wo 2012/037293 A1 |]I} ORT 0O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Property Organization /5% =)
(19) Work Ttellctual Propety Orsaniation /22 | NIV NUAENYO LR
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
22 March 2012 (22.03.2012) PCT WO 2012/037293 Al
(51) International Patent Classification: Way, #330, Mountain View, California 94041 (US).
GO6F 3/06 (2006.01) GO6F 12/02 (2006.01) HONG, Bo [CN/US]; 1555 W. Middlefield Rd., Apt. 95,
GO6F 11/10 (2006.01) Mountain View, California 94043 (US). WANG, Feng
. .) [CN/US]; 1505 Lochinvar Ave., Sunnyvale, California
(21) International Application Number.PCT/USzOl1/051654 94087 (US). MILLER, Ethan [US/US]; 203 Kalkar
Drive, Santa Cruz, California 95060 (US). HARMER,
(22) International Filing Date: Craig [US/US]; 110 Clayton Street, San Francisco, Cali-
14 September 2011 (14.09.2011) fornia 94117 (US).
(25) Filing Language: Fnglish (74) Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &
L.] . GOETZEL, P.C.; RANKIN, Rory, D., P.O. Box 398,
(26) Publication Language: English Austin, Texas 78767-0398 (US).
(30) Priority Data: (81) Desi L.
gnated States (unless otherwise indicated, for every
12/882,854 15 September 2010 (15.09.2010) Us kind of national protection available): AE, AG, AL, AM,
(71) Applicant (for all designated States except US): PURE AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
Storage, Inc. [US/US]; 650 Castro Street, Suite 220, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
Mountain View, California 94041 (US). DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(72) Inventors; and KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(75) Inventors/Applicants (for US orly): COLGROVE, John ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

[US/US]; 722 Vista Grande Ave., Los Altos, California
94024 (US). HAYES, John [CA/US]; 800 High School

NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ,

[Continued on next page]

(54) Title: SCHEDULING OF I/O IN AN SSD ENVIRONMENT

Methad 300

Ve
»

Schedule read and write operations for
one or more storage devices.

Y

A 4

Monitor behavior of the one or more
storage devices, and I/O requests to
the devices.

304

i

Detect
variant behavior of a
given device at an
unpredicted
time?
310

Detect
Behaviors of a device
which may affect /O
performance?

f—No

Yes

Yes

!

Schedule proactive operation(s)
on the given device
208

Schedule reactive operation(s)
on the given device
312

FIG. 3

(57) Abstract: A system and method for effectively scheduling
read and write operations among a plurality of solid-state stor-
age devices. A computer system comprises client computers
and data storage arrays coupled to one another via a network. A
data storage array utilizes solid-state drives and Flash memory
cells for data storage. A storage controller within a data storage
array comprises an I/O scheduler. The characteristics of corre-
sponding storage devices are used to schedule /O requests to
the storage devices in order to maintain relatively consistent re-
sponse times at predicted times. In order to reduce a likelihood
of unscheduled behaviors of the storage devices, the storage
controller is configured to schedule proactive operations on the
storage devices that will reduce a number of occurrences of un-
scheduled behaviors.

WO 2012/037293 A1 I 0000V 00O A O

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
M, ZW. LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,
M, TR), OAPI (BF, BJ, CF I, CM, GA, GN.
(84) Designated States (unless otherwise indicated, for every ?}W,, MIZZ 1(\)/[R, N(E, éN,J:F]g, :Fg?, CL, (M, GA, GN, GQ,

kind of regional protection available): ARTPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, Published:
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ SO ,
2 » 08, DY, DL A, MEYs B Us W with international search report (Art. 21(3
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, with international search report (Art. 21(3))

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

TITLE: SCHEDULING OF I/0 IN AN SSD ENVIRONMENT

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This invention relates to computer networks and, more particularly, to computing data

storage systems.

Description of the Related Art

[0002] As computer memory storage and data bandwidth increase, so does the amount and
complexity of data that businesses manage. Large-scale distributed storage systems, such as data
centers, typically run many business operations. A distributed storage system may be coupled to
a number of client computers interconnected by one or more networks. If any portion of the
distributed storage system has poor performance or becomes unavailable, company operations
may be impaired or stopped completely. Such distributed storage systems seek to maintain high
standards for data availability and high-performance functionality.

[0003] Within storage systems themselves, file system and storage device-level input/output
(I/0) schedulers generally determine an order for read and write operations in addition to
providing steps for how the operations are to be executed. For example, non-sequential read and
write operations may be more expensive to execute for a storage device (e.g., in terms of time
and/or resources) than sequential read and write operations. Therefore, 1/O schedulers may
attempt to reduce non-sequential operations. In addition, 1/O schedulers may provide other
functions such as starvation prevention, request merging, and inter-process fairness.

[0004] At least the read and write response times may substantially differ between storage
devices. Such differences may be characteristic of the technology itself. Consequently, the
technology and mechanisms associated with chosen data storage devices may determine the
methods used to perform effective 1/0 scheduling. For example, many current algorithms were
developed for systems utilizing hard disk drives (HDDs). HDDs comprise one or more rotating
disks, each coated with a magnetic medium. These disks rotate at a rate of several thousand
rotations per minute. In addition, an electro-magnetic actuator is responsible for positioning
magnetic read/write devices over the rotating disks. The mechanical and electro-mechanical
design of the device affects its I/O characteristics. Unfortunately, friction, wear, vibrations and

mechanical misalignments may create reliability issues as well as affect the I/O characteristics of

1

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

the HDD. Many current I/O schedulers are designed to take account for the input/output (1/0)
characteristics of HDDs.

[0005] One example of another type of storage medium is a Solid-State Drive (SSD). In
contrast to HDDs, SSDs utilize solid-state memory to store persistent data rather than magnetic
media devices. The solid-state memory may comprise Flash memory cells. Flash memory has a
number of features, which differ from that of hard drives. For example, Flash memory cells are
generally erased in large blocks before being rewritten or reprogrammed. Flash memory is also
generally organized in complex arrangements, such as dies, packages, planes and blocks. The
size and parallelism of a chosen arrangement, the wear of the Flash memory over time, and the
interconnect and transfer speeds of the device(s) all may vary. Additionally, such devices may
also include a flash translation layer (FTL) to manage storage on the device. The algorithms
utilized by the FTL can vary and may also contribute to variations in the behavior and/or
performance of the device. Consequently, high performance and predictable latencies may not
generally be achieved in systems using flash based SSDs for storage while utilizing 1/O
schedulers designed for systems such as hard drives which have different characteristics.

[0006] In view of the above, systems and methods for effectively scheduling read and write

operations among a plurality of storage devices are desired.

SUMMARY OF THE INVENTION

[0007] Various embodiments of a computer system and methods for effectively scheduling
read and write operations among a plurality of solid-state storage devices are disclosed.

[0008] In one embodiment, a computer system comprises a plurality of client computers
configured to convey read and write requests over a network to one or more data storage arrays
coupled to receive the read and write requests via the network. Contemplated is a data storage
array(s) comprising a plurality of storage locations on a plurality of storage devices. In various
embodiments, the storage devices are configured in a redundant array of independent drives
(RAID) arrangement for data storage and protection. The data storage devices may include
solid-state memory technology for data storage, such as Flash memory cells. Characteristics of
corresponding storage devices are used to schedule I/O requests to the storage devices.
Characteristics may include predicted response times for I/O requests, device age, any
corresponding cache size, access rates, error rates, current 1/0 requests, completed I/O requests,

and so forth.

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0009] In one embodiment, an I/O scheduler is configured to receive read and write requests
and schedule the read and write requests for processing by a plurality of storage devices. The
storage devices may exhibit varying latencies depending upon the operations being serviced, and
may also exhibit unscheduled or unpredicted behaviors at various times that cause performance
to vary from the expected or desired. In various embodiments these behaviors correspond to
behaviors in which the devices are functioning properly (i.c., not in an error state), but are simply
performing at a less than expected or desired level based on latencies and/or throughput. Such
behaviors and performance may be referred to as “variable performance” behaviors. These
variable performance behaviors may, for example, be exhibited by technologies such as flash
based memory technologies. In order to reduce the occurrence of such behaviors by the devices,
in one embodiment the scheduler is configured to schedule proactive operations on the one or
more storage devices at certain times. The proactive operations may generally reduce the
likelihood of a device exhibiting the unscheduled behaviors. In some embodiments, the
scheduler monitors a state of the devices and system and schedules proactive operations for a
given device based on a prediction that an unscheduled behavior is forthcoming or will otherwise
occur. In some embodiments, the scheduler may schedule proactive operations for the storage
devices at random times.

[0010] These and other embodiments will become apparent upon consideration of the

following description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 is a generalized block diagram illustrating one embodiment of network
architecture.
[0012] FIG. 2 depicts a conceptual model according to one embodiment of a computing
System.
[0013] FIG. 3 is a generalized flow diagram illustrating one embodiment of a method for
adjusting I/0 scheduling to reduce unpredicted variable I/O response times on a data storage
subsystem.
[0014] FIG. 4 is generalized block diagram illustrating one embodiment of a method for
segregating operations issued to a storage device.
[0015] FIG. 5 is generalized flow diagram illustrating one embodiment of a method for

developing a model to characterize the behavior of storage devices in a storage subsystem.

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0016] FIG. 6 is a generalized block diagram illustrating one embodiment of a storage
subsystem.
[0017] FIG. 7 is a generalized block diagram illustrating another embodiment of a device unit.
[0018] FIG. 8 is a generalized block diagram illustrating another embodiment of a state table.
[0019] FIG. 9 is a generalized flow diagram illustrating one embodiment of a method for
adjusting I/0 scheduling to reduce unpredicted variable I/O response times on a data storage
subsystem.
[0020] FIG. 10 is a generalized flow diagram illustrating one embodiment of a method for
maintaining read operations with efficient latencies on shared data storage.
[0021] FIG. 11 is a generalized flow diagram illustrating one embodiment of a method for
reducing a number of storage devices exhibiting variable I/O response times.
[0022] FIG. 12 is a generalized flow diagram illustrating one embodiment of a method for
maintaining read operations with efficient latencies on shared data storage.
[0023] While the invention is susceptible to various modifications and alternative forms,
specific embodiments are shown by way of example in the drawings and are herein described in
detail. It is to be understood, however, that drawings and detailed description thereto are not
intended to limit the invention to the particular form disclosed, but on the contrary, the invention
is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the

present invention as defined by the appended claims.

DETAILED DESCRIPTION

[0024] In the following description, numerous specific details are set forth to provide a
thorough understanding of the present invention. However, one having ordinary skill in the art
will recognize that the invention might be practiced without these specific details. In some
instances, well-known circuits, structures, signals, computer program instruction, and techniques
have not been shown in detail to avoid obscuring the present invention.

[0025] Referring to FIG. 1, a generalized block diagram of one embodiment of a network
architecture 100 is shown. As described further below, one embodiment of network architecture
100 includes client computer systems 110a-110b interconnected to one another through a
network 180 and to data storage arrays 120a-120b. Network 180 may be coupled to a second
network 190 through a switch 140. Client computer system 110c¢ is coupled to client computer
systems 110a-110b and data storage arrays 120a-120b via network 190. In addition, network 190
may be coupled to the Internet 160 or other outside network through switch 150.

4

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0026] It is noted that in alternative embodiments, the number and type of client computers
and servers, switches, networks, data storage arrays, and data storage devices is not limited to
those shown in FIG. 1. At various times one or more clients may operate offline. In addition,
during operation, individual client computer connection types may change as users connect,
disconnect, and reconnect to network architecture 100. Further, while the present description
generally discusses network attached storage, the systems and methods described herein may also
be applied to directly attached storage systems and may include a host operating system
configured to perform one or more aspects of the described methods. Numerous such alternatives
are possible and are contemplated. A further description of each of the components shown in
FIG. 1 is provided shortly. First, an overview of some of the features provided by the data
storage arrays 120a-120b is described.

[0027] In the network architecture 100, ecach of the data storage arrays 120a-120b may be
used for the sharing of data among different servers and computers, such as client computer
systems 110a-110c. In addition, the data storage arrays 120a-120b may be used for disk
mirroring, backup and restore, archival and retrieval of archived data, and data migration from
one storage device to another. In an alternate embodiment, one or more client computer systems
110a-110c may be linked to one another through fast local arca networks (LANSs) in order to
form a cluster. Such clients may share a storage resource, such as a cluster shared volume
residing within one of data storage arrays 120a-120b.

[0028] Each of the data storage arrays 120a-120b includes a storage subsystem 170 for data
storage. Storage subsystem 170 may comprise a plurality of storage devices 176a-176m. These
storage devices 176a-176m may provide data storage services to client computer systems 110a-
110c. Each of the storage devices 176a-176m uses a particular technology and mechanism for
performing data storage. The type of technology and mechanism used within each of the storage
devices 176a-176m may at least in part be used to determine the algorithms used for controlling
and scheduling read and write operations to and from each of the storage devices 176a-176m.
The logic used in these algorithms may be included in one or more of a base operating system
(OS) 116, a file system 140, one or more global I/O schedulers 178 within a storage subsystem
controller 174, control logic within each of the storage devices 176a-176m, or otherwise.
Additionally, the logic, algorithms, and control mechanisms described herein may comprise
hardware and/or software.

[0029] Each of the storage devices 176a-176m may be configured to receive read and write

requests and comprise a plurality of data storage locations, each data storage location being

5

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

addressable as rows and columns in an array. In one embodiment, the data storage locations
within the storage devices 176a-176m may be arranged into logical, redundant storage
containers or RAID arrays (redundant arrays of inexpensive/independent disks). In some
embodiments, each of the storage devices 176a-176m may utilize technology for data storage
that is different from a conventional hard disk drive (HDD). For example, one or more of the
storage devices 176a-176m may include or be further coupled to storage consisting of solid-state
memory to store persistent data. In other embodiments, one or more of the storage devices 176a-
176m may include or be further coupled to storage using other technologies such as spin torque
transfer technique, magnetoresistive random access memory (MRAM) technique, shingled disks,
memristors, phase change memory, or other storage technologies. These different storage
techniques and technologies may lead to differing /O characteristics between storage devices.
[0030] In one embodiment, the included solid-state memory comprises solid-state drive (SSD)
technology. Typically, SSD technology utilizes Flash memory cells. As is well known in the art,
a Flash memory cell holds a binary value based on a range of electrons trapped and stored in a
floating gate. A fully erased Flash memory cell stores no or a minimal number of electrons in the
floating gate. A particular binary value, such as binary 1 for single-level cell (SLC) Flash, is
associated with an erased Flash memory cell. A multi-level cell (MLC) Flash has a binary value
11 associated with an erased Flash memory cell. After applying a voltage higher than a given
threshold voltage to a controlling gate within a Flash memory cell, the Flash memory cell traps a
given range of electrons in the floating gate. Accordingly, another particular binary value, such
as binary 0 for SLC Flash, is associated with the programmed (written) Flash memory cell. A
MLC Flash cell may have one of multiple binary values associated with the programmed
memory cell depending on the voltage applied to the control gate.

[0031] The differences in technology and mechanisms between HDD technology and SDD
technology may lead to differences in input/output (I/O) characteristics of the data storage
devices 176a-176m. Generally speaking, SSD technologies provide lower read access latency
times than HDD technologies. However, the write performance of SSDs is generally slower than
the read performance and may be significantly impacted by the availability of free,
programmable blocks within the SSD. As the write performance of SSDs is significantly slower
compared to the read performance of SSDs, problems may occur with certain functions or
operations expecting latencies similar to reads. Additionally, scheduling may be made more
difficult by long write latencies that affect read latencies. Accordingly, different algorithms may

be used for 1/0 scheduling in each of the data storage arrays 120a-120b.

6

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0032] In one embodiment, where different types of operations such as read and write
operations have different latencies, algorithms for 1/0 scheduling may segregate these
operations and handle them separately for purposes of scheduling. For example, within one or
more of the storage devices 176a-176m, write operations may be batched by the devices
themselves, such as by storing them in an internal cache. When these caches reach a given
occupancy threshold, or at some other time, the corresponding storage devices 176a-176m may
flush the cache. In general, these cache flushes may introduce added latencies to read and/or
writes at unpredictable times, which leads to difficulty in effectively scheduling operations.
Therefore, an I/O scheduler may utilize characteristics of a storage device, such as the size of the
cache or a measured idle time, in order to predict when such a cache flush may occur. Knowing
characteristics of each of the one or more storage devices 176a-176m may lead to more effective
I/0 scheduling. In one embodiment, the global I/0 scheduler 178 may detect a given device of
the one or more of the storage devices 176a-176m is exhibiting long response times for 1/0
requests at unpredicted times. In response, the global I/O scheduler 178 may schedule a given
operation to the given device in order to cause the device to resume exhibiting expected
behaviors. In one embodiment, such an operation may be a cache flush command, a trim
command, an erase command, or otherwise. Further details concerning I/0O scheduling will be

discussed below.

[0033] Components of a Network Architecture

[0034] Again, as shown, network architecture 100 includes client computer systems 110a-
110c interconnected through networks 180 and 190 to one another and to data storage arrays
120a-120b. Networks 180 and 190 may include a variety of techniques including wireless
connection, direct local area network (LAN) connections, wide area network (WAN) connections
such as the Internet, a router, storage area network, Ethernet, and others. Networks 180 and 190
may comprise one or more LANs that may also be wireless. Networks 180 and 190 may further
include remote direct memory access (RDMA) hardware and/or software, transmission control
protocol/internet protocol (TCP/IP) hardware and/or software, router, repeaters, switches, grids,
and/or others. Protocols such as Fibre Channel, Fibre Channel over Ethernet (FCoE), iSCSI, and
so forth may be used in networks 180 and 190. Switch 140 may utilize a protocol associated
with both networks 180 and 190. The network 190 may interface with a set of communications
protocols used for the Internet 160 such as the Transmission Control Protocol (TCP) and the

Internet Protocol (IP), or TCP/IP. Switch 150 may be a TCP/IP switch.

7

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0035] Client computer systems 110a-110c are representative of any number of stationary or
mobile computers such as desktop personal computers (PCs), servers, server farms,
workstations, laptops, handheld computers, servers, personal digital assistants (PDAs), smart
phones, and so forth. Generally speaking, client computer systems 110a-110c¢ include one or
more processors comprising one or more processor cores. Each processor core includes circuitry
for executing instructions according to a predefined general-purpose instruction set. For example,
the x86 instruction set architecture may be selected. Alternatively, the Alpha®, PowerPC®,
SPARC®, or any other general-purpose instruction set architecture may be selected. The
processor cores may access cache memory subsystems for data and computer program
instructions. The cache subsystems may be coupled to a memory hierarchy comprising random
access memory (RAM) and a storage device.

[0036] Each processor core and memory hierarchy within a client computer system may be
connected to a network interface. In addition to hardware components, each of the client
computer systems 110a-110c may include a base operating system (OS) stored within the
memory hierarchy. The base OS may be representative of any of a variety of operating systems,
such as, for example, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, Linux®, Solaris®,
AIX®, DART, or otherwise. As such, the base OS may be operable to provide various services
to the end-user and provide a software framework operable to support the execution of various
programs. Additionally, each of the client computer systems 110a-110c may include a
hypervisor used to support virtual machines (VMs). As is well known to those skilled in the art,
virtualization may be used in desktops and servers to fully or partially decouple software, such as
an OS, from a system’s hardware. Virtualization may provide an end-user with an illusion of
multiple OSes running on a same machine each having its own resources and access to logical
storage entities (e.g., LUNSs) built upon the storage devices 176a-176m within each of the data
storage arrays 120a-120b.

[0037] Each of the data storage arrays 120a-120b may be used for the sharing of data among
different servers, such as the client computer systems 110a-110c. Each of the data storage arrays
120a-120b includes a storage subsystem 170 for data storage. Storage subsystem 170 may
comprise a plurality of storage devices 176a-176m. Each of these storage devices 176a-176m
may be an SSD. A controller 174 may comprise logic for handling received read/write requests.
For example, the algorithms briefly described above may be executed in at least controller 174.

A random-access memory (RAM) 172 may be used to batch operations, such as received write

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

requests. In various embodiments, when batching write operations (or other operations) non-
volatile storage (¢.g., NVRAM) may be used.

[0038] The base OS 132, the file system 134, any OS drivers (not shown) and other software
stored in memory medium 130 may provide functionality providing access to files and the
management of these functionalities. The base OS 134 and the OS drivers may comprise
program instructions stored on the memory medium 130 and executable by processor 122 to
perform one or more memory access operations in storage subsystem 170 that correspond to
received requests. The system shown in FIG. 1 may generally include one or more file servers
and/or block servers.

[0039] Each of the data storage arrays 120a-120b may use a network interface 124 to connect
to network 180. Similar to client computer systems 110a-110c, in one embodiment, the
functionality of network interface 124 may be included on a network adapter card. The
functionality of network interface 124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only memory (ROM) may be included on a
network card implementation of network interface 124. One or more application specific
integrated circuits (ASICs) may be used to provide the functionality of network interface 124.
[0040] In one embodiment, a data storage model may be developed which seeks to optimize
I/O performance. In one embodiment, the model is based at least in part on characteristics of the
storage devices within a storage system. For example, in a storage system which utilizes solid
state storage technologies, characteristics of the particular devices may be used to develop
models for the devices, which may in turn serve to inform corresponding 1/O scheduling
algorithms. For example, if particular storage devices being used exhibit write latencies that are
relatively high compared to read latencies, such a characteristic may be accounted for in
scheduling operations. It is noted that what is considered relatively high or low may vary
depending upon the given system, the types of data being processed, the amount of data
processed, the timing of data, or otherwise. Generally speaking, the system is programmable to
determine what constitutes a low or high latency, and/or what constitutes a significant difference
between the two.

[0041] Generally speaking, any model which is developed for devices, or a computing
system, will be incomplete. Often, there are simply too many variables to account for in a real
world system to completely model a given system. In some cases, it may be possible to develop
models which are not complete but which are nevertheless valuable. As discussed more fully

below, embodiments are described wherein storage devices are modeled based upon

9

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

characteristics of the devices. In various embodiments, I/O scheduling is performed based on
certain predictions as to how the devices may behave. Based upon an understanding of the
characteristics of the devices, certain device behaviors are more predictable than others. In order
to more effectively schedule operations for optimal 1/O performance, greater control over the
behavior of the system is desired. Device behaviors which are unexpected, or unpredictable,
make it more difficult to schedule operations. Therefore, algorithms are developed which seek to
minimize unpredictable or unexpected behavior in the system.

[0042] FIG. 2 provides a conceptual illustration of a device or system that is being modeled,
and approaches used to minimize unpredictable behaviors within the device or system. In a first
block 200, an Ideal scenario is depicted. Shown in block 200 is a system 204 and a model 202 of
that system. In one embodiment, the system may be that of a single device. Alternatively, the
system may comprises many devices and/or components. As discussed above, the model 202
may not be a complete model of the system 204 it seeks to model. Nevertheless, the model 202
captures behaviors of interest for purposes of the model. In one embodiment, the model 202 may
seck to model a computing storage system. In the ideal scenario 200, the actual behavior of the
system 204 is “aligned” with that of the model 202. In other words, the behavior of the system
204 generally comports with those behaviors the model 202 seeks to capture. While the system
behavior 204 is in accord with that of the model 202, the system behavior may generally be more
predictable. Consequently, scheduling of operations (e.g., read and write operations) within the
system may be performed more effectively.

[0043] For example, if it is desired to optimize read response times, it may be possible to
schedule reads so that they are serviced in a more timely manner if other behaviors of the system
are relatively predictable. On the other hand, if system behavior is relatively unpredictable, then
a level of confidence in an ability to schedule those reads to provide results when desired is
diminished. Block 210 illustrates a scenario in which system behavior (the smaller circle) is not
aligned with that of the model of that system (the larger circle). In this case, the system is
exhibiting behaviors which fall outside of the model. Consequently, system behavior is less
predictable and scheduling of operations may become less effective. For example, if solid state
memory devices are used in the storage system, and these devices may initiate actions on their
own which cause the devices to service requests with greater (or otherwise unexpected) latencies,
then any operations which were scheduled for that device may also experience greater or

unexpected latencies. One example of such a device operation is an internal cache flush.

10

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0044] In order to address the problem of unexpected or unscheduled system behaviors and
corresponding variable performance, the model which is developed may include actions which it
may take to restore the system to a less uncertain state. In other words, should the system begin
exhibiting behaviors which degrade the model’s ability to predict the system’s behavior, the
model has built into it certain actions it can take to restore the system to a state wherein the
particular unexpected behavior is eliminated or rendered less likely. In the example shown, an
action 212 is shown which secks to “move” the system to a state more closely aligned with the
model. The action 212 may be termed a “reactive” action or operation as it is performed in
response to detecting the system behavior which is outside of the model. Subsequent to
performing the action 212, a more ideal state 220 may be achieved.

[0045] While developing a model which can react to unpredictable behaviors to move the
system to a more ideal state is desirable, the existence of those unpredictable behaviors may still
interfere with effective scheduling operations. Therefore, it would be desirable to minimize the
occurrence of the unexpected behaviors or events. In one embodiment, a model is developed
which includes actions or operations designed to prevent or reduce the occurrence of unexpected
behaviors. These actions may be termed “proactive” actions or operations as they may generally
be performed proactively in order to prevent the occurrence of some behavior or event, or change
the timing of some behavior or event. Block 230 in FIG. 2 illustrates a scenario in which system
behavior (the smaller circle) is within that of the model (the larger circle). Nevertheless, the
model takes action 232 to move the system behavior in such a way that it remains within the
model and perhaps more ideally aligned. The system behavior in block 230 may be seen to be
nearing a state where it exhibits behavior outside of the model. In such a case the model may
have some basis for believing the system is nearing such a state. For example, if the 1/O
scheduler has conveyed a number of write operations to a given device, the scheduler may
anticipate that the device may perform an internal cache flush operation at some time in the
future. Rather than waiting for the occurrence of such an event, the scheduler may proactively
schedule a cache flush operation for that device so that the cache flush is performed at a time of
the scheduler’s choosing. Alternatively, or in addition to the above, such proactive operations
could be performed at random times. While the cache flush still occurs, its occurrence is not
unexpected and it has now become part of the overall scheduling performed by the scheduler and
may be managed in a more effective and intelligent manner. Subsequent to performing this
proactive action 232, the system may generally be seen to be in a more predictable state 240.

This is because a cache flush was scheduled and performed on the device and the likelihood of

11

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

the device spontaneously initiating an internal cache flush on its own is reduced (i.e., its cache
has already been flushed). By combining both reactive and proactive actions or operations
within the model, greater system predictability may be achieved and improved scheduling may
likewise be achieved.

[0046] Referring now to FIG. 3, one embodiment of a method 300 for performing I/O
scheduling to reduce unpredicted behaviors is shown. The components embodied in network
architecture 100 and data storage arrays 120a-120b described above may generally operate in
accordance with method 300. The steps in this embodiment are shown in sequential order.
However, some steps may occur in a different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps, and some steps may be absent in
another embodiment.

[0047] In block 302, an I/O scheduler schedules read and write operations for one or more
storage devices. In various embodiments, the I/O scheduler may maintain a separate queue
(either physically or logically) for each storage device. In addition, the I/O scheduler may
include a separate queue for each operation type supported by a corresponding storage device.
For example, an I/O scheduler may maintain at least a separate read queue and a separate write
queue for an SSD. In block 304, the I/O scheduler may monitor the behavior of the one or more
storage devices. In one embodiment, the I/O scheduler may include a model of a corresponding
storage device (e.g., a behavioral type model and/or algorithms based at least in part on a model
of the device) and receive state data from the storage device to input to the model. The model
within the I/O scheduler may both model and predict behavior of the storage device by utilizing
known and/or observed characteristics of the storage device.

[0048] The I/O scheduler may detect characteristics of a given storage device which affect, or
may affect, I/O performance. For example, as will be discussed further below, various
characteristics and states of devices, and of I/O traffic, may be maintained. By observing these
characteristics and states, the I/O scheduler may predict that a given device may soon enter a
state wherein it exhibits high I/O latency behavior. For example, in one embodiment, the I/O
scheduler may detect or predict that an internal cache flush is about to occur within a storage
device which may affect the response times of requests to the storage device. For example, in
one embodiment, a storage device that sits idle for a given amount of time may flush its internal
cache. In some embodiments, whether a given device is idle may be based on a perspective
external to the device. For example, if an operation has not been scheduled for a device for a

period of time, the device may be deemed to be idle for approximately that period of time. In

12

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

such an embodiment, the device could in fact be busy based on internally initiated activity
within the device. However, such internally initiated activity would not be considered in
determining whether the device is idle. In other embodiments, internally initiated activities of a
device could be considered when determining whether a device is idle or busy. By observing the
behavior of the device, and noting it has been idle for a given amount of time, the scheduler may
predict when an internal cache flush might occur. In other embodiments, the scheduler may also
have the ability to poll devices to determine various states or conditions of the devices. In any
event, the scheduler may be configured to determine the potential for unscheduled behaviors
such as internal cache flushes and initiate a proactive operation in order to prevent the behavior
from occurring. In this manner, the scheduler controls the timing of events in the device, and the
system, and is better able to schedule operations.

[0049] Various characteristics may be used to as a basis for making predictions regarding
device behavior. In various embodiments, the scheduler may maintain a status of currently
pending operations and/or a history of recent operations corresponding to the storage devices. In
some embodiments, the I/O scheduler may know the size of a cache within a device and/or the
caching policies and maintain a count of a number of write requests sent to the storage device. In
other embodiments, other mechanisms may be available for determining the state of a cache
within a device (e.g., direct polling type access to the device). In addition, the I/0 scheduler may
track the amount of data in write requests sent to the storage device. The 1/0 scheduler may then
detect when either a number of write requests or a total amount of data corresponding to the write
requests reaches a given threshold. If the I/O scheduler detects such a condition (conditional
block 306), then in block 308, the 1/O scheduler may schedule a particular operation for the
device. Such an operation may generally correspond to the above described proactive
operations. For example, the /O scheduler may place a cache flush command in a corresponding
queue to force the storage device to perform a cache flush at a time of the scheduler’s choosing.
Alternatively, the 1/0 scheduler may place a dummy read operation in the queue in order to
determine whether or not any cache flush on the storage device has completed. Still further, the
scheduler could query a device to obtain status information (e.g., idle, busy, etc.). These and
other characteristics and operations are possible and are contemplated. In addition, in various
embodiments proactive operations may be scheduled when reconditioning an SSD in place. In
such an embodiment, the SSD firmware and/or mapping tables may get into a state where
requests hang or are permanently slow. It may be possible to just reset the drive or power the

drive off and on to unclog the firmware. However if the condition is permanent (i.e. a bug in the

13

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

firmware that can’t handle the current state of the mapping tables) another way to fix it is to
reformat the drive to completely clean and reset the FTL and then repopulate it or reuse it for
something other data.

[0050] The actions described above may be performed to prevent or reduce a number of
occurrences of unpredicted variable response times. Simultaneously, the I/O scheduler may
detect the occurrence of any variable behavior of a given storage device at an unpredicted time.
If the 1/O scheduler detects such a condition (conditional block 310), then in block 312, the I/O
scheduler may place an operation in a corresponding queue of the storage device. In this case, the
operation may generally correspond to the above described reactive operations. The operation
may be used both to reduce the amount of time the storage device provides variable behavior and
to detect the end of the variant behavior. In various embodiments, proactive and/or reactive
operations may generally include any operation capable of placing a device into (at least in part)
a known state. For example, initiating a cache flush operation may result in the device achieving
an empty cache state. A device with a cache that is empty may be less likely to initiate an internal
cache flush than a device whose cache is not empty. Some examples of proactive and/or reactive
operations include cache flush operations, erase operations, secure erase operations, trim
operations, sleep operations, hibernate operations, powering on and off, and reset operations.
[0051] Referring now to FIG. 4, one embodiment of a method 400 for segregating operations
issued to a storage device is shown. The steps in this embodiment are shown in sequential order.
However, some steps may occur in a different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps, and some steps may be absent in
another embodiment. In various embodiments, operations of a first type may be segregated from
operations of a second type for scheduling purposes. For example, in one embodiment operations
of a first type may be given scheduling priority over operations of a second type. In such an
embodiment, operations of the first type may be scheduled for processing relatively quickly,
while operations of the second type are queued for later processing (in effect postponing the
processing of the operations). At a given point in time, processing of operations of the first type
may be halted while the previously queued operations (of the second type) are processed.
Subsequently, processing of the second operation type may again be stopped while processing
priority is returned to operations of the first type. When processing is halted for one type and
begins for another type may be based upon periods of time, accumulated data, transaction
frequency, available resources (e.g., queue utilization), any combination of the above, or based

upon any desired condition as desired.

14

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0052] For random read and write requests, an SSD typically demonstrates better
performance than a HDD. However, an SSD typically exhibits worse performance for random
write requests than read requests due to the characteristics of an SSD. Unlike an HDD, the
relative latencies of read and write requests are quite different, with write requests typically
taking significantly longer than read requests because it takes longer to program a Flash memory
cell than read it. In addition, the latency of write operations can be quite variable due to
additional operations that need to be performed as part of the write. For example, an erase
operation may be performed prior to a write or program operation for a Flash memory cell, which
is already modified. Additionally, an erase operation may be performed on a block-wise basis.
In such a case, all of the Flash memory cells within a block (an erase segment) are erased
together. Because a block is relatively large and comprises multiple pages, the operation may
take a relatively long time. Alternatively, the FTL may remap a block into an already erased
erase block. In either case, the additional operations associated with performing a write operation
may cause writes to have a significantly higher variability in latency as well as a significantly
higher latency than reads. Other storage device types may exhibit different characteristics based
on request type. In addition to the above, certain storage devices may offer poor and/or variable
performance if read and write requests are mixed. Therefore, in order to improve performance,
various embodiments may segregate read and write requests. It is noted that while the discussion
generally speaks of read and write operations in particular, the systems and methods described
herein may be applied to other operations as well. In such other embodiments, other relatively
high and low latency operations may be identified as such and segregated for scheduling
purposes. Additionally, in some embodiments reads and writes may be categorized as a first type
of operation, while other operations such as cache flushes and trim operations may be
categorized as corresponding to a second type of operation. Various combinations are possible
and are contemplated.

[0053] In block 402, an I/O scheduler may receive and buffer 1/0 requests for a given storage
device of one or more storage devices. In block 404, low-latency I/0 requests may generally be
issued to the storage device in preference to high latency requests. For example, depending on
the storage technology used by the storage devices, read requests may have lower latencies than
write requests and other command types and may issue first. Consequently, write requests may
be accumulated while read requests are given issue priority (i.e., are conveyed to the device
ahead of write requests). At some point in time, the I/O scheduler may stop issuing read requests

to the device and begin issuing write requests. In one embodiment, the write requests may be

15

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

issued as a stream of multiple writes. Therefore, the overhead associated with a write request
may be amortized over multiple write requests. In this manner, high latency requests (e.g.,
write requests) and low latency requests (e.g., read requests) may be segregated and handled
separately.

[0054] In block 406, the /O scheduler may determine whether a particular condition exists
which indicates high latency requests should be conveyed to a device(s). For example, in one
embodiment detecting such a condition may comprise detecting a given number of high latency
I/O requests, or an amount of corresponding data, has accumulated and reached a given
threshold. Alternatively, a rate of high latency requests being received may reach some
threshold. Numerous such conditions are possible and are contemplated. In one embodiment, the
high-latency requests may be write requests. If such a condition occurs (conditional block 408),
then in block 410, the I/O scheduler may begin issuing high-latency I/O requests to the given
storage device. The number of such requests issued may vary depending upon a given algorithm.
The number could correspond to a fixed or programmable number of writes, or an amount of
data. Alternatively, writes could be issued for a given period of time. For example, the period of
time may last until a particular condition ceases to exist (e.g., a rate of received writes falls), or a
particular condition occurs. Alternatively, combinations of any of the above may be used in
determining when to begin and when to stop issuing high latency requests to the device(s). In
some embodiments, the first read request after a stream of write requests may be relatively slow
compared to other read requests. In order to avoid scheduling a “genuine” read requests in the
issue slot immediately following a stream of write requests, the I/0 scheduler may be configured
to automatically schedule a “dummy” read following the stream of write requests. In this context
a “genuine” read is a read for which data is requested by a user or application, and a “dummy”
read is an artificially created read whose data may simply be discarded. In various embodiments,
until the dummy read is detected as finished, the write requests may not be determined to have
completed. Also, in various embodiments, a cache flush may follow a stream of writes and be
used to determine when the writes have completed.

[0055] Referring now to FIG. 5, one embodiment of a method 500 for developing a model to
characterize the behavior of storage devices in a storage subsystem is shown. The steps in this
embodiment are shown in sequential order. However, some steps may occur in a different order
than shown, some steps may be performed concurrently, some steps may be combined with other

steps, and some steps may be absent in another embodiment.

16

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0056] In block 502, one or more storage devices may be selected to be used in a storage
subsystem. In block 504, various characteristics for each device may be identified such as cache
sizes, typical read and write response times, storage topology, an age of the device, and so forth.
In block 506, one or more characteristics which affect I/O performance for a given storage device
may be identified.

[0057] In block 508, one or more actions which affect the timing and/or occurrences of the
characteristics for a given device may be determined. Examples may include a cache flush and
execution of given operations such as an erase operation for an SSD. For example, a force
operation such as a cache flush may reduce the occurrence of variable response times of an SSD
at unpredicted times. In block 510, a model may be developed for each of the one or more
selected devices based on corresponding characteristics and actions. This model may be used in
software, such as within an 1/0 scheduler within a storage controller.

[0058] Turning now to FIG. 6, a generalized block diagram of one embodiment of a storage
subsystem is shown. In the embodiment shown, cach of the storage devices 176a-176m are
shown within a single device group. However, in other embodiments, one or more storage
devices 176a-176m may be partitioned in two or more of the device groups 173a-173m. One or
more corresponding operation queues and status tables for each storage device may be included
in the device units 600a-600w. These device units may be stored in RAM 172. A corresponding
I/O scheduler 178 may be included for each one of the device groups 173a-173m. Each 1/O
scheduler 178 may include a monitor 610 that tracks state data for each of the storage devices
within a corresponding device group. Scheduling logic 620 may perform the decision of which
requests to issue to a corresponding storage device and determine the timing for issuing requests.
[0059] Turning now to FIG. 7, a generalized block diagram of one embodiment of a device
unit 600 is shown. Device unit 600 may comprise a device queue 710 and tables 720. Device
queue 710 may include a read queue 712, a write queue 714 and one or more other queues such
as other operation queue 716. Each queue may comprise a plurality of entries 730 for storing one
or more corresponding requests. For example, a device unit for a corresponding SSD may
include queues to store at least read requests, write requests, trim requests, erase requests and so
forth. Tables 720 may comprise one or more state tables 722a-722b, each comprising a plurality
of entries 730 for storing state data. In various embodiments, the queues shown in FIG. 7 may be
either physically and/or logically separate. It is also noted that while the queues and tables are
shown to include a particular number of entries, the entries themselves do not necessarily

correspond to one another. Additionally, the number of queues and tables may vary from that

17

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

shown in the figure. In addition, entries within a given queue, or across queues, may be
prioritized. For example, read requests may have a high, medium, or low priority which affects
an order within which the request is issued to the device. In addition, such prioritiecs may be
changeable depending upon various conditions. For example, a low priority read that reaches a
certain age may have its priority increased. Numerous such prioritization schemes and techniques
are known to those skilled in the art. All such approaches are contemplated and may be used in
association with the systems and methods described herein.

[0060] Referring now to FIG. 8, a generalized block diagram illustrating one embodiment of a
state table such as that shown in FIG. 7 is shown. In one embodiment, such a table may include
data corresponding to state, error, wear level information, and other information for a given
storage device. A corresponding I/0 scheduler may have access to this information, which may
allow the 1/0O scheduler to better schedule I/O requests to the storage devices. In one
embodiment, the information may include at least one or more of a device age 802, an error rate
804, a total number of errors detected on the device 806, a number of recoverable errors 808, a
number of unrecoverable errors 810, an access rate of the device 812, an age of the data stored
814, a corresponding cache size 816, a corresponding cache flush idle time 818, one or more
allocation states for allocation spaces 820-822, a concurrency level 824, and expected time(s)
826 for various operations. The allocation states may include filled, empty, error and so forth.
The concurrency level of a given device may include information regarding the ability of the
device to handle multiple operations concurrently. For example, if a device has 4 flash chips and
cach one is capable of doing one transfer at a time, then the device may be capable of up to 4
parallel operations. Whether or not particular operations may be performed in parallel may
depend on how the data was laid out on the device. For example, if the data inside of the device
is laid out where the data accessed by a request is all on one chip then operations on that data
could proceed in parallel with requests accessing data on different chips. However, if the data
accessed by a request is striped across multiple chips, then requests may interfere with one other.
Consequently, a device may be capable of a maximum of N parallel/concurrent operations (e.g.,
4 in the above described as where the device has 4 chips). Alternatively, the maximum level of
concurrency may be based upon the types of operations involved. In any event, stored
information indicative of a level of concurrency N, and a number of pending transactions M, may
be taken into account by the scheduler when scheduling operations.

[0061] Referring now to FIG. 9, another embodiment of a method 900 for adjusting 1/0O

scheduling to reduce unpredicted variable I/O response times on a data storage subsystem is

18

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

shown. The components embodied in network architecture 100 and data storage arrays 120a-
120b described above may generally operate in accordance with method 900. For purposes of
discussion, the steps in this embodiment are shown in sequential order. However, some steps
may occur in a different order than shown, some steps may be performed concurrently, some
steps may be combined with other steps, and some steps may be absent in another embodiment.
[0062] In block 902, an I/O scheduler may monitor the behavior of each one of the storage
devices. Conditional blocks 904-908 illustrate one embodiment of detecting characteristics of a
given device which may affect I/O performance as described above regarding conditional step
306 of method 300. In one embodiment, if the I/O scheduler detects a given device exceeds a
given idle time (conditional block 904) or detects a corresponding cache exceeds an occupancy
threshold (conditional block 906) or detects a cached data exceeds a data age threshold
(conditional block 908), then in block 910, the 1/O scheduler may issue a force (proactive)
operation to the given storage device. In such a case, the scheduler may predict that an internal
cache flush will occur soon and at an unpredictable time. In order to avoid occurrence of such an
event, the I/O scheduler proactively schedules an operation to avert the event.

[0063] It is noted that aversion of an event as described above may mean the event does not
occur, or does not occur at an unpredicted or unexpected time. In other words, the scheduler
generally prefers that given events occur according to the scheduler’s timing and not otherwise.
In this sense, a long latency event occurring because the scheduler scheduled the event is better
than such an event occurring unexpectedly. Timers and counters within the scheduling logic 620
may be used in combination with the monitor 610 to perform at least these detections. One
example of a force operation issued to the given storage device may include a cache flush.
Another example of a force operation may include an erase request. A force operation may be
sent from the 1/O scheduler to a corresponding queue in the device queue 710 within a
corresponding device unit 600 as part of the scheduling.

[0064] Referring now to FIG. 10, one embodiment of a method 1000 for maintaining read
operations with relatively low latencies on shared data storage is shown. The components
embodied in network architecture 100 and data storage arrays 120a-120b described above may
generally operate in accordance with method 1000. For purposes of discussion, the steps in this
embodiment are shown in sequential order. However, some steps may occur in a different order
than shown, some steps may be performed concurrently, some steps may be combined with other

steps, and some steps may be absent in another embodiment.

19

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0065] In block 1002, an Amount of redundancy in a RAID architecture for a storage
subsystem may be determined to be used within a given device group 173. For example, for a
4+2 RAID group, 2 of the storage devices may be used to store erasure correcting code (ECC)
information, such as parity information. This information may be used as part of reconstruct
read requests. In one embodiment, the reconstruct read requests may be used during normal I/O
scheduling to improve performance of a device group while a number of storage devices are
detected to be exhibiting variable I/O response times. In block 1004, a maximum number of
devices which may be concurrently busy, or exhibiting variable response time, within a device
group is determined. This maximum number may be referred to as the Target number. In one
embodiment, the storage devices are SSDs which may exhibit variable response times due to
executing write requests, erase requests, or cache flushes. In one embodiment, the target number
is selected such that a reconstruct read can still be performed.

[0066] In one embodiment, an I/O scheduler may detect a condition which warrants raising
the Target number to a level where a reconstruct read is no longer efficient. For example, a
number of pending write requests for a given device may reach a waiting threshold (i.e., the write
requests have been pending for a significant period of time and it is determined they should wait
no longer). Alternatively, a given number of write requests may be detected which have a
relatively high-priority which cannot be accumulated for later issuance as discussed above. If the
I/0 scheduler detects such a condition (conditional block 1006), then in block 1008, the 1/O
scheduler may increment or decrement the Target based on the one or more detected conditions.
For example, the I/O scheduler may allow the Target to exceed the Amount of supported
redundancy if an appropriate number of high-priority write requests are pending, or some other
condition occurs. In block 1010, the I/O scheduler may determine N storage devices within the
device group are exhibiting variable I/O response times. If N is greater than Target (conditional
block 1012), then in block 1014, the storage devices may be scheduled in a manner to reduce N.
Otherwise, in block 1016, the I/O scheduler may schedule requests in a manner to improve
performance. For example, the I/O scheduler may take advantage of the capability of reconstruct
read requests as described further below.

[0067] Referring now to FIG. 11, one embodiment of a method 1100 for reducing a number of
storage devices exhibiting variable 1/0 response times is shown. The steps in this embodiment
are shown in sequential order. However, some steps may occur in a different order than shown,
some steps may be performed concurrently, some steps may be combined with other steps, and

some steps may be absent in another embodiment.

20

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

[0068] In block 1102, an I/O scheduler may determine to reduce a number N of storage
devices within a storage subsystem executing high-latency operations which cause variable
response times at unpredicted times. In block 1104, the I/O scheduler may select a given device
executing high-latency operations. In block 1106, the I/O scheduler may halt the execution of
the high-latency operations on the given device and decrement N. For example, the 1/O
scheduler may stop issuing write requests and erase requests to the given storage device. In
addition, the corresponding I/O scheduler may halt execution of issued write requests and erase
requests. In block 1108, the I/O scheduler may initiate execution of low-latency operations on
the given device, such as read requests. These read requests may include reconstruct read
requests. In this manner, the device leaves a long latency response state and N is reduced.

[0069] Turning now to FIG. 12, one embodiment of a method for maintaining read operations
with efficient latencies on shared data storage is shown. The components embodied in network
architecture 100 and data storage arrays 120a-120b described above may generally operate in
accordance with the method. For purposes of discussion, the steps in this embodiment are shown
in sequential order. However, some steps may occur in a different order than shown, some steps
may be performed concurrently, some steps may be combined with other steps, and some steps
may be absent in another embodiment.

[0070] The method of FIG. 12 may represent one embodiment of steps taken to perform step
1016 in method 1000. In block 1201, an I/O scheduler receives an original read request directed
to a first device that is exhibiting variable response time behavior. The first device may be
exhibiting variable response times due to receiving a particular scheduled operation (i.c., a
known reason) or due to some unknown reason. In various embodiments what is considered a
variable response time may be determined based at least in part on an expected latency for a
given operation. For example, based upon characteristics of a device and/or a recent history of
operations, a response to a given read may be expected to occur within a given period of time.
For example, an average response latency could be determined for the device with a delta
determined to reflect a range of acceptable response latencies. Such a delta could be chosen to
account for 99% of the transactions, or any other suitable number of transactions. If a response is
not received within the expected period of time, then initiation of a reconstruct read may be
triggered.

[0071] Generally speaking, whether or not a reconstruct read is imitated may be based upon a
cost benefit analysis which compares the costs associated with performing the reconstruct read

with the (potential) benefits of obtaining the results of the reconstruct read. For example, if a

21

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

response to an original read request in a given device is not received within a given period of
time, it may be predicted that the device is performing an operation that will result in a latency
that exceeds that of a reconstruct read were one to be initiated. Therefore, a reconstruct read may
be initiated. Such an action may be taken to (for example) maintain a given level of read service
performance. It is noted that other factors may be considered as well when determining whether
to initiate a reconstruct read, such as current load, types of requests being received, priority of
requests, the state of other devices in the system, various characteristics as described in FIGs. 7
and 8, and so on. Further, it is noted that while a reconstruct read may be initiated due to a
relatively long response latency for the original read, it is expected that the original read request
will in fact complete. In fact both the original read and the reconstruct read may successfully
complete and provide results. Consequently, the reconstruct read is not required in order for the
original request to be serviced. This is in contrast to a latency that is due to an error condition,
such as detecting a latency and some indication of an error that indicates the transaction will (or
may) not complete successfully. For example, a device timeout due to an inability to read a given
storage location represents a response which is not expected to complete. In such cases, a
reconstruct read may be required in order to service the request. Accordingly, in various
embodiments the system may effectively include at least two timeout conditions for a given
device. The first timeout corresponds to a period of time after which a reconstruct read may be
initiated even though not necessarily required. In this manner, reconstruct reads may be
incorporated into the scheduling algorithms as a normal part of the non-error related scheduling
process. The second timeout, occurring after the first timeout, represents a period of time after
which an error condition is believed to have occurred. In this case a reconstruct read may also be
initiated due to an expectation that the original read will not be serviced by the device indicating
the error.

[0072] In view of the above, the 1/O scheduler may then determine whether a reconstruct read
corresponding to the original read is to be initiated (decision block 1202). The reconstruct read
would generally entail one or more reads serviced by devices other than the first device. In
determining whether a reconstruct read is to be initiated, many factors may be taken into account.
Generally speaking, the 1/0 scheduler engages in a cost/benefit analysis to determine whether it
may be “better” to attempt to service the original read with the first device, or attempt to service
the original read by issuing a reconstruct read. As discussed above a number of factors may be
considered when determining whether to initiate a reconstruct read. What is “better” in a given

situation may vary, may be programmable, and may be determined dynamically. For example, an

22

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

algorithm may be such that it always favors faster read response times. In such a case, a
determination may be made as to whether servicing of the reconstruct read can (or may)
complete prior to servicing of the original read by the original device. Alternatively, an algorithm
may determine that a reduced system load is favored at a given time. In such a case, the I/O
scheduler may choose not to initiate a reconstruct read with its additional overhead — even if the
reconstruct read may complete faster than the original read. Still further, a more nuanced
balancing of speed versus overhead may be used in such determinations. In various
embodiments, the algorithm may be programmable with an initial weighting (e.g., always prefer
speed irrespective of loading). Such a weighting could be constant, or could be programmable to
vary dynamically according to various conditions. For example, conditions could include time of
day, a rate of received 1/0 requests, the priority of received requests, whether a particular task is

detected (e.g., a backup operation is currently being performed), detection of a failure, and so on.

[0073] If the scheduler decides not to initiate a reconstruct read, then the read may be serviced
by the originally targeted device (block 1203). Alternatively, a reconstruct read may be initiated
(block 1204). In one embodiment, the other devices which are selected for servicing the
reconstruct read are those which are identified as exhibiting non-variable behavior. By selecting
devices which are exhibiting non-variable behavior (i.e., more predictable behavior), the 1/O
scheduler is better able to predict how long it may take to service the reconstruct read. In addition
to the given variable/non-variable behavior of a device, the I/O scheduler may also take in to
consideration other aspects of cach device. For example, in selecting a particular device for
servicing a reconstruct read, the I/O scheduler may also evaluate a number of outstanding
requests for a given device (e.g., how full is the device queue), the priority of requests currently
pending for a given device, the expected processing speed of the device itself (e.g., some devices
may represent an older or otherwise inherently slower technology than other devices), and so on.
Further, the scheduler may desire to schedule the reconstruct read in such a way that the
corresponding results from each of the devices is returned at approximately the same time. In
such a case, the scheduler may disfavor a particular device for servicing a reconstruct read if it is
predicted its processing time would differ significantly from the other devices — even if it were
much faster than the other devices. Numerous such factors and conditions to consider are
possible and are contemplated.

[0074] In one embodiment, the reconstruct read requests may inherit a priority level of the

original read request. In other embodiments, the reconstruct read requests may have priorities

23

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

that differ from the original read request. If the I/O scheduler detects a selected second (other)
device receiving a corresponding reconstruct read request is now exhibiting variable response
time behavior (conditional block 1205) and this second device is predicted to remain variable
until after the first device is predicted to become non-variable (conditional block 1206), then in
block 1208, the I/0 scheduler may issue the original read request to the first device. In one
embodiment, timers may be used to predict when a storage device exhibiting variable response
times may again provide non-variable response times. Control flow of method 1200 moves from
block 1208 to conditional block 1212 via block C. If the second device is not predicted to
remain variable longer than the first device (conditional block 1206), then control flow of method
1200 moves to block 1210. In block 1210, the read request is serviced by the issued reconstruct
read requests.

[0075] If the I/O scheduler detects the given variable device becomes non-variable
(conditional block 1212), then in block 1214, the I/O scheduler issues the original read request to
the given device. The I/0 scheduler may designate the given device as non-variable and
decrement N (the number of storage devices detected to provide variable 1/0 response times). If
the original read request finishes before the alternate reconstruct read requests (conditional block
1216), then in block 1218, the I/O scheduler services the read request with the original read
request. In various embodiments, the scheduler may remove the rebuild read requests.
Alternatively, the reconstruct read requests may complete and their data may simply be
discarded. Otherwise, in block 1220, the I/O scheduler services the read request with the
reconstruct read requests and may remove the original read request (or discard its returned data).
[0076] It is noted that the above-described embodiments may comprise software. In such an
embodiment, the program instructions that implement the methods and/or mechanisms may be
conveyed or stored on a computer readable medium. Numerous types of media which are
configured to store program instructions are available and include hard disks, floppy disks, CD-
ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and
various other forms of volatile or non-volatile storage.

[0077] In various embodiments, one or more portions of the methods and mechanisms
described herein may form part of a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services according to one or more various models.
Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). In IaaS, computer infrastructure is delivered as a service. In such a

case, the computing equipment is generally owned and operated by the service provider. In the

24

10

WO 2012/037293 PCT/US2011/051654

PaaS model, software tools and underlying equipment used by developers to develop software
solutions may be provided as a service and hosted by the service provider. SaaS typically
includes a service provider licensing software as a service on demand. The service provider may
host the software, or may deploy the software to a customer for a given period of time. Numerous
combinations of the above models are possible and are contemplated. Additionally, while the
above description focuses on networked storage and controller, the above described methods and
mechanism may also be applied in systems with direct attached storage, host operating systems,
and otherwise.

[0078] Although the embodiments above have been described in considerable detail,
numerous variations and modifications will become apparent to those skilled in the art once the
above disclosure is fully appreciated. It is intended that the following claims be interpreted to

embrace all such variations and modifications.

25

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

WHAT IS CLAIMED IS

1. A computer system comprising:
a data storage medium comprising a plurality of storage devices configured to store data;
and a data storage controller coupled to the data storage medium;
wherein the data storage controller is configured to:
receive read and write requests targeted to the data storage medium,;
schedule said read and write requests for processing by said plurality of storage
devices; and
schedule one or more proactive operations in order to minimize an occurrence of
an unscheduled behavior comprising variable performance by one or more
of the plurality of storage devices, wherein the variable performance
comprises at least one of a relatively high response latency or relatively

low throughput.

N

The computer system as recited in claim 1, wherein the storage controller is configured to
schedule one or more proactive operations based at least in part on a recent history of I/O

requests.

3. The computer system as recited in claim 1, wherein said proactive operations cause one or
more of the plurality of devices to enter a state in which it exhibits a relatively high response

latency.

4. The computer system as recited in claim 3, wherein said plurality of storage devices are solid
state storage devices, and wherein said proactive operations include one or more of a cache
flush operation, a secure erase operation, a trim operation, a sleep operation, a hibernate

operation, a powering on and off operation, and a reset operation.

5. The computer system as recited in claim 2, wherein an unscheduled behavior of a given

device is exhibited by a given device when the given device is in an unknown state.

6. The computer system as recited in claim 1, wherein the proactive operations are configured to

place a device of the plurality of devices in a known state.

26

10

15

20

25

30

7.

10.

11.

12.

13.

WO 2012/037293 PCT/US2011/051654

The computer system as recited in claim 1, wherein the storage devices comprise at least one
RAID group, and wherein the storage controller is configured to schedule relatively long
latency operations such that no more than N devices of the plurality of devices in the RAID

group are performing a scheduled long latency operation at any given time.

The computer system as recited in claim 7, wherein when no more than N of said devices is
busy at a given time then reconstruct reads may be performed, and wherein when more than

N of said devices is busy at a give time then reconstruct reads may not be performed.

The computer system as recited in claim 1, wherein the controller is further configured to:
detect a given device of the plurality of devices is exhibiting an unscheduled behavior;
and
schedule one or more reactive operations in response to detecting the occurrence of the
unscheduled behavior by the given device, said one or more reactive operations

being configured to cause the given device to enter a known state.

The computer system as recited in claim 1, wherein the controller is configured to:
monitor a state of a given storage device of the plurality of storage devices; and
schedule a proactive operation for the given storage device in response to predicting an

unscheduled behavior is likely to occur in an absence of the proactive operation.

The computer system as recited in claim 1 wherein the controller is configured to schedule

said one or more proactive operations at random times.

The computer system as recited in claim 1, wherein the storage controller is configured to
schedule one or more proactive operations to follow a long latency operation on a given

storage device in response to detecting the long latency operation has been scheduled.
A method for use in a computing system, the method comprising:

receiving read and write requests targeted to a data storage medium, the data storage

medium comprising a plurality of storage devices configured to store data;

27

10

15

20

25

30

14.

15.

16.

17.

18.

19.

20.

WO 2012/037293 PCT/US2011/051654

scheduling said read and write requests for processing by said plurality of storage
devices; and
scheduling one or more proactive operations in order to minimize an occurrence of an
unscheduled behavior comprising variable performance by one or more of the
plurality of storage devices, wherein the variable performance comprises at least

one of a relatively high response latency or relatively low throughput.

The method as recited in claim 13, further comprising scheduling one or more proactive

operations based at least in part on a recent history of I/O requests.

The method as recited in claim 13, wherein said proactive operations cause one or more of

the plurality of devices to enter a state in which it exhibits a relatively high response latency.

The method as recited in claim 15, wherein said plurality of storage devices are solid state
storage devices, and wherein said proactive operations include one or more of a cache flush
operation, a secure erase operation, a trim operation, a sleep operation, a powering on and off

operation, a hibernate operation, and a reset operation.

The method as recited in claim 13, wherein an unscheduled behavior of a device indicates the

device 1s in an unknown state.

The method as recited in claim 13, wherein the proactive operations are configured to place a

device of the plurality of devices in a known state.

The method as recited in claim 15, wherein the storage devices comprise at least one RAID
group, and wherein the method further comprises scheduling relatively long latency
operations such that no more than N devices of the plurality of devices in the RAID group are

performing a scheduled long latency operation at any given time.
The method as recited in claim 19, wherein when no more than N of said devices is busy at a

given time reconstruct reads then may be performed, and wherein when more than N of said

devices is busy at a give time then reconstruct reads may not be performed.

28

10

15

20

25

30

WO 2012/037293 PCT/US2011/051654

21. The method as recited in claim 13, further comprising:
detecting a given device of the plurality of devices is exhibiting an unscheduled
behavior; and
scheduling one or more reactive operations in response to detecting the occurrence of the
unscheduled behavior by the given device, said one or more reactive operations

being configured to cause the given device to enter a known state.

22. The method as recited in claim 13, further comprising;:
monitoring a state of a given storage device of the plurality of storage devices; and
scheduling a proactive operation for the given storage device in response to predicting an

unscheduled behavior is likely to occur in an absence of the proactive operation.

23. The computer system as recited in claim 13, further comprising scheduling said one or more

proactive operations at random times.

24. A computer readable storage medium comprising program instructions, wherein when
executed by a processing device, the program instructions are operable to:

receive read and write requests targeted to a data storage medium, the data storage
medium comprising a plurality of storage devices configured to store data;

schedule said read and write requests for processing by said plurality of storage devices;
and

schedule one or more proactive operations in order to minimize an occurrence of an
unscheduled behavior comprising variable performance by one or more of the
plurality of storage devices, wherein the variable performance comprises at least

one of a relatively high response latency or relatively low throughput.

25. The computer readable storage medium as recited in claim 24, wherein the program
instructions are further operable to:
monitor a state of a given storage device of the plurality of storage devices; and
schedule a proactive operation for the given storage device in response to predicting an

unscheduled behavior is likely to occur in an absence of the proactive operation.

29

WO 2012/037293 PCT/US2011/051654

26. The computer readable storage medium as recited in claim 25, wherein the program
instructions are further operable to schedule one or more proactive operations based at least

in part on a recent history of I/O requests.

30

PCT/US2011/051654

WO 2012/037293

1/12

} Old

eQcl
Reny

abelo)g
eleqg

- 2] dnolo ao1ne
WETT €Ll O 8dIA8(Q
9L - 497} S9LL mom u 74| 10858201
90IA8(S S e el 4 d
dnoio obein)g obelo)g obeI0)g YIoMIaN
821A8(
871 - TET WolsAs ol q027
(sMaInpayos O/l [eqolD cll Keny
WV — obel0)g
Y71 J8jj0u0) sbeiolg ¢tl SO osed eleq
0ZT walsAsqng abeio)g OCT wnipajy Alows|y
067 \\M\/)
YomisN 08l /
FJOMISN
01 youms \

3011 weyshs
Jaindwod wsiD

9l Uiy

GOLT wayshs
Jaindwod s

BOL | WosAS
Jaindwod sl

r 001 ®1njos)ydly YJOMIBN

WO 2012/037293 PCT/US2011/051654

2/12
System System
Model Behavior
202 204
200
Action
212 Ideal
210
220
Before Reactive Action After Reactive Action
Action
232
230
240
Before Proactive Action After Proactive Action

FIG. 2

WO 2012/037293

A<—No

3/12

Schedule read and write operations for

one or more storage devices.
302

l

Monitor behavior of the one or more
storage devices, and /O requests to
the devices.

304

l

PCT/US2011/051654

ﬁ Method 300

Detect

306

Yes

!

Behaviors of a device
which may affect /O
performance?

Schedule proactive operation(s)
on the given device

308

variant behavior of a
given device at an
unpredicted

Detect

time?
310

Yes

'

No—»A

Schedule reactive operation(s)
on the given device

312

FIG. 3

WO 2012/037293

4{

PCT/US2011/051654

4/12
Method 400

—

H

Receive and buffer I/0O requests for
a given storage device.
402

l

Issue low-latency I/O requests to
the given storage device.
404

l

For high-latency I/O requests,
determine whether a number of
requests or an amount of
corresponding data reaches a given
threshold.

406

No

Reached
the given

threshold for high-
latency 1/O

Issue high-latency I/O requests
to the given storage device.
410

FIG. 4

WO 2012/037293

Method 500 j

5/12

Select one or more storage devices
to use in a storage subsystem.
502

l

Identify various characteristics for
each device.
504

l

Identify for each device one or
more characteristics which may
affect I/O performance.
506

l

Determine for each device one or
more actions which affect the timing
and/or occurrences of the
characteristics.

508

l

Develop a model for each of the one
or more selected devices based on
corresponding characteristics and
actions.
510

FIG. 5

PCT/US2011/051654

PCT/US2011/051654

WO 2012/037293

6/12

9 OId

B¢/ dnolg) aai1neQq

we/l wo/l a9/l B9/l
dnolg) 821ne(q 9218 321A8(321A8(
abelolg abelolg abelolg

I I I

A A) | | |

| | | | | |

| " " “ | “

y y y y y y

M009 5009 d009 w009 4009 2009
nin nin nin nin nin nin
20I1A9(20I1A9(20I1A9(20I1A9(20I1A9(20I1A9(

_ I I I I 1 1
¢l NvY _ _ [[[[
| " " " | |
! _ _ _ ! !
y y y y y y
055 029 019 019

21607 21607 Bulinpayds JONUOW 21607 Bulinpayog JONUOW

|0U0D JBUIO
81 J3INP3aY3Ss O/l B8/ 1 J3INP3aYds O/

71 J9jjoauo) abeiois

PCT/US2011/051654

WO 2012/037293

7/12

Z Ol4

POE. Ele(d 9jelS POE. ejeQ 9jeis

90€/ Ejeq 9jeis 90€/ ejeq 9.jS

B0¢/ ejeq 9jels B0c/ ejeq 9jeis

qcel eccl
9|qel S3elS 9|gel 91elS
0c/ saiqeL

POEZ 1sonbay

©7 1sanbay

B0c/ Hmoscom

0Lz

91/ ®nanp
uonesado

BYo

ananp 901A8(g

PO/ 1s9nbay

©] 159nbay

POEZ 1sonbay

©] 159nbay

omNHmmscmm

B0C/ Hmmscom

iz
ananp allIAA

49
ananp peay

009 1UN 991A8(]

WO 2012/037293 PCT/US2011/051654

8/12

ﬁ State Table 722

Device Age 802

Error Rate 804

Total Errors 806

Number of Recoverable Errors 808

Number of Unrecoverable Errors 810

Access Rate 812

Data Age 814

Cache Size 816

Cache Flush Idle Time 818

Allocation State of a First Allocation Space 820

Allocation State of a Second Allocation Space 822

Concurrency Level 824

Expected Time(s) 826

FIG. 8

WO 2012/037293

9/12

Monitor each of the storage devices.
902

PCT/US2011/051654

,ﬁ Method 900

| |
' |
' |
: |
| Detect :
: a given device |
| exceeds an idle time !
| threshold? No :
l 904 l
i |
: |
| Detect :
: a cache in a given I
| device exceeds an :
: occupancy No |
| threshold? :
i |
: |
| Yes Detect :
: cache datain a |
| given device L—No—
! exceeds an age |
: Yes threshold? |
i |
: |
| Yes :
| Ve Ve v |
|
T K !
y
Initiate a proactive
operation for the given >
device.
910

FIG.

WO 2012/037293

Determine to support a given
amount of redundancy in a
storage subsystem.
1002

PCT/US2011/051654

10/12

ﬁ Method 1000

Set a Target number of storage devices
within the subsystem to concurrently
execute high-latency operations.
1004

Detect
a condition to

Determine N storage devices
within the subsystem are

change Target?
1006

Yes
Y

Increment or decrement Target based

executing high-latency «—— on one or more detected conditions.
operations. 1008
1010
Is
N > Target? No
1012
Yes
v v
Schedule requests in a manner Schedule requests to improve
to reduce N. performance.
1014 1016

L

FIG. 10

WO 2012/037293

11/12

Determine to reduce a number N of
storage devices within a storage
subsystem executing high-latency
operations.

1102

Select a given device executing high-
latency operations.
1104

|

Halt the execution of the high-latency
operations on the given device.
Decrement N.

1106

|

Initiate execution of low-latency
operations on the given device.
1108

FIG. 11

PCT/US2011/051654

y

—— Method 1100

WO 2012/037293

Receive an original read
request for a first device

12/12

behavior.

exhibiting variant
1201 J

Initiate reconstruct read
including other devices
1204

Detect
second device has
hecome variant?
1205

Yes

No

erform

Reconstruct
Read?

1202

PCT/US2011/051654

Service the request
with the original read
request.

1203

No

Detect
the first device

No

becomes non-
variant?
1212

Yes
Y

Service the request
with the rebuild read

Issue the original read request
to the first device. Designate
the first device as non-variant.

—>
Second device No re?%?%ts. 1214
predicted to be non- | — .
variant after the first
device?
1206
Does
Yes the original request
v No finish before the
econstruct requests?,

Issue the original read
request to the first device.
1208

:

C

1216

Yes
Y

Service the request with
the rebuild read requests.
Remove the original read
request or discard
corresponding result.
1220

Service the request with
the original read request.
Remove the rebuild read
requests or discard
corresponding results.
1218

FIG. 12

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/051654

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06 GO6F11/10
ADD.

GO6F12/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

figures 1-5

figures 1-6

28 March 2002 (2002-03-28)
paragraph [0050] - paragraph [0104];

paragraph [0018] - paragraph [0065]

_/__

X US 2007/171562 Al (MAEJIMA MITSURU [JP] ET 1-26
AL) 26 July 2007 (2007-07-26)

A WO 2010/071655 Al (HEWLETT PACKARD 4,7,8,
DEVELOPMENT CO [US]; MCLAREN MORAY [GB]; 16,19,20
ARGOLLO DE OL) 24 June 2010 (2010-06-24)
figures 1-9
paragraph [0016] - paragraph [0059]

A US 20027038436 Al (SUZUKI ATSUTOMO [JP]) 1-26

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

e

e

myn

ngn

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr:ts, such combination being obvious to a person skilled
inthe art.

document member of the same patent family

Date of the actual completion of the international search

6 December 2011

Date of mailing of the international search report

19/12/2011

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Andlauer, J

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/051654

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

WO 2008/102347 Al (SANDISK IL LTD [IL];
LASSER MENAHEM [IL])

28 August 2008 (2008-08-28)

page 17, Tine 10 - page 24, line 8

1-26

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/051654
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2007171562 Al 26-07-2007 JP 2007199953 A 09-08-2007
US 2007171562 Al 26-07-2007
WO 2010071655 Al 24-06-2010 CN 102257482 A 23-11-2011
EP 2359248 Al 24-08-2011
US 2011258362 Al 20-10-2011
WO 2010071655 Al 24-06-2010
US 2002038436 Al 28-03-2002 JP 2002108573 A 12-04-2002
KR 20020025759 A 04-04-2002
US 2002038436 Al 28-03-2002
WO 2008102347 Al 28-08-2008 TW 200842881 A 01-11-2008
US 2008209109 Al 28-08-2008
WO 2008102347 Al 28-08-2008

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - wo-search-report
	Page 46 - wo-search-report
	Page 47 - wo-search-report

