
US 201200 13624A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2012/0013624 A1 

FOWLER (43) Pub. Date: Jan. 19, 2012 

(54) SPLIT STORAGE OF ANTI-ALIASED Publication Classification 
SAMPLES (51) Int. Cl. 

G06F 3/4 (2006.01) 
(75) Inventor: Mark FOWLER, Hopkinton, MA G06F 3/00 (2006.01) 

(US) (52) U.S. Cl. ......................................... 345/520; 34.5/536 
(73) Assignee: Advanced Micro Devices, Inc., (57) ABSTRACT 

Sunnyvale, CA (US) Embodiments of the present invention are directed to improv p p 
ing the performance of anti-aliased image rendering. One 

(21) Appl. No.: 13/186,256 embodiment is a method of rendering a pixel from an anti 
aliased image. The method includes: storing a first set and a 

(22) Filed: U. 19, 2011 second set of samples from a plurality of anti-aliased samples 
9 of the pixel respectively in a first memory and a second 

O O memory; and rendering a determined number of said samples 
Related U.S. Application Data from one of only the first set or the first and second sets. 

(60) Provisional application No. 61/365,703, filed on Jul. Corresponding system and computer program product 
19, 2010. embodiments are also disclosed. 

1OO 

Command 
Processor 

CPU 
102 

System 
memory 
108 

GPU Memory 
116 

Split AA 
Sample 
Reader 
126 

  

    

  

  



US 2012/001.3624 A1 Patent Application Publication 

  

  

  

  

  

  

  

  



Patent Application Publication Jan. 19, 2012 Sheet 2 of 3 US 2012/001.3624 A1 

f: 

s 
... 

  



US 2012/001.3624 A1 Jan. 19, 2012 Sheet 3 of 3 Patent Application Publication 

;--~~~~--~--~~~~~~~~~--~ 
&=--~~~~=~~~~~)=~~~~~ ~~~~*~*~**********------------- 
{ } 4 

809 
Kuoueuu puoO3S -----------~--~~~~*~*~~~~} 

cy 

  

  

  

  

  

  

  



US 2012/0013624 A1 

SPLT STORAGE OF ANT-ALIASED 
SAMPLES 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application claims the benefit of U.S. provi 
sional application No. 61/365,703, filed on Jul. 19, 2010, 
which is hereby incorporated by reference in its entirety. 

BACKGROUND 

0002 1. Field 
0003 Embodiments of the present invention are related to 
display of anti-aliased images. 
0004 2. Background Art 
0005 Edge effects, such as jagged edges, in displayed 
images occur because real-world Smooth edges are not accu 
rately displayed in monitors. Monitors display pixels, which 
are discrete points on the screen. Edge effects can be visually 
unappealing. Therefore, anti-aliasing (AA) techniques are 
frequently utilized to reduce Such edge effects. SuperSam 
pling and multisampling are two anti-aliasing techniques. In 
Supersampling, the image is rendered in a higher resolution 
and a number of samples are stored per pixel. In multisam 
pling, the original pixel is sampled in locations and the 
samples are stored per pixel. When rendering the image to be 
displayed, the actual pixel value can be determined by taking 
an average of the stored samples for that pixel. In 4x anti 
aliased images, i.e., 4XAA images, 4 samples are taken for 
each pixel of an anti-aliased image. The samples may com 
prise color values, depth values, and/or other attributes rel 
evant to displaying an image or scene. 
0006. The rendered images can be stored in graphics pro 
cessor unit (GPU) memory, system memory, or other memory 
of the computer system. When anti-aliasing is enabled the 
memory footprint of an image increases Substantially. For 
example, when 4XAA is being used, in general, each pixel 
requires four samples, thereby causing a substantial increase 
in the memory required to store the image. The increase in the 
required memory footprint can lead to performance degrada 
tions due to scalability limitations, bandwidth limitations, 
and delays in rendering frames. For example, in addition to 
the large memory footprint, accessing of multiple samples of 
the same image in memory can cause memory bandwidth 
congestion. 
0007 What are needed, then, are methods and systems 
that improve the utilization of memory bandwidth when anti 
aliasing is used. 

BRIEF SUMMARY OF EMBODIMENTS OF THE 
INVENTION 

0008 Embodiments of the present invention are directed 
to improving the performance of anti-aliased image render 
ing. One embodiment is a method of renderingapixel from an 
anti-aliased image. The method includes: Storing a first set 
and a second set of a plurality of anti-aliased samples of the 
pixel respectively in a first memory and a second memory; 
and rendering a determined number of said samples from the 
first set or the first and second sets. 
0009. Another embodiment is a system to render a pixel 
from an anti-aliased image. The system comprises: at least 
one processor, a first memory and a second memory coupled 
to the processor; and a split anti-aliased sample writer. The 
split anti-aliased sample writer is configured to store a first set 
and a second set of a plurality of anti-aliased samples of the 
pixel respectively in a first memory and a second memory. 
The system can also include a splitanti-aliased sample reader. 

Jan. 19, 2012 

The anti-aliased sample reader can be configured to render a 
determined number of said samples from one of only the first 
set or the first and second sets. 
0010 Yet another embodiment is a computer readable 
media storing instructions wherein said instructions when 
executed are adapted to render a pixel from an anti-aliased 
image using at least one processor with a rendering method. 
The rendering method includes: Storing a first set and a sec 
ond set of a plurality of anti-aliased samples of the pixel 
respectively in a first memory and a second memory; and 
rendering a determined number of said samples from one of 
only the first set or the first and second sets. 
0011 Further embodiments, features, and advantages of 
the present invention, as well as the structure and operation of 
the various embodiments of the present invention, are 
described in detail below with reference to the accompanying 
drawings. 

BRIEF DESCRIPTION OF THE 
DRAWINGS/FIGURES 

0012. The accompanying drawings, which are incorpo 
rated herein and form a part of the specification, illustrate 
embodiments of the present invention and, together with the 
description, further serve to explain the principles of the 
invention and to enable a person skilled in the pertinent art to 
make and use embodiments of the invention. 
0013 FIG. 1 shows a block diagram of a graphics com 
puting environment according to an embodiment of the 
present invention. 
0014 FIG. 2 shows an example allocation of multi 
sampled pixel samples to memories according to an embodi 
ment of the present invention. 
0015 FIG. 3 is a flowchart illustrating the rendering of an 
anti-aliased image according to an embodiment of the present 
invention. 
0016. The present invention will be described with refer 
ence to the accompanying drawings. Generally, the drawing 
in which an element first appears is typically indicated by the 
leftmost digit(s) in the corresponding reference number. 

DETAILED DESCRIPTION OF THE INVENTION 

0017. It is to be appreciated that the Detailed Description 
section, and not the Summary and Abstract sections, is 
intended to be used to interpret the claims. The Summary and 
Abstract sections may set forth one or more but not all exem 
plary embodiments of the present invention as contemplated 
by the inventor(s), and thus, are not intended to limit the 
present invention and the appended claims in any way. 
0018 Anti-aliasing is performed to reduce edge effects in 
the display of images. Anti-aliasing of image frames, such as 
by Supersampling or multisampling, generates a plurality of 
samples for each pixel of the image. In Supersampling, the 
original image is rendered at a high resolution and several 
samples from the high resolution image are combined (or 
averaged) to render the image at the desired resolution. In 
multisampling, the pixel is sampled at several locations. For 
example, in 4xAA mutisampled image, 4 samples are taken 
of each pixel. Storing these multiple samples per pixel can 
become expensive both in terms of the memory footprint 
required to store the anti-aliased image as well as the addi 
tional memory traffic generated due to the retrieval of the 
multiple samples during the rendering of an image. 
0019. Furthermore, in the case of most pixels, only a few 
of the samples are actually used in rendering. Embodiments 
of the present invention are directed to organizing the anti 
aliased samples in a manner to efficiently render images 



US 2012/0013624 A1 

based on them. According to an embodiment, the anti-aliased 
samples of a pixel are stored in different memories. The 
different memories can have different storage and access 
characteristics. The samples to be stored in respective ones of 
the different memories can be selected based on, for example, 
the likelihood that a sample will actually be used in rendering 
an image. By storing only the most used samples in a local 
memory, such as graphics memory of the GPU, samples of 
more pixels can be accommodated within the graphics 
memory, thereby leading to an overall increase in speed of 
execution and reduction of memory traffic because, for 
example, the GPU can access all the image data required for 
the rendering in the local graphics memory. 
0020. In the following description, embodiments of the 
present invention are described primarily in relation to mul 
tisampling. Persons skilled in the art, however, would recog 
nize that other methods of AA can also be used. 

System to Split Storage of Anti-Aliased Pixel 
Samples 

0021 FIG. 1 shows a computing environment according 
to an embodiment of the present invention. For example, 
computing environment 100 includes a central processing 
unit (CPU) 102 coupled to a GPU 104. As would be appreci 
ated by those skilled in the relevant art(s) based on the 
description herein, embodiments of the present invention can 
include one or more GPUs shown. GPU 104 may be coupled 
to additional components such as memories, displays, etc. 
GPU 104 receives graphics related tasks, such as graphics 
processing (e.g., rendering) or display tasks, from CPU 102. 
As will be understood by those of ordinary skill in the art, 
GPU 104 may be, as illustrated, discrete components (i.e., 
separate devices), integrated components (e.g., integrated 
into a single device Such as a single integrated circuit (IC), a 
single package housing multiple ICs, integrated into other 
ICs—e.g., a CPU or a Northbridge) and may be dissimilar 
(e.g., having some differing capabilities such as, for example, 
performance). 
0022 GPU 104 can include a command processor 112, a 
memory controller 114, local graphics memory 116, and a 
shader core 118. Command processor 112 controls the com 
mand execution on GPU 104. For example, command pro 
cessor 112 can control and/or coordinate the receiving of 
commands and data from CPU 102 to be processed in GPU 
104. Command processor 112 can also control and/or coor 
dinate allocation of memory in graphics memory 116, in 
general through memory controller 114. Memory controller 
114 can control access to graphics memory 116 for the read 
ing and writing of data. In some embodiments, memory con 
troller 114 can also arbitrate between system memory 108 
and graphics memory 116, so that the data needed for pro 
cessing can be obtained from either memory. Memory con 
troller 114, shader core 118, and/or command processor 112 
can have access to a memory mapping 134 that keeps track of 
pixel sample storage locations. Graphics memory 116 is, in 
general, a fast random access memory, Such as, for example, 
embedded DRAM (EDRAM). In general, when compared to 
system memory, graphics memory 116 enables fast access to 
the GPU. Shader core 118 includes processing units which 
execute various processing tasks, such as graphics processing 
threads. For example, the processing units in shader core 118 
can include a plurality of single instruction multiple data 
(SIMD) processing units. The graphics processing threads 
that execute on shader core 118 can include shader programs 
(sometimes also referred to as simply “shader') such as ver 
tex shaders, geometry shaders, and pixel shaders. Other 
graphics processing threads such as rendering threads can 

Jan. 19, 2012 

also execute on shader core 118. Tasks to be executed in 
shader core 118 can be allocated by, for example, command 
processor 112. 
0023. According to an embodiment, GPU 104 can also 
include other modules, such as, a render operations block 
(ROP) 120, a texture mapper 122, a split AA sample writer 
124, and a split AA sample reader 126. The logic of ROP120, 
texture mapper 122, split AA sample writer 124, and split AA 
sample reader 126 can be implemented using a hardware, 
firmware, software, or a combination thereof. ROP 120 
includes logic to render a screen to memory and/or other 
location. For example, ROP120 can include logic to render an 
image to memory from the output of the pixel processing 
shaders. According to an embodiment, ROP 120 can invoke 
split AA sample writer 124 to write anti-aliased samples of 
pixels to a memory. 
0024 Texture mapper 122 includes logic to perform tex 
ture mapping and/or rendering of an image using the multi 
sampled samples stored in memory. For example, texture 
mapper 122 can read the multisampled samples from memory 
in order to texture map a graphics object in order to depict 
various lighting effects. The reading of four separate samples 
from memory in the case of anti-aliased samples causes addi 
tional memory traffic compared to having to read only a single 
sample per pixel in the case of non anti-aliased case. Further 
more, many applications involve multiple passes of rendering 
and texture mapping, thereby leading to increased memory 
traffic. According to an embodiment, texture mapper 122 can 
invoke split AA sample reader 124 to read the multisampled 
samples that are stored in separate memories. 
0025 Split AA sample writer 124 includes logic to split 
the set of anti-aliased samples of each pixel before storing 
them in memory. The samples can be stored in system 
memory, in graphics memory, and/or in another memory. The 
samples can be stored in the different memories according to 
various storage schemes. Storing of the samples in graphics 
memory yields faster access to these samples when rendering 
and/or texture mapping. FIG. 2 illustrates an exemplary split 
ting of samples among memories applied to a set of anti 
aliased samples. The storing of samples split among multiple 
memories is further described below with respect to FIGS. 2 
and 3. 

0026 Split AA sample reader 126 includes logic to read 
the anti-aliased samples that are distributed among multiple 
memories. According to an embodiment, split AA sample 
reader 126 is configured to take a request for one or more pixel 
samples as input specifying a pixel identifier and optionally a 
sample identifier, and return the values corresponding to that 
one or more samples. Split AA sample reader 126 can be 
configured to read the samples by determining the number 
and location of the samples to be retrieved for rendering. 
Upon receiving a request for a pixel sample, split AA sample 
reader 126 can determine the number of samples to be read for 
the requested pixel and whether to retrieve the samples from 
the graphics memory and/or system memory. In some 
embodiments, the determination of how many samples are to 
be retrieved can be made on a pixel by pixel basis. In some 
embodiments, the determination of how many samples are to 
be retrieved is made per frame or at a higher level of granu 
larity. Reading of the AA samples can be affected by the 
storage scheme according to which the samples are stored in 
memory. Reading of AA samples is further described in rela 
tion to FIGS. 2 and 3 below. 

0027 Computing environment 100 also includes a system 
memory 108. System memory 108 can be used for holding the 
commands and data that are transferred between GPU 104 
and CPU 102. In some embodiment, system memory can also 



US 2012/0013624 A1 

include sample storage 134. After the data is processed using 
graphics operations, the processed data can be written back to 
system memory by GPU 104. For example, in some embodi 
ments, processed data from graphics memory 116 can be 
written to system memory 108 prior to be being used for 
further processing or for display on a screen Such as Screen 
110. In some embodiments, frame data processed in GPU 104 
is written to screen 110 through a display engine 109. Display 
engine 109 can be implemented in hardware and/or software 
or as a combination thereof, and may include functionality to 
optimize the display of databased upon the characteristics of 
screen 110. In another embodiment, display engine 109 can 
receive processed display data directly from GPU memory 
116 and/or GPU memory 122. 
0028. The various devices of computing system 100 are 
coupled by a communication infrastructure 106. For 
example, communication infrastructure 106 can include one 
or more communication buses including a Peripheral Com 
ponent Interconnect Express (PCI-E). Communications 
infrastructure 106 can also include, for example, Ethernet, 
Firewire, or other interconnection devices. 
0029. In the description above GPU 104 has been depicted 
as including selected components and functionalities. A per 
son skilled in the art will, however, understand that one or 
both GPUs 104 can include other components such as, but not 
limited to, primitive assemblies, sequencers, shader export 
memories, registers, and the like. 
0030 FIG. 2 illustrates an example allocation of samples 
between two memories. According to an embodiment, the 
anti-aliased samples of pixels can be stored in the graphics 
memory 116 of the GPU and in system memory 108. For each 
pixel, the set of samples to be stored in each memory can be 
determined based on various criteria, Such as, for example, 
the likelihood of the sample actually being used in rendering 
and/or how frequently the sample is likely to be used in 
rendering. According to an embodiment, the one or more 
samples that are most likely to be retrieved for rendering can 
bestored in the faster memory, such as GPU memory 116, and 
the other samples can be stored in a slower memory Such as 
system memory 108. The example illustrated shows that of 
the four samples of pixel p. samples 0 and 1 (i.e., (p.0) and 
(p.1)) are stored in GPU memory 116 while samples 2 and 3 
(i.e., (p.2) and (p.3)) are stored in System memory. 
0031. The samples allocated to each memory can be 
arranged according to any scheme, such as, for example, to 
improve speed of access and/or storage efficiency. According 
to an embodiment, the 0” sample of respective pixels can be 
stored in contiguous memory blocks, followed by the 1 
sample of respective blocks, etc. An entire Surface comprising 
samples of a specific sample position for all pixels can be 
stored in a contiguous memory area. The GPU memory can 
store surfaces for the 0" and 1 samples, and the 2" and 3" 
samples can be stored in System memory. Memory map 134 
can include, for each surface, its base address and whether the 
surface is stored in GPU memory or system memory. The 
location of a particular sample, for example, the 1 sample of 
pixel p can be determined based on the base address of the 1 
sample surface, and a stride. For example, actual position can 
beat an offset of stride multiplied by p from the base address 
of the 1 sample, where the stride corresponds to the memory 
space occupied by one sample. By using a base address and a 
stride to access the respective stored samples, the amount of 
memory required for memory map 134 to store addresses of 
the sample locations is reduced when compared to storing 
separate addresses for respective sample locations. 
0032. In another embodiment, within each memory, all 
samples allocated to that memory from a pixel are stored in 

Jan. 19, 2012 

contiguous memory. For example, the 0" and 1 samples of 
each pixel may be stored in contiguous GPU memory and the 
2" and 3" samples can be stored in contiguous system 
memory. In another embodiment, Samples can be stored with 
out any particular relationship in stored location to other 
samples. The samples in each memory can be stored and 
organized as most suitable to that memory. Addresses of the 
respective samples can be specified in memory map 134 in a 
manner that does not require the full address of each memory 
location to be stored in the memory map. 

Method to Split Storage of Anti-Aliased Pixel 
Samples 

0033 FIG.3 is a flowchart illustrating a process to split the 
storage of respective anti-aliased samples of pixels among a 
plurality of memories according to an embodiment of the 
present invention. In step 302, the ratio according to which 
samples are to be stored in each memory is determined. 
According to an embodiment, the number of samples to be 
stored respectively in the GPU memory and in system 
memory is determined. The number of samples to be stored in 
the GPU memory can be determined based on various factors, 
such as, the size of the GPU memory, the sample size, the size 
of each surface, number of different images and/or screens for 
which Surfaces are to be stored, and the like. In general, it is 
desirable to store, for each image and/or screen, the Surfaces 
corresponding to the samples that are expected to be most 
frequently used. According to an embodiment, for each image 
and/or screen simultaneously in use, the 0" and 1 sample 
surfaces can be stored in GPU memory and the other samples 
can be stored in System memory. 
0034. In step 304, the AA image is rendered to memory. In 
an embodiment, a multisample anti-aliased image is rendered 
to memory by splitting the set of samples for each pixel 
between the GPU memory and the system memory according 
to a previously determined criteria such as the ratio deter 
mined in step 302. For example, the render target to which the 
ROP renders the image can be split between the GPU memory 
and system memory on the basis of the multisample sample 
identifier for each pixel. 
0035. In step 306, during the rendering of the image to 
memory, one or more multisample samples of each pixel of 
the image are rendered to respective surfaces in the GPU 
memory. The number of samples to be rendered to GPU 
memory can be determined according, for example, to step 
302 above. It is preferred to store samples most frequently 
utilized for rendering and/or texture mapping in GPU 
memory, so that the respective samples can be efficiently 
accessed when those samples are accessed during one or 
more passes of rendering and/or texture mappings that occur 
in rendering the final image to a screen. The memory address 
to which the respective samples are rendered can be deter 
mined based, for example, upon the base address of the cor 
responding surface in GPU memory and the identifier of the 
pixel being rendered. For example, corresponding to each of 
the four samples generated in 4XAA multisamplinga separate 
surface can be stored in GPU memory or system memory. The 
position within the corresponding Surface of a sample from a 
specific pixel can be determined based upon the size of each 
sample and the numeric sequential identifier of the pixel. 
0036. In another embodiment, for each pixel, the number 
of samples stored in GPU memory can be the same as or 
different than the ratio determined in step 302 based on char 
acteristics of that particular pixel. For example, an application 
can determine that specific parts and/or pixels of the image to 
be displayed are to be subjected to several passes of rendering 
and/or texturing, and therefore the samples of those pixels are 



US 2012/0013624 A1 

to be stored in GPU memory. In an embodiment in which 
different numbers of samples can be stored for respective 
pixels, the storage of the samples and access to the stored 
samples can get more complex, but performance efficiencies 
may begained. In yet another embodiment, one or more of the 
samples that are stored in System memory can also be stored 
in GPU memory for selected pixels. One or more surfaces 
comprising such selectively stored samples can be main 
tained in GPU memory, and a memory mapping function can 
be implemented to access Such selectively stored samples as 
appropriate. 
0037. In step 308, during the rendering of the image to 
memory, one or more multisample samples of respective 
pixels of the image are rendered to the corresponding Surfaces 
in system memory. The number of samples to be rendered to 
system memory can be determined according, for example, to 
step 302 above. The samples that are stored in system 
memory, as described previously, are preferably accessed less 
frequently than those stored in GPU memory. The memory 
address to which the respective samples are rendered can be 
determined based, for example, upon the base address of the 
corresponding Surface in System memory and the identifier of 
the pixel being rendered. For example, as described above, 
corresponding to each of the four samples generated in 4xAA 
multisampling a separate Surface can be stored in GPU 
memory or system memory. The position within the corre 
sponding Surface of a sample from a specific pixel can be 
determined based upon the size of each sample and the 
sequential numeric identifier of the pixel. 
0038 Steps 306 and 308 can occur sequentially or in par 

allel to store respective samples in the corresponding memo 
ries for each pixel of the image. At the conclusion of step 308, 
according to an embodiment, the multiple samples of each 
pixel for all pixels of the image are stored in the correspond 
ing Surfaces in GPU memory and system memory. 
0039. In step 310, a pixel to be read is determined. Reading 
of a pixel can occur during any one of the one or more passes 
of rendering and/or texture mapping that occur between the 
initial rendering of the multisampled anti-aliased render tar 
get (steps 304-308) and the display of the image on a screen. 
For example, a pixel can be read as part of a resolve operation 
to render a display image. Many applications execute mul 
tiple passes of rendering and texture mapping in order to 
render complex imagery and various effects Such as lighting 
effects. According to an embodiment, during a rendering 
from the multisampled anti-aliased render target pixels of the 
image are read in a raster scan pattern going from left to right 
and top to bottom. 
0040. In step 312, the sample to be read for the selected 
pixel is determined. During rendering from the multisampled 
anti-aliased render target, for each pixel it can be determined 
what samples are to be used in rendering the display image. 
The number of samples to be displayed for the pixel can be 
determined, for example, based upon various criteria Such as 
the number of objects touching the pixel, whether the pixel is 
covered by any single object, and the depth at which each 
object touches the pixel. For example, in 4XAA multisam 
pling, if the pixel is covered entirely by a single object, only 
one sample need be read for rendering that pixel to the display 
image. If one object is touching the pixel, but not covering, 
then two samples can be read to render that pixel to the display 
image. Similarly, it can be determined whether to read three 
or four of the samples based upon the objects touching the 
pixel and the visibility of such objects. 
0041. In step 314, for each sample, it is determined 
whether the sample is in GPU memory or system memory. 
The determination as to in which memory the sample is 

Jan. 19, 2012 

located can be based on a previously determined parameter 
indicating the number of samples stored in GPU memory. For 
example, as determined in step 302, the 0" and 1 samples for 
any pixel can be accessed in GPU memory and the other 
samples can be accessed in System memory. In another 
embodiment, the determination can be based on dynamic 
criteria on a per pixel basis. For example, as described in 
relation to step 306 above, selected pixels can have different 
number of samples stored in GPU memory. 
0042 Based on the determination in step 314, the sample 

is accessed in either the GPU memory (in step 316) or in 
system memory (in step 318). The memory address in which 
the sample is located can be based on the base address of the 
Surface corresponding to the sample and an offset within that 
Surface. The base address for each surface may be preconfig 
ured and/or predetermined at the time of allocation and/or 
writing of the samples to memory. The offset can be deter 
mined based on a known stride based on the size of a stored 
sample, and a numeric identifier identifying the pixel in the 
sequence of a raster scan access pattern. In another embodi 
ment, the location for individual samples can be determined 
based on a memory mapping specifying the location of that 
sample in memory. For example, in embodiments in which a 
different number of samples can be stored for each pixel, a 
memory map can be used to identify the location of specific 
samples. 
0043. In step 320, it is determined whether more samples 
are to be stored in the render target. For example, in 4xAA 
multisampling, for each pixel, four samples can be stored in 
the render target. If more samples are to be stored, method 
300 returns to step 312. If no more samples are to be stored for 
the current pixel, method 300 proceeds to step 322. 
0044. In step 322, it is determined whether the current 
pixel is the last pixel to be processed in method 300 in the 
current image. If yes, processing of method 300 is completed. 
If the current pixel is not the last one in the current image to 
be rendered to the render target, processing in method 300 
returns to step 310. 
0045. Instructions executed by the logic to perform 
aspects of the present invention can be coded in a variety of 
programming languages, such as Cand C++, Assembly, and/ 
or a hardware description language (HDL) and compiled into 
object code that can be executed by the logic or other device. 
0046. The embodiments described above can be described 
in a hardware description language such as Verilog, RTL. 
netlists, etc. and that these descriptions can be used to ulti 
mately configure a manufacturing process through the gen 
eration of maskworkS/photomasks to generate one or more 
hardware devices embodying aspects of the invention as 
described herein. 
0047 Aspects of the present invention can be stored, in 
whole or in part, on a computer readable media. The instruc 
tions stored on the computer readable media can adapt a 
processor to perform embodiments of the invention, in whole 
or in part. 
0048. The present invention has been described above 
with the aid of functional building blocks illustrating the 
implementation of specified functions and relationships 
thereof. The boundaries of these functional building blocks 
have been arbitrarily defined herein for the convenience of the 
description. Alternate boundaries can be defined so long as 
the specified functions and relationships thereof are appro 
priately performed. 
0049. While various embodiments of the present invention 
have been described above, it should be understood that they 
have been presented by way of example only, and not limita 
tion. It will be apparent to persons skilled in the relevant art 



US 2012/0013624 A1 

that various changes in form and detail can be made therein 
without departing from the spirit and scope of the invention. 
Thus, the breadth and scope of the present invention should 
not be limited by any of the above-described exemplary 
embodiments, but should be defined only in accordance with 
the following claims and their equivalents. 
0050. The foregoing description of the specific embodi 
ments will so fully reveal the general nature of the invention 
that others can, by applying knowledge within the skill of the 
art, readily modify and/or adapt for various applications such 
specific embodiments, without undue experimentation, with 
out departing from the general concept of the present inven 
tion. Therefore, Such adaptations and modifications are 
intended to be within the meaning and range of equivalents of 
the disclosed embodiments, based on the teaching and guid 
ance presented herein. It is to be understood that the phrase 
ology or terminology herein is for the purpose of description 
and not of limitation, such that the terminology or phraseol 
ogy of the present specification is to be interpreted by the 
skilled artisan in light of the teachings and guidance. 
What is claimed is: 
1. A method of rendering a pixel from an anti-aliased 

image, comprising: 
storing a first set and a second set of samples from a 

plurality of anti-aliased samples of the pixel respectively 
in a first memory and a second memory; and 

rendering a determined number of said samples from one 
of only the first set or the first and second sets. 

2. The method of claim 1, wherein a number of samples in 
the first set is predetermined. 

3. The method of claim 1, wherein a number of samples in 
the first set is determined based on characteristics of the 
image. 

4. The method of claim 1, wherein a number of samples in 
the first set is determined based on a size of a sample and size 
of the first memory. 

5. The method of claim 1, wherein the number of samples 
to be rendered is determined based upon objects touching the 
pixel. 

6. The method of claim 1, wherein the first memory is 
accessible to a processor at a faster rate than the second 
memory. 

7. The method of claim 1, wherein the first memory is a 
graphics memory coupled to a graphics processor unit (GPU) 
and the second memory is a system memory. 

8. The method of claim 1, wherein the anti-aliased samples 
are multisampled. 

9. The method of claim 1, wherein rendering comprises: 
rendering said one or more samples from the first set 

optionally followed by samples from the second set, 
according to a predetermined sequence, up to the deter 
mined number of samples are rendered. 

10. The method of claim 9, wherein samples from the 
second set are rendered if the first set has less than the deter 
mined number of samples. 

11. The method of claim 1, wherein each of the one or more 
samples is stored in a respective Surface. 

Jan. 19, 2012 

12. The method of claim 1, further comprising: 
determining the number of said samples to be rendered. 
13. A system to render a pixel from an anti-aliased image, 

comprising: 
at least one processor, 
a first memory and a second memory coupled to the pro 

cessor, 
a split anti-aliased sample writer configured to: 

store a first set and a second set of samples from a 
plurality of anti-aliased samples of the pixel respec 
tively in a first memory and a second memory. 

14. The system of claim 13, further comprising: 
a split anti-aliased sample reader configured to: 

render a determined number of said samples from one of 
only the first set or the first and second sets. 

15. The system of claim 14, the split anti-aliased sample 
reader further configured to: 

determine a number of said samples to be rendered. 
16. The system of claim 13, the split anti-aliased sample 

reader is further configured to: 
rendering said one or more samples from the first set 

optionally followed by samples from the second set, 
according to a predetermined sequence, up to the deter 
mined number of samples are rendered. 

17. The system of claim 13, wherein samples from the 
second set are rendered if the first set has less than the deter 
mined number of samples. 

18. The system of claim 13, wherein the first memory is a 
graphics memory coupled to a graphics processor unit (GPU) 
and the second memory is a system memory. 

19. The system of claim 13, wherein the first memory being 
configured for faster access speeds than the second memory 

20. A computer readable media storing instructions 
wherein said instructions when executed are adapted to ren 
der a pixel from an anti-aliased image using at least one 
processor with a method comprising: 

storing a first set and a second set of samples from a 
plurality of anti-aliased samples of the pixel respectively 
in a first memory and a second memory; and 

rendering a determined number of said samples from one 
of only the first set or the first and second sets. 

21. The computer readable media of claim 20, wherein the 
method further comprising: 

rendering said one or more samples from the first set 
optionally followed by samples from the second set, 
according to a predetermined sequence, up to the deter 
mined number of samples are rendered. 

22. The computer readable media of claim 20, wherein 
samples from the second set are rendered if the first set has 
less than the determined number of samples. 

23. The computer readable media of claim 22, wherein the 
first memory is a graphics memory coupled to a graphics 
processor unit (GPU) and the second memory is a system 
memory. 


