(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/045737 A2

(51) International Patent Classification’: GO6K (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(21) International Application Number: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

PCT/US2004/023638 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, F,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(43) International Publication Date

19 May 2005 (19.05.2005)

(22) International Filing Date: 22 July 2004 (22.07.2004)

(26) Publication Language: English
(84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
10/691,836 23 October 2003 (23.10.2003) US GM, KE, LS, MW, MZ, Na, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

(71) Applicant (for all designated States except US): MI- FR, GB, GR, HU, IR, IT, .U, MC, NL, PL, PT, RO, SE, SI,
CROSOFT CORPORATION [US/US]; One Microsoft SK, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
Way, Redmond, WA 98052 (US). GW, ML, MR, NE, SN, TD, TG).

(72) Inventor; and Published:

(75) Inventor/Applicant (for US only): LEICHTLING, Ivan — without international search report and to be republished
[US/US]; 11229 128th Avenue NE, Kirkland, WA 98033 upon receipt of that report
(US).

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agents: LEE, Lewis, C. et al.; Lee & Hayes, PLLC, Suite ance Notes on Codes and Abbreviations" appearing at the begin-
500, 421 W. Riverside Avenue, Spokane, WA 99201 (US). ning of each regular issue of the PCT Gazette.

(54) Title: SYNCHRONIZED GRAPHIC AND REGION DATA FOR GRAPHICS REMOTING SYSTEMS

005/045737 A2 I 00001 0 OO0 0 A

o (57) Abstract: Region data and graphics data for a remoting system are synchronously gathered and sent to a remote display while
maintaining synchronicity between the region data and the graphics data. In one implementation, synchronized region data and
synchronized graphics data are gathered into one display driver. For the remote display, incoming region data precedes corresponding

g synchronized graphics data so that the graphics data is displayed according to synchronous region data.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

SYNCHRONIZED GRAPHIC AND REGION DATA FOR GRAPHICS
REMOTING SYSTEMS

TECHNICAL FIELD

The subject matter relates generally to computing device application sharing
and more specifically to synchronized graphics and region data for graphics

remoting systems.

BACKGROUND OF THE INVENTION

Graphics remoting systems allow computing device network clients to
connect to a server and receive a visual representation of at least some of the
graphics being displayed at or output by the server. Often the network client can
display all the graphical output associated with the session. Likewise, the client
may be allowed to interact with the session, injecting user input, generated from
devices such as a mouse or keyboard connected to the client, into the server session.
Such a server that allows a client to connect in a “logon session” is sometimes
referred to as a “remote sérver“ or a ‘remoting server." Computing device
subsystems that execute remote logon sessions and graphics remoting are
sometimes called “terminal services subsystems.”

A graphics remoting system can control the amount of graphics sent to a
client so that the client does not see everything being displayed on (i.e., “output by®)
a remoting server. Three categories conveniently divide the degree of graphics
sharing between server and client. In “desktop remoting,” a client sees substantially
everything that would be seen on the canvas of a display monitor connected directly

to the server. In “window remoting,” a client sees only a window or pane (or a set

10

15

20

25

WO 2005/045737 PCT/US2004/023638

2

of windows or panes) from the server’s desktop, each window usually projected by
the server’s operating system for the graphical output and/or user interface (UI)
corresponding to one application. Hence, at the server a word processor application
might own one window and an email application might own another window, but
perhaps only the word processor window would be shared with the client. In
“region remoting,” only a subset of the server’s desktop is shared with a client, but
the region shared does not necessarily correspond to a window. In fact, the shared
region may be arbitrary.

In order to accomplish this graphical remoting “action-at-a-distance” between
a remoting server and a logged-on client, a certain amount of telemetry is needed.
From the perspective of the client, an instrumentation at the server side records the
“graphics data,” that is, information that makes up the visual content of the desktop
or a region of the desktop, and sends this graphics data back to the client. The
graphics data may describe text, image content, and/or UI features, such as scroll
bars and clickable buttons being generated by the server. The graphics data alone
may be sufficient information for the above-described desktop remoting, but
insufficient for window and region types of remoting. In these latter types of
remoting, a second instrumentation at the server side must measure the geometry
(i-e., the shape) of a region to be shared, and transmit this geometry information
back to the client. The second instrumentation or yet another third instrumentation
at the server side must also measure the relative placement of the region to be
shared with respect to the server’s desktop (hereinafter called “position”) and
transmit this third type of information back to the client. Thus, to accurately display
a region from the server’s desktop on its own display, the client must be informed
of the region’s current graphics data, shape, and position (the latter two being

‘region data. “) The client’s view of the region data—the shape and position

10

15

20

25

WO 2005/045737 PCT/US2004/023638

3

information—allows the client to divide the server desktop into visible and non-
visible regions, i.e., region(s) on which to display associated graphics data and
region(s) on which to not display associated graphics data. The client then fills the
region(s) to display with the graphics data, or at least clips the graphics data with
the boundaries of the region(s) not to display.

Conventionally, the above-mentioned graphics data of a region to be shared
is sensed, tracked, and/or gathered continuously by a first instrumentation and
transmitted to the client independently of the shape and position information. This
first instrumentation usually consists of or relies heavily on well-evolved parts of an
operating system’s kernel graphics processing subsystem, since much of the
graphics tracking is the same as might be used if the server were not a remoting
server.

The region data are conventionally gathered in an asynchronous manner by a
second instrumentation that is on a completely different scheduler than the kernel
components that continuously gather the graphics data. For example, region data
may be gathered in user mode, by polling mechanisms. Moreover, the region data
are sent to the client desynchronized from the graphics data or, in other words, if
the graphics data and region data are combined in a single data stream by a
remoting protocol, the combination and adherence to remoting protocol rules does
not cure the asynchronicity of the region data with respect to the graphics data.
(Asynchronous collection of region data means, for one thing, that the region data
collection operates independently of the graphics data collection, i.e., without
reference to matching a segment of the graphics data with a segment of the region
data.)

The received graphics data and region data are fused together by the client to

create the final display. Historically, using two instrumentations working more or

10

15

20

25

WO 2005/045737 PCT/US2004/023638

4

less independently of each other to asynchronously collect the graphics data and the
region data evolved perhaps because mechanisms in operating system kernels for
collecting graphics data were already well-evolved when remoting began to be
practiced, and collection of the region data was added as a latecomer or an
afterthought. Since they are latecomers, methods for asynchronously collecting
region data typically avoid disturbing the operating system kernel, which is the
realm of the graphics data collection.

Once graphics data and region data are asynchronously collected for region
remoting, they are typically packetized according to a protocol, such as
MICROSOFT® REMOTE DESKTOP PROTOCOL (RDP) or CITRIX
INDEPENDENT COMPUTING ARCHITECTURE (ICA) PROTOCOL, and sent
to the client. (Microsoft Corporation, Redmond, Washington; Citrix Corporation,
Fort Lauderdale, Florida.) The RDP protocol, for example, is just one of many
graphics remoting protocols, that is, many graphics remoting protocols are
extensible enough to add region remoting for sharing a window or a region of a .
desktop. If RDP is used as a data transmission component of the remote display
telemetry, then it should be noted that RDP is based on, and is an extension of, the
T.120 protocol family standards. RDP is a multichannel-capable protocol that
allows for separate virtual channels to carry device communication and presentation
data from the server, as well as encrypted client mouse and keyboard data.

Conventionally, the graphics data and the region data are desynchronized at
their inception by asynchronous collection and may become even more
desynchronized depending on how the data is handled as it passes through network
layers to be transmitted to and received by a client. The RDP protocol does not
cure the desynchronization. By analogy, like a bird watcher whose tracking of a

quick pheasant with a pair of excellent binoculars does not stay synchronized

10

15

20

25

WO 2005/045737 PCT/US2004/023638

5

(despite the excellence of the binoculars), a remoting client that receives
desynchronized graphics and region data (despite the, exce%lence of the remoting
protocol), not only misses seeing a desired target on the -server desktop but may
instead actually see things on the server desktop that he is not supposed to see.

Fig. 1 shows parts of a graphics remoting system 100, including a server
display 102 and a client display 104. A window 106 to be shared with the client
displays on the server display 102 together with “forbidden. visual regions” of secret
and private information 108 on the server’s desktop. If at any point in time, the
graphics data describing the content of the window 106 and the region data
describing the shape and placement of the window 106 are not synchronized, the
client display 104 will show the intended window 106’ incorrectly. For example, if
the window 106’ moves or is moved from left to right across the desktop of the
server display 102 and the graphics data and region data are not synchronized when
collected and/or when transmitted to the client, then the client display 104 may
continue to display that region of the server desktop where; the window was
originally positioned 110, but which is now displaying secret information.

This desynchronization causes two problems: not displaying content that
should be presented, and displaying content that should not be presented. First, the
client display 104 does not show the subset of the server display 102 that the
graphics remoting system 100 intends to show the client. That is, if the window
106 intended to be displayed contains data necessary to make business decisions,
then the decisions are stalled until correct data is displayed. Second, the client
display 104 may show, albeit fleetingly, unintended secret information 112, i.e., a
subset of the server display 102 that the graphics remoting system 100 does not
intend to share with the client. Hence, the desynchronization presents a security

risk if “top secret” information is revealed to a client without the proper clearance.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

6

Unfortunately, synchronization problems between graphics data and region data
exist in most known graphics remoting systems, wherein clients often see

unintended parts of a server desktop.

SUMMARY OF THE INVENTION

Region data and graphics data for a remoting system are synchronously
gathered and sent to a remote display while maintaining synchronicity between the
region data and the graphics data. In one implementation, synchronized region data
and synchronized graphics data are gathered into one display driver. For the remote
display, incoming region data precedes corresponding synchronized graphics data

so that the graphics data is displayed according to synchronous region data.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a graphic representation of a conventional problem occurring with
conventional graphics remoting systems.

Fig. 2 is a block diagram of an exemplary graphics remoting system in which
region data and graphics data are synchronized.

Fig. 3 is a block diagram of an exemplary remoting synchronization engine
(RSE).

Fig. 4 is a graphic representation of an exemplary alternate technique for
establishing a shared region for exemplary synchronized remoting.

Fig. 5 is a graphic representation of an exemplary data stream structure.

Fig. 6 is a block diagram of an exemplary remote application sharing system
in which the client owns the logon session and security is maintained during a low

bandwidth condition.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

7

Fig. 7 is a block diagram of an exemplary collaborative remoting system in
which security is maintained during a low bandwidth condition.

Fig. 8 is a block diagram of an exemplary multimedia remoting system in
which security is maintained during a low bandwidth condition.

Fig. 9 is a flow diagram of an exemplary method of synchronizing region
data and graphics data in a graphics remoting system.

Fig. 10 is a flow diagram of an exemplary method of maintaining security
during a low bandwidth condition in an exemplary graphics remoting system in
which region data and graphics data are synchronized.

Fig. 11 is a block diagram of an exemplary computing device suitable for

practicing some aspects of the subject matter.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Overview

The subject matter describes secure and accurate graphics remoting made
possible by éynchronously gathering region data and graphics data and
synchronously channeling both types of data through a graphics remoting server.
An exemplary remoting synchronization engine (RSE) includes a display driver that
can synchronously capture region data and graphics data for a window or region of
a server desktop to be remotely shared with a client. (“Window" and “region” will
be used somewhat interchangeably herein, despite differences between “window
remoting” and “region remoting.”) The RSE avoids the interjection of delays that
would desynchronize the region data and the graphics data and then can send the
synchronized data according to a remoting protocol, in which region data precede
associated graphics data. From the server’s point of view, a client is not sent

graphics data unless correctly updated region data associated with the graphics data

10

15

20

25

WO 2005/045737 PCT/US2004/023638

8

has been sent first. From the client’s point of view, graphics data received by the

client can be relied upon to correspond to the most recently received region data.

Exemplary System

Fig. 2 shows an exemplary remoting system 200 in which a remoting server
(“server”) 202 is communicatively coupled with a client 204 over a network 206. A
server display 208 shows a window 210 to be shared with the client 204 and shown
on a client display 212. A remoting synchronization engine (“RSE®) 214 included
in or associated with the server 202 synchronously gathers graphics data and region
data that describe the window 210 and sends synchronized graphics and region data
to the client 204. In some implementations, the client 204 includes a synchronized
data receiver 215 to receive synchronized region data and associated synchronized
graphics data and to display the graphics data as graphics in a region 210’ of a client
display 212 described by the region data. In other implementations, a discrete
synchronized data receiver 215 may not be necessary if an exemplary RSE 214
outputs synchronized data by which a client 204 can correctly display the graphics
data clipped by the synchronized region data using conventional mechanisms. An
exemplary computing device suitable for use as a server 202 or a client 204 is
described below with respect to Fig. 11.

The window 210 to be shared possesses a graphics content 216 including the
text “Hello!“ and an image of the sun. The graphics content 216 of the window 210
can be described by a set of graphics data to be synchronously collected by the RSE
214. The window 210 also possesses a shape geometry 218 and a placement
position 220 on the desktop and/or display canvas of the server display 208. The
placement position 220 is sometimes represented by an ordered pair of “x axis“ and

“y axis“ coordinates that describe an offset in two dimensions from a point of origin

10

15

20

25

WO 2005/045737 PCT/US2004/023638

9

at coordinates (0,0), usually selected as the topmost and leftmost pixel of the server
display 208. In this implementation, the window shape geometry 218 and
placement position 220 are collectively described by a set of region data to be
synchronously collected by the RSE 214.

Because the graphics data and region data are synchronized by the exemplary
RSE 214, when shown on the client display 212, the window 210’ accurately
reproduces the graphics content 216, shape geometry 218, and placement position
220 of the window 210 as displayed on the server display 208 and/or as output by
the server 202 to the client 204. The absolute size of the window 210’ as shown on
the client display 212 may vary from the size as shown on the server display 208
depending on the relative size of the client display 212 in comparison with the size
of the server display 208.

If an exemplary RSE 214 uses a known remoting protocol, such as RDP, to
send the region data and the graphics data, then a client 204 may be able to
correctly display graphics synchronized to a region 210’ without a synchronized
data receiver 215. Some implementations of an exemplary RSE 214, however, may
not use a known remoting protocol. For example, the subject matter could be
practiced in computing and/or multimedia environments that do not use known
protocols. The subject matter is not limited by the data transport vehicle employed
to send synchronized region and graphics data between server 202 and client 204.
Thus, in some implementations, a synchronized data receiver 215, usually included
in the client 204, includes a region subsystem 222 and a graphics subsystem 224.
The region subsystem 222 receives incoming region data synchronized with
graphics data and designated a region 210’ of a client display 212 based on the
region data. Data buffers may be employed in the client 204 or in the synchronized

data receiver 215 to receive and store an incoming synchronized data stream. Thus,

10

15

20

25

WO 2005/045737 PCT/US2004/023638

10

both region data and graphics data may be stored while more of the data stream is
received. The graphics subsystem 224 receives the graphics data synchronized with

the region data and displays graphics in the region 210’ based on the graphics data.

Exemplary Engine

Fig. 3 shows the exemplary RSE 214 of Fig. 2 in greater detail. The
exemplary RSE 214 gathers graphics data and associated region data into the same
place at the same time. Accordingly, a graphics data gathering module 300, a
region data gathering module 302, a data gathering scheduler 304, a clock 306, a
display driver 308, and a network interface 310 are communicatively coupled as
illustrated. The display driver 308 may further include a remoting protocol 312, a
data output sequencer 314, a bandwidth compensator 3 16, and security logic 318.
The illustrated exemplary RSE 214 is only one example of an RSE 214 that can
synchronize graphics data and region data for region remoting. Other exemplary
engines capable of performing the subject matter may hawve different configurations.

The graphics data gathering module 300 synchronously gathers graphics
data, which as described above, consist of the visual image content—text, images,
icons, borders, Ul controls, menus, scroll bars, etc.—of the region to be shared.
Since the content of a region typically changes over time, the graphics data may be
gathered at discrete intervals, continuously scanned, and/or streamed. In one
implementation, the data gathering scheduler 304 sets a time interval, such as 150
milliseconds, for the graphics data gathering module 300 to perform graphics data
gathering cycles that match a similarly timed cycle for collecting region data. Such
a timed cycle 1s one construct for synchronizing graphics data and region data, as

many operating systems collect graphics data continuously in a stream. In some

10

15

20

25

WO 2005/045737 PCT/US2004/023638

11

modalities, only changes to the graphics data from a preceding cycle need be
gathered and not a gathering of a complete set of graphics data from scratch.

In one implementation, the graphics data gathering module 300 is an
inherent or discrete part of the display driver 308. That is, a display driver 308 such
as a WINDOWS® GRAPHICS DISPLAY DRIVER gathers graphics data by
collecting primitive drawing commands issued to the WINDOWS® GRAPHICS
DEVICE INTERFACE (GDI) subsystem. These drawing primitives are encoded
using a remoting protocol 312, such as RDP and sent over a network 206 to one or
more RDP clients 204. In such an implementation, the graphics data gathering
module 300 may include or comprise WIN32K.DLL and other components
associated with the WINDOWS® GDI subsystem. In some implementations, the
clock 306 and/or the data gathering scheduler may be a system clock or, the clock
function may be inherent in the operating system for collecting or streaming
graphics data.

The region data to be sent to a client 204 using the remoting protocol 312 is
also gathered in the display driver 308 via the region data gathering module 302.
Since a window’s or a region’s shape geometry and placement position typically
change over time, this region data can be gathered at discrete intervals, or more
ideally, continuously scanned and/or streamed, to update the client 204. In one
implementation, the data gathering scheduler 304 sets a time interval, such as 150
milliseconds, for the region data gathering module 302 to perform region data
gathering cycles that match a similarly timed cycle for gathering corresponding
graphics data. In some implementations, only changes to a preceding set of region
data gathered in the preceding cycle need be considered.

In one implementation, the region data gathering module 302 synchronously

gathers (and/or tracks) relevant region data by including and/or comprising a

10

15

WO 2005/045737 PCT/US2004/023638

12

window object, “WNDOBJ," created via a WINDOWS® SERVER DRIVER
DEVELOPMENT KIT (DDK). A WNDOBJ is a driver-level window object that
can be created to contain information about the shape geometry and placement
position, i.e., the region data, of a visual region. By creating a WNDOBJ that
corresponds to an application region to be shared, the display driver 308 can track
the region data that represent changes in the shape geometry and placement position
of that visual region.

An exemplary WNDOBJ structure allowing a display driver 308 to keep
track of region data changes of a region being shared is shown below in TABLE 1:

TABLE 1

typedef struct . WNDOBJ {
CLIPOBJ coClient;
PVOID pvConsumer;
RECTL rclClient;
SURFOBJ *psoOwner;

} WNDOBJ, *PWNDOBJ;

Members of the exemplary WNDOBJ structure in TABLE 1 include:

e coClient, which specifies a CLLIPOBIJ structure that describes the
client region of the window. If iDComplexity is DC_ RECT and the
left edge in rclBounds is greater than or equal to the right edge, or the
top edge is greater than or equal to the bottom edge, the client region

is invisible.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

13

e pvConsumer, which points to a driver-defined value that identifies
this particular WNDOBJ structure. This value can be set by calling

the WNDOBJ_vSetConsumer function.

e rclClient, which specifies a RECTL structure that describes the client
area of the window in screen coordinates. This rectangle is lower-
right exclusive, which means that the lower and right-hand edges of

this region are not included.

e psoOwner, which points to the SURFOBJ structure that was passed to
EngCreateWnd when this WNDOBJ was created.

The region data for the region shared with the client 204 can be enumerated
by calling the WNDOBJ_cEnumStart and WNDOBJ _bEnum functions. A display
driver 308 can associate its own data with a WNDOBJ by calling the
WNDOBIJ_vSetConsumer function.

As a synchronizing element in an exemplary RSE 214, a display driver 308
can access public members of the WNDOBJ. These public members are guaranteed
to remain unchanged only in the context of the driver callback routine supplied to
the GDI subsystem in the EngCreateWnd function, or the functions where a
WNDOBJ is given.

The display driver 308 should use the SURFOBJ to which psoOwner points
to retrieve a driver-specific state relevant to the WNIDOBIJ, such as the display
driver's PDEV handle, rather than maintain global variables.

To establish a region to be shared with a client 204, an application can use

the WIN32 application program interface (API) to access the WNDOBJ_ SETUP

10

15

WO 2005/045737 PCT/US2004/023638

14
functionality implemented by a display driver 308. Access is gained through the

WIN32 ExtEscape function. The aforementioned GDI subsystem passes this escape
call to the display driver 308 with DrvEscape, implemented by the display driver
308 with WNDOBJ_SETUP for the value of iEsc.

An application to be shared between server 202 and client 204 calls
ExtEscape(hdc, WNDOBJ_SETUP,...) and passes a handle to the application-
created window (created by CreateWindow or some equivalent WIN32 function)
through an input buffer to the display driver 308. If the display driver 308 is to
receive gathered region data associated with the region, it calls EngCreateWnd,
within the context of the ExtEscape call, to create a WNDOBJ structure for the
given window. From that point on, shape geometry changes and placement position
changes with respect to the application-created window thus configured will pass
down to the display driver 308.

A suitable display driver 308 for the above-described implementation

handles the ExtEscape call in a manner similar to that shown in TABLE 2:

WO 2005/045737 PCT/US2004/023638

15
TABLE 2

ULONG DrvEscape(

SURFOBJ *pso,
ULONG iEsc,
ULONG cjln,
PVOID pvin,
ULONG ¢jOut,
PVOID pvOut)

WNDOBJ *pwo;
WNDDATA *pwd;

if (iEsc == WNDOBJ_SETUP)

{
pwo = EngCreateWnd(pso,*(HWND *)pvlIn),&DrvVideo,

WO_RGN_CLIENT, 0);

- // Allocate space for caching client rectangles. Remember the pointer
// in the pvConsumer field.

pwd = EngAllocMem(0, sizeof(WNDDATA), DRIVER TAG);
WNDOBJ_vSetConsumer(pwo,pwd);

// Update the rectangle list for this wndob;.

vUpdateRects(pwo);
return(1);

Creating a window object involves locking special window resources,
therefore EngCreateWnd should be called only in the context of the
WNDOBJ _SETUP escape in DrvEscape or DrvSetPixelFormat.

The EngCreateWnd function even supports gathering region data by each of
multiple display drivers 308. Through EngCreateWnd, each display driver 308

identifies its own callback routine that the GDI subsystem is to call for changes to

10

15

20

25

WO 2005/045737 PCT/US2004/023638

16

the corresponding region. This feature allows, for example, a display driver 308 for
live video to gather region data corresponding to changes in live video windows
while an OpenGL display driver 308 is gathering region data corresponding to
changes in OpenGL windows.

The GDI subsystem will call back to the display driver 308 with the most
recent region data if a new WNDOBIJ is created in DrvSetPixelFormat or
ExtEscape. The GDI subsystem will also call back to the display driver 308 when a
region referenced by a WNDOBJ is destroyed.

Gathering region data representative of changes in shape and/or placement
of a region may involve the use of three callback functions provided to support the
WNDOBJ structure. The region visible on the client 204 may be enumerated by
calling the WNDOBJ_cEnumStart and WNDOBJ bEnum callback functions. A
display driver 308 may associate its own data with a WNDOBJ by calling the
WNDOBJ_ vSetConsumer callback function.

Thus, in the implementation just described, a WNDOBJ synchronously
informs the display driver 308 of changes to the region visible on a client 204.
Since in this implementation the display driver 308 is also the place where graphics
primitives are synchronously collected via GDI APIs, the synchronized region data
and graphics data can be correlated to each other (or kept correlated to each other)
and sent in a secure synchronized fashion to the client 204, e.g., first the updated
region data current at the end of a given time interval and then the graphics data
corresponding to the region data. Gathering the graphics data and the region data to
one junction point in the exemplary RSE 214, or more specifically to one junction
point in an exemplary display driver 308, is one aspect that allows the

synchronization described by the subject matter. From the junction point, the

10

15

20

25

WO 2005/045737 PCT/US2004/023638

17
graphics data and region data are kept synchronized up to and including delivery to
the client 204.

A region of a server desktop to be shared with a client 204 need not be an
application window. There many ways of describing a region of a display canvas
that has region data with which graphics data can be synchronized. As shown in
Fig. 4, which depicts an exemplary method 400 of manually creating a viewport
region 402, a user on either the server side or the client side may manually draw a
rectangle or other shape on the relevant display screen (e.g., 208, 212) to create, for
example, a manually “mouse-dragged” viewport region 402. The viewport region
402 visually encloses everything to be shared with the client 204. In other words,
the display driver 308 can store the viewport region 402 as a display screen region
having shape geometry and plécement position, i.e., region data, and send this
region data out in advance of sending graphics data for the viewport region 402. As
a result, graphics displayed will be accurately clipped by the described viewport
region 402. This presents an alternative mechanism for producing synchronized
region data as compared with data gathering mechanisms presented above with
respect to a region data gathering module 302 of an exemplary RSE 214.

Returning to Fig. 3, the data output sequencer 314 may direct and oversee
the use of a remoting protocol 312 to ensure that region data (e.g., associated with a
given interval, cycle, or “timeslice) stays associated with its corresponding graphics
data. One way to maintain the association between corresponding synchronized
region data and synchronized graphics data is to send the two types of data in a
certain order representing the association—to be processed on the client side by a
client that understands both the association and the sequential order that represents
the association. Thus, in one implementation, region data always precedes its

corresponding graphics data. This may mean that the synchronous region data is

10

15

20

25

WO 2005/045737 PCT/US2004/023638

18

always transmitted to the client 204 before corresponding synchronous graphics
data, but even more importantly it means that if relevant region data is sent to the
client 204, the client 204 updates the region data first before processing graphics
data corresponding to the region data. Thus, a secure linkage—a “synchronicity“—
is formed between the region data and the graphics data. The client 204 can rely on
possessing current region data for any graphics data received. In other words, a
client 204 knows that any graphics data received correspond to previously received
region data. Graphics data applied to the client display 212 are shown (or
“clipped”) with the latest region data, resulting in correctly synchronized display of
a shared region. The exemplary RSE 214 thereby aims to ensure that graphics data
within the intended visible region to be shared with a client 204 is not undisplayed
and graphics data within the non-visible region for the client 204 is not
inadvertently displayed.

As shown in Fig. 5, a data output sequencer 314 creates an exemplary data
structure 500, usually via a remoting protocol 312, such as RDP. The data output
sequencer 314 controls the use of the remoting protocol 312 to send a client 204 the
region data 502 first. Only after the region data 502 has been sent, the data output
sequencer 314 sends graphics data 504 synchronized with and therefore pertaining
to the preceding region data 502. A client 204 can store the region data 502 while
receiving corresponding graphics data 504. Thus, the data output sequencer 314
uses the remoting protocol 312 to packetize the region data 502 and the graphics
data 504 in a data packet (or protocol data unit (PDU)) sequence 506. Individual
packets in the sequence 506 can arrive randomly and out of order at the client 204,
but packets typically bear a sequence number in their respective headers for
reassembling the correct data packet sequence 506. Hence, even if the region data

502 is not actually received first by the client 204, the sequence 506 is

10

15

20

25

WO 2005/045737 PCT/US2004/023638

19

reconstructable as the client 204 buffers incoming packets so that from the client’s
view the region data 502 precedes and modifies display of its corresponding
synchronized graphics data 504.

As regards versions of RDP, the subject matter creates an RDP alternate
secondary PDU that packetizes the region data 502 for a given region data update,
timeslice, and/or iteration before packetizing the graphics data 504. If a first packet
508 lacks capacity for current region data 502, then remaining region data 502 is
sent in a next packet 510. Likewise, the graphics data 504 follows the region data
502, and fills up packets (e.g., 512) as needed to send ongoing synchronized
graphics data 504 associated with current set of region data 502.

If region data 502 does not change, that is, does not change over multiple
succeeding timeslices, then succeeding region data 502 does not have to be sent to a
client 204 until the region data 502 again changes, and succeeding graphics data
504 sent to the client 204 simply refers to the most recently sent and received region
data 502.

As mentioned, the region data 502 typically includes a description of the
shape geometry of a shared region as well as the desktop placement position of the
shared region. The description of the shape geometry consists of an encoded
collection of rectangles that approximate the shape of the shared region. (Pixel
displays typically portray images as collections of rectangles.) The data output
sequencer 314 may establish a maximum number of rectangles to be used to
describe the shape of a shared region. Above the maximum number, the data output
sequencer 314 may call the bandwidth compensator 316 and security logic 318 to
decrease the amount of region data 502 without compromising security, especially
if transmission bandwidth to the client is limited. For example, a shared word

processor application window might be described by a single simple rectangle.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

20

When a menu window from a non-shared application is opened in the middle of
(and on top of) the shared word processor application window, the word processor
window shape to be described by the region data 502 becomes a complex doughnut
shape. Multiple rectangles are now needed instead of the single simple rectangle to
describe the word processor window, requiring more region data 502. Shared
windows or regions can be very complex and may require a large armount of region
data. For example, a window consisting of a popular movie skin that includes webs
and feathers requires approximately 10,000 rectangles to describe. Secure solutions
for continued remoting during times of bandwidth constraint due to complex shared
window shapes are discussed further with respect to Figs. 6-8, below .

The desktop placement position component of the region data typically
requires less bandwidth than the shape geometry for a shared region. Offset
coordinates of a top leftmost part of the shared region from an origin point (0, 0) of
a display screen—e.g., (0, 0) as the top leftmost pixel—can effectively describe the
position of a shared region. Further, if the shared region is a simple rectangle, then
two sets of offset coordinates describing the top leftmost corner of the shared
window and the bottom rightmost corner of the shared window can effectively
describe both the placement position and the shape geometry of the rectangle.

Data sequences (e.g., 506) specified by a data output sequencer 314,
including sequences 506 that implement the exemplary technique of preceding
graphics data 504 with synchronized region data 502, do not typically take up
significantly more bandwidth than conventional data sequences comprised of
conventional remoting PDUs. RDP, in fact, has its own bulk compression engine.
Region data 502 may include 64 bits allotted per rectangle to describe shape
geometry and 32 additional bits allotted for each region being descxribed. Thus 96

bits are needed if a region has one rectangle, 160 bits if the region has two

10

15

20

25

WO 2005/045737 PCT/US2004/023638

21

rectangles, etc. This type of rectangle data can be highly compressed at rates of
approximately 50% to approximately 90% because the rectangles tend to be regular
and encoding algorithms are available that might be adaptable to reduce the number
of bits needed to send the synchronized region data 502 and synchronized graphics
data 504 to a client.

RDP has many pre-existing rules. The subject matter described herein adds
a rule that graphics data 504 are not sent before associated synchronized region data
502 or, in one implementation, if the graphics data 504 are sent before the
associated synchronized region data 502, then the graphics data 504 are designated
to not be processed before the region data 502. This rule does not preclude other
types of information 514 coming between or being interspersed with the
synchronized region data 502 and the synchronized graphics data 504, such as
mouse pointer position data (which may be packetized to precede even the region
data 502); conference control data; quality of service (QoS) data; etc. These other
types of ancillary data may be interspersed before, after, and/or between the
synchronized region data 502 and succeeding associated graphics data 504.

To recapitulate, an exemplary RSE 214 synchronously gathers data, both
region data 502 and graphics data 504, together into one junction point without
losing the synchronicity of the data. Regardless of whether WNDOBJ is used to
gather window region data, or whether a WINDOWS® GRAPHICS DISPLAY
DRIVER is used to gather graphics data, as long as the exemplary RSE 214 gathers
the region data 502 and the graphics data 504 in a synchronous fashion, the subject
matter can be practiced. As mentioned above, the RDP protocol is just one of many
graphics remoting protocols that are extensible enough to be capable of adding

region remoting and thus are usable for practicing the described subject matter.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

22

In one implementation, a bandwidth compensator 316 may exert influence
on the data sequencing performed by the data output sequencer 314. In some
circumstances, bandwidth for transmitting data packets to a client 204 may be
temporarily insufficient. The bandwidth compensator 316 decides how to handle
insufficient bandwidth, based in some implementations upon security logic 318.
The security logic 318 includes security measures and different security protocols

for various scenarios.

Security Implementations

An exemplary RSE 214 can be used in many types of applications and
scenarios. The type of application can determine the specific security measures to
be used in circumstances of low bandwidth. How an exemplary RSE 214 maintains
synchronicity of graphics data and region data in conditions of low bandwidth
depends on the application and the level of security desired and/or appropriate for
the application. A low bandwidth condition may arise when the region data and/or
the graphics data become larger than a status quo available bandwidth. For
example, a remotely shared word processor window usually has more ongoing
graphics data due to ongoing typing than a region data needed to maintain the
unmoving rectangular window. Remotely shared Internet browser windows with
their constantly changing animations have graphics data that typically dwarf the
region data needed to describe the remotely shared window. An application that
has both complex graphics and a complex shape may exceed the bandwidth needed
to maintain synchronized graphics data and region data remoting. Three different
types of application environments 600, 700, 800 for an exemplary RSE 214 are
described below to illustrate the ways an exemplary RSE 214 can respond to low

bandwidth conditions.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

23

Fig. 6 shows a remote application sharing environment 600 in which a client
602 uses logon credentials 604 to access a remoting server 606 over a network 608.
In this environment 600, a low bandwidth circumstance may arise in which there is
not enough network capacity to send all synchronized region data and graphics data
that would be needed for window remoting or region remoting or, other internal
allowances have been exceeded causing the bandwidth cohstraint. The low
bandwidth may occur because the shape of the window being shared has become
too complex (e.g., too many rectangles) to be described in the region data using the
available bandwidth.

When the data output sequencer 314 can no longer continue sending all the
synchronized region data and subsequent associated graphics data due to bandwidth
constraints, the security logic 318 associated with the remote application sharing
environment 600 may inform the bandwidth compensator 316 to change the manner
in which data is being sent, or the change the data itself.

In one scenario, the data output sequencer 314 sends region data and
graphics data as if there were no bandwidth constraints, only slower. This type of
solution included in the security logic 318 may cause the client’s display of the
shared window to hang or freeze, at least temporarily until bandwidth increases or
until “one-time* complex region data is received and thereafter remains relatively
unchanged (the complexly shaped window does not move on the screen).

An alternative solution for the example remote applicatiom sharing
environment 600 entails abandoning the region remoting and switching at least
temporarily to desktop remoting. Desktop remoting shows the client 602 more
information than intended in a remote application sharing environment 600, but
since the client 602 “oWns“ the entire session 610 due to the logon credentials 604

and the region remoting is occurring just to improve workflow, there is no security

10

15

20

25

WO 2005/045737 PCT/US2004/023638

24

leak in showing the client 602 a larger subset of the limited universe of information
that the client has clearance to see. Thus, when faced with insufficient bandwidth
to perform region remoting in a remote application sharing environment 600, the
bandwidth compensator 316 may switch to desktop remoting, thereby temporarily
abandoning the region data and the need for synchronization.

Fig. 7 shows a multiparty conferencing or “collaborative” environment 700
in which multiple clients, such as a first client 702, a second client 704, . . ., and an
“nth” client 706 are communicatively coupled over a network 708 with a remoting
server 710 that includes an exemplary RSE 214. Region remoting displays a subset
of the server’s desktop simultaneously at each client, for example, when a “show
meeting notes only” option is selected. Each client may send input to affect the
window 714 or region being shared. For example, if the first client 702 drags the
window 714 being shared across the his display canvas using a mouse, then the
window 714 is also dragged across all the other client’s display screens. Likewise,
if the “nth“ client 706 clicks on a button in the window 714 or region being shared,
then the action taken at the server by the button being clicked effects all the clients
702, 704, . . ., 706.

In this collaborative environment 700, no one client owns the session.
Therefore, showing any client more than the window 714 or region being shared is
a security risk (as illustrated in Fig. 1). In conventional systems, when one of the
clients inadvertently moves the window 714 being shared across another application
window not being shared on the server desktop, glimpses of the window not being
shared are often visible for a short time on each of the clients’ display screens,
because of lack of synchronization between region and graphics data.

In a relatively low bandwidth condition, for example when the region data

becomes too complex due to an unusual shape of a window 714 or region being

10

15

20

25

WO 2005/045737 PCT/US2004/023638

25

shared or when the quality of service of the network falters, the bandwidth
compensator 316 may decide how the data output sequencer 314 should continue
sending the region and graphics data in the collaborative environment 700. Since
the clients may not have clearance to view the entire server desktop, switching to
desktop remoting to reduce region data is not included as an option in the security
logic 318 for the collaborative environment 700. If the exemplary RSE 214 can
show a subset of the shared region that would significantly reduce region data
within the bandwidth constraints, this solution can be selected as an option from the
security logic 318. The display driver 308 of the RSE 214 then inscribes a smaller
region 716 with a simple shape, e.g. a single rectangle, within the too complex
shared region 714. This may greatly reduce the amount of region data if fewer
rectangles are required to describe the new inscribed shape, but may also clip off
some of the shared region. For example, some of the text and images, as well as
clickable icons and buttons, pull-down menus, and scroll bars may be clipped off
from visibility when the smaller region 716 displays. While this results in an
undesirable operational inconvenience—a usability issue—that is hopefully
temporary, still security has been maintained as the exemplary RSE 214 reliably
assures that no unallowed part of the server desktop has been displayed to the
clients 702, 704, . . ., 706.

Fig. 8 shows a multimedia environment 800 in which an exemplary RSE 214
that is included in a remoting server or that is associated with a multimedia hub 802
is used to send a media stream 804 (e.g., from multimedia storage 806) to display
on a client 808. In this case, the client 808 may be a computing device or a
television set-top box that drives a client display 810. In one scenario, the media
stream 804 itself may be sent on an out-of band channel, outside of a remoting

protocol 312, such as RDP, and outside of terminal services protocols, etc.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

26

In this type of application, an exemplary RSE 214 provides a way for the
client 808 to decode the media stream 804 and plays it “on top“ of a remoting
protocol 312 and/or a terminal services protocol in use, that is, the media stream
804 is played on a client 808 that is using a remoting protocol 312 and/or a terminal
services protocol, but the media stream 804 itself is not being transmitted by the
remoting protocol 312 and/or the terminal services protocol. The exemplary RSE
214 manages region data for a shape and client desktop placement position of a
window 812 or region for playing the media stream 804, thereby informing the
client 808 where to draw the media stream 804 arriving, for example, from the out-
of-band channel.

In response to a low bandwidth scenario in the multimedia environment 800
caused, for example, by a complex shape for the window 812 increasing the region
data, the security logic 318 may include measures for the bandwidth compensator
316 to select a simpler shape for the media stream display window 812. The
simpler shape decreases the amount of region data. In this case, assuming that
security 1s not much of a risk in the multimedia environment 800 (for example, if
the multimedia environment 800 is merely a multimedia network for a home), the
exemplary RSE 214 can circumscribe the original complex window 812 that needed
too much region data to describe with the new, simpler window 814 that is larger
than the original window 812. The new larger window 814 is not a larger piece of a
server desktop that might contain secret information, but merely an enlarged
viewport through which an enlarged version of the media stream 804 will be shown,
that is, the visual “footprint® of the media stream 804 is resized to fit the larger
window. This larger window 814 prevents truncation of the media content (e.g.,
losing part of a movie) which would occur if a smaller window than the original

complex window 812 were selected to solve the complex window shape problem.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

27

The larger window 814, however, may truncate or completely eclipse some of the
onscreen controls of a user interface 816 for controlling the media stream 804.
While this results in an undesirable operational inconvenience as parts of the
client’s display canvas have been covered by a larger media stream window, this
resolution of a low bandwidth situation results in only a possible a usability issue
that is hopefully temporary. Security within the multimedia environment 800 has

not been compromised by the applied security measure for low bandwidth.

Exemplary Methods

Fig. 9 shows an exemplary method 900 of synchronizing region data and
graphics data for a graphics remoting system. The exemplary method 900 can be
performed by a device, such as the exemplary RSE 214 shown in Figs. 2 and 3. In
the flow diagram, the operations are summarized in individual blocks. The
operations may be performed in hardware and/or as machine-readable instructions
(software or firmware) that can be executed by a processor.

At block 902, region data for displaying a region of a server desktop
remotely on a client display are synchronously gathered. The region data may
describe region geometry, such as a shape and a position of the region on the server
desktop and/or a position that the region will occupy on the client’s desktop.

At block 904, graphics data for the region are synchronously gathered. The
graphics data describe the visual content that will be displayed in the region when
the region is executed on the client. Or from another point of view, the region data
clip the graphics data into the geometry (shape and position) specified by the region
data.

At block 906, the region data and the graphics data are sent to a client while

maintaining synchronicity between the region data and the graphics data.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

28

Maintaining synchronicity may include avoiding the addition of delays in
processing different data streams that represent each of the region data and the
graphics data; properly using a remoting protocol to transmit the synchronized data;
sequencing a given amount of region data with associated graphics data so that a
client can relate the graphics data to the associated region data, etc.

Fig. 10 shows an exemplary method 1000 of maintaining security of private
information in the synchronization of region data and graphics data for a graphics
remoting system during a condition of low bandwidth, e.g., a temporary low
transmission bandwidth between server 202 and client 204. The exemplary method
1000 can be performed by a device, such as the exemplary RSE 214 shown in Figs.
2 and 3. In the flow diagram, the operations are summarized in individual blocks.
The operations may be performed in hardware and/or as machine-readable
instructions (software or firmware) that can be executed by a processor.

At block 1002, region data and graphics data are synchronously gathered.

At block 1004, the exemplary method 1000 queries whether there is
sufficient bandwidth for sending the synchronized region data and graphics data,
for example, within time constraints specified by a remoting protocol 312. If there
is not sufficient bandwidth, the exemplary method 1000 branches to block 1006. If
there is sufficient bandwidth, the exemplary method 1000 branches to block 1008.

At block 1006, the synchronized region data and synchronized graphics data
are sent to the client.

At block 1008, the exemplary method 1000 queries whether the client owns
the entire session. If the client owns the entire session, then the exemplary method
branches to block 1010. If the client does not own the entire session, then the

exemplary method branches to block 1012.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

29

At block 1010, graphics data for the entire server desktop are sent to the
client, but region data are not sent.

At block 1012, the exemplary method 1000 queries whether the wvisual
content of the shared region can be truncated. If the visual content of the shared
region can be truncated, then the exemplary method 1000 branches to blocks 1014
and 1016. If the visual content of the shared region cannot be truncated, then the
exemplary method 1000 branches to blocks 1018, 1020, and 1022.

At block 1014, a simpler smaller new shared region inscribed within the
original shared region is selected.

At block 1016, synchronized region data and synchronized graphics data for
the new region are sent to the client.

On the other hand, at block 1018, a simpler larger new shared region
circumscribing the original shared region is selected.

At block 1020, synchronized region data and synchronized graphics data for
the new region are sent to the client.

At block 1022, the visual content for the original shared region may be
resized to fit the new larger shared region. However, server desktop graphics are
not used to fill in the parts of the new larger window that lie outside the original
shared region, as this might defeat the security feature of the exemplary method
1000. The option provided by blocks 1018, 1020, and 1022 are useful when the
graphics data are from a source external to the server, such as a multimedia stream

from digital storage.

Exemplary Computing Device

Fig. 11 shows an exemplary computing device 1100 suitable as an

environment for practicing aspects of the subject matter, for example as a remoting

10

15

20

25

WO 2005/045737 PCT/US2004/023638

30
server 202 to host an exemplary RSE 214 or as a client 204. The components of

computing device 1100 may include, but are not limited to, a processing unit 1120,
a system memory 1130, and a system bus 1121 that couples various system
components including the system memory 1130 to the processing unit 1120. The
system bus 1121 may be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus using any of a variety of
bus architectures. By way of example, and not limitation, such architectures
include Industry Standard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (EISAA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as
the Mezzanine bus.

Exemplary computing device 1100 typically includes a variety of computing
device-readable media. Computing device-readable media can be any available
media that can be accessed by computing device 1100 and includes both volatile
and nonvolatile media, removable and non-removable media. By way of example,
and not limitation, computing device-readable media may comprise computing
device storage media and communication media. Computing device storage media
include volatile and nonvolatile, removable and non-removable media implemented
in any method or technology for storage of information such as computing device-
readable instructions, data structures, program modules, or other data. Computing
device storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which can be used to store

the desired information and which can be accessed by computing device 1100.

~ Communication media typically embodies computing device-readable instructions,

10

15

20

25

WO 2005/045737 PCT/US2004/023638

31

data structures, program modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connection and wireless media
such as acoustic, RF, infrared and other wireless media. Combinations of any of
the above should also be included within the scope of computing device readable
media.

The system memory 1130 includes computing device storage media in the
form of volatile and/or nonvolatile memory such as read only memory (ROM) 1131
and random access memory (RAM) 1132. A basic input/output system 1133
(BIOS), containing the basic routines that help to transfer information between
elements within computing device 1100, such as during start-up, is typically stored
in ROM 1131. RAM 1132 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing unit
1120. By way of example, and not limitation, Fig. 11 illustrates operating system
1134, application programs 1135, other program modules 1136, and program data
1137. Although the exemplary RSE 214 is depicted as software in random access
memory 1132, other implementations of an exemplary RSE 214 can be hardware or
combinations of software and hardware.

The exemplary computing device 1100 may also include other
removable/non-removable, volatile/nonvolatile computing device storage media.
By way of example only, Fig. 11 illustrates a hard disk drive 1141 that reads from
or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive

1151 that reads from or writes to a removable, nonvolatile magnetic disk 1152, and

10

15

20

25

WO 2005/045737 PCT/US2004/023638

32

an optical disk drive 1155 that reads from or writes to a removable, nonvolatile
optical disk 1156 such as a CD ROM or other optical media. Other removable/non-
removable, volatile/nonvolatile computing device storage media that can be used in
the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state
RAM, solid state ROM, and the like. The hard disk drive 1141 is typically
connected to the system bus 1121 through a non-removable memory interface such
as interface 1140, and magnetic disk drive 1151 and optical disk drive 1155 are
typically connected to the system bus 1121 by a removable memory interface such
as interface 1150.

The drives and their associated computing device storage media discussed
above and illustrated in Fig. 11 provide storage of computing device-readable
instructions, data structures, program modules, and other data for computing device
1100. In Fig. 11, for example, hard disk drive 1141 is illustrated as storing
operating system 1144, application programs 1145, other program modules 1146,
and program data 1147. Note that these components can either be the same as or
different from operating system 1134, application programs 1135, other program
modules 1136, and program data 1137. Operating system 1144, application
programs 1145, other program modules 1146, and program data 1147 are given
different numbers here to illustrate that, at a minimum, they are different copies. A
user may enter commands and information into the exemplary computing device
1100 through input devices such as a keyboard 1148 and pointing device 1161,
commonly referred to as a mouse, trackball, or touch pad. Other input devices (not
shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the
like. These and other input devices are often connected to the processing unit 1120

through a user input interface 1160 that is coupled to the system bus, but may be

10

15

20

25

WO 2005/045737 PCT/US2004/023638

33

connected by other interface and bus structures, such as a parallel port, game port,
or a universal serial bus (USB). A monitor 1162 or other type of display device is
also connected to the system bus 1121 via an interface, such as a video interface
1190. In addition to the monitor 1162, computing devices may also include other
peripheral output devices such as speakers 1197 and printer 1196, which may be
connected through an output peripheral interface 1195.

The exemplary computing device 1100 may operate in a networked
environment using logical connections to one or more remote computing devices,
such as a remote computing device 1180. The remote computing device 1180 may
be a personal computing device, a server, a router, a network PC, a peer device or
other common network node, and typically includes many or all of the elements
described above relative to computing device 1100, although only a memory
storage device 1181 has been illustrated in Fig. 11. The logical connections
depicted in Fig. 11 include a local area network (LAN) 1171 and a wide area
network (WAN) 1173, but may also include other networks. Such networking
environments are commonplace in offices, enterprise-wide computing device
networks, intranets, and the Internet.

When used in a LAN networking environment, the exemplary computing
device 1100 is connected to the LAN 1171 through a network interface or adapter
1170. When used in a WAN networking environment, the exemplary computing
device 1100 typically includes a modem 1172 or other means for establishing
communications over the WAN 1173, such as the Internet. The modem 1172,
which may be internal or external, may be connected to the system bus 1121 via the
user input interface 1160, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the exemplary computing

device 1100, or portions thereof, may be stored in the remote memory storage

10

15

WO 2005/045737 PCT/US2004/023638

34

device. By way of example, and not limitation, Fig. 11 illustrates remote
application programs 1185 as residing on memory device 1181. It will be
appreciated that the network connections shown are exemplary and other means of

establishing a communications link between the computing devices may be used.

CONCLUSION

It should be noted that the subject matter described above can be
implemented in hardware, in software, or in both hardware and software. In certain
implementations, the exemplary system, engine, and related methods may be
described in the general context of computing device-executable instructions, such
as program modules, being executed by a television set-top box and/or by a
computing device. Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform particular tasks or implement
particular abstract data types. The subject matter can also be practiced in
distributed communications environments where tasks are performed over wireless
communication by remote processing devices that are linked through a
communications network. In a wireless network, program modules may be located
in both local and remote communications device storage media including memory

storage devices.

WO 2005/045737 PCT/US2004/023638

35

The foregoing discussion describes exemplary systems and methods
synchronizing region data and graphics data for graphics remoting systems.
Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or
acts described. Rather, the specific features and acts are disclosed as exemplary

forms of implementing the claims.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

36
CLAIMS

1. A method, comprising:

synchronously gathering region data for displaying a region of a server
desktop remotely on a client display, wherein the region data describe a shape and a
position of the region;

synchronously gathering graphics data for the region, wherein the graphics
data describe visual content of the region; and

sending the region data and the graphics data to a client while maintaining

synchronicity between the region data and the graphics data.

2. The method as recited in claim 1, wherein the region data and the

graphics data are gathered in a single display driver.

3. The method as recited in claim 2, wherein the region data and the

graphics data are gathered and stored in a format of a remoting protocol.

4, The method as recited in claim 3, wherein the region data is
synchronously gathered by a display driver-level window object created to contain

the shape and position information.

5. The method as recited in claim 3, wherein the graphics data is

synchronously gathered by the display driver.

6. The method as recited in claim 5, wherein the display driver
synchronously gathers graphics data by gathering drawing commands issued to a

graphics device interface subsystem of an operating system of the server.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

37

7. The method as recited in claim 1, wherein the semnding further
includes forming a sequence of region data and graphics data, wherein the region

data precedes the graphics data.

8. The method as recited in claim 7, further comprising sequencing the

region data to precede the graphics data using rules of a remoting protocol.

0. The method as recited in claim 8, further comprising receiving the
region data and the graphics data for display on a client and displaying the graphics

data according to the preceding region data.

10. The method as recited in claim 1, wherein if a bandwidth for the
sending becomes too low to send the region data and the graphics data, then
reducing the amount of data to send by sending no region data and sending graphics

data for the entire server desktop.

11. The method as recited in claim 1, wherein if a bandwidth for the
sending becomes too low to send the region data and the graphics data, then
reducing the amount of data to send by sending region data for a subset of the

region and by sending graphics data for the subset.

12. The method as recited in claim 11, wherein the subset has a geometry

that requires less region data to describe.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

38

13. The method as recited in claim 1, wherein if a bandwidth for the
sending becomes too low to send the region data and the graphics data, then
reducing the amount of data to send by surrounding the region with a larger region
that requires less data to describe and enlarging the visual content of the region to

fit the larger region.

14. The method as recited in claim 1, further comprising:
receiving the region data and the graphics data; and
displaying the graphics data as graphics in a region of a client desktop

described by the region data.

15. A remoting synchronization engine, comprising:

a region data gathering module to synchronously gather region data
describing a region of a display desktop to be remotely displayed on a client,
wherein the region data describe a shape and a desktop position of the region;

a graphics data gathering module to synchronously gather graphics data,
wherein the graphics data describe a visual content of the region; and

a display driver to collect the synchronously gathered region data and the
synchronously gathered graphics data and to send the region data and the graphics
data to the client while maintaining synchronicity between the region data and the

graphics data.

16. The remoting synchronization engine as recited in claim 15, further
comprising a data output scheduler associated with the display driver to send the
region data and the graphics data to the client in a sequence, wherein the region

data precedes the graphics data synchronized with the region data.

10

15

20

25

WO 2005/045737 PCT/US2004/023638

39

17. The remoting synchronization engine as recited in claim 16, further
comprising a bandwidth compensator to maintain security with respect to the
synchronized region data and the synchronized graphics data during a condition of

low bandwidth.

18. The remoting synchronization engine as recited in claim 15, further
comprising a data gathering scheduler to schedule synchronous gathering of region

data and graphics data synchronized to the region data.

19. A synchronized data receiver, comprising:

a region subsystem to receive region data synchronized with graphics data
and to designate a region of a client display based on the region data; and

a graphics subsystem to receive the graphics data synchronized with the

region data and to display graphics in the region based on the graphics data.

20. A synchronized remoting system, comprising:

a means for producing visual content to be remotely displayed on a client;

a means for designating a visual region of the visual content;

a means for gathering region data describing geometry of the visual region,
wherein gathered region data is in synchronicity with graphics data describing the
visual content in the visual region;

a means for gathering the graphics data describing the visual content in the
visual region, wherein gathered graphics data is in synchronicity with the region

data describing the geometry of the visual region; and

10

15

20

25

WO 2005/045737 PCT/US2004/023638

40

a means for sending the region data and the graphics data to the client,
wherein region data in synchronicity with particular graphics data precedes the

particular graphics data.

21. The synchronized remoting system as recited in claim 20, further
comprising:

a means for receiving the region data and the graphics data at a client; and

a means for displaying the graphics data as graphics in a region of a client

desktop described by the region data.

22. A data stream structure, comprising:
region data describing geometry of a visual region to be remotely displayed;
graphics data describing visual content of the visual region, wherein the

region data precedes the graphics data in the data stream structure.

23. The data stream structure as recited in claim 22, wherein the region

data and the graphics data were gathered in synchronicity with each other.

24. A method, comprising:

synchronously gathering region data and graphics data for a visual region of
a computing server display to be remotely displayed on a client display;

if bandwidth is sufficient for sending the region data and the graphics data to
the client, then sending the region data and the graphics data to the client, wherein a
region datum in synchronicity with a graphics datum is sent before the graphics

datum;

WO 2005/045737 PCT/US2004/023638

41
if bandwidth is not sufficient for sending the region data and the graphics
data to the client, then
if the client owns an entirety of information displayable on the
computing server display, then sending only graphics data describing the entire
5 visual content of the computing server display; but
if the client does not own an entirety of information displayable on
the computing server display, then
if visual content of the visual region can be truncated, then
selecting a smaller visual region inscribed in the visual region and sending
10 synchronized region data and synchronized graphics data associated with the
smaller visual region, but
if the visual content of the visual region cannot be truncated,
then selecting a larger visual region circumscribing the visual region, sending
synchronized region data and synchronized graphics data associated with the larger
15 visual region, and resizing visual content of the visual region to fit the larger visual

region.

25. One or more computing device readable media containing instructions
that are executable by a computing device to perform actions comprising:

20 . synchronously gathering region data for displaying a visual region of a
server desktop remotely on a client display, wherein the region data describe a
shape and a position of the region;

synchronously gathering graphics data for the visual region to obtain
synchronized region data and synchronized graphics data, wherein the synchronized

25 graphics data describe a visual content of the visual region; and

10

WO 2005/045737 PCT/US2004/023638

42
sending the synchronized region data and the synchronized graphics data to

the client while maintaining synchronicity between the region data and the graphics

data.

26. The one or more computing device readable media as recited in claim
25, wherein maintaining synchronicity further comprises preceding graphics data to

be sent to the client with the region data synchronized to the graphics data.

27. The one or more computing device readable media as recited in claim
25, wherein the region data and the graphics data are synchronously gathered into

one display driver.

PCT/US2004/023638

1/11

— 0Ll

i

88-4666-660

/o= - DA /

¥

— Zhl

ANIITO HLIAA
d34vHS 39
Ol NOI©3Y o

WO 2005/045737

13493S-NON / ,_,
90l

L/1//-8888-6666-660%
= # Qv LIaT8)

NOLLYWHOAN] FLYAIM ANV L34S

20l AVY1dSIQ d3NdIS

PCT/US2004/023638

WO 2005/045737

2/11

\ .

A

|44 ¢cc
W3LSASANg| | W31lsASanNs

SOIHdYYS NOIO3Y

2 Y

90¢

GlLZ Y3AIF0TY
V.1V AIZINOYHONAS

$0Z IN3IND

m_‘ ><._m.m_h_ IN3IMYD

AHJOMIIN

i< ISy

¢0¢ d3AY3g

9le
LNILINOD

SOIHAVYD W SYH NOIO3Y ﬁ

8¢
Adiawo3as

oLe

e

AdVHS ¥ SYH NOIOIY

0¢c

V T ;o
j O113H -

-t 5

NOILISOd INTFWIOVId |

Y SYH NOI93Y

RSO Ty

A
——

00¢ S

802 AV1dSIQ ¥3AY3S

PCT/US2004/023638

WO 2005/045737

3/11

MYOMLIN O

A

D
m ’ m O1€ JOV4YILIN| HOMLIN

|

[4%3
100010¥d

ONILOWIY

. J N

yic
Y3IONINDAS

Lnd1nQ vivag

J

80¢

d3AKEQ AVIdSIg

9l
HOLYSNIdWOD

H1dIMANvg

(153
D907 ALMND3S

c0¢g
JTNAON

ONIYIHLYD _

V1v(Q NOIO3Y

ONIHaHLVYD) VIV(J Q

i

¥0€ J
d437NA3HOS

00¢€
FTNAON ONIHIHLYD

V1iv(Q SOIHdYHD)

PCT/US2004/023638

WO 2005/045737

4/11

PCT/US2004/023638

WO 2005/045737

5/11

S Vf

900G IAONINDIS 1NOVd

-~
205 4% 05
Y1V NOID3Y vivqg d3HLO V1v(d SOIHdVYHD)
N N
4
7
— 80g N—ais
¥l¢ 3SH
L #0C IN3IND) A0 TARSENYELS

00§ |\

PCT/US2004/023638

WO 2005/045737

6/11

209
IN3ND

0

$09
STVILNIA3™D

NOOSOT

I 3Sd

909
NELYSELS

PCT/US2004/023638

WO 2005/045737

7/11

907
ININD HIN,

)

v0.Z
IN3ITD ANOD3S

49
AV1dSIQ LN3ND

1474

80/
MYOMLIN

207
IN3MND LsHiy

q-
-
qV
LU
)
o

OLZ ¥3Aw3sg

PCT/US2004/023638

WO 2005/045737

8/11

918

-1 VIGaW’

/- anoy |

A . I T R S T

,O 18 AV1dSId zm_._U

008 |\

08

308
INAND
.) -/
w]
: | 71z_3sy

_

908
JOVHOLS

VIQaWILINN

208
anH vIaanwinnn

J

WO 2005/045737

902

904 — |
A\

906 \

9/11

/— 900

SYNCHRONOUSLY GATHER
REGION DATA.

PCT/US2004/023638

|

SYNCHRONOUSLY GATHER
GRAPHICS DATA.

Y

N

SEND REGION DATA AND GRAPHICS
DATA TO CLIENT IN A MANNER THAT
MAINTAINS SYNCHRONICITY.

7. 9

WO 2005/045737 PCT/US2004/023638
10/11

1000
1002
j {_

SYNCHRONOUSLY GATHER REGION
DATA AND GRAPHICS DATA.

1004

1006 ™\

IS BANDWIDTH
SUFFICIENT?

SEND SYNCHRONIZED REGION DATA
AND GRAPHICS DATA TO CLIENT.

1008

1010
N\

DOES CLIENT OWN
ENTIRE SESSION?

SEND ONLY GRAPHICS DATA FOR
ENTIRE SERVER DESKTOP TO CLIENT.

1012

1014
2\

SELECT SIMPLER SMALLER NEW
REGION INSCRIBED WITHIN ORIGINAL
REGION.

ViISUAL CONTENT OF
SHARED REGION BE

1016\ l

1018
N\

SELECT SIMPLER LARGER NEW REGION
CIRCUMSCRIBING ORIGINAL REGION.

SEND SYNCHRONIZED REGION DATA

AND SYNCHRONIZED GRAPHICS DATA

ASSOCIATED WITH THE NEW REGION
To THE CLIENT.

~

1020 — ¢

e

SEND SYNCHRONIZED REGION DATA]

AND SYNCHRONIZED GRAPHICS DATA

ASSOCIATED WITH THE NEW REGION
TO THE CLIENT.

1052 — ¢

r ~

RESIZE VISUAL CONTENT OF ORIGINAL v
REGION To FIT NEW LARGER REGION. &?'

(.

PCT/US2004/023638

WO 2005/045737

11/11

HILINIHS
TN} IUJ

SvHS0Ud QUVOBATY JX 4N N\ oaril ™~ Gyl N\ 1241} ~\
NOLLYOTddy v.ivQ SIINAOW | SWYHD0Nd W3LSAS
SaL _ Iﬁ\/ Wvd90ud ¥3IHIO |NOILYOIddY | ONILYYIdO
- MHOMLAN
o= _| vauv 3am wadow
= = P00
14
[FAN? ¢l ~/ : ‘

@ T I—.IF ||O..|V.—‘|_...Illll|h.|..ll..|lllllll..|h.lll..lllh.

CTARE —)&W_ﬂ Sl f Y

anig 9GL1 s/ & —= | {_ viva wvdooud) !

8Ll i N Iz 3 "

! ERZNETT RN I id w

K ERVAEIL FOV4HALN]| FOV4HILN] AHOWIN 1 S31NAOW _

LZLL YHOMIAN AHOMLIAN 1NdN| ¥3sn AHOWIN J19VAOWIY " (E(N._OOMG_ N_m_._._.ok _
VY V00T I1gVAOWTY NON : > g i

— = . ; COTT !

w _ j 0911 \— O5IT OST\AW | €k _

b , SWYHO0Yd _

sn : ‘

[X49% "

]

i

i

i

|

|

[

[

[

[

|

!

1

I

[

[

. [
SYIMVIALS _
1
|

I

!

|

!

|

i

[

H3ldvay
S 03aIA
R
061

— , |
Zo11 N \

K i [4 -

0oL —

AHOWIN WILSAS

o T2 T S 1

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

