1500 may be
include depth cameras, such as stereoscopic camera systems,
infrared camera systems, RGB camera systems, touchscreen
technology, and combinations of these, for gesture detection
and recognition. Additionally, the computing device 1500
may include accelerometers or gyroscopes (e.g., as part of an
inertia measurement unit (IMU)) that enable detection of
motion. In some examples, the output of the accelerometers
or gyroscopes may be used by the computing device 1500 to
render immersive augmented reality or virtual reality.

[0519] The power supply 1516 may include a hard-wired
power supply, a battery power supply, or a combination
thereof. The power supply 1516 may provide power to the
computing device 1500 to enable the components of the
computing device 1500 to operate.

Mar. 30, 2023

[0520] The presentation component(s) 1518 may include a
display (e.g., a monitor, a touch screen, a television screen,
a heads-up-display (HUD), other display types, or a com-
bination thereof), speakers, and/or other presentation com-
ponents. The presentation component(s) 1518 may receive
data from other components (e.g., the GPU(s) 1508, the
CPU(s) 1506, DPUs, etc.), and output the data (e.g., as an
image, video, sound, etc.).

Example Data Center

[0521] FIG. 16 illustrates an example data center 1600 that
may be used in at least one embodiments of the present
disclosure. The data center 1600 may include a data center
infrastructure layer 1610, a framework layer 1620, a soft-
ware layer 1630, and/or an application layer 1640.

[0522] As shown in FIG. 16, the data center infrastructure
layer 1610 may include a resource orchestrator 1612,
grouped computing resources 1614, and node computing
resources (“node C.R.s”) 1616(1)-1616(N), where “N” rep-
resents any whole, positive integer. In at least one embodi-
ment, node C.R.s 1616(1)-1616(N) may include, but are not
limited to, any number of central processing units (CPUs) or
other processors (including DPUs, accelerators, field pro-
grammable gate arrays (FPGAs), graphics processors or
graphics processing units (GPUs), etc.), memory devices
(e.g., dynamic read-only memory), storage devices (e.g.,
solid state or disk drives), network input/output (NW I/O)
devices, network switches, virtual machines (VMs), power
modules, and/or cooling modules, etc. In some embodi-
ments, one or more node C.R.s from among node C.R.s
1616(1)-1616(N) may correspond to a server having one or
more of the above-mentioned computing resources. In addi-
tion, in some embodiments, the node C.R.s 1616(1)-16161
(N) may include one or more virtual components, such as
vGPUs, vCPUs, and/or the like, and/or one or more of the
node C.R.s 1616(1)-1616(N) may correspond to a virtual
machine (VM).

[0523] In at least one embodiment, grouped computing
resources 1614 may include separate groupings of node
C.R.s 1616 housed within one or more racks (not shown), or
many racks housed in data centers at various geographical
locations (also not shown). Separate groupings of node
C.R.s 1616 within grouped computing resources 1614 may
include grouped compute, network, memory or storage
resources that may be configured or allocated to support one
or more workloads. In at least one embodiment, several node
C.R.s 1616 including CPUs, GPUs, DPUs, and/or other
processors may be grouped within one or more racks to
provide compute resources to support one or more work-
loads. The one or more racks may also include any number
of power modules, cooling modules, and/or network
switches, in any combination.

[0524] The resource orchestrator 1612 may configure or
otherwise control one or more node C.R.s 1616(1)-1616(N)
and/or grouped computing resources 1614. In at least one
embodiment, resource orchestrator 1612 may include a
software design infrastructure (SDI) management entity for
the data center 1600. The resource orchestrator 1612 may
include hardware, software, or some combination thereof.
[0525] In at least one embodiment, as shown in FIG. 16,
framework layer 1620 may include a job scheduler 1632, a
configuration manager 1634, a resource manager 1636,
and/or a distributed file system 1638. The framework layer
1620 may include a framework to support software 1632 of



US 2023/0096502 A1l

software layer 1630 and/or one or more application(s) 1642
of application layer 1640. The software 1632 or application
(s) 1642 may respectively include web-based service soft-
ware or applications, such as those provided by Amazon
Web Services, Google Cloud and Microsoft Azure. The
framework layer 1620 may be, but is not limited to, a type
of free and open-source software web application frame-
work such as Apache Spark™ (hereinafter “Spark™) that
may utilize distributed file system 1638 for large-scale data
processing (e.g., “big data”). In at least one embodiment, job
scheduler 1632 may include a Spark driver to facilitate
scheduling of workloads supported by various layers of data
center 1600. The configuration manager 1634 may be
capable of configuring different layers such as software layer
1630 and framework layer 1620 including Spark and dis-
tributed file system 1638 for supporting large-scale data
processing. The resource manager 1636 may be capable of
managing clustered or grouped computing resources
mapped to or allocated for support of distributed file system
1638 and job scheduler 1632. In at least one embodiment,
clustered or grouped computing resources may include
grouped computing resource 1614 at data center infrastruc-
ture layer 1610. The resource manager 1636 may coordinate
with resource orchestrator 1612 to manage these mapped or
allocated computing resources.

[0526] In at least one embodiment, software 1632
included in software layer 1630 may include software used
by at least portions of node C.R.s 1616(1)-1616(N), grouped
computing resources 1614, and/or distributed file system
1638 of framework layer 1620. One or more types of
software may include, but are not limited to, Internet web
page search software, e-mail virus scan software, database
software, and streaming video content software.

[0527] In at least one embodiment, application(s) 1642
included in application layer 1640 may include one or more
types of applications used by at least portions of node C.R.s
1616(1)-1616(N), grouped computing resources 1614, and/
or distributed file system 1638 of framework layer 1620.
One or more types of applications may include, but are not
limited to, any number of a genomics application, a cogni-
tive compute, and a machine learning application, including
training or inferencing software, machine learning frame-
work software (e.g., PyTorch, TensorFlow, Caffe, etc.),
and/or other machine learning applications used in conjunc-
tion with one or more embodiments.

[0528] In at least one embodiment, any of configuration
manager 1634, resource manager 1636, and resource orches-
trator 1612 may implement any number and type of self-
modifying actions based on any amount and type of data
acquired in any technically feasible fashion. Self-modifying
actions may relieve a data center operator of data center
1600 from making possibly bad configuration decisions and
possibly avoiding underutilized and/or poor performing por-
tions of a data center.

[0529] The data center 1600 may include tools, services,
software or other resources to train one or more machine
learning models or predict or infer information using one or
more machine learning models according to one or more
embodiments described herein. For example, a machine
learning model(s) may be trained by calculating weight
parameters according to a neural network architecture using
software and/or computing resources described in the pres-
ent disclosure with respect to the data center 1600. In at least
one embodiment, trained or deployed machine learning

Mar. 30, 2023

models corresponding to one or more neural networks may
be used to infer or predict information using resources
described in the present disclosure with respect to the data
center 1600 by using weight parameters calculated through
one or more training techniques, such as but not limited to
those described herein.

[0530] In at least one embodiment, the data center 1600
may use CPUs, application-specific integrated circuits
(ASICs), GPUs, FPGAs, and/or other hardware (or virtual
compute resources corresponding thereto) to perform train-
ing and/or inferencing using above-described resources.
Moreover, one or more software and/or hardware resources
described in the present disclosure may be configured as a
service to allow users to train or performing inferencing of
information, such as image recognition, speech recognition,
or other artificial intelligence services.

Example Network Environments

[0531] Network environments suitable for use in imple-
menting embodiments of the disclosure may include one or
more client devices, servers, network attached storage
(NAS), other backend devices, and/or other device types.
The client devices, servers, and/or other device types (e.g.,
each device) may be implemented on one or more instances
of the computing device(s) 1500 of FIG. 15—e.g., each
device may include similar components, features, and/or
functionality of the computing device(s) 1500. In addition,
where backend devices (e.g., servers, NAS, etc.) are imple-
mented, the backend devices may be included as part of a
data center 1600, an example of which is described in more
detail herein with respect to FIG. 16.

[0532] Components of a network environment may com-
municate with each other via a network(s), which may be
wired, wireless, or both. The network may include multiple
networks, or a network of networks. By way of example, the
network may include one or more Wide Area Networks
(WANS), one or more Local Area Networks (LANs), one or
more public networks such as the Internet and/or a public
switched telephone network (PSTN), and/or one or more
private networks. Where the network includes a wireless
telecommunications network, components such as a base
station, a communications tower, or even access points (as
well as other components) may provide wireless connectiv-
ity.

[0533] Compatible network environments may include
one or more peer-to-peer network environments—in which
case a server may not be included in a network environ-
ment—and one or more client-server network environ-
ments—in which case one or more servers may be included
in a network environment. In peer-to-peer network environ-
ments, functionality described herein with respect to a
server(s) may be implemented on any number of client
devices.

[0534] In atleast one embodiment, a network environment
may include one or more cloud-based network environ-
ments, a distributed computing environment, a combination
thereof, etc. A cloud-based network environment may
include a framework layer, a job scheduler, a resource
manager, and a distributed file system implemented on one
or more of servers, which may include one or more core
network servers and/or edge servers. A framework layer may
include a framework to support software of a software layer
and/or one or more application(s) of an application layer.
The software or application(s) may respectively include



US 2023/0096502 A1l

web-based service software or applications. In embodi-
ments, one or more of the client devices may use the
web-based service software or applications (e.g., by access-
ing the service software and/or applications via one or more
application programming interfaces (APIs)). The framework
layer may be, but is not limited to, a type of free and
open-source software web application framework such as
that may use a distributed file system for large-scale data
processing (e.g., “big data™).

[0535] A cloud-based network environment may provide
cloud computing and/or cloud storage that carries out any
combination of computing and/or data storage functions
described herein (or one or more portions thereof). Any of
these various functions may be distributed over multiple
locations from central or core servers (e.g., of one or more
data centers that may be distributed across a state, a region,
a country, the globe, etc.). If a connection to a user (e.g., a
client device) is relatively close to an edge server(s), a core
server(s) may designate at least a portion of the functionality
to the edge server(s). A cloud-based network environment
may be private (e.g., limited to a single organization), may
be public (e.g., available to many organizations), and/or a
combination thereof (e.g., a hybrid cloud environment).
[0536] The client device(s) may include at least some of
the components, features, and functionality of the example
computing device(s) 1500 described herein with respect to
FIG. 15. By way of example and not limitation, a client
device may be embodied as a Personal Computer (PC), a
laptop computer, a mobile device, a smartphone, a tablet
computer, a smart watch, a wearable computer, a Personal
Digital Assistant (PDA), an MP3 player, a virtual reality
headset, a Global Positioning System (GPS) or device, a
video player, a video camera, a surveillance device or
system, a vehicle, a boat, a flying vessel, a virtual machine,
a drone, a robot, a handheld communications device, a
hospital device, a gaming device or system, an entertainment
system, a vehicle computer system, an embedded system
controller, a remote control, an appliance, a consumer elec-
tronic device, a workstation, an edge device, any combina-
tion of these delineated devices, or any other suitable device.
[0537] The disclosure may be described in the general
context of computer code or machine-useable instructions,
including computer-executable instructions such as program
modules, being executed by a computer or other machine,
such as a personal data assistant or other handheld device.
Generally, program modules including routines, programs,
objects, components, data structures, etc., refer to code that
perform particular tasks or implement particular abstract
data types. The disclosure may be practiced in a variety of
system configurations, including hand-held devices, con-
sumer electronics, general-purpose computers, more spe-
cialty computing devices, etc. The disclosure may also be
practiced in distributed computing environments where
tasks are performed by remote-processing devices that are
linked through a communications network.

[0538] As used herein, a recitation of “and/or” with
respect to two or more elements should be interpreted to
mean only one element, or a combination of elements. For
example, “element A, element B, and/or element C” may
include only element A, only element B, only element C,
element A and element B, element A and element C, element
B and element C, or elements A, B, and C. In addition, “at
least one of element A or element B” may include at least
one of element A, at least one of element B, or at least one

Mar. 30, 2023

of element A and at least one of element B. Further, “at least
one of element A and element B” may include at least one
of element A, at least one of element B, or at least one of
element A and at least one of element B. Additionally, use of
the term “based on” should not be interpreted as “only based
on” or “based only on.” Rather, a first element being “based
on” a second element includes instances in which the first
element is based on the second element but may also be
based on one or more additional elements.

[0539] The subject matter of the present disclosure is
described with specificity herein to meet statutory require-
ments. However, the description itself is not intended to
limit the scope of this disclosure. Rather, the inventors have
contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or com-
binations of steps similar to the ones described in this
document, in conjunction with other present or future tech-
nologies. Moreover, although the terms “step” and/or
“block™ may be used herein to connote different elements of
methods employed, the terms should not be interpreted as
implying any particular order among or between various
steps herein disclosed unless and except when the order of
individual steps is explicitly described.

What is claimed is:

1. A system comprising:

a plurality of compute engines to execute a plurality of
runnables of a computing application based at least on
an execution schedule and a set of commands associ-
ated with the execution schedule,

wherein the execution schedule is generated using a
compiling system to include the set of commands, the
set of commands including one or more individual
commands corresponding to one or more timing fences
dictating a timing and order of execution of one or more
individual runnables of the plurality of runnables.

2. The system of claim 1, further comprising a monitoring
system to monitor execution of the plurality of runnables
based at least on the execution schedule.

3. The system of claim 2, wherein the monitoring system
is to monitor one or more of:

satisfaction of one or more timing constraints associated
with execution of the plurality of runnables, the execu-
tion schedule indicating the one or more timing con-
straints;

satisfaction of an execution order associated with two or
more of the plurality of runnables, the execution sched-
ule indicating the execution order; or

health of a system task manager of the runtime system that
is configured to manage execution of the plurality of
runnables based on the execution schedule.

4. The system of claim 1, wherein the compiling system
generates the execution schedule based at least on one or
more of a bubble scheduling process or a branch and bound
scheduling process.

5. The system of claim 1, further comprising a shared
memory that is accessible by two or more compute engines
of the plurality of compute engines of the runtime system
and that stores one or more synchronization primitives
corresponding to the one or more timing fences.

6. The system of claim 1, wherein the plurality of compute
engines of the runtime system includes two or more different
types of compute engines.

7. The system of claim 1, wherein one or more individual
compute engines of the plurality of compute engines deter-



US 2023/0096502 A1l

mine execution timing of one or more runnables on the one
or more individual compute engines based at least on one or
more individual sub-sets of commands of the set of com-
mands that respectively correspond to the one or more
individual compute engines.

8. The system of claim 1, wherein the system is comprised
in at least one of:

a control system for an autonomous or semi-autonomous

machine;

a perception system for an autonomous or semi-autono-

mous machine;

a system for performing simulation operations;

a system for performing digital twin operations;

a system for performing light transport simulation;

a system for performing collaborative content creation for

3D assets;

a system for performing deep learning operations;

a system for presenting at least one of augmented reality
content, virtual reality content, or mixed reality con-
tent;
system for hosting one or more real-time streaming
applications;
system implemented using an edge device;
system implemented using a robot;
system for performing conversational Al operations;
system for generating synthetic data;

a system incorporating one or more virtual machines

(VMs);

a system implemented at least partially in a data center; or

a system implemented at least partially using cloud com-

puting resources.

9. A method comprising:

executing, by a plurality of compute engines, a plurality

of runnables of a computing application based at least
on an execution schedule and a set of commands
associated with the execution schedule,

wherein the execution schedule is generated using a

compiling system to include the set of commands, the
set of commands including one or more individual
commands corresponding to one or more timing fences
dictating a timing and order of execution of one or more
individual runnables of the plurality of runnables.

10. The method of claim 9, further comprising monitoring
execution of the plurality of runnables based at least on the
execution schedule.

11. The method of claim 10, wherein the monitoring
includes one or more of:

satisfaction of one or more timing constraints associated

with execution of the plurality of runnables, the execu-
tion schedule indicating the one or more timing con-
straints;

satisfaction of an execution order associated with two or

more of the plurality of runnables, the execution sched-
ule indicating the execution order; or

o

a
a
a
a

Mar. 30, 2023

health of a system task manager of the runtime system that
is configured to manage execution of the plurality of
runnables based on the execution schedule.

12. The method of claim 9, wherein the compiling system
generates the execution schedule based at least on one or
more of a bubble scheduling process or a branch and bound
scheduling process.

13. The method of claim 9, further comprising storing one
or more synchronization primitives corresponding to the one
or more timing fences on a shared memory that is accessible
by two or more compute engines of the plurality of compute
engines of the runtime system.

14. The method of claim 9, wherein the plurality of
compute engines of the runtime system includes two or more
different types of compute engines.

15. The method of claim 9, wherein one or more indi-
vidual compute engines of the plurality of compute engines
determine execution timing of one or more runnables on the
one or more individual compute engines based at least on
one or more individual sub-sets of commands of the set of
commands that respectively correspond to the one or more
individual compute engines.

16. A processor comprising:

processing circuitry to cause performance of operations

comprising:

executing, by a plurality of compute engines, a plurality
of runnables of a computing application based at
least on an execution schedule and a set of com-
mands associated with the execution schedule,

wherein the execution schedule is generated using a
compiling system to include the set of commands,
the set of commands including one or more indi-
vidual commands corresponding to one or more
timing fences dictating a timing and order of execu-
tion of one or more individual runnables of the
plurality of runnables.

17. The processor of claim 16, the operations further
comprising monitoring execution of the plurality of run-
nables based at least on the execution schedule.

18. The processor of claim 16, wherein the compiling
system generates the execution schedule based at least on
one or more of a bubble scheduling process or a branch and
bound scheduling process.

19. The processor of claim 16, the operations further
comprising storing one or more synchronization primitives
corresponding to the one or more timing fences on a shared
memory that is accessible by two or more compute engines
of the plurality of compute engines of the runtime system.

20. The processor of claim 16, wherein one or more
individual compute engines of the plurality of compute
engines determine execution timing of one or more run-
nables on the one or more individual compute engines based
at least on one or more individual sub-sets of commands of
the set of commands that respectively correspond to the one
or more individual compute engines.

#* #* #* #* #*



