发明名称 一种保水缓释肥料

摘要
本发明涉及一种农用保水缓释肥料，包括以下重量配比的组分：保水剂：缓释肥料 = 1～4：1～6。还包括重量份数比为 1～5 的水溶渣。所述保水剂包括淀粉系列或纤维素系列或合成聚合物系列；缓释肥料包括包膜肥料如氮 (N)、磷 (P)、钾 (K) 单质、二元、三元树脂包膜肥料或含有微量元素的包膜肥料及低溶解度肥料，如脲甲酶、脲乙酶、脲异丁酶等；水溶渣含钙、镁、硅、铜、锰等营养元素；还包括有微量的植物生长激素如生根粉等。本发明的肥料，养分可缓慢溶出，不会导致土壤溶液盐分浓度过高对保水剂性能产生影响。而且在各组分的相互作用下，能提高土壤对水分、养分的缓冲容量，防止水分、养分流失，提高作物对土壤水分、养分的利用率。
1. 一种保水缓释肥料，包括以下重量份数比的组分：保水剂：缓释肥料 = 1～4 : 1～6。

2. 根据权利要求 1 所述的保水缓释肥料，其特征在于：所述保水缓释肥料还包括重量份数比为 1～5 的水浸渣。

3. 根据权利要求 2 所述的保水缓释肥料，其特征在于：所述保水缓释肥料由以下重量份数比的组分组成：保水剂：缓释肥料：水浸渣 = 1: 4: 5。

4. 根据权利要求 2 所述的保水缓释肥料，其特征在于：所述保水缓释肥料中还含有重量份数为 100-1000ppm 的植物生长激素。

5. 根据权利要求 4 所述的保水缓释肥料，其特征在于：所述植物生长激素为生根粉。

6. 根据权利要求 1 或 2 或 3 或 4 或 5 所述的保水缓释肥料，其特征在于：所述保水剂为淀粉系保水剂、纤维素系保水剂或合成聚合物保水剂。

7. 根据权利要求 6 所述的保水缓释肥料，其特征在于：所述淀粉保水剂为淀粉接枝丙烯腈、淀粉接枝丙烯酸盐、淀粉接枝丙烯酰胺等；所述纤维素保水剂为纤维素接枝丙烯腈、纤维素接枝丙烯酸盐、纤维素接枝丙烯酰胺等；所述合成聚合物保水剂为聚丙烯酰胺、聚丙烯酸盐、丙烯酸与丙烯酰胺共聚物、聚乙烯醇等。

8. 根据权利要求 1 或 2 或 3 或 4 或 5 所述的保水缓释肥料，其特征在于：所述缓释肥料为包膜肥料或低溶解度肥料。

9. 根据权利要求 8 所述的保水缓释肥料，其特征在于：所述包膜肥料为氮、磷、钾单质、二元、三元树脂包膜肥料，或含有微量元素铁、锰、铜、锌、硼、钼的氮、磷、钾单质、二元、三元树脂包膜肥料；所述低溶解度肥料为脲甲醛、脲乙醛或脲异地脲。

10. 根据权利要求 1 或 2 或 3 或 4 或 5 所述的保水缓释肥料，其特征在于：所述水浸渣为含钙、镁、硅、铜、锰的高炉炼铁水淬渣。
一种保水缓释肥料

技术领域

本发明涉及一种农用肥料，特别是一种保水缓释肥料。

背景技术

中国是一个农业大国，又是一个干旱、半干旱面积最大的国家，因此抗旱保墒是农业生产中的一个重要环节。目前在农业生产中使用的保水剂具有良好的保水抗旱性能，在解决作物缺水和荒漠化治理上取得了良好效果。保水剂在农、林业上的研究开始于 80 年代末，至今已开发成功的技术有：苗木移栽蘸根、水稻育秧、抗旱播种、种子包衣等。

缓释肥料又称缓效肥料，是近年来发展起来的一类肥料新品种，这类肥料，可代替有机肥料的部分功能，减少肥料中养分的流失，提高肥效，减弱肥料对土壤的污染。缓释肥料主要包括包膜肥料和低溶解度肥料。包膜肥料是为了改善肥料的功能或性能，在其颗粒表面涂以一层具有微孔疏水性难溶薄膜制成的肥料，利用包膜孔径大小，化学或生物分解来控制养分释放速度。包膜肥料主要有树脂包膜肥料和硫磺包膜肥料，它可以是氮（N）、磷（P）、钾（K）单质肥料包膜，也可以是氮（N）、磷（P）、钾（K）中的二元或三元肥料包膜。

由于缓释肥料养分多释放速度慢，不会导致土壤盐分浓度过高，因而缓释肥料与保水剂掺混一起使用，不会影响保水剂吸水保水能力，相反，保水剂在吸咐水份的同时还可将缓释肥料所释放的部分养分吸附起来，等到作物需要时再释放出来，达到养分二次缓释、平稳释放的功效，这种水肥一体的吸附释放机制，提高了养分和水分的利用。

研究表明，保水剂与普通化学肥料混合施用时，易降低其溶胀能力，即吸水保水能力，故保水剂产品一般不含肥料成分，且保水剂价格普遍比较昂贵，单独施用费用和工时较高。

现有专利“长效保水复混肥料”（申请号：01110553.4），虽然也将保水剂与肥料结合在一起造粒，但由于其所用的化学肥料多为盐类，大大降低了保水剂的吸水功能。

高炉水淬渣是炼铁过程中的副产物，也是一种硅钙农肥，其含有的铜（Cu）、锰（Mn）、铁（Fe）等许多成分是农作物的微量元素肥料。

发明内容
本发明的目的是提供一种具有保水保肥双重功效的保水缓释肥料。

为实现上述目的，本发明采取以下技术方案：一种保水缓释肥料，包括以下重量份数的组分：保水剂：缓释肥料=1～4：1～6。

为了增强保水缓释肥料的作用效果，所述保水缓释肥料中还包括重量份数比为1～5的水淬渣。

所述保水缓释肥料由以下重量份数比的组分组成：保水剂：缓释肥料：水淬渣=1：4：5。

所述保水缓释肥料中还含有重量份数比为100-1000 ppm的植物生长激素，所述植物生长激素为生根粉等。

所述保水剂为淀粉保水剂，纤维素保水剂或合成聚合物保水剂。

所述淀粉保水剂为淀粉接枝丙烯腈、淀粉接枝丙烯酸盐、淀粉接枝丙烯酰胺等；所述纤维素保水剂为纤维素接枝丙烯腈、纤维素接枝丙烯酸盐、纤维素接枝丙烯酰胺等；所述合成聚合物保水剂为聚丙烯酰胺、聚丙烯酸盐、丙烯酸与丙烯酰胺共聚物、聚乙烯醇等。

所述缓释肥料为包膜肥料或低溶解度肥料。

所述包膜肥料为氮、磷、钾单质、二元、三元树脂包膜肥料，或含有微量元素铁、锰、铜、锌、硼、钼等的氮、磷、钾单质、二元、三元树脂包膜肥料；所述低溶解度肥料为脲甲醇、脲乙醛或脲异丁醛。

所述水淬渣为含钙、镁、硅、铜、锰的高炉炼铁水淬渣。

具体配制保水缓释肥料时，可根据不同农作物的需要特点，对保水缓释肥料的组分进行调整。

保水剂又称超强吸水剂或高分子吸水树脂，它是一种具有特殊功能的高分子材料。保水剂不但吸水性、保水性极为优良，而且它在土壤中可形成团粒结构，使土壤透水性、透气性增强，并能使土壤白天和晚上的温差缩小；同时它还能吸收肥料、农药，使之缓慢的释放，增强肥料、农药效果。能改良土壤、保水抗旱，给植物种子发芽、植物生长发育创造良好的环境条件。

合理使用缓释肥料可大大提高肥料利用率、节省肥料、降低成本，实验表明，使用包膜肥料可提高氮肥利用率20%左右，提高磷肥利用率10%左右，提高钾肥利用率15%左右，粮食作物增产10%～20%。使用包膜肥料可以进行一次性施肥，节省劳动力。由于肥料利用率提高，肥料在土壤中的损失减少，也就减少了肥料的挥发和流失对大气和水源的污染，对环境保护起到一定作用。此外，缓释肥料可与种苗一起施用，具有不烧苗，不伤根的优点。
水淬渣是高炉炼铁时产生的废渣，又称高炉渣。高炉渣的化学成分主要为氧化钙、氧化镁、二氧化硅、氧化铝和氧化锰等。高炉渣经水淬急冷，来不及形成矿物结晶而把其中的化学能储存于形成的玻璃体中，因而具有较高的潜在活性，因此，高炉渣是一种硅酸盐类，其中所含的钙、镁等许多成分是农作物需要的微量元素肥料。本发明创造性地将水淬渣用于保水缓释肥料中，不仅使高炉炼铁时的废渣得到了利用，而且可以大大提高保水缓释肥料的效果。

本发明保水缓释肥料，由于原料采用了缓释肥料，养分缓慢溶出，不会导致土壤溶液盐分浓度过高，同时，由于各种原料采用物理性掺混，保水剂颗粒与肥料颗粒保持了一定的距离，因而，避免了土壤溶液盐分浓度高对保水剂性能的影响。本发明保水缓释肥料施入土壤后，在各种组分的相互作用下，能提高土壤对水分、养分的缓冲容量，防止水分、养分流失，提高作物对土壤水分、养分的利用率。

本发明由于采取以上技术方案，因此具有以下优点：

1、保水缓释肥料，成本低廉、施用简便，可根据不同的作物、土壤、气候等条件，调整肥料的吸水倍率；施用方法与一般农业施肥方法相似。可广泛应用于粮食作物、经济作物、园艺植物等。

2、施用保水缓释肥料，可起到保水节肥、长效增产的作用。保水缓释肥料肥效期长，吸水功能可达2～5年，可大幅度降低肥料因挥发、淋溶所造成的流失，使有限的肥料和水分被植物充分吸收利用，达到水肥一体，改良土壤，便于作物生长的目的，是一般肥料和保水剂所难以实现的。

3、施用保水缓释肥料，可降低农田灌溉成本，达到高效节水的目的。目前喷灌、滴灌等节水农业设施成本较高，无法大面积推广，如推广保水缓释肥料，不仅可以使作物和苗木安全成活，还可节约30～50%的灌溉用水，缓解农业与工业、市政等用水的矛盾。以每亩年节水50～80立方米计算，1亿亩土地可节水50～80亿立方米，相当于中国年缺水量的15～25%。

4、施用保水缓释肥料，可控制农田污染、改善农田生态环境。保水缓释肥料通过科学配方制造生产，其配方因作物和土壤而异，可极大地提高养分利用率，有效抑制了肥料施用对作物和环境的污染。

5、施用保水缓释肥料，可起到防风固沙、恢复生态环境的作用，减轻沙尘暴的威胁。保水缓释肥料特有的保水、固沙功效有利于抗旱减灾，改良沙化土地和沙漠。在年降水量400毫米以上地区合理使用，植物成活率可达95%；在荒漠化治理和中国西部开发上具有明显的优势。

具体实施方式
实施例 1：水稻专用保水缓释肥料的生产

将粒度基本一致的聚丙烯酰胺 100 公斤、氨、磷、钾含量的重量份数比为 14：14：14 的包膜肥料 400 公斤、水淬渣（含二氧化硅 34%）500 公斤及重量份数比为 800ppm 的植物生根粉及加入混合器（包括搅拌机、转鼓、摇盘、双锥混合器等）中，开动混合器 1～2 分钟，然后卸料、装袋，这样得到了聚丙烯酰胺占 10%、NPK 包膜肥料占 40%、水淬渣占 50%，并呈均匀混合物形式的松散掺和物，成为水稻专用保水缓释掺混肥料，其中所含各种有效养分如下：氨 5.6%、五氧化二磷 5.6%、氧化钾 5.6%、二氧化硅 17%以及有关微量元素，总有效养分为 34%。该肥料除用机械混合法生产外，亦可采用人工掺混的办法生产，以下同。

实施例 2：水稻田施用保水缓释肥料肥效的试验

本试验在北京市海淀区上庄乡农技站试验地进行。用实施例 1 的水稻专用保水缓释肥料，与常规尿素、磷酸二铵、氯化钾分别作基肥，在水稻大田生产中作对比试验，在氮、磷、钾、硅养分含量相等条件下，施用常规肥料养分释放快，水稻苗期长势略显优势；但进入营养生长期与生殖生长并进期后，水稻专用保水缓释肥料渐渐发挥优势。试验结果表明，施用水稻专用保水缓释肥料比常规施肥每亩增产水稻 36.5 公斤，增产 12.5%，亩增值 38 元，保水缓释肥料营养元素释放与水稻吸收基本一致，提高了养分利用率，其中氮提高 9.5%，磷提高 6.8%，钾提高 7.9%。同时，由于肥料中保水剂的持水作用，减少了灌溉次数与灌水量，水分利用率提高 15%左右。

实施例 3：玉米专用保水缓释肥料的生产

将粒度基本一致的淀粉接枝丙烯酸盐 100 公斤、氮（N）、磷（P_{2}O_{5}）、钾（K_{2}O）含量的重量份数比为 14：14：14 的包膜肥料 600 公斤、水淬渣（含二氧化硅 34%）300 公斤及重量份数比为 100ppm 的植物生根粉加入混合器（包括搅拌机、转鼓、摇盘、双锥混合器等）中，开动混合器 1～2 分钟，然后卸料、装袋，这样得到了淀粉接枝丙烯酸盐占 10%、NPK 包膜肥料占 60%、水淬渣占 30%，并基本呈均匀混合物形式的松散掺和物，成为玉米专用保水缓释肥料，其中所含各种有效养分如下：氨 8.4%、五氧化二磷 8.4%、氧化钾 8.4%、二氧化硅 10%以及有关微量元素，总有效养分为 35%。

实施例 4：玉米田施用保水缓释肥料肥效的试验

本试验在山东省高唐县进行。用实施例 3 的玉米专用保水缓释肥料，与常规尿素、磷酸二铵、氯化钾分别作基肥，在玉米大田生产中作对比试验，在氮、磷、钾、硅养分含量相等条件下，施用常规肥料养分释放快，玉米苗期长势略显优势；
但进入营养生长期与生殖生长并进期后，玉米专用保水缓释肥料逐渐发挥其优势。试验结果表明，施用玉米专用保水缓释肥料，比常规施肥每亩增产玉米 44.5 公斤，增产 14.5%，亩增产值 42 元，保水缓释肥料营养元素释放与玉米吸收基本一致，提高了养分利用率，其中氮提高 8.9%，磷提高 7.8%，钾提高 9.1%。同时，由于肥料中保水剂的持水作用，减少了灌溉次数与灌水量，水分利用率提高 19%左右。

实施例 5：草坪专用保水缓释肥料的生产

将粒度基本一致的聚丙烯酰胺 400 公斤、氮（N）、磷（P₂O₅）、钾（K₂O）含量的重量份数比为 21:14:18 的掺混肥料 100 公斤（该肥料由 40 公斤脲甲醛、30 公斤磷酸二铵、30 公斤大颗粒氯化钾组成）、水溶渣 500 公斤（含二氧化硅 34%）加入混合器（包括搅拌机、转鼓、摇盘、双锥混合器等）中，开动混合器 1～2 分钟，然后卸料、装袋，得到聚丙烯酰胺占 40%、NPK 掺混肥料占 10%、水溶渣占 50%，并基本呈均匀混合物形式的松散掺和物，成为草坪专用保水缓释肥料，其中所含各种有效养分如下：氮 2.1%、五氧化二磷 1.4%、氧化钾 1.8%、二氧化硅 17%以及有关微量元素，总有效养分为 22.3%。

实施例 6：草坪施用保水缓释肥料肥效的试验

本试验在北京市农林科学院进行。用实施例 5 的草坪专用保水缓释肥料，与常规尿素、磷酸二铵、氯化钾分别作小区追肥试验，小区试验面积 3.5m²，在氮、磷、钾、硅养分含量相等条件下，施用常规肥料养分释放快，草坪表现徒长，徒长后由于通风不良，造成叶卷黄化，影响了草坪的质量，同时浇水次数明显增多，造成了水分和养分的浪费。此外，由于草坪徒长，增加了修剪次数，工费费力；而施用草坪专用保水缓释肥料的小区，草坪生长势平稳，叶色青绿喜人，草坪平整，绿色期长，根系发达保持土的能力强，适应性广，耐粗放管理；由于保水缓释肥料的养分缓慢释放，避免了草坪徒长，减少了施肥次数，提高养分利用率 10%左右；同时由于保水剂的保水作用，减少了草坪的浇水次数，节约灌溉用水 20%；此外，由于草坪长势缓慢，减少了修剪次数，工省工省力。

实施例 7：蔬菜专用保水缓释肥料的生产

将粒度基本一致的聚丙烯酰胺 400 公斤、氮（N）、磷（P₂O₅）、钾（K₂O）含量的重量份数比为 14:14:14 的包膜肥料 100 公斤加入混合器（包括搅拌机、转鼓、摇盘、双锥混合器等）中，开动混合器 1～2 分钟，然后卸料、装袋，得到了聚丙烯酰胺占 80%、NPK 包膜肥料占 20%，并基本呈均匀混合物形式的松散掺和物，成为蔬菜专用保水缓释肥料，其中所含各种有效养分如下：氮 3%、五氧化二磷 3%、氧化钾 3%，总有效养分为 9%。
实施例 8：蔬菜施用保水缓释肥料肥效的试验

本试验在北京市农林科学院进行。用实施例 7 的蔬菜专用保水缓释肥料，与常规缓释肥料分别施用进行盆栽试验，在氮、磷、钾养分含量相等条件下，保水缓释肥料较常规缓释肥料浇水次数和浇水量明显减少，水分利用效率提高 50%，养分利用率提高 10%左右；油菜产量提高 30%。

实施例 9：花卉专用保水缓释肥料的生产

将粒度基本一致的纤维素接枝丙烯腈 400 公斤、含有微量元素铁、锰、钢、锌、硼、钼，氮 (N)、磷 (P₂O₅)、钾 (K₂O) 含量的重量份数比为 14:14:14 的包膜肥料 200 公斤，重量份数比为 100-1000ppm 的植物生根粉及 400 公斤水解渣（含二氧化硅 34%）加入混合器（包括搅拌机、转鼓、摇盘、双锥混合器等）中，开动混合器 1～2 分钟，然后卸料、装袋，得到了聚丙烯酰胺占 40%、NPK 包膜肥料占 20%，水解渣占 40%，并基本呈均匀混合物形式的松散掺和物，成为花卉专用保水缓释肥料，其中所含各种有效成分如下：氮 3%，五氧化二磷 3%、氧化钾 3%，二氧化硅占 13.6%。总有效养分为 22.6%。

实施例 10：花卉施用保水缓释肥料肥效的试验

本试验在北京市农林科学院进行，供试花卉为郁金香、一品红。用实施例 9 的花卉专用保水缓释肥料，与常规缓释肥料分别施用进行盆栽试验，在氮、磷、钾养分含量相等条件下，保水缓释肥料较常规缓释肥料浇水次数和浇水量明显减少，水分利用效率提高 50%，养分利用率提高 10%左右；花期延长，花色鲜艳，提高了花卉的观赏价值。