发明名称
自动曝光控制参数的获得方法及控制方法和成像装置

摘要
本发明公开了一种自动曝光控制中控制参数的获得方法及相应的自动曝光控制方法和应用该控制方法的成像装置，其核心思想在于采用将图像按亮度分布的加权统计获得的亮度加权平均值作为曝光控制参数，通过调整不同亮度区域内像素的加权系数控制像素集中的亮度区域对亮度平均值的影响。由于采用亮度分布作为加权计算的依据，因此本发明控制方法不受场景假设的影响，对各种场景具有普遍适应能力，并且曝光控制效果不受具体的亮区/暗区在场景中的位置及切块分布的影响。
1. 一种自动曝光控制中控制参数的获得方法，其特征在于，包括：
 1）统计曝光图像的亮度分布；
 2）根据亮度分布划分不同的亮度区域；
 3）为不同的亮度区域分配相应的加权系数；
 4）统计曝光图像的亮度加权平均值作为所述控制参数，使根据所述控制参数调整后的曝光图像的亮度加权平均值趋向亮度参考值。
2. 根据权利要求 1 所述的自动曝光控制中控制参数的获得方法，其特征在于，所述步骤 1）包括：
 1a）将亮度等级分为若干级；
 1b）分别统计曝光图像的像素在各级中的分布。
3. 根据权利要求 2 所述的自动曝光控制中控制参数的获得方法，其特征在于，所述步骤 2）包括：
 2a）以具有峰值的级为中心将一定宽度的区域划为该峰值的亮度区域，在整个亮度分布中至少划出最高峰区和次高峰区。
4. 根据权利要求 2 所述的自动曝光控制中控制参数的获得方法，其特征在于，所述步骤 1）还包括：
 1c）采用一定宽度的滑动窗口对像素在各级中的分布进行滑动平均或滑动累积统计；
 所述步骤 2）包括：
 2a）根据滑动统计的峰值所对应的亮度区域划分像素在各级中分布的各峰值区域，在整个亮度分布中至少划出最高峰区和次高峰区。
5. 根据权利要求 2-4 任意一项所述的自动曝光控制中控制参数的获得方法，其特征在于，所述步骤 2）还包括：
 2b）判断所述最高峰区与次高峰区是否重叠，若重叠，则将第三高峰区作为次高峰区，依次类推，直至所述最高峰区与次高峰区不重叠。
6. 根据权利要求 3 或 4 所述的自动曝光控制中控制参数的获得方法，其特征在于：为峰值区域的像素分配小于其他区域的加权系数。
7. 根据权利要求 5 所述的自动曝光控制中控制参数的获得方法，其特征在于：为峰值区域的像素分配小于其他区域的加权系数。
8. 根据权利要求 6 所述的自动曝光控制中控制参数的获得方法，其特征在于：
为峰值区域分配的加权系数随峰值区域中像素分布的增加而减小，并且在减小
到最小加权系数后保持稳定或增大或在一定区域内保持稳定后增大。

9. 根据权利要求 8 所述的自动曝光控制中控制参数的获得方法，其特征在于：
所述最高峰区与次高峰区中亮度高的峰值区域所对应的最小加权系数随当前
相对光电增益的增大而增大，亮度低的峰值区域所对应的最小加权系数随当前
相对光电增益的增大而减小。

10. 一种自动曝光控制方法，其特征在于，包括：
 1）采用权利要求 1--9 任意一项所述的控制参数的获得方法，获取当前曝
 光图像的亮度加权平均值；
 2）将所述亮度加权平均值与亮度参考值进行比较；
 3）根据比较结果进行相对光电增益调整，使调整后曝光图像的亮度加权
 平均值趋向亮度参考值。

11. 根据权利要求 10 所述的自动曝光控制方法，其特征在于：所述亮度参考
 值随当前亮度加权平均值与相对光电增益的比值的增大而增大。

12. 根据权利要求 10 所述的自动曝光控制方法，其特征在于：以所述亮度参
 考值为变焦以依次扩大的范围设置适宜门限、缓冲门限和迟变门限；当所述亮
 度加权平均值，
 落入适宜门限，或由适宜门限进入缓冲门限并在缓冲门限内变动时，不进
 行相对光电增益调整；
 超出缓冲门限但仍落入迟变门限时，以小步长进行相对光电增益调整，使
 所述亮度加权平均值返回适宜门限内；
 超出迟变门限时，以大步长进行相对光电增益调整，使所述亮度加权平均
 值返回迟变门限内。

13. 根据权利要求 10--12 任意一项所述的自动曝光控制方法，其特征在于，在
 进行相对光电增益调整时，采用如下策略：
 优先调整快门时间，若达不到调整要求继续调整光圈，最后调整放大器增
 益；或者，
 优先调整光圈，快门时间次之，放大器增益最后；或者，
在光圈和快门时间和放大器增益这三种参数中，固定其中的一种或两种参数，仅调整剩余的另外参数。

14. 一种成像装置，包括感光器件、光圈、快门、放大器、相对光电增益调整模块和图像处理模块，其特征在于：还包括亮度分布统计模块、加权计算模块和补偿控制模块；

所述感光器件将经过光圈、快门控制后的光转换为模拟电流信号；
所述放大器对感光器件的输出进行放大；
所述图像处理模块将所述放大器的输出转换为数字图像信号；
所述亮度分布统计模块统计所述数字图像信号的亮度分布；
所述加权计算模块根据所述亮度分布统计模块的统计结果为不同的亮度区域分配相应的加权系数，计算出所述数字图像信号的亮度加权平均值；
所述补偿控制模块根据所述亮度加权平均值与亮度参考值的差别确定相对光电增益的调整目标；
所述相对光电增益调整模块根据所述补偿控制模块确定的相对光电增益调整目标，对光圈大小和/或快门时间和/或放大器增益进行相应调整。
自动曝光控制参数的获得方法及控制方法和成像装置

技术领域

本发明涉及数码影像技术领域，具体涉及一种自动曝光控制参数的获得方法及控制方法和成像装置。

背景技术

在影像的拍摄过程中，对拍摄主体进行适当的曝光是获得良好图像质量的一个重要条件。现有的影像器材一般采用手动曝光和自动曝光两种控制方式。手动曝光是通过手动调整光圈和快门速度来获得合适的曝光量。该方法能够根据摄影师的审美意图进行曝光调整，所以在专业摄影和摄像中被广泛应用。而普通的非专业民用产品，例如家用数码相机、摄像机等一般采用自动曝光控制的方法。

采用自动曝光控制的摄录器材一般根据“灰色世界假设”设计曝光控制，采用当前画面的平均亮度（AY）作为曝光控制参数，通过调整快门速度、光圈大小、放大器增益等使AY接近设置的画面平均亮度参考值（AYref）。对于符合“灰色世界假设”的场景，采用AY作为曝光控制参数，的确可以获得比较理想的效果；但是对于有大面积暗区或大面积亮区的“特殊场景”，不再是“灰色世界”，采用AY进行自动曝光控制时，会出现拍摄主体曝光不足或曝光过度等现象。例如：场景一，穿黄色衣服的人在雪地里拍照，由于背景和服装都是大面积的高亮区域，导致AY偏高，因此自动曝光控制会进行大幅度减小光通量的调整（缩短快门时间、减小光圈、降低放大器增益等），导致人物面部曝光严重不足；场景二，穿黑色衣服的人在棕色幕布前拍照，这是与场景一完全相反的情形，采用AY作为曝光控制参数的结果是导致人物面部曝光严重过度。

中的位置，应用一定的模糊控制策略减小非主体区域在AY计算中的权重，从而减少非主体影像对曝光控制的影响。其提供的技术方案所考虑的典型应用场景是人物头肩像的拍摄，并进一步假设拍摄对象一般都位于图像中间或者偏下方的位置，从而给与这些地方较大的权重。这样计算得到的亮度加权平均值（AYw）就会倾向于这些感兴趣的区域，从而以AYw作为曝光控制参照就能使位于图像中心的物体比较容易得到正常曝光。该方法的关键在于控制规则的设计，使得在一般场景中，计算得到的AYw与AY相近；而在特殊场景中则使AYw主要依赖于感兴趣区域。该方法的缺点在于：1、需要针对主要应用场景和典型应用环境的先验知识来制定相应模糊逻辑控制规则，并且需要在照相机或摄像机内部建立场景模式数据库，实现过程复杂；2、产生的曝光效果与图像画面分区方式、拍摄主体在图像中的位置紧密相关，假设性过强，通用性较差。

发明内容

本发明的目的在于提供一种对各种场景具有普遍适应能力，并且曝光控制效果不受大面积的亮区/暗区在场景中的位置及切块分布影响的，自动曝光控制参数的获得方法及控制方法和成像装置。

为达到本发明的目的，所采取的技术方案是，一种自动曝光控制中控制参数的获得方法，包括：1）统计曝光图像的亮度分布；2）根据亮度分布划分不同的亮度区域；3）为不同的亮度区域分配相应的加权系数；4）统计曝光图像的亮度加权平均值作为所述控制参数。

对图像亮度分布的统计可采用亮度直方图的形式，可包括：1a）将亮度等级分为若干档；1b）分别统计曝光图像的像素在各档中的分布。相应的亮度区域的划分步骤可采用：2a）以具有峰值的身为中心将一定宽度的区域划为该峰值的亮度区域，在整个亮度分布中至少划出最高峰区和次高峰区。

对图像亮度分布的统计还可采用滑动平均或滑动累积直方图的形式，即，在获得亮度直方图后，还采用一定宽度的滑动窗口对像素在各档中的分布进行滑动平均或滑动累积统计；此时亮度区域的划分步骤包括：2a）根据滑动统计的峰值所对应的亮度区域划分像素在各档中分布的各峰值区域，在整个亮度分布中至少划出最高峰区和次高峰区。

优选的是，在亮度区域的划分步骤中还包括：2b）判断所述最高峰区与次高峰区是否重叠，若重叠，则将第三高峰区作为次高峰区，依次类推，直至所述最高峰区与次高峰区不重叠。

对不同亮度区域的加权策略可采用，为峰值区域的像素分配小于其他区域的加权系数。

上述加权策略优选：为峰值区域分配的加权系数随峰值区域中像素分布的增加而减小，并且在减小到最小加权系数后保持稳定或增大或在一定区域内保持稳定后增大。

进一步优选的是，所述最高峰区与次高峰区中亮度高的峰值区域所对应的最小加权系数随当前相对光电增益的增大而增大，亮度低的峰值区域所对应的
最小加权系数随当前相对光电增益的增大而减小。

本发明还提供一种自动曝光控制方法，包括：1）采用上述控制参数的获得方法，获取当前曝光图像的亮度加权平均值；2）将所述亮度加权平均值与亮度参考值进行比较；3）根据比较结果进行相对光电增益调整，使调整后曝光图像的亮度加权平均值趋向亮度参考值。

优选的是，所述亮度参考值采用动态调整的方式，随当前亮度加权平均值与相对较光电增益的比值的增大而增大。

优选的是，以所述亮度参考值为中心以依次扩大的范围设置适宜门限、缓冲门限和迅变门限；当所述亮度加权平均值，落入适宜门限，或由适宜门限进入缓冲门限并在缓冲门限内变动时，不进行相对光电增益调整；超出缓冲门限但仍落入迅变门限时，以小步长进行相对光电增益调整，使所述亮度加权平均值返回适宜门限内；超出迅变门限时，以大步长进行相对光电增益调整，使所述亮度加权平均值返回迅变门限内。

优选的是，在进行相对光电增益调整时，采用如下策略：优先调整快门时间，若达不到调整要求继续调整光圈，最后调整放大器增益；或者，优选调整光圈，快门时间次之，放大器增益最后；或者，固定一种或两种参数，仅调整另外的参数。

本发明还提供一种成像装置，包括感光器件、光圈、快门、放大器、相对光电增益调整模块、图像处理模块、亮度分布统计模块、加权计算模块和补偿控制模块；所述感光器件将经过光圈、快门控制后的光转换为模拟电流信号；所述放大器对感光器件的输出进行放大；所述图像处理模块将所述放大器的输出转换为数字图像信号；所述亮度分布统计模块统计所述数字图像信号的亮度分布；所述加权计算模块根据所述亮度分布统计模块的统计结果为不同的亮度区域分配相应的加权系数，计算出所述数字图像信号的亮度加权平均值；所述补偿控制模块根据所述亮度加权平均值与亮度参考值的差别确定相对光电增益的调整目标；所述相对光电增益调整模块根据所述补偿控制模块确定的相对光电增益调整目标，对光圈大小和/或快门时间和/或放大器增益进行相应调整。

采用上述技术方案，本发明有益的技术效果在于：

1) 本发明采用将图像按亮度分布的加权统计获得的 AYw 作为曝光控制参
数的方法，能够根据图像的像素在不同亮度区域的集中情况调整其权重，从而控制像素集中的亮度区域，例如大面积亮区或大面积暗区对亮度平均值的影响。由于采用亮度分布作为加权计算的依据，因此本发明控制方法不受场景假设的影响，对各种场景具有普遍适应能力，并且曝光控制效果不受具体的亮区/暗区在场景中的位置及切块分布的影响。

2）本发明还提供了经过大量统计和实验获得的各种优选的加权策略和曝光控制策略，使得本发明控制方法以及采用本发明控制方法的成像装置能够获得良好的自动曝光控制效果。

附图说明

下面通过具体实施方式并结合附图对本发明作进一步的详细说明。

图 1 是实施例一中控制参数获得方法流程示意图；
图 2 是实施例一中根据 H(n)统计图进行峰值区域划分的例一示意图；
图 3 是实施例一中根据 H(n)统计图进行峰值区域划分的例二示意图；
图 4 是实施例一中确定加权系数的洗降曲线示意图；
图 5 是实施例二中控制参数获得方法流程示意图；
图 6 是实施例二中根据 AH(j)统计图进行峰值区域划分的例一示意图；
图 7 是实施例二中根据 AH(j)统计图进行峰值区域划分的例二示意图；
图 8 是实施例三中确定加权系数的倒梯型曲线示意图；
图 9 是一种确定加权系数的 V 型曲线示意图；
图 10 是实施例四中 Wm 的动态调整策略示意图；
图 11 是实施例五中自动曝光控制方法流程示意图；
图 12 是实施例七中 Gr 调整策略示意图；
图 13 是实施例九中成像装置模块结构示意图。

具体实施方式

本发明提供了一种自动曝光控制中控制参数的获得方法及相应的自动曝光控制方法和应用该控制方法的成像装置。本发明的核心思想在于采用将图像按亮度分布的加权统计获得的 AYw 作为曝光控制参数，通过调整不同亮度区域内像素的加权系数控制像素集中的亮度区域对亮度平均值的影响。对图像亮度分布的统计可采用亮度直方图、滑动平均直方图或滑动累积直方图等形式。
本发明中还提供亮度区域的优选划分方式以及各种优选的加权策略，最小加权系数控制策略，亮度参考值调整策略以及相对光电增益调整策略等。下面，分别对本发明自动曝光控制参数的获得方法，自动曝光控制方法和成像装置进行详细说明。

实施例一、一种自动曝光控制中控制参数的获得方法，流程如图 1 所示，包括：

1）统计曝光图像的亮度分布，在本例中，采用亮度直方图来统计曝光图像的亮度分布，包括

1a）将亮度等级分为若干格（Bin）；

为了便于进行数字化处理，图像上每个像素的亮度会先被进行量化，量化的精细程度取决于亮度等级的等级。例如，采用 8 位（bit）量化后，图像可以有 0~255 共 256 个亮度等级；采用 4bit 量化后，图像可以有 0~15 共 16 个亮度等级，通常用亮度等级越高表示亮度越大。对亮度进行量化后，一个或连续的几个亮度等级被定义为一个，各框用框号 n 来标识。通常每个框中所包含的亮度等级数目是一致的，即，均匀的把所有亮度等级分配给若干个框。例如，8bit 量化采用 256 框时，n=0~255，即每个框包含一个亮度等级，框号即为相应亮度等级的编号。又如，8bit 量化采用 64 框时，n=0~63，每个框包含 4 个亮度等级，第 n 框对应编号为 4n~4n+3 的亮度等级。当然，也可以根据需要为各框定义不同个数的亮度等级，本例中采用亮度等级均匀分配的形式。

1b）分别统计曝光图像的像素在各格中的分布，即，统计图像的亮度直方图 H(n)。H(n) 可以采用第 n 框所包含亮度等级对应的像素数，也可以采用所对应的像素数占整个画面总像素数的比率，两种表示方式不存在实质性差别，本例中采用前者。

2）根据 H(n)表示的图像亮度分布情况划分不同的亮度区域；包括

2a）分别以具有最高峰值 H(n1)和次高峰值 H(n2)的格为中心将宽度为 k 的区域划为该峰值的亮度区域，得到最高峰区 H(n1-k)~H(n1+k)和次高峰区 H(n2-k)~H(n2+k)。

2b）判断最高峰区与次高峰区是否重叠，即，是否满足 |n2-n1| > 2k，若不满足，说明最高峰区与次高峰区重叠，则将第三高峰区作为次高峰区，依次
类推，直至获得的次高峰区与最高峰区不重叠。进行重叠判断的目的是为了避免在进行加权系数分配时，重叠区域无法进行准确的判断；同时也避免对亮度接近区域进行重复加权控制，影响控制效果。

下面，以两个具体例子来说明根据 H(n) 进行的最高峰区与次高峰区划分。例一如图 2 所示。图 2 是 4bit 量化采用 16 栅的 H(n) 统计图，n=0~15，被统计图像大小为 16 × 16，共有 256 个像素点，各栅对应的像素数标于图中。根据统计结果获知 H(n) 的最高峰为 H(3)，次高峰为 H(12)，取宽度 k=1，得到最高峰区为 H(2)~H(4)，次高峰区为 H(11)~H(13)，显然两峰区并不重叠，划分完毕。

例二如图 3 所示。图 3 各基本项定义与图 2 相同。根据统计结果获知 H(n) 的最高峰为 H(3)，次高峰为 H(5)，取宽度 k=1，由于 n2-n1=2k，说明两峰值区有一个栅重叠。如图 3 中虚线括号所示，因此将第三高峰 H(12) 作为次高峰，再次判断次高峰区与最高峰区并不重叠，得到最高峰区为 H(2)~H(4)，次高峰区为 H(11)~H(13)，划分完毕。

在进行峰值区域划分的过程中，对于一些特殊情况可以根据应用实际进行相应的规定，例如，峰值所在栅位于统计图边缘，其左侧或右侧的栅数不足设定的宽度，可定义该峰值区域的范围为靠近该边缘的连续 2k+1 个栅（此时峰值栅不再为该区域的中心栅）；又如，两个相邻的栅具有相同的峰值，可定义与另一峰值区的中心距离大者为该峰值区的中心栅；再如，两个峰值区具有相同的中心峰值，可定义随机选取其中之一标记为最高峰区，另一标记为次高峰区。

3）为不同的亮度区域分配相应的加权系数；为了减少图像中大面积亮区/暗区等产生像素亮度分布集中的区域对亮度平均值计算的影响，加权策略总的而言可以采用为峰值区域的像素分配小于其他区域的加权系数的办法。在本实施例中，采用如图 4 所示的沉降曲线来进行峰值区域加权系数的分配，其他区域的加权系数为 1，图 4 中 W 为加权系数，SH 为峰值区域的累积像素数目，SHm 为启用加权控制的最小累积像素数，SH1 为进入最小权重控制区的累积像素数，SH(n1) 为最高峰区的累积像素数，SH(n2) 为次高峰区的累积像素数（图 4 中 SH1、SH2 的位置为示意，并不表示 SH1 大于 SH2），Wm 为最小加权系
数，W1 和 W2 分别为最高峰区和次高峰区对应的加权系数。通过图 4 可以看出沉降曲线的加权策略为具有不同累积像素系数的峰值区域分配不同的加权系数，当峰值区域的累积像素系数大于 SHm 后其加权系数随峰值区域中像素分布的增加而减小，当峰值区域的累积像素系数大于 SH1 后其加权系数保持为最小加权系数 Wm。当然，W1 和 W2 也可以用相应峰值区域的平均累积像素数和 AH 来确定，AH=SH/(2k+1)，实质相同。

4）统计曝光图像的亮度加权平均值 AYw 作为自动曝光控制的控制参数，进行加权统计的方法就是将各像素的亮度值按其加权系数进行累加和平均，如下式所示：

\[
AYw = \frac{\sum n*H(n)*W(n)}{\sum H(n)*W(n)}
\]

在本例中，采用了一种简单而典型的分区策略，将 H(n)分为三个区域：最高峰区、次高峰区和其他区域。基于本例中所描述的分区思想和方法，还可以根据具体应用需要对图像进一步进行更加细致的区域划分，同时也可以只对图像的部分亮度分布区域进行划分，具体区域划分的块数以及对图像亮度分布覆盖的完整程度不构成本发明的限制。

实施例二、一种自动曝光控制中控制参数的获得方法，流程如图 5 所示，本实施例方法与实施例一基本相同，区别之处在于，在步骤 1）中采用滑动平均直方图 AH(j)来统计曝光图像的亮度分布。因此，本实施例中，在获得图像的亮度直方图 H(n)后，还增加

1c）采用宽度为 2m+1 的滑动窗口对像素在各框中的分布进行滑动平均统计，获得图像的滑动平均直方图 AH(j)；

\[
AH(j) = \frac{\sum_{n=j-m}^{n=j+m} H(n)}{2m+1}
\]

由上式可以看出，一个 AH(j)对应一个 H(n)区间：H(j-m)~H(j+m)。

因此相应的，在步骤 2a）中不再根据 H(n)的峰值确定峰值区间，而是根据 AH(j)的峰值所对应的亮度区域划分 H(n)的各峰值区域，在本实施例中同样采用最高峰区、次高峰区和其他区域的划分方式。显然，AH(j)的峰值所对应的 j 编号就是相应 H(n)峰值区间的中心档号，因此同样可以采用实施例一中的方式判断峰值区间是否重叠，只是最高峰区和次高峰区的中心档号 n1、n2 分
别可以用 AH(j) 的最高次高峰值编号 j1、j2 来代替。

下面，仍以两个具体的例子来说说明根据 AH(j) 进行的最高峰区与次高峰区划分。例一基于实施例一中的图 2。取 m=1 的滑动窗口对图 2 中的 H(n) 统计图进行滑动平均统计，获得 AH(j) 统计图，j=1~14，如图 6 所示，AH(j) 值标于图中。根据统计结果获知 AH(j) 的最高峰为 AH(3)，次高峰为 AH(12) (与 AH(12) 相邻的 AH(11) 具有相同的次高峰值，规定选择与另一峰值距离大者为次高峰)，因此相应的 H(n) 最高峰区为 H(2)~H(4)，次高峰区为 H(11)~H(13)。j2-j1 > 2m，两峰区并不重叠，划分完毕。

例二基于实施例一中的图 3。取 m=1 的滑动窗口对图 3 中的 H(n) 统计图进行滑动平均统计，获得 AH(j) 统计图，j=1~14，如图 7 所示，AH(j) 值标于图中。根据统计结果获知 AH(j) 的最高峰为 AH(4)，次高峰为 AH(12)，因此相应的 H(n) 最高峰区为 H(3)~H(5)，次高峰区为 H(11)~H(13)。j2-j1 > 2m，两峰区并不重叠，划分完毕。

比较实施例一与本实施例中例一、例二的划分过程和结果可以看出：采用两种统计方式得到的最终最/次高峰区的划分基本是接近的；本例中统计方式相比有更好的效果，在同样的亮度等级跨度下，本实施例中例二的最高峰区 H(3)~H(5) 比实施例一中例二的最高峰区 H(2)~H(4) 包含了更多的像素点，更能反映在该亮度区域像素集中分布的特性; 基于 AH(j) 统计的结果进行峰区划分，出现峰区重叠的可能性明显减少。因此，对图象的亮度分布采用 AH(j) 统计是更为优选的。当然，也可以使用滑动累积直方图 SH(j) 来代替 AH(j)，SH(j)=AH(j)*(2m+1)，两种方式实质上相同，只存在绝对数值上的差异。

实施例三、一种自动曝光控制中控制参数的获得方法，流程与实施例二相同，区别之处在于，在步骤 3 中为不同的亮度区域分配相应的加权系数时，峰值区域的加权策略采用如图 8 所示的倒梯型曲线, 其他区域的加权系数仍为 1。图 8 中 W, SH, SHm, SH1, SH(n1), SH(n2), Wm, W1, W2 的含义均与图 4 中相同，增加的 SH2 为进入权重回升区的最小累积像素数。通过图 8 可以看出倒梯型曲线的加权策略在 SH<SH2 的区域中与沉降曲线相同，当峰值区域的累积像素数大于 SH2 后其加权系数开始逐渐从最小加权系数 Wm 回升（最大不超过 1）。
倒梯型曲线实际上是对降度曲线的补充和完善，是在峰区覆盖像素增加到一定值的情况下为降度曲线增加一段权重的区域。这样做的好处在于能够避免在某些实际情况下降度曲线可能出现的AYw不收敛的情况。因为若降区集中了相当数量的像素分布，始终保持低权重的控制方式会导致AYw不能正确反映图象的曝光情况，导致自动控制调整后的AYw不收敛。

类似的，也可以选择如图9所示的V型曲线加权策略，图9中各参数含义与图8中相同，只是倒梯型曲线中SH1与SH2之间增益为最小加权系数Wm的一段被缩成了一点。简明起见，本文中均以线性关系来表示加权系数与累积像素的相对变化趋势，不同的加权曲线线型可根据实际需要进行选择，不构成对本发明的限制。

实施例四、一种自动曝光控制中控制参数的获得方法，本实施例方法与实施例三基本相同，区别之处在于，加权策略曲线中的最小加权系数Wm是根据当前相对光电增益Gr动态调整的，并且不同亮度的峰值区域采用不同的调整策略：亮度高的峰值区域（即n1、n2中数值较大者对应的峰值区域，以下简称亮区）所对应的最小加权系数Wmh随当前相对光电增益的增大而增大，亮度低的峰值区域（即n1、n2中数值较小者对应的峰值区域，以下简称暗区）所对应的最小加权系数Wmd随当前相对光电增益的增大而减小。Gr=(1/Fn)(Ts/Tf)Ga，其中Fn为光圈数，Ts为快门时间，Tf为参考快门时间，Ga为放大大器增益。

下面，以Wm与Gr为简单线性关系为例，说明上述Wm调整策略，如图10所示。图10中，亮、暗区的最小加权系数Wmh、Wmd在最小值Wm1与最大值Wm2之间变化，Gr1与Gr2分别是进入与越出Wm调整区的Gr限定值。若当前Gr＜Gr1，则亮区最小加权系数Wmh保持为最小值Wm1，暗区最小加权系数Wmd保持为最大值Wm2；若当前Gr1＜Gr＜Gr2，即位于Wm调整区，则Wmh随Gr的增加从Wm1增加到Wm2，Wmd随Gr的增加从Wm2降低到Wm1；若当前Gr＞Gr2，则Wmh保持为最大值Wm2，Wmd保持为最小值Wm1。

根据Gr的变化动态调整Wm的好处在于，能够在Gr较小时（即曝光程度相对较弱时）适当提高暗区对应的权重比例并相应降低亮区对应的权重比
例，而在 Gr 较大时（即曝光程度相对较弱时）适当提高亮峰对应的权重比例并相应降低暗峰对应的权重比例，使得加权系数的分配与实际曝光情况在总体趋势上保持一致，达到更好的控制效果。

实施例五、一种自动曝光控制方法，流程如图 11 所示，包括

1）采用实施例四所描述的控制参数的获得方法，获取当前曝光图像的亮度加权平均值 AYw；

2）将当前 AYw 与亮度参考值 AYref 进行比较；

3）根据比较结果进行相对光电增益调整，包括

3a）当 AYw 在 AYref 附近的一个区间中变化时，假定为 ±a（以下称为适宜门限），认为当前曝光程度是适当的，不进行调整；

3b）若 AYw 超过 AYref+a，则认为曝光过度，需要进行降低 Gr 的调整，例如缩小光圈、缩短快门时间、降低放大器增益等；

3c）若 AYw 低于 AYref-a，则认为曝光不足，需要进行增大 Gr 的调整，例如加大光圈、延长快门时间、提高放大器增益等。

为了使 AYw 位于适宜的状态，上述控制过程可能需要重复多次，并且当前曝光场景可能是不断变化的，因此上述过程需要循环执行，根据当前曝光情况不断对 Gr 进行调整。

此外，在进行 Gr 调整时，由于可调参数比较丰富，包括光圈数 Fn、快门时间 Ts、放大器增益 Ga 等，因此可以根据实际设备情况（对该设备而言哪种参数的调节更容易、更准确，动态范围更大等）采用侧重不同的调整策略，例如：可以优先调整 Ts，若仅调整 Ts 还是达不到 Gr 的调整要求则继续调整 Fn，将 Ga 作为微调项放在最后；或者，也可以优先调整 Fn，Ts 次之，Ga 最后；或者，还可以固定一种或两种参数，仅调整另外的参数，例如 Fn 不变，仅调整 Ts 和 Ga。

实施例六、一种自动曝光控制方法，流程与实施例五相同，区别之处在于，本例中使用的亮度参考值 AYref 不是一个固定不变的值，而是根据当前 AYw / Gr 的值进行动态调整的。其调整策略为：AYref 随 AYw / Gr 的增大而增大，即，在明亮场景中适用较大的 AYref，在昏暗场景中适用较小的 AYref。采用动态 AYref 的好处在于，曝光控制的标准能够根据实际场景的情况自动进行适
应性调整，可获得更加自然和真实的效果。

实施例三，一种自动曝光控制方法，与实施例五基本相同，区别之在于，
除了包含实施例五中设置的适宜门限±a外，本实施例中还设置了更为细致的
曝光调整范围，并在不同的范围内适用不同的Gr调整策略。本实施例中增设
的曝光调整范围包括缓冲门限±b和迅速门限±c，相应的Gr调整策略为:

AYw落入AYref±a，或由AYref±a进入AYref±b并在AYref±b内变动
时，不进行Gr调整；

AYw超出AYref±b但仍落入AYref±c时，以小步长进行Gr调整，使
AYw逐渐返回AYref±a内；

AYw超出AYref±c时，以大步长进行Gr调整，使AYw迅速返回AYref
±c内。

图12给出一个采用上述调整策略在一段时间内进行Gr调整的例子。以下
分段对图12进行说明。段1: AYw落入AYref±a，不调；段2: AYw突变（可
能由于开、关灯，场景突变的情况引起)，跳入AYref±c，以大步长对Gr进
行快调；段3: AYw突变，跳入AYref±c，以小步长将Gr慢调至AYref±a；段
4: AYw从AYref±a变动到AYref±b，不调；段5: AYw超出AYref±b但仍落
入AYref±c，以小步长将Gr慢调至AYref±a；段6: AYw由AYref±a进入
AYref±b并在AYref±b内变动，不调；段7: AYw突变，跳入AYref-c，以
大步长对Gr进行快调；段8: AYw突变，跳入AYref±c，以小步长将Gr慢
调至AYref±a；段9: AYw落入AYref±a，不调。

采用本实施例调整策略的好处在于，根据AYw的偏差情况选择适宜的方
式进行调整，既保证突变时的迅速反应也保证了调整控制的精确程度，同时在
AYw从适宜门限中偏离时，给予一定的缓冲范围，避免小抖动造成的频繁调
节。

实施例九，一种成像装置，模块结构如图13所示，包括感光器件1、光
圈2、快门3、放大器Ga4、相对光电增益调整模块5、图像处理模块6、亮
度分布统计模块7、加权计算模块8和补偿控制模块9；

感光器件1将经过光圈2、快门3控制后的光转换为模拟电流信号；
放大器Ga4对感光器件1的输出进行放大；
图像处理模块6将放大器Ga4的输出转换为数字图像信号；
亮度分布统计模块7统计所述数字图像信号的亮度分布；
加权计算模块8根据亮度分布统计模块7的统计结果为不同的亮度区域分配相应的加权系数，计算出所述数字图像信号的亮度加权平均值AYw；
补偿控制模块9根据亮度加权平均值AYw与亮度参考值AYref的差别确定相对光电增益Gr的调整目标；

相对光电增益调整模块5包括三个子模块：自动光圈控制AI51、自动快门时间控制AST52、自动增益控制AGC53；这三个子模块分别控制光圈2、快门3、放大器Ga4，根据补偿控制模块9确定的Gr的调整目标对所控制设备模块进行相应的参数调整。

上述成像装置可应用上述实施例五到八中所描述的自动曝光控制方法进行自动曝光控制。

以上对本发明所提供的一种自动曝光控制中控制参数的获得方法及相应的自动曝光控制方法和应用该控制方法的成像装置进行了详细介绍，本文中应用了具体个例对本发明的原理及实施方式进行了解述，以上实施例的说明只是用于帮助理解本发明的方法及其核心思想；同时，对于本领域的一般技术人员，依据本发明的思想，在具体实施方式及应用范围上均会有改变之处，综上所述，本说明书内容不应理解为对本发明的限制。
图 1

1a) 定义根n

1b) 统计H(n)

2a) 根据H(n)的峰值划出最高峰区和次高峰区

2b)

\[|n2-n1| > 2k \]

是

否

将下一高峰区作为次高峰区

3) 为最/次高峰区分配加权系数W1/W2

4) 统计AYw

图 2

![图 2](image-url)
图 5

图 6
图 10

图 11