发明名称
渐开线滚齿齿轮的齿形

摘要
一种具有多个齿的齿轮的齿形，其中齿的齿侧面在其齿根区域上方具有渐开线构造，齿侧面的在法向剖面内观察在齿根使用点和齿根点之间延伸的齿根区域构造为椭圆形，并在齿根使用点内切向地连接到齿侧面的渐开线区域且在齿根点内切向地靠近在齿根圆上。齿侧面在法向剖面内观察在其齿根区域内基本上沿具有不同长度的半轴的椭圆的扇段延伸，其中椭圆的半轴以大于 0°且小于 90°的椭圆倾斜 α 相对于经过齿根点的半径倾斜。另外，齿形的齿的齿侧面关于将各齿在轴向方向上分开的对称面相互对称地形成。
1. 一种具有多个齿（2、3；19）的齿轮的齿形（1），其中所述齿（2、3；
19）的齿侧面（4、5、6；22）在所述齿侧面（4、5、6；22）的齿根区域（7、
8、9；23）上方具有渐开线构造。

其中，所述齿侧面（4、5、6；22）的在法向剖面内观察在齿根使用点（15、
16、17；23）和齿根点（F）之间延伸的所述齿根区域（7、8、9；23）构造为
椭圆形，并在所述齿根使用点（15、16、17；24）内切向连接到所述齿侧面
（4、5、6；22）的所述渐开线区域且在所述齿根点（F）内切向地靠在齿根圆
（FKS）上。

其特征在于:

在法向剖面内观察的所述齿侧面（4、5、6；22）在其齿根区域（7、8、9；
23）内基本上沿具有不同长度的半轴（a、b）的椭圆（10、11、12；E）的轴段
（B）延伸，其中所述椭圆（10、11、12；E）的所述轴半轴（a、b）以大于 0°
且小于 90° 的椭圆倾角 α 相对于经过所述齿根点（F）的半径（R）倾斜，并且，
所述齿形的所述齿（2、3；19）的所述齿侧面（4、5、6；22）关于将各所述齿
（2、3；19）在轴向方向上分开的对称面（A）相互对称地形成。

2. 根据权利要求 1 所述的齿形，其特征在于，所述椭圆（10、11、12；E）
的两个半轴（a、b）的长半轴（a）以大于 0° 且小于 90° 的椭圆倾角 α 从经过
所述齿根点（F）的半径（R）向所述齿侧面（4、5、6；22）倾斜。

3. 根据权利要求 1 所述的齿形，其特征在于，这样地选择所述椭圆（10、
11、12；E）的所述半轴（a、b）以及所述椭圆倾角 α，使得在预先确定的力垂
直地作用在齿顶区域内的所述齿侧面（4、5、6；22）上的情况下在所述齿的齿
根区域内的最大应力是最小的。

4. 根据权利要求 1 所述的齿形，其特征在于，两相邻齿（2、3）的相对的
齿侧面（5、6）无中间空间地切向相互过渡。

5. 一种具有根据权利要求 1 至 4 中任一项所述的齿形的齿轮，其特征在于:
所述齿轮为圆柱齿轮。

6. 根据权利要求 5 所述的齿轮，其特征在于，所述圆柱齿轮是直齿圆柱齿
轮。
7. 一种具有根据权利要求 1 至 4 中任一项所述的齿形的齿轮，其特征在于，所述齿轮为锥齿轮 (18)。

8. 根据权利要求 7 所述的齿轮，其特征在于，所述锥齿轮为直齿锥齿轮。

9. 根据权利要求 7 所述的齿轮，其特征在于，所述椭圆 (E) 的半轴 a 和 b 的长度和/或所述椭圆倾斜角 α 在节锥距上变化。

10. 根据权利要求 7 所述的齿轮，其特征在于，所述椭圆倾斜角 α 和半轴比 a/b 至少在所述齿形的一部分轴向长度上是恒定的。

11. 一种由根据权利要求 5 至 10 中任一项所述的齿轮组成的齿轮对。
渐开线滚齿齿轮的齿形

技术领域

本发明涉及具有多个齿的齿轮的齿形（Verzahnung），所述齿的齿侧面在其齿根区域上方具有渐开线构造，其中，齿侧面的在法向剖面内观察在齿根使用点（Fußnutzpunkt）和齿根点之间延伸的齿根区域构造为椭圆形，并在齿根使用点沿切向连接到齿侧面的渐开线区域且在齿根点沿切向连接到齿根圆。本发明还涉及一种具有相应齿形的齿轮以及由两个这种齿轮组成的齿轮对。

背景技术

这样的齿形以及具有椭圆形齿根圆整的齿轮是现有技术所公知的。

从DE 10208408 A1 中还已知了用于齿轮泵的泵齿轮的非渐开线齿形，其中齿轮的相互对接的齿顶和齿根通过切向相互过渡的椭圆形曲线形成。在此，特别地建议使两个相邻齿的在法向剖面内观察相对的齿侧面在其齿根区域内通过椭圆的公共扇段形成，椭圆的短半轴在由经过齿根点的半径形成的对称面内通过齿槽。

由US 2389728 公知另一种泵齿轮齿形，该专利示出了具有内部齿形的齿圈和在该齿圈的内部齿形内运行的偏心内齿轮。其中，在齿顶区域内通过椭圆给出了外圈的内齿形的齿的齿侧面走向。内齿轮的齿形的几何形状则由齿形定律计算。为优选泵的运行方向，预先确定了内齿轮的各齿的椭圆的半轴可以倾斜，从而实现了非对称的齿轮形式并对泵齿形的运行方向进行优选。

对于渐开线滚齿齿轮，在实践中主要是具有圆形齿根圆整的齿形。当然，在DE 19958670 B4 中结合其不同的齿轮类型提及了椭圆形齿根圆整的可能性，而未对此进一步详细阐述。此外，从实践中已知，椭圆形齿根圆整可降低在滚齿中出现的齿根应力；预先确定了齿形在齿根区域内的齿侧面走向的椭圆的半轴因此总是在齿槽的对称面内。

发明内容
从已公知的现有技术出发，本发明所要解决的技术问题是提供一种用于本
文开头所述类型的渐开线滚柱齿轮的齿形，该齿形保证了对齿根强度的再次改
进。

这一技术问题通过权利要求1所述的齿形解决。根据本发明，齿的齿侧面
在法向剖面内观察因此在其齿根区域内（即在各齿根使用点下方）基本上沿具
有不同长度的半轴a和b的椭圆的扇段延伸，其中椭圆的半轴在椭圆倾角α大
于0°且小于90°的情况下向经过齿根点的半径倾斜。在根据本发明的齿形中，
还分别将齿的两个齿侧面关于将齿在轴向方向上分开的对称面相互对称地形
成。因此，对于以上所述的对于齿侧面的齿根区域的两侧端上的齿侧面走向的
切向条件表示了对于所选中的椭圆扇段或是椭圆本身的附加条件。

因此，通过本发明在两个运行方向上提供了可同样地运行的齿形。根据本
发明的齿形的椭圆形齿根区域在法向剖面内在其上端由齿根使用点限定边界而
在其下端由齿根点限定边界。

在此，在本发明的含义中，齿根使用点是指齿形的在法向剖面内观察在其
上方形成了渐开线齿形的齿侧面各点。因此，在每个法向剖面内齿根使用点表
示齿的齿侧面走向的最低点，该齿以与之共轭地形成的齿形滚齿形成。在已知
齿形参数的情况下，齿根使用点优选地以已知的方式作为最下方的接触点根据
齿形定律得到，然而如果要有意识地缩小例如齿侧面的渐开线滚齿区域，如在
圆锥形齿轮中通常在齿的相互背离的齿端部区域内的在齿根的升高部分的区域
内的情况，则也可以将齿根使用点自由地选择为在最下方的接触点上方。

齿根点应理解为是齿侧面在法向剖面内观察的最低点，即径向内侧点。齿
根点在圆柱齿轮中通常限定了齿轮的齿根圆，或在锥齿轮内限定了锥齿轮的
齿根锥。然而在锥齿轮中需注意到，在法向剖面内观察，齿根圆不必在整个齿
长上与齿根锥重合，因为锥齿轮的齿形通常具有齿根轮廓的升高，特别是在齿
形两侧端部具有最小或最大直径的区域内。因此，在锥齿轮中，在齿长上或在
节锥距的一定范围内因此可以得到与锥形不同的齿根走向。

只要两个相邻齿的齿侧面无中间区域地直接相互过渡，则经过齿根点的半
径就在法向剖面内对应于齿槽的对称轴。

由于（相对于前述的经过齿根点的半径）倾斜的椭圆和两个切向条件所预
先确定的在齿根区域内的齿侧面走向，与之前已知的现有技术相比，实现了齿
在其齿高的上更柔和的横截面变化，这根据本发明导致了齿根在两个运行方向上的承载强度的提高。根据本发明的齿形在此点上不仅优于常规的具有圆形齿根圆整的齿轮，而且优于具有对称地位于齿槽内却相对于经过齿根点的半径倾斜的椭圆的椭圆形齿根圆整。

在渐开线滚齿齿轮中，基本上垂直于在齿顶区域内作用在齿的齿侧面上的力导致了例如可根 DIN 3990 或 ISO 6336 计算出的在齿的齿根区域内应力的分布。通过该应力分布确定了齿根承载强度。在锥齿轮中，为计算与节锥距相关地变化的齿根应力，优选地对于每个法向剖面考虑具有相应法向剖面的齿形参数的所谓的替代圆柱齿轮。在其他条件相同且作用力相同时，在齿根区域内具有较高的应力的齿形提供了较小的齿根承载强度。数值计算显示，通过椭圆形齿根圆整（例如基于本发明的椭圆形齿根圆整），齿根应力整体上比之前已知的齿形更小，且在齿根区域出现了更小的应力峰值。这导致了希望的齿根强度提高。

由于齿的两个齿侧面的相互对称的构造，这特别地也适用于在齿的相对齿侧面上的相应的力作用，且因此适合于利用根据本发明的齿形构造的齿轮对的两个可能的运行方向。

根据本发明的齿形在齿根区域内的齿侧面走向“基本上”沿以上所述的倾斜的椭圆的扇段延伸。为此，也应考虑到与齿侧面的齿根区域的严格的椭圆形走向的（例如相应于通常的制造公差范围内的）微小偏差。特别地，椭圆的扇段，即椭圆弧也可通过其他数学函数任意地近似，使得本技术教导也应包括所要求保护的与根据本发明地定向的椭圆的扇段没有不明显的或者仅有不显著的不同。近似。

在本发明的第一优选实施形式中规定，再次在穿过齿形的法向剖面内观察，在齿根区域内预先确定了齿侧面的椭圆的两个半轴中较长的半轴在向着各齿侧面的方向上从经过齿根点的半径倾斜一个 0° < α <45° 的角度。有利地是齿形的齿根点可比在具有恒定半径和相应的切向条件的圆形齿根圆整中的位置更深。由于齿根点与具有圆形齿根圆整的常规的齿根圆整相比位置更深，因此得到了沿径向从齿根点向齿顶测量的更高的齿。虽然对于在齿顶区域内垂直地作用在齿侧面上的力这导致了更大的杠杆作用，但与常规的齿形相比，在齿根区域内的应力峰值仅得以降低。其原因又在于，由于由倾斜的椭圆的扇段预先确
定的齿根区域，齿的横截面在其整个高度上变化得更柔和。较长的臂此外具有另外的效果：即它提供了例如齿的更小的弹性刚度和齿顶的略微增大的挠度。 这与更小的齿根应力一起导致了避免啮合冲击的作用，这又提高了齿根承载强度。

在本发明的另一个有利的实施形式中建议，这样地选择椭圆参数（即椭圆的半轴 a 和 b 的长度以及椭圆倾斜角 α），使得（在设计齿形时考虑齿顶区域内预先给定的力作用而数值地计算出的）齿的齿根区域内的最大应力值最小化。如数值计算显示，在齿形的齿的齿根区域内的最大应力值取决于所选择的椭圆参数，由此可通过合适地选择椭圆参数再次改进齿根承载强度。在此显然总是关注于使得通过椭圆参数预先确定的椭圆的扇段在齿根使用点和齿根点满足切向条件。对在齿的齿根区域出现的应力最大值的最小化例如可在在合适的值范围内改变椭圆参数 a、b 和 α 以及分别计算在齿的齿根区域内的作为结果的应力分布的情况下进行。专业人员对于为此涉及的数值方法是熟悉的，使用该方法可以如上所述地计算出针对尽可能低的齿根应力优化的在齿根区域内的齿侧面。

另外，根据本发明的齿形可优选地构造为使得两个相邻的齿的齿侧面无中间范围而直接相互过渡，这由于相对的齿侧面在齿根点处各自的切向条件而有可能。在此，两个齿的齿侧面的相互邻接的齿根区域为此分别由两个不同地定向的椭圆的扇段限定；有关的两个椭圆在具有相同长度的半轴 a 和 b，且以一个半轴（分别从经过齿槽的对称面）向有关齿侧面倾斜相同的角为 α。

除根据本发明的齿形外，本发明也涉及构造有根据本发明的齿形的齿轮以及由两个相应的齿轮组成的齿轮对。

根据本发明的齿轮可以有利地是圆柱齿轮或锥齿轮，它们可以优选地构造为直齿形。同时，根据本专利的教导并不限于此，因为本发明的原理也可以用在斜齿轮中。为此，不同于法向剖面，而是考虑垂直于倾斜角度走向的剖面。

在具有根据本发明的齿形的圆柱齿轮中，齿侧面的椭圆形齿根区域优选地在齿的整个轴向长度或齿宽上恒定地走向。但也可以考虑的是椭圆参数在齿宽上变化，特别是齿侧面具有修形修整时，例如具有端部凹槽（Enddrickecknahme）的形式，这例如可通过轮廓移动的变化而产生，或通过另一种影响渐开线齿侧平面范围的修改而形成。在这样的修改的范围内，椭圆参数的匹配对于切向条件
的满足是合适的和必需的。根据修改的类型，可以在必要时相应地匹配一个或多个椭圆参数且保持其它椭圆参数不变。

为此，在锥齿轮的情况下要求一个或多个椭圆参数与各节锥距相匹配。因此，根据本发明的有利的实施形式，这样地构造根据本发明的锥齿轮，使得椭圆的半轴 a 和 b 的长度和/或椭圆的倾斜角 α 在所观察的各个法向剖面的节锥距上变化。

在具有规则齿形的锥齿轮中，此匹配可有利地相对简单地实现，例如通过从对于一定的节锥距选择的椭圆参数出发，将椭圆倾斜角 α 在整个齿长上选择为恒定，且为在各节锥距内满足各自的切向条件而仅根据节锥距对椭圆的半轴的有关长度（必要时以恒定的半轴比 a/b）进行匹配。

当然，锥齿形在齿的长度上受到另外的修改，这不仅与取决于节锥距而较大的节圆有关，而是优选地对于每个节锥距分开地匹配所有的椭圆参数。

为此在设计齿形时要求，首先对于确定的节锥距确定椭圆参数。在各中间区域中，齿侧面在齿根区域内可以（在考虑切向条件的情况下）例如通过现行的差值方法逐渐地从一个椭圆弧引导到另一个椭圆弧。此外，在齿根区域内，齿侧面可以在中间区域内有利地通过规定用于每个节锥距的每个精确椭圆参数来规定，该椭圆参数可以通过在中间区域的边缘上对预先选择的椭圆参数插值（必要时为线性插值）而得到。然而，在此应注意也要在齿根使用点和齿根点满足切向条件，以一方面实现齿根向渐开线内的流畅过渡而另一方面实现齿根向另一个齿的齿侧面内或是齿槽内的流畅过渡。

根据锥齿轮齿形的具体构造的不同，将齿形根据节锥距（即在齿长上）分为不同的区域也是合适的，在所述区域内可应用椭圆参数变化的适当规律。尤其是椭圆参数可在一定区域内保持恒定而在其它区域内则根据节锥距变化。业已证明恒定的半轴比 a/b 在一些区域内是有意义的，而在其它区域内半轴比可随节锥距变化，必要时线性地变化。

优选地，根据本发明的锥齿轮具有根据本发明的齿形，在该齿形中，椭圆倾斜角 α 以及半轴比 a/b 至少在一部分齿长上是恒定的。

根据本发明的齿轮由于其齿形的齿根区域的复杂构造而优选地采用成型制造，例如锻造。不过，切削制造也是可以的。
附图说明

下面将结合附图解释本发明。在附图中：
图1以法向剖面示出了根据本发明的圆柱齿轮的齿形的实施例；
图2示出了通过根据本发明的锥齿轮的实施例的轴向剖面；而
图3至图7示出了穿过图2所示锥齿轮的齿形的不同法向剖面。

具体实施方式

在图1中以法向剖面内剖开地示出了根据本发明的直齿圆柱齿轮的实施例。图中可见两个齿2、3的齿侧面走向，其中在图1中示意于右侧的齿3的齿侧面走向仅示至其在轴向方向上将齿分开的对称面A。

齿2、3的齿侧面4、5、6分别在齿根区域7、8、9上方形成为渐开线，而齿侧面4、5、6在齿根区域7、8、9内分别对应于具有半轴a和b的椭圆10、11、12的扇段B，其中a>b。齿侧面4、5、6的构造为椭圆形的齿根区域7、8、9向上（即关于在图1中未示出的齿轮中点沿径向向外）各由一个齿根使用点15、16、17限定边界，而齿根使用点15、16、17则连接到齿2、3的齿侧面4、5、6的延伸至各齿顶13、14的渐开线区域。在各齿侧面4、5、6的齿根使用点15、16、17，齿侧面4、5、6的渐开线区域与由椭圆10、11、12的扇段B形成的齿侧面4、5、6的齿根区域7、8、9切向地相互过渡。齿根区域7、8、9向下（即径向向外）各自由齿根点F限定边界，在齿根点内齿根区域7、8、9切向地靠在齿根圆FKS上。在图1中进一步还示出了齿形的节圆TKS。

各个仅部分示出了一半的椭圆10、11、12的不同长度的半轴a、b在齿槽内不是对称地布置，而是关于经过齿根点F的有关半径R以大于0°且小于90°的椭圆倾角a倾斜。半径R在此表示为穿过齿槽的齿形的对称轴。在此，椭圆10、11、12的长半轴a分别从对称轴R起以朝向各齿侧面4、5、6的方向的椭圆倾角a倾斜，所述齿侧面4、5、6的齿根区域7、8、9由椭圆10、11、12的有关扇段B形成。对称轴R和对称轴A共同在未示出的齿轮中心轴线内相交。

在图1左侧所示的齿2的左侧示出的齿侧面4关于齿2的对称面A与相同的齿2的第二齿侧面（相对面）5对称地形成。同样，图1中右侧示出的齿3的左侧齿侧面6也关于该处的对称面A与相同的齿3的（未示出的）第二齿侧
面对称地形成。在图 1 中仅剖开地示出的圆柱齿轮的其它齿同样地形成，且优选在轴向方向上以恒定的齿侧面走向。

图 2 表示了穿过根据本发明的直齿圆柱齿轮的实施例的纵向剖面。该锥齿轮 18 构造为围绕轴向走向的中心轴线 M 的旋转体，且具有多个齿 19。进一步示出齿根锥 FK、节锥 TK 和顶锥 KK 作为锥齿轮 18 的特征，它们各自的延长线在此在中心轴线 M 上的共同的交点 S 处相遇。后者不是强制的，因为为两个相互滚压的锥齿轮的间隙调整在必要时也可以提供顶锥和齿根锥的平行移动。

在齿轮的相互背对的端部区域 20、21 内齿根轮廓升高，使得在此区域内齿根圆 FKS 位于齿根锥 FK 的径向外侧。

在图 2 中示出的穿过锥齿轮 18 的剖面精确地说是延伸穿过齿槽，因此根据本发明的齿轮的齿 19 的齿侧面 22 在前视图中可见。在此绘出了齿根使用点 24 在节锥距上的走向。

齿侧面 22 的走向参见图 3 至图 7，图中示出了按照图 2 中以罗马数字标识的剖面线在不同节锥距的情况下垂直于节锥 TK 地延伸穿过齿侧面 22 的不同法向剖面。在此，图 3 表示了剖面 III，图 4 表示了剖面 IV，图 5 表示了剖面 V，图 6 表示了剖面 VI，而图 7 表示了剖面 VII。

齿侧面 22 在各法向剖面内有各齿根使用点 24 上形成为渐开线，但图 3 的剖面中例外，在图 3 的剖面中齿侧面 22 由于明显的齿根缩短而已在此处的齿根使用点 24 以外结束（也参见图 2）。在齿根使用点 24 以下，齿侧面 22 直到齿根点 F 总是对应于（各仅示出了一半）具有根据节锥距变化的半轴 a 和 b 的椭圆 E 的扇段 B。各椭圆 E 的扇段 B 结束在切向地在齿根圆 FKS 上的每个齿根点 F 处，且在每个齿根点 24 切向地过渡到齿侧面 22 的渐开线区域内。每个椭圆 E 的长半轴 a 以在节锥距上变化的 $0^\circ < \alpha < 90^\circ$ 的角度 $\alpha$ 从穿过各齿根点 F 的半径 R 向齿侧面 22 的方向倾斜。

在齿侧面 22 的位于图 2 的剖面线 IV 和 V 之间的区域内，各齿根圆 FKS 与齿根锥 FK 重合且齿根使用点 24 也沿锥走向，椭圆倾斜角 $\alpha$ 在每个法向剖面内具有恒定的值。在此仅各椭圆的半轴 a 和 b 的长度与节锥距成比例地变化，由此保持其半轴比 a/b 恒定。因此，在图 4 和图 5 中的椭圆倾斜角 $\alpha$ 也具有近似相同的值；微小的差异仅仅在于，图 5 的剖面已在齿侧面 22 的范围内实现,
在该处由齿根点F规定的齿根圆FKS由于在此已经开始的齿根升高而略微位于
齿根圆FK的径向外侧（参考图2）。

另外，齿顶25在齿形的端部区域内相对于齿顶锥FF回缩。无此回缩，就
会出现在图3、图5、图6和图7中以点虚线示出的齿侧面走向26。

在图2至图7中仅示出了一半的齿的相对齿侧面关于对称面A与齿侧面
22对称地形成。朝向对称面22的相邻齿的齿侧面22对称于由半径R形成的对
称面地连接，类似于图1所示圆柱齿轮的情况。锥齿轮18的其它齿类似地形成。
图 1