发明名称
用于烟气脱硝的碳酸氢铵湿法制氨工艺及系统

摘要
用于烟气脱硝的碳酸氢铵湿法制氨工艺及系统，属于火电厂烟气脱硝技术领域。90℃碳酸氢铵的溶液经过升压后进入热解炉的雾化喷嘴逆流喷出，碳酸氢铵雾滴在从下向上流动的高温烟气的加热作用下分解出氨气，残余的碳酸氢铵溶液在热解炉底部汇集后通过循环泵回到溶解池，反复循环利用；氨气随空气流入到缓冲罐，随后进入氨气空气混合器，被稀释到一定浓度后通过喷氨格栅进入SCR反应器，在催化剂的作用下，氨气将NOx还原成N2。碳酸氢铵运输储存方便安全，经济性好，避免了液氨及氨水等还原剂在运输存储方面的安全隐患，经济性优于尿素还原剂；采用碳酸氢铵作为还原剂湿法热解制氨，碳酸氢铵用量容易控制，氨气生成稳定，整个系统简洁，高效。
1. 用于烟气脱硝的碳酸氢铵湿法制氨工艺，其特征在于，包括以下步骤：
 (1) 将碳酸氢铵送入到溶解池溶解，将溶液的温度维持在 90℃，并将碳酸氢铵溶液的质量浓度保持在 50%。
 (2) 碳酸氢铵溶液通过升压泵提高压头，进入到热解室，碳酸氢铵溶液通过均匀分布的雾化喷嘴从上向下喷入到热解室空间。
 (3) 从锅炉的烟囱出口引出温度为 1050-1200℃的高温烟气，高温烟气通过高温风机进入到热解室下部的高温烟气引入管，从下向上流动。
 (4) 从空心预热器热一次风出口引出温度为 300-350℃的热空气，热空气进入到热解室中下部的高温空气引入管，从下向上流动；并通过调整高温烟气和热空气的比例，控制热解室出口空气的温度在 300℃以上；烟气在热解室内停留时间在 1.6 秒～2 秒间，高温气体与逆流喷入的碳酸氢铵溶液滴接触，碳酸氢铵溶液受热分解成氨气、二氧化碳和水蒸气。
 (5) 残余的碳酸氢铵溶液在热解室底部汇集，通过循环泵回到热解池，再次匹配成质量浓度为 50% 的溶液后再次进行循环热解。
 (6) 热解室气体产物离开热解室后送入到缓冲罐，并将热解气体的温度保持在 200℃以上，以避免氨气与二氧化碳低温下发生逆向反应生成氨基甲酸盐，随后热解气体进入氨气空气回路，与空气混合均匀。
 (7) 混合后的氨气与空气通过喷氨格栅进入 SCR 反应器，在催化剂的作用下，氨气将 NOx 还原成 N2。

2. 根据权利要求 1 所述的用于烟气脱硝的碳酸氢铵湿法制氨工艺，其特征在于，所述步骤 (1) 中，使用搅拌器对碳酸氢铵溶液进行搅拌，防止碳酸氢铵的沉积，并保持溶解池内温度分布均匀。

3. 根据权利要求 1 所述的用于烟气脱硝的碳酸氢铵湿法制氨工艺，其特征在于，所述步骤 (5) 中，对残留的碳酸氢铵溶液进行加热，使其温度保持在 80℃以上，防止碳酸氢铵结晶堵塞设备。

4. 用于烟气脱硝的碳酸氢铵湿法制氨系统，其特征在于，溶解池出口通过管道和升压泵连接到热解室上部的雾化喷射管，锅炉的高温烟气出口通过管道和高温风机连接到热解室下部的高温烟气引入管，空气预热器的热一次风出口通过管道连接到热解器中下部的高温空气引入管；热解室顶部的出口通过管道依次与缓冲罐、调节阀、氨气空气回路及喷氨格栅连接，然后接入 SCR 反应器；热解室底部的出口通过循环泵连接到溶解池的底部入口，锅炉的烟气出口通过喷氨格栅接入到 SCR 反应器；SCR 反应器的出口连接到空气预热器。

5. 根据权利要求 4 所述的用于烟气脱硝的碳酸氢铵湿法制氨系统，其特征在于，所述溶解池内，热解室的底部及缓冲罐内均分别安装蒸汽加热管。

6. 根据权利要求 4 所述的用于烟气脱硝的碳酸氢铵湿法制氨系统，其特征在于，所述氨气空气混合器上连接着稀释风机。

7. 根据权利要求 4 所述的用于烟气脱硝的碳酸氢铵湿法制氨系统，其特征在于，所述溶解池与热解室之间的碳酸氢铵溶液输送管路和循环管路旁均设置了蒸汽伴热管，用于加热管道，使碳酸氢铵溶液保持在 80℃以上，防止碳酸氢铵温度降低出现结晶堵塞管道。

8. 根据权利要求 4 所述的用于烟气脱硝的碳酸氢铵湿法制氨系统，其特征在于，所述热解室为立式圆罐，雾化喷射管设置在热解室的 3/5 标高处，高温空气引入管设置在热解
室的 1/3 标高处，高温烟气引入管设置在热解室 1/4 标高处。
用于烟气脱硝的碳酸氢铵湿法制氨工艺及系统

技术领域

[0001] 本发明属于火电厂烟气脱硝技术领域，特别涉及一种用于烟气脱硝的碳酸氢铵湿法制氨工艺及系统。

背景技术

[0002] 火力发电厂排放的烟气含有 NOx，严重污染环境。日益严格的环保法规要求新建火力发电机组必须实施脱硝系统。常用的烟气脱硝技术一般是将脱硝还原剂制备出氨气，再
将氨气通过喷氨格栅喷入到烟气中。在催化剂的作用下，NOx 被氨气还原成 N2。
[0003] 火力发电厂烟气脱硝系统常用的还原剂有液氨、氨水及尿素。液氨具有高毒性，采
用液氨作为还原剂必须对液氨的储存、运输和使用进行严格的规范。液氨通过液氨卸料压
缩机进入储存罐，随后进入蒸发器，在蒸汽加热作用下气化变成氨气，氨气再通过空气稀释
后送入烟气中脱硝。该脱硝系统需要设置液氨卸料压缩机、液氨储存罐和液氨蒸发器。
[0004] 采用氨水作为还原剂，是将 25%的含氨水溶液通过加热装置使其蒸发，形成氨气
和水蒸汽，随后氨气被空气稀释后送入烟气中脱硝，该脱硝系统需要匹配大型的氨水存储
设备及氨水蒸发器。
[0005] 采用尿素作为还原剂，常见的有热解法和水解法制氨，尿素水解法是将尿素溶于
水中，尿素溶液受热析出的氨气经过空气稀释后送入烟气中脱硝。尿素热解法则是回化后的
尿素溶液在加热条件下析出氨气，氨气经过空气稀释后送入烟气中脱硝。采用尿素作为
还原剂的脱硝系统，需要设置固体尿素存储系统、尿素溶解系统以及尿素水解或热解系统。
[0006] 在这三种脱硝还原剂中，液氨的投资、运输和事业成本为二者最低，氨是国家规
定的乙类危险品，在液氨的运输和储存过程中都存在一定的危险性，液氨的运输和储存都
需要国家有关部门的审批和准许。液氨的储存量超过 40 吨即可被列为重大危险源，在其储
存和运输过程中一旦发生事故，其后果往往不堪设想。在国外，很多电站仅允许使用铁路运
输液氨。液氨的高毒性使得其工业应用存在较大的安全隐患。
[0007] 脱硝所用氨水的质量百分比一般为 20%～30%，较液氨安全，但是氨水也是一种
危险性物质，具有毒性和腐蚀性，低浓度的氨气刺激眼睛、皮肤和鼻子，而且运输体积大，运
输成本相对纯氨高，且氨水需要大型存储设备。其脱硝系统复杂，占地面积大，系统能耗高，
经济性差。
[0008] 尿素是一种固体物质，安全无害，运输存储方便。但是尿素溶液对容器具有腐蚀
性，烟气脱硝系统增加了尿素溶解系统，使整个系统变的更复杂。尿素制氨需要先制备成低
浓度的尿素溶液（<10%）在高温高压条件下进行，系统能耗高，设备占地面积大。尿素分解
产物中可能含有联二脲等聚合物，易与飞灰一起形成 SCR 催化剂层的堵塞，甚至造成催
化剂的中毒。尿素作为还原剂有潮解问题，尿素溶液要加添加剂，添加剂在管道和罐中容易
产生沉淀，且尿素添加剂长期影响 SCR 催化剂使用寿命。
[0009] 碳酸氢铵常温常压下以固态存在，所以与液氨和氨水相比，碳酸氢铵在储存和运
输方面不存在安全问题；与尿素相比，碳酸氢铵价格便宜，分解温度低，在水中溶解度大，且
随温度升高溶解度增大，系统经济性更好。

【0010】有文献采用碳酸氨铵干法热解法制硫化氢，该系统设计了单独的碳酸氨铵干法热解炉，用锅炉烟气送入到热解炉中分解碳酸氨铵粉末，生成的氨气引出送到到烟气中脱硫。该系统简单，经济性好，但是在运行过程中发现其系统运行稳定性较差，碳酸氨铵给料量不均匀，制备过程中氨气含量容易波动，系统的控制相对困难，影响到后期脱硫的效果。

【0011】因此，从安全性和经济性角度考虑，碳酸氨铵适合作为烟气脱硫系统的还原剂。鉴于碳酸氨铵干法制氢存在稳定性的问题，而碳酸氨铵溶于水和氨含量大，如表1所示，因此，本发明提出了用于烟气脱硫的碳酸氨铵湿法制氢工艺。

【0012】表1. 氨气及碳酸氨铵的溶解度与温度的关系

<table>
<thead>
<tr>
<th>温度</th>
<th>10°C</th>
<th>20°C</th>
<th>30°C</th>
<th>40°C</th>
<th>50°C</th>
<th>60°C</th>
<th>70°C</th>
<th>80°C</th>
<th>90°C</th>
<th>100°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>氨 NH₃</td>
<td>70</td>
<td>56</td>
<td>44.5</td>
<td>34</td>
<td>26.5</td>
<td>20</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>碳酸氨铵 NH₄HCO₃</td>
<td>16.1</td>
<td>21.7</td>
<td>28.4</td>
<td>36.6</td>
<td>59.2</td>
<td>109</td>
<td>170</td>
<td>354</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

发明内容

【0014】本发明针对液氨、氨水、尿素及碳酸氨铵干法制氢脱硫存在的不足，提供了一种用于烟气脱硫的碳酸氨铵湿法制氢工艺。

【0015】本发明采用的技术方案为：所述用于烟气脱硫的碳酸氨铵湿法制氢工艺的步骤为：

【0016】（1）将碳酸氨铵送入到溶解池溶解，将溶液的温度维持在90°C，并将碳酸氨铵溶液的质量浓度保持在50%；

【0017】（2）碳酸氨铵溶液通过升压泵提高压头，进入到热解室，碳酸氨铵溶液通过均匀分布的雾化喷射管从上向下喷入到热解室空间；

【0018】（3）从锅炉的炉膛出口引出温度为1050~1200°C的高温烟气，高温烟气通过高温风机进入到热解室下部的高温烟气引入管，从下向上流动；

【0019】（4）从空气预热器热一次风出口引出温度为300~350°C的热空气，热空气进入到热解室中部的高温空气引入管，从下向上流动，并通过调整高温烟气和热空气的比例，控制热解室出口气体的温度在300°C以上；烟气在热解室内停留时间为1.6秒~2秒间，高温气体与逆流喷入的碳酸氨铵液滴接触，碳酸氨铵溶液受热分解成氨气、二氧化碳和水蒸汽；

【0020】（5）残余的碳酸氨铵溶液在热解室底部汇集，通过循环泵回到热解池，再一次配成质量浓度为50%的溶液后再次进行循环热解；

【0021】（6）热解室气体产物离开热解室后送入到缓冲罐，并将热解气体的温度保持在
200℃以上，以避免氨气与二氧化碳低温下发生逆向反应生成氨基甲酸盐，随后热解气体进入氨气空气混合器，与空气混合均匀；

【0022】7 混合后的氨气与空气通过喷氨格栅进入 SCR 反应器，在催化器的作用下，氨气将 NOx 还原成 N2。

【0023】所述步骤 (1) 中，使用搅拌器对碳酸氢铵溶液进行搅拌，防止碳酸氢铵的沉积，并保持溶解池内温度分布均匀。

【0024】所述步骤 (5) 中，对残余的碳酸氢铵溶液进行加热，使其温度保持在 80℃以上，防止碳酸氢铵结晶堵塞设备。

【0025】本发明还提供了一种用于烟气脱硝的碳酸氢铵湿法制氨系统，该系统的结构为：溶解池出口通过管道和升压泵连接到热解室上部的雾化喷射管，锅炉的高温烟气出口通过管道和高温风机连接到热解室内下部的高温烟气引入管，空气预热的热一次风出口通过管道连接到热解器中部的高温空气引入管；热解室顶部的出口通过管道依次与缓冲罐、调节阀、氨气空气混合器及喷氨格栅连接，然后进入 SCR 反应器；热解室底部的出口通过循环泵连接到溶解池的底部入口；锅炉的烟气出口通过喷氨格栅接入到 SCR 反应器；SCR 反应器的出口连接到空气预热器。

【0026】所述溶解池内、热解室的底部及缓冲罐内均分别安装蒸汽加热管。

【0027】所述氨气空气混合器上连接着稀释风机。

【0028】所述溶解池与热解室之间的碳酸氢铵溶液输送管路和循环管路旁均设置了蒸汽伴热管，用于加热管道，使碳酸氢铵溶液保持在 80℃以上，防止碳酸氢铵温度降低出现结晶堵塞管道。

【0029】所述热解室为立式圆罐，雾化喷射管设置在热解室的 3/5 标高处，高温空气引入管设置在热解室的 1/3 标高处，高温烟气引入管设置在热解室 1/4 标高处。

【0030】本发明的有益效果为：

【0031】(1) 本发明采用碳酸氢铵作为还原剂，运输储存方便安全，避免了液氨及氨水等还原剂在运输存储方面的安全隐患。

【0032】(2) 本发明采用碳酸氢铵作为还原剂，按脱硝所需的氨气量折算，还原剂采用碳酸氢铵比采用尿素便宜，经济性好。碳酸氢铵含氮量为 21.5%，尿素含氮量为 56.7%。2009 年 5 月国内碳酸氢铵的平均价格在 480 元/吨左右，尿素的平均销售价格在 1800 元/吨左右。每生成 1 公斤氮气，采用碳酸氢铵作为还原剂，需要花费 2.23 元；而采用尿素作为还原剂，则需要花费 3.17 元。明显，碳酸氢铵作为还原剂比尿素更为经济。且碳酸氢铵分解温度低，易于分解，在水中溶解度高。

【0033】(3) 本发明采用湿法热解碳酸氢铵制取氨气，碳酸氢铵易溶于水，且受热易分解，将碳酸氢铵溶液质量浓度保持在 50%，温度控制在 90℃，溶液的输送和量的控制都非常便利，制氨过程容易控制，氨气生成速率稳定。本发明设计了蒸汽伴热管道防止了碳酸氢铵溶液在输送过程中的管内结晶现象，提高了系统安全性。

附图说明

【0034】图 1 为所述用于烟气脱硝的碳酸氢铵湿法制氨系统的结构示意图；

【0035】图 2 为热解室的结构示意图。
具体实施方式

本发明提供了一种用于烟气脱硝的碳酸氢铵湿法制氨工艺，下面通过附图和具体实施方式对本发明做出进一步说明。

如图1所示，热解室8为立式圆罐，雾化喷射管82设置在热解室的3/5标高处，高温空气引入管83设置在热解室的1/3标高处，高温烟气引入管84设置在热解室1/4标高处。溶解池2出口通过管道和升压泵5连接到热解室8上部的雾化喷射管82，锅炉17的高温烟气出口通过管道和高温风机13连接到热解室8下部的高温烟气引入管84，空气预热器15的热风入口通过管道连接到热解室8中部的高温空气引入管83；热解室8顶部的气体引入管81通过管道依次与缓冲罐9、调节阀10、氨气空气混合器11及喷氨格栅14连接，然后接入 SCR 反应器16；热解室8底部的浆液循环管85通过循环泵6连接到溶解池2的底部出口；锅炉17的烟气出口通过喷氨格栅14接入到 SCR 反应器16；SCR 反应器16的出口连接到空气预热器15。所述溶解池2和热解室8之间的碳酸氢铵溶液输送管路和循环管路旁均设置有蒸汽伴热管7，用于加热管道，使碳酸氢铵溶液保持在80℃以上，防止碳酸氢铵温度降低出现结晶堵塞管道。

袋装碳酸氢铵可以直接通过车辆运到厂区，送入料仓1储存。根据需要，将袋装的碳酸氢铵破包并送入到溶解池2。溶解池内设置了蒸汽加热管3，通过改变通入蒸汽的量将溶液温度维持在90℃，投入搅拌器运行可以防止碳酸氢铵的沉积，并保持池内温度分布均匀。补水管4送入的水量与碳酸氢铵投入量相匹配，将碳酸氢铵溶液的质量浓度保持在50%。90℃下碳酸氢铵溶液达到饱和状态对应的浓度为63%，80℃下碳酸氢铵溶液达到饱和状态对应的浓度为52.1%，保持溶液的温度可以防止碳酸氢铵在溶解池以及管道内的结晶。

碳酸氢铵溶液通过升压泵5，提高压头，进入到热解室8。碳酸氢铵溶液通过均匀分布的雾化喷射管82从上下喷入到热解室空间。从锅炉17炉膛出口引出的高温烟气，温度为1050~1200℃，高温烟气通过高温风机13直接进入到热解室的高温烟气引入管84，从下向上流动。从空气预热器热15一次风出口引出的热空气温度为300~350℃，热空气进入热解室中部的高温空气引入管83，从下向上流动。通过调整高温烟气和高温空气的流量比例，可以控制热解室的气体引出管81处气体的温度在300℃以上。碳酸氢铵溶液在高温气体的作用下蒸发分解，生成氨气、二氧化碳和水蒸气。残余的碳酸氢铵液体在热解室底部汇集，通过循环泵6回到热解池，再一次匹配成质量浓度为50%的溶液后再次进行循环热解。热解室底部布置有蒸汽加热管3，保持溶液温度在80℃以上，以防碳酸氢铵结晶堵塞设备。

热解室气体产物离开热解室后送入到缓冲罐9，为了保持热解气体温度，缓冲罐内
设置了蒸汽加热管3，热解气体的温度保持在200℃以上，以避免氨气与二氧化碳低温下发生逆向反应生成氨基甲酸盐。随后热解气体通过调节阀10进入氨气空气混合器11，稀释风机12将空气送入到氨气空气混合器11，空气与热解气体产物混合均匀。稀释后的混合气体通过喷氨格栅14进入SCR反应器16。在催化剂的作用下，氨气将NOx还原成N2。根据SCR反应器16进出口烟气中NOx的浓度来控制调节阀10的开度，从而调节送入SCR反应器16的氨气量。

【0043】热解室的结构如图2所示。温度为90℃，质量浓度保持在50%的碳酸氢铵溶液经过升压泵进入雾化喷射管82，通过雾化喷头的作用，形成平均粒径为120微米的雾滴，从上向下喷入，逆流喷入延长了液滴在热解室内的停留时间，有利于提高碳酸氢铵的分解率。调整高温烟气和热空气的比例，将热解室的气体引出管81处气体的温度在300℃以上，以保持碳酸氢铵的完全分解。烟气在热解室内停留时间在1.6秒～2秒间。高温气体与逆流喷入的碳酸氢铵液滴接触，溶液中水蒸发过热，碳酸氢铵也受热分解成氨气、二氧化碳和水蒸汽。

【0044】分析纯级别的碳酸氢铵固体粉末最低的分解温度在80℃以上，普通碳酸氢铵粉末因为含有杂质，实际分解温度为35℃～60℃。采用高温烟气和高温空气来热解质量浓度为50%，温度为90℃的碳酸氢铵溶液，且保证热解炉出口气流温度在300℃以上，则碳酸氢铵溶液可以在短时间内蒸发分解，分解率可以达到100%。