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(57) ABSTRACT

Systems and methods for minimizing or eliminating transient
non-glucose related signal noise due to non-glucose rate lim-
iting phenomenon such as interfering species, ischemia, pH
changes, temperatures changes, known or unknown sources
of mechanical, electrical and/or biochemical noise, and the
like. The system monitors a data stream from a glucose sensor
and detects signal artifacts that have higher amplitude than
electronic or diffusion-related system noise. The system pro-
cesses some or the entire data stream continually or intermit-
tently based at least in part on whether the signal artifact event
has occurred.
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SYSTEMS AND METHODS FOR REPLACING
SIGNAL ARTIFACTS IN A GLUCOSE SENSOR
DATA STREAM

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 11/498,410, filed Aug. 2, 2006, which is a
continuation-in-part of U.S. application Ser. No. 10/648,849,
filed Aug. 22, 2003, now U.S. Pat. No. 8,010,174. U.S. appli-
cation Ser. No. 11/498,410 is a continuation-in-part of U.S.
application Ser. No. 11/007,920, filed Dec. 8, 2004, which
claims the benefit of U.S. Provisional Application No.
60/528,382 filed Dec. 9, 2003. U.S. application Ser. No.
11/498,410 is a continuation-in-part of U.S. application Ser.
No. 11/077,739, filed Mar. 10, 2005, which claims the benefit
of' U.S. Provisional Application No. 60/587,787 filed Jul. 13,
2004; U.S. Provisional Application No. 60/587,800 filed Jul.
13, 2004; U.S. Provisional Application No. 60/614,683 filed
Sep. 30, 2004; and U.S. Provisional Application No. 60/614,
764 filed Sep. 30, 2004. Each of the aforementioned applica-
tions is incorporated by reference herein in its entirety, and
each is hereby expressly made a part of this specification.

FIELD OF THE INVENTION

[0002] The present invention relates generally to systems
and methods for processing data received from a glucose
sensor. Particularly, the present invention relates to systems
and methods for detecting and processing signal artifacts,
including detecting, estimating, predicting, filtering, display-
ing, and otherwise minimizing the effects of signal artifacts in
a glucose sensor data stream.

BACKGROUND OF THE INVENTION

[0003] Diabetes mellitus is a disorder in which the pancreas
cannot create sufficient insulin (Type I or insulin dependent)
and/or in which insulin is not effective (Type 2 or non-insulin
dependent). In the diabetic state, the victim suffers from high
blood sugar, which causes an array of physiological derange-
ments (kidney failure, skin ulcers, or bleeding into the vitre-
ous of the eye) associated with the deterioration of small
blood vessels. A hypoglycemic reaction (low blood sugar) is
induced by an inadvertent overdose of insulin, or after a
normal dose of insulin or glucose-lowering agent accompa-
nied by extraordinary exercise or insufficient food intake.
[0004] Conventionally, a diabetic person carries a self-
monitoring blood glucose (SMBG) monitor, which typically
comprises uncomfortable finger pricking methods. Dueto the
lack of comfort and convenience, a diabetic will normally
only measure his or her glucose level two to four times per
day. Unfortunately, these time intervals are so far spread apart
that the diabetic will likely find out too late, sometimes incur-
ring dangerous side effects, of a hyperglycemic or hypogly-
cemic condition. In fact, it is not only unlikely that a diabetic
will take a timely SMBG value, but additionally the diabetic
will not know if their blood glucose value is going up (higher)
or down (lower) based on conventional methods.

[0005] Consequently, a variety of transdermal and implant-
able electrochemical sensors are being developed for continu-
ous detecting and/or quantifying blood glucose values. Many
implantable glucose sensors suffer from complications
within the body and provide only short-term and less-than-
accurate sensing of blood glucose. Similarly, transdermal
sensors have run into problems in accurately sensing and

Aug. 23,2012

reporting back glucose values continuously over extended
periods of time. Some efforts have been made to obtain blood
glucose data from implantable devices and retrospectively
determine blood glucose trends for analysis; however these
efforts do not aid the diabetic in determining real-time blood
glucose information. Some efforts have also been made to
obtain blood glucose data from transdermal devices for pro-
spective data analysis, however similar problems have
occurred.

[0006] Data streams from glucose sensors are known to
have some amount of noise, caused by unwanted electronic
and/or diffusion-related system noise that degrades the qual-
ity of the data stream. Some attempts have been made in
conventional glucose sensors to smooth the raw output data
stream representative of the concentration of blood glucose in
the sample, for example by smoothing or filtering of Gauss-
ian, white, random, and/or other relatively low amplitude
noise in order to improve the signal to noise ratio, and thus
data output.

SUMMARY OF THE INVENTION

[0007] Systems and methods are provided that accurately
detect signal noise that is caused by substantially non-glucose
reaction rate-limiting phenomena, such as interfering species,
ischemia, pH changes, temperature changes, pressure, and
stress, for example, which are referred to herein as signal
artifacts or “noise episodes”. Detecting signal artifacts and
processing the sensor data based on detection of signal arti-
facts provides accurate estimated glucose measurements to a
diabetic patient so that they can proactively care for their
condition to safely avoid hyperglycemic and hypoglycemic
conditions.

[0008] Accordingly, in a first aspect, a method of analyzing
data from an analyte sensor is provided, the method compris-
ing receiving data from the analyte sensor, the data compris-
ing at least one sensor data point; determining whether a
signal artifact event has occurred; and processing the received
data, wherein the processing is based at least in part upon
whether the signal artifact event has occurred.

[0009] In an embodiment of the first aspect, the method
further comprises filtering the received data to generate fil-
tered data.

[0010] In an embodiment of the first aspect, determining
whether a signal artifact has occurred comprises comparing
the received data with the filtered data to obtain at least one
residual.

[0011] Inanembodiment ofthe first aspect, a signal artifact
event is determined to have occurred if the residual is exceeds
a threshold value.

[0012] In an embodiment of the first aspect, the method
further comprises determining whether another signal artifact
event has occurred, wherein another signal artifact event has
occurred if the residual exceeds a second threshold value.
[0013] Inanembodiment ofthe first aspect, a signal artifact
event is determined to have occurred if the residual is exceeds
a threshold value for a predetermined period of time or for a
predetermined amount of data.

[0014] In an embodiment of the first aspect, determining
whether a signal artifact has occurred further comprises deter-
mining whether a predetermined number of residuals exceed
athreshold over a predetermined period of time, or whether a
predetermined amount of data exceeds a threshold.

[0015] In an embodiment of the first aspect, determining
whether a signal artifact event has occurred further comprises
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determining a differential between a first residual at a first
time point and a second residual at a second time point.
[0016] In an embodiment of the first aspect, determining
whether a signal artifact event has occurred further comprises
determining whether a predetermined number of differentials
exceed a threshold over a predetermined period of time, or
whether an amount of data exceeds a threshold.

[0017] In an embodiment of the first aspect, the method
further comprises receiving reference data from a reference
analyte monitor, the reference data including at least one
reference data point.

[0018] Inan embodiment of the first aspect, processing the
received data further comprises determining a reliability of
the received data, wherein processing is conducted if the
signal artifact event is determined to have not occurred.
[0019] In an embodiment of the first aspect, the method
further comprises matching the reference data to substantially
time corresponding received data to form a matching data
pair, wherein the reference data is matched if the signal arti-
fact event is determined to have not occurred.

[0020] In an embodiment of the first aspect, the method
further comprises including the reference data in a calibration
factor for use in calibrating the glucose sensor, wherein the
reference data is included if the signal artifact event is deter-
mined to have not occurred.

[0021] In an embodiment of the first aspect, the method
further comprises prompting a user for a reference glucose
value, wherein prompting is conducted if the signal artifact
event is determined to have not occurred.

[0022] Inan embodiment of the first aspect, processing the
received data comprises displaying a graphical representation
of the received data.

[0023] Inan embodiment of the first aspect, processing the
received data comprises filtering the received data, wherein
filtering is conducted if the signal artifact event is determined
to have occurred.

[0024] In an embodiment of the first aspect, the method
further comprises filtering the received data, wherein pro-
cessing the received data comprises displaying a graphical
representation of the filtered data, wherein processing is con-
ducted if the signal artifact event is determined to have
occurred.

[0025] In an embodiment of the first aspect, the method
further comprises filtering the received data to generate fil-
tered data, wherein determining whether a signal artifact
event has occurred further comprises comparing the received
data with the filtered data to obtain a residual, and wherein
processing the received data comprises utilizing the residual
to modify the filtered data.

[0026] In an embodiment of the first aspect, the method
further comprises filtering the received data to generate fil-
tered data, wherein determining whether a signal artifact
event has occurred further comprises comparing the received
data with the filtered data to obtain a residual and deriving a
differential of the residual by calculating a first derivative of
the residual, and wherein processing the received data com-
prises utilizing the differential to modify the filtered data.
[0027] Inan embodiment of the first aspect, processing the
received data comprises compensating for a time lag.

[0028] Inan embodiment of the first aspect, processing the
received data comprises displaying a graphical representation
of the received data.

[0029] In an embodiment of the first aspect, the received
data is an unfiltered digital signal.
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[0030] Inanembodiment of the first aspect, processing the
received data comprises disabling display of a graphical rep-
resentation of the received data, wherein processing is con-
ducted if the signal artifact event is determined to have
occurred.

[0031] Inanembodiment of the first aspect, processing the
received data comprises displaying a range of glucose values,
wherein processing is conducted if the signal artifact event is
determined to have occurred.

[0032] Inanembodiment of the first aspect, processing the
received data comprises displaying a graphical indication of
glucose trend, wherein processing is conducted if the signal
artifact event is determined to have occurred.

[0033] Inanembodiment of the first aspect, processing the
received data comprises generating at least one estimated
glucose value and displaying a graphical representation of the
estimated glucose value, wherein processing is conducted if
the signal artifact event is determined to have occurred.
[0034] Inan embodiment of the first aspect, processing the
received data comprises generating a confidence interval for
at least one estimated glucose value and displaying a graphi-
cal representation of the confidence interval, wherein pro-
cessing is conducted if the signal artifact event is determined
to have occurred.

[0035] In a second aspect, a method for processing data
from a glucose sensor is provided, the method comprising
receiving data from the glucose sensor, the received data
comprising at least one sensor data point; displaying a graphi-
cal representation of the data corresponding to a time period;
and post-processing the displayed graphical representation of
the data corresponding to the time period.

[0036] In an embodiment of the second aspect, post-pro-
cessing is conducted periodically.

[0037] In an embodiment of the second aspect, post-pro-
cessing is conducted substantially continuously.

[0038] Inan embodiment of the second aspect, the method
further comprises determining whether a signal artifact event
has occurred and processing the received data prior to the
displaying step, wherein the processing is based at least in
part upon whether the signal artifact event has occurred.
[0039] In an embodiment of the second aspect, post-pro-
cessing comprises filtering the data to recalculate data corre-
sponding to the time period and displaying a graphical rep-
resentation of the recalculated data corresponding to the time
period.

[0040] In an embodiment of the second aspect, the step of
post-processing comprises recalculating data corresponding
to the time period, wherein a time lag induced by real-time
filtering is substantially removed from the data corresponding
to the time period; and displaying a graphical representation
of the recalculated data corresponding to the time period.
[0041] In an embodiment of the second aspect, recalculat-
ing the data comprises algorithmically smoothing at least one
sensor data point over a moving window, wherein the moving
window comprises time points before and after the sensor
data point is obtained.

[0042] Inan embodiment of the second aspect, the method
further comprises displaying a current glucose value repre-
sentative of the most recently obtained sensor data point.
[0043] Inathird aspect, a system configured to process data
from an analyte sensor is provided, the system comprising a
data receiving module configured to receive sensor data from
the analyte sensor, the data comprising at least one sensor data
point; a signal artifacts module configured to detect a signal
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artifact in the sensor data; and a processor module configured
to process the sensor data, wherein processing is dependent at
least in part upon whether the signal artifact is detected.
[0044] In an embodiment of the third aspect, the signal
artifacts module is configured to compare raw sensor data
with filtered sensor data to determine a residual.

[0045] In an embodiment of the third aspect, the signal
artifacts module is configured to detect a signal artifact if the
residual exceeds a threshold value.

[0046] In an embodiment of the third aspect, the signal
artifacts module is configured to detect a signal artifact if a
predetermined number of residuals exceed a threshold value
for a predetermined period of time or for a predetermined
amount of data.

[0047] In an embodiment of the third aspect, the signal
artifacts module is configured to compare a first residual with
a second signal residual to determine a differential.

[0048] In an embodiment of the third aspect, the signal
artifacts module is configured to detect a signal artifact if the
differential exceeds a threshold value.

[0049] In an embodiment of the third aspect, the signal
artifacts module is configured to detect a signal artifact if a
predetermined number of differentials exceed a threshold
value for a predetermined period of time or for a predeter-
mined amount of data.

[0050] In an embodiment of the third aspect, the system
further comprises a reference data module configured to
receive reference data from a reference glucose monitor, the
reference data comprising at least one reference data point.
[0051] In an embodiment of the third aspect, the signal
artifacts module is configured to determine a reliability of the
sensor data if the signal artifact is detected.

[0052] Inan embodiment of the third aspect, the processor
module is configured to form at least one matched data pair by
matching reference data to substantially time corresponding
sensor data.

[0053] Inan embodiment of the third aspect, the processor
module is configured to form a matching data pair if a signal
artifact is not detected.

[0054] Inan embodiment of the third aspect, the processor
module is configured to utilize the reference data for calibrat-
ing the glucose sensor if a signal artifact is not detected.
[0055] Inan embodiment of the third aspect, the processor
module is configured to prompt a user for a reference glucose
value if a signal artifact is not detected.

[0056] In an embodiment of the third aspect, the data
receiving module is configured to receive raw sensor data.
[0057] Inanembodiment ofthe third aspect, the raw sensor
data comprises integrated digital data.

[0058] Inan embodiment of the third aspect, the processor
module is configured to display a graphical representation of
the raw sensor data if a signal artifact is not detected.

[0059] In an embodiment of the third aspect, the data
receiving module is configured to receive filtered sensor data.
[0060] Inan embodiment of the third aspect, the processor
module is configured to display a graphical representation of
the filtered sensor data if a signal artifact is detected.

[0061] Inan embodiment of the third aspect, the processor
module is configured to filter the sensor data.

[0062] Inan embodiment of the third aspect, the processor
module is configured to display a graphical representation of
the filtered sensor data if a signal artifact is detected.
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[0063] Inan embodiment of the third aspect, the processor
module is configured to not display the sensor data if a signal
artifact is detected.

[0064] Inan embodiment of the third aspect, the processor
module is configured to display a range of glucose values if a
signal artifact is detected.

[0065] Inan embodiment of the third aspect, the processor
module is configured to display a directional indicator of
glucose trend if a signal artifact is detected.

[0066] Inan embodiment of the third aspect, the processor
module is configured to display at least one estimated glucose
value if a signal artifact is detected.

[0067] Inan embodiment of the third aspect, the processor
module is configured to display a confidence interval for at
least one estimated glucose value if a signal artifact is
detected.

[0068] In a fourth aspect, a system configured to process
data from an analyte sensor is provided, the system compris-
ing a data receiving module configured to receive sensor data
from the analyte sensor, the data comprising at least one
sensor data point; an output module configured to display a
substantially real-time numerical value corresponding to a
most recently received sensor data point and a graphical rep-
resentation of sensor data corresponding to a time period; and
a processor module configured to post-process the graphical
representation of the data corresponding to the time period,
wherein the output module is configured to display the post-
processed data.

[0069] In an embodiment of the fourth aspect, post-pro-
cessing is conducted periodically.

[0070] In an embodiment of the fourth aspect, post-pro-
cessing is conducted substantially continuously.

[0071] Inanembodimentofthe fourth aspect, the processor
module is configured to automatically post-process the
graphical representation of the data corresponding to the time
period.

[0072] Inanembodimentofthe fourth aspect, the processor
module is configured to post-process the graphical represen-
tation of the data corresponding to the time period responsive
to a request.

[0073] In an embodiment of the fourth aspect, the output
module is configured to automatically display the post-pro-
cessed graphical representation of the data corresponding to
the time period.

[0074] In an embodiment of the fourth aspect, the output
module is configured to display the post-processed graphical
representation of the data corresponding to the time period
responsive to a request.

BRIEF DESCRIPTION OF THE DRAWINGS

[0075] FIG. 1A is an exploded perspective view of a glu-
cose sensor in one embodiment.

[0076] FIG. 1B is side view of a distal portion of a trans-
cutaneously inserted sensor in one embodiment.

[0077] FIG. 2 is a block diagram that illustrates sensor
electronics in one embodiment.

[0078] FIGS.3Ato 3D are schematic views of a receiver in
first, second, third, and fourth embodiments, respectively.
[0079] FIG. 4A isablock diagram of receiver electronics in
one embodiment.

[0080] FIG. 4B is an illustration of the receiver in one
embodiment showing an analyte trend graph, including mea-
sured analyte values, estimated analyte values, and a clinical
risk zone.
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[0081] FIG. 4C is an illustration of the receiver in another
embodiment showing a representation of analyte concentra-
tion and directional trend using a gradient bar.

[0082] FIG. 4D is an illustration of the receiver in yet
another embodiment, including a screen that shows a numeri-
cal representation of the most recent measured analyte value.
[0083] FIG. 5 is a flow chart that illustrates the process of
calibrating the sensor data in one embodiment.

[0084] FIG. 6 is a graph that illustrates a linear regression
used to calibrate the sensor data in one embodiment.

[0085] FIG. 7A is a graph that shows a raw data stream
obtained from a glucose sensor over a 4 hour time span in one
example.

[0086] FIG. 7B is a graph that shows a raw data stream
obtained from a glucose sensor over a 36 hour time span in
another example.

[0087] FIG. 8 is a flow chart that illustrates the process of
detecting and replacing transient non-glucose related signal
artifacts in a data stream in one embodiment.

[0088] FIG. 9 is a graph that illustrates the correlation
between the counter electrode voltage and signal artifacts in a
data stream from a glucose sensor in one embodiment.
[0089] FIG. 10A is a circuit diagram of a potentiostat that
controls a typical three-electrode system in one embodiment.
[0090] FIG. 10B is a diagram known as Cyclic-Voltamme-
try (CV) curve, which illustrates the relationship between
applied potential (Vg;,¢) and signal strength of the working
electrode (Igznsz) and can be used to detect signal artifacts.
[0091] FIG. 10C is a diagram showing a CV curve that
illustrates an alternative embodiment of signal artifacts detec-
tion, wherein pH and/or temperature can be monitoring using
the CV curve.

[0092] FIG.11is a graph and spectrogram that illustrate the
correlation between high frequency and signal artifacts
observed by monitoring the frequency content of a data
stream in one embodiment.

[0093] FIG. 12 is a graph that illustrates a data stream
obtained from a glucose sensor and a signal smoothed by
trimmed linear regression that can be used to replace some of
or the entire raw data stream in one embodiment.

[0094] FIG. 13 is a graph that illustrates a data stream
obtained from a glucose sensor and a FIR-smoothed data
signal that can be used to replace some of or the entire raw
data stream in one embodiment.

[0095] FIG. 14 is a graph that illustrates a data stream
obtained from a glucose sensor and an IIR-smoothed data
signal that can be used to replace some of or the entire raw
data stream in one embodiment.

[0096] FIG. 15 is a flowchart that illustrates the process of
selectively applying signal estimation based on the severity of
signal artifacts on a data stream.

[0097] FIG. 16 is a graph that illustrates selectively apply-
ing a signal estimation algorithm responsive to positive detec-
tion of signal artifacts on the raw data stream.

[0098] FIG. 17 is a graph that illustrates selectively apply-
ing a plurality of signal estimation algorithm factors respon-
sive to a severity of signal artifacts on the raw data stream.
[0099] FIG. 18 is a flow chart that illustrates dynamic and
intelligent estimation algorithm selection process in an alter-
native embodiment.

[0100] FIG.19is a graph that illustrates dynamic and intel-
ligent estimation algorithm selection applied to a data stream
in one embodiment.
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[0101] FIG. 20 is a flow chart that illustrates the process of
dynamic and intelligent estimation and evaluation of analyte
values in one embodiment.

[0102] FIG. 21 is a graph that illustrates an evaluation of the
selected estimative algorithm in one embodiment.

[0103] FIG. 22 is a flow chart that illustrates the process of
analyzing a variation of estimated future analyte value pos-
sibilities in one embodiment.

[0104] FIG. 23 is a graph that illustrates variation analysis
of estimated glucose values in one embodiment.

[0105] FIG. 24 is a graph that illustrates variation of esti-
mated analyte values in another embodiment.

[0106] FIG. 25 is a flow chart that illustrates the process of
estimating, measuring, and comparing analyte values in one
embodiment.

[0107] FIG. 26 is a graph that illustrates comparison of
estimated analyte values in one embodiment.

[0108] FIG. 27 provides a flow chart that illustrates the
evaluation of reference and/or sensor data for statistical, clini-
cal, and/or physiological acceptability in one embodiment.
[0109] FIG. 28 is a flow chart that illustrates the evaluation
of calibrated sensor data for aberrant values in one embodi-
ment.

[0110] FIG. 29 provides a flow chart that illustrates a self-
diagnostic of sensor data in one embodiment.

[0111] FIG. 30 is a flow chart that illustrates the process of
detecting and processing signal artifacts in certain embodi-
ments.

[0112] FIG. 31 is a graph that illustrates a raw data stream
from a glucose sensor for approximately 24 hours with a
filtered version of the same data stream superimposed on the
same graph.

[0113] FIG. 32 is a flowchart that illustrates a method for
processing data from a glucose sensor in certain embodi-
ments.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0114] The following description and examples illustrate
some exemplary embodiments of the disclosed invention in
detail. Those of skill in the art will recognize that there are
numerous variations and modifications of this invention that
are encompassed by its scope. Accordingly, the description of
a certain exemplary embodiment should not be deemed to
limit the scope of the present invention.

DEFINITIONS

[0115] In order to facilitate an understanding of the pre-
ferred embodiments, a number of terms are defined below.

[0116] The term “analyte” as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to a substance or chemical constituent in a
biological fluid (for example, blood, interstitial fluid, cerebral
spinal fluid, lymph fluid or urine) that can be analyzed. Ana-
lytes can include naturally occurring substances, artificial
substances, metabolites, and/or reaction products. In some
embodiments, the analyte for measurement by the sensor
heads, devices, and methods is analyte. However, other ana-
lytes are contemplated as well, including but not limited to
acarboxyprothrombin; acylcarnitine; adenine phosphoribo-
syl transferase; adenosine deaminase; albumin; alpha-feto-
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protein; amino acid profiles (arginine (Krebs cycle), histi-
dine/urocanic acid, homocysteine, phenylalanine/tyrosine,
tryptophan); andrenostenedione; antipyrine; arabinitol enan-
tiomers; arginase; benzoylecgonine (cocaine); biotinidase;
biopterin; c-reactive protein; carnitine; carnosinase; CD4;
ceruloplasmin; chenodeoxycholic acid; chloroquine; choles-
terol; cholinesterase; conjugated 1-p hydroxy-cholic acid;
cortisol; creatine kinase; creatine kinase MM isoenzyme;
cyclosporin A; d-penicillamine; de-ethylchloroquine; dehy-
droepiandrosterone sulfate; DNA (acetylator polymorphism,
alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis,
Duchenne/Becker muscular dystrophy, analyte-6-phosphate
dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin
C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab,
beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1,
Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plas-
modium vivax, sexual differentiation, 21-deoxycortisol);
desbutylhalofantrine; dihydropteridine reductase; diptheria/
tetanus antitoxin; erythrocyte arginase; erythrocyte protopor-
phyrin; esterase D; fatty acids/acylglycines; free -human
chorionic gonadotropin; free erythrocyte porphyrin; free thy-
roxine (FT4); free triiodothyronine (FT3); fumarylacetoac-
etase; galactose/gal-1-phosphate; galactose-1-phosphate
uridyltransferase; gentamicin; analyte-6-phosphate dehydro-
genase; glutathione; glutathione perioxidase; glycocholic
acid; glycosylated hemoglobin; halofantrine; hemoglobin
variants; hexosaminidase A; human erythrocyte carbonic
anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine
phosphoribosyl transferase; immunoreactive trypsin; lactate;
lead; lipoproteins ((a), B/A-1, p); lysozyme; mefloquine;
netilmicin; phenobarbitone; phenytoin; phytanic/pristanic
acid; progesterone; prolactin; prolidase; purine nucleoside
phosphorylase; quinine; reverse tri-iodothyronine (rT3);
selenium; serum pancreatic lipase; sissomicin; somatomedin
C; specific antibodies (adenovirus, anti-nuclear antibody,
anti-zeta antibody, arbovirus, Aujeszky’s disease virus, den-
gue virus, Dracunculus medinensis, Echinococcus granulo-
sus, Entamoeba histolytica, enterovirus, Giardia duodenal-
isa, Helicobacter pylori, hepatitis B virus, herpes virus, HIV-
1, IgE (atopic disease), influenza virus, Leishmania
donovani, leptospira, measles/mumps/rubella, Mycobacte-
rium leprae, Mycoplasma pneumoniae, Myoglobin,
Onchocerca volvulus, parainfluenza virus, Plasmodium fal-
ciparum, poliovirus, Pseudomonas aeruginosa, respiratory
syncytial virus, rickettsia (scrub typhus), Schistosoma man-
soni, Toxoplasma gondii, Trepenoma pallidium, Trypano-
soma cruzi/rangeli, vesicular stomatis virus, Wuchereria
bancrofti, yellow fever virus); specific antigens (hepatitis B
virus, HIV-1); succinylacetone; sulfadoxine; theophylline;
thyrotropin (TSH); thyroxine (T4); thyroxine-binding globu-
lin; trace elements; transferrin; UDP-galactose-4-epimerase;
urea; uroporphyrinogen I synthase; vitamin A; white blood
cells; and zinc protoporphyrin. Salts, sugar, protein, fat, vita-
mins, and hormones naturally occurring in blood or intersti-
tial fluids can also constitute analytes in certain embodiments.
The analyte can be naturally present in the biological fluid, for
example, a metabolic product, a hormone, an antigen, an
antibody, and the like. Alternatively, the analyte can be intro-
duced into the body, for example, a contrast agent for imag-
ing, a radioisotope, a chemical agent, a fluorocarbon-based
synthetic blood, or a drug or pharmaceutical composition,
including but not limited to insulin; ethanol; cannabis (mari-
juana, tetrahydrocannabinol, hashish); inhalants (nitrous
oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydro-
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carbons); cocaine (crack cocaine); stimulants (amphet-
amines, methamphetamines, Ritalin, Cylert, Preludin,
Didrex, PreState, Voranil, Sandrex, Plegine); depressants
(barbituates, methaqualone, tranquilizers such as Valium,
Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens
(phencyclidine, lysergic acid, mescaline, peyote, psilocybin);
narcotics (heroin, codeine, morphine, opium, meperidine,
Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin,
Lomotil); designer drugs (analogs of fentanyl, meperidine,
amphetamines, methamphetamines, and phencyclidine, for
example, Ecstasy); anabolic steroids; and nicotine. The meta-
bolic products of drugs and pharmaceutical compositions are
also contemplated analytes. Analytes such as neurochemicals
and other chemicals generated within the body can also be
analyzed, such as, for example, ascorbic acid, uric acid,
dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-
Dihydroxyphenylacetic acid (DOPAC), Homovanillic acid
(HVA), 5-Hydroxytryptamine (SHT), and 5-Hydroxyin-
doleacetic acid (FHIAA).

[0117] Theterm “EEPROM?™ as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to electrically erasable programmable read-
only memory, which is user-modifiable read-only memory
(ROM) that can be erased and reprogrammed (e.g., written to)
repeatedly through the application of higher than normal
electrical voltage.

[0118] The term “SRAM” as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to static random access memory (RAM) that
retains data bits in its memory as long as power is being
supplied.

[0119] The term “ROM” as used herein is a broad term and
is to be given its ordinary and customary meaning to a person
of'ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to read-only memory, which is a type of data storage
device manufactured with fixed contents. ROM is broad
enough to include EEPROM, for example, which is electri-
cally erasable programmable read-only memory (ROM).
[0120] The term “RAM” as used herein is a broad term and
is to be given its ordinary and customary meaning to a person
of'ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to a data storage device for which the order of access to
different locations does not affect the speed of access. RAM
is broad enough to include SRAM, for example, which is
static random access memory that retains data bits in its
memory as long as power is being supplied.

[0121] The term “A/D Converter” as used herein is a broad
term and is to be given its ordinary and customary meaning to
aperson of ordinary skill in the art (and is not to be limited to
a special or customized meaning), and furthermore refers
without limitation to hardware and/or software that converts
analog electrical signals into corresponding digital signals.
[0122] The terms “microprocessor” and “processor” as
used herein are broad terms and are to be given their ordinary
and customary meaning to a person of ordinary skill in the art
(and are not to be limited to a special or customized meaning),
and furthermore refer without limitation to a computer sys-
tem, state machine, and the like that performs arithmetic and
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logic operations using logic circuitry that responds to and
processes the basic instructions that drive a computer.

[0123] The term “RF transceiver” as used herein is a broad
term and is to be given its ordinary and customary meaning to
aperson of ordinary skill in the art (and is not to be limited to
a special or customized meaning), and furthermore refers
without limitation to a radio frequency transmitter and/or
receiver for transmitting and/or receiving signals.

[0124] The term “jitter” as used herein is a broad term and
is to be given its ordinary and customary meaning to a person
of ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to noise above and below the mean caused by ubiqui-
tous noise caused by a circuit and/or environmental effects;
jitter can be seen in amplitude, phase timing, or the width of
the signal pulse.

[0125] The terms “raw data stream” and “data stream” as
used herein are broad terms and are to be given their ordinary
and customary meaning to a person of ordinary skill in the art
(and are not to be limited to a special or customized meaning),
and furthermore refer without limitation to an analog or digi-
tal signal directly related to the measured glucose from the
glucose sensor. In one example, the raw data stream is digital
data in “counts” converted by an A/D converter from an
analog signal (e.g., voltage or amps) and includes one or more
data points representative of a glucose concentration. The
terms broadly encompass a plurality of time spaced data
points from a substantially continuous glucose sensor, which
comprises individual measurements taken at time intervals
ranging from fractions of a second up to, e.g., 1, 2, or 5
minutes or longer. In another example, the raw data stream
includes an integrated digital value, wherein the data includes
one or more data points representative of the glucose sensor
signal averaged over a time period.

[0126] Theterm “calibration’ as used hereinis a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to the process of determining the relationship
between the sensor data and the corresponding reference data,
which can be used to convert sensor data into meaningful
values substantially equivalent to the reference data. In some
embodiments, namely, in continuous analyte sensors, calibra-
tion can be updated or recalibrated over time as changes in the
relationship between the sensor data and reference data occur,
for example, due to changes in sensitivity, baseline, transport,
metabolism, and the like.

[0127] The terms “calibrated data” and “calibrated data
stream” as used herein are broad terms and are to be given
their ordinary and customary meaning to a person of ordinary
skill in the art (and are not to be limited to a special or
customized meaning), and furthermore refer without limita-
tion to data that has been transformed from its raw state to
another state using a function, for example a conversion func-
tion, to provide a meaningful value to a user.

[0128] The terms “smoothed data” and “filtered data” as
used herein are broad terms and are to be given their ordinary
and customary meaning to a person of ordinary skill in the art
(and are not to be limited to a special or customized meaning),
and furthermore refer without limitation to data that has been
modified to make it smoother and more continuous and/or to
remove or diminish outlying points, for example, by perform-
ing a moving average of the raw data stream. Examples of
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data filters include FIR (finite impulse response), IIR (infinite
impulse response), moving average filters, and the like.

[0129] The terms “smoothing” and “filtering” as used
herein are broad terms and are to be given their ordinary and
customary meaning to a person of ordinary skill in the art (and
are not to be limited to a special or customized meaning), and
furthermore refer without limitation to modification of a set
of data to make it smoother and more continuous or to remove
or diminish outlying points, for example, by performing a
moving average of the raw data stream.

[0130] The term “algorithm” as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to a computational process (for example, pro-
grams) involved in transforming information from one state
to another, for example, by using computer processing.

[0131] The term “matched data pairs” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to reference data (for example,
one or more reference analyte data points) matched with
substantially time corresponding sensor data (for example,
one or more sensor data points).

[0132] Theterm “counts” asused hereinis a broad term and
is to be given its ordinary and customary meaning to a person
of'ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to a unit of measurement of a digital signal. In one
example, a raw data stream measured in counts is directly
related to a voltage (e.g., converted by an A/D converter),
which is directly related to current from the working elec-
trode. In another example, counter electrode voltage mea-
sured in counts is directly related to a voltage.

[0133] Theterm “sensor” as used herein is a broad term and
is to be given its ordinary and customary meaning to a person
of'ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to the component or region of a device by which an
analyte can be quantified.

[0134] Theterm “needle” asused hereinis a broad term and
is to be given its ordinary and customary meaning to a person
of'ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to a slender hollow instrument for introducing material
into or removing material from the body.

[0135] The terms “glucose sensor” and “member for deter-
mining the amount of glucose in a biological sample,” as used
herein, are broad terms and are used in an ordinary sense,
including, without limitation, any mechanism (e.g., enzy-
matic or non-enzymatic) by which glucose can be quantified.
For example, some embodiments utilize a membrane that
contains glucose oxidase that catalyzes the conversion of
oxygen and glucose to hydrogen peroxide and gluconate, as
illustrated by the following chemical reaction:

Glucose+0O,—Gluconate+H,0,

[0136] Because for each glucose molecule metabolized,
there is a proportional change in the co-reactant O, and the
product H,O,, one can use an electrode to monitor the current
change in either the co-reactant or the product to determine
glucose concentration.
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[0137] The terms “operably connected” and “operably
linked” as used herein are broad terms and are to be given
their ordinary and customary meaning to a person of ordinary
skill in the art (and are not to be limited to a special or
customized meaning), and furthermore refer without limita-
tion to one or more components being linked to another
component(s) in a manner that allows transmission of signals
between the components. For example, one or more elec-
trodes can be used to detect the amount of glucose in a sample
and convert that information into a signal, e.g., an electrical or
electromagnetic signal; the signal can then be transmitted to
an electronic circuit. In this case, the electrode is “operably
linked” to the electronic circuitry. These terms are broad
enough to include wireless connectivity.

[0138] The term “electronic circuitry” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to the components of a device
configured to process biological information obtained from a
host. In the case of a glucose-measuring device, the biological
information is obtained by a sensor regarding a particular
glucose in abiological fluid, thereby providing data regarding
the amount of that glucose in the fluid. U.S. Pat. Nos. 4,757,
022, 5,497,772 and 4,787,398, which are hereby incorporated
by reference, describe suitable electronic circuits that can be
utilized with devices including the biointerface membrane of
a preferred embodiment.

[0139] The term “substantially” as used herein is a broad
term and is to be given its ordinary and customary meaning to
aperson of ordinary skill in the art (and is not to be limited to
a special or customized meaning), and furthermore refers
without limitation to being largely but not necessarily wholly
that which is specified.

[0140] The term “proximal” as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to near to a point of reference such as an origin,
apoint of attachment, or the midline of the body. For example,
in some embodiments of a glucose sensor, wherein the glu-
cose sensor is the point of reference, an oxygen sensor located
proximal to the glucose sensor will be in contact with or
nearby the glucose sensor such that their respective local
environments are shared (e.g., levels of glucose, oxygen, pH,
temperature, etc. are similar).

[0141] The term “distal” as used herein is a broad term and
is to be given its ordinary and customary meaning to a person
of ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to spaced relatively far from a point of reference, such
as an origin or a point of attachment, or midline of the body.
For example, in some embodiments of a glucose sensor,
wherein the glucose sensor is the point of reference, an oxy-
gen sensor located distal to the glucose sensor will be suffi-
ciently far from the glucose sensor such their respective local
environments are not shared (e.g., levels of glucose, oxygen,
pH, temperature, etc. may not be similar).

[0142] The term “domain” as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to a region of the membrane system that can be
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a layer, a uniform or non-uniform gradient (for example, an
anisotropic region of a membrane), or a portion of a mem-
brane.

[0143] The terms “in vivo portion” and “distal portion™ as
used herein are broad terms and are to be given their ordinary
and customary meaning to a person of ordinary skill in the art
(and are not to be limited to a special or customized meaning),
and furthermore refer without limitation to the portion of the
device (for example, a sensor) adapted for insertion into and/
or existence within a living body of a host.

[0144] The terms “ex vivo portion” and “proximal portion”
as used herein are broad terms and are to be given their
ordinary and customary meaning to a person of ordinary skill
in the art (and are not to be limited to a special or customized
meaning), and furthermore refer without limitation to the
portion of the device (for example, a sensor) adapted to
remain and/or exist outside of a living body of a host.
[0145] The term “electrochemical cell” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to a device in which chemical
energy is converted to electrical energy. Such a cell typically
consists of two or more electrodes held apart from each other
and in contact with an electrolyte solution. Connection of the
electrodes to a source of direct electric current renders one of
them negatively charged and the other positively charged.
Positive ions in the electrolyte migrate to the negative elec-
trode (cathode) and there combine with one or more elec-
trons, losing part or all of their charge and becoming new ions
having lower charge or neutral atoms or molecules; at the
same time, negative ions migrate to the positive electrode
(anode) and transfer one or more electrons to it, also becom-
ing new ions or neutral particles. The overall effect of the two
processes is the transfer of electrons from the negative ions to
the positive ions, a chemical reaction.

[0146] The term “potentiostat” as used herein is a broad
term and is to be given its ordinary and customary meaning to
aperson of ordinary skill in the art (and is not to be limited to
a special or customized meaning), and furthermore refers
without limitation to an electrical system that controls the
potential between the working and reference electrodes of a
three-electrode cell at a preset value. It forces whatever cur-
rent is necessary to flow between the working and counter
electrodes to keep the desired potential, as long as the needed
cell voltage and current do not exceed the compliance limits
of the potentiostat.

[0147] The term “electrical potential” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to the electrical potential dif-
ference between two points in a circuit which is the cause of
the flow of a current.

[0148] Theterm “host” as used herein is a broad term and is
to be given its ordinary and customary meaning to a person of
ordinary skill in the art (and is not to be limited to a special or
customized meaning), and furthermore refers without limita-
tion to mammals, particularly humans.

[0149] The term “continuous analyte (or glucose) sensor”
as used herein is a broad term and is to be given its ordinary
and customary meaning to a person of ordinary skill in the art
(and is not to be limited to a special or customized meaning),
and furthermore refers without limitation to a device that
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continuously or continually measures a concentration of an
analyte, for example, at time intervals ranging from fractions
of'a second up to, for example, 1, 2, or 5 minutes, or longer. In
one exemplary embodiment, the continuous analyte sensor is
a glucose sensor such as described in U.S. Pat. No. 6,001,067,
which is incorporated herein by reference in its entirety.

[0150] The term “continuous analyte (or glucose) sensing”
as used herein is a broad term and is to be given its ordinary
and customary meaning to a person of ordinary skill in the art
(and is not to be limited to a special or customized meaning),
and furthermore refers without limitation to the period in
which monitoring of an analyte is continuously or continually
performed, for example, at time intervals ranging from frac-
tions of a second up to, for example, 1, 2, or 5 minutes, or
longer.

[0151] The terms “reference analyte monitor,” “reference
analyte meter,” and “reference analyte sensor” as used herein
are broad terms and are to be given their ordinary and cus-
tomary meaning to a person of ordinary skill in the art (and are
not to be limited to a special or customized meaning), and
furthermore refer without limitation to a device that measures
a concentration of an analyte and can be used as a reference
for the continuous analyte sensor, for example a self-moni-
toring blood glucose meter (SMBG) can be used as a refer-
ence for a continuous glucose sensor for comparison, calibra-
tion, and the like.

[0152] The terms “sensor head” and “sensing region” as
used herein are broad terms and are to be given their ordinary
and customary meaning to a person of ordinary skill in the art
(and are not to be limited to a special or customized meaning),
and furthermore refer without limitation to the region of a
monitoring device responsible for the detection of a particular
analyte. The sensing region generally comprises a non-con-
ductive body, a working electrode (anode), a reference elec-
trode (optional), and/or a counter electrode (cathode) passing
through and secured within the body forming electrochemi-
cally reactive surfaces on the body and an electronic connec-
tive means at another location on the body, and a multi-
domain membrane affixed to the body and covering the
electrochemically reactive surface.

[0153] The term “electrochemically reactive surface” as
used herein is a broad term and is to be given its ordinary and
customary meaning to a person of ordinary skill in the art (and
is not to be limited to a special or customized meaning), and
furthermore refers without limitation to the surface of an
electrode where an electrochemical reaction takes place. In
the case of the working electrode, the hydrogen peroxide
produced by the enzyme catalyzed reaction of the glucose
being detected reacts creating a measurable electronic current
(e.g., detection of glucose utilizing glucose oxidase produces
H,0, as a by product, H,O, reacts with the surface of the
working electrode producing two protons (2H"), two elec-
trons (2¢7) and one molecule of oxygen (O,) which produces
the electronic current being detected). In the case of the
counter electrode, a reducible species, e.g., O, is reduced at
the electrode surface in order to balance the current being
generated by the working electrode.

[0154] Theterm “electronic connection” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to any electronic connection
known to those in the art that can be utilized to interface the
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sensor head electrodes with the electronic circuitry of a
device such as mechanical (e.g., pin and socket) or soldered.

[0155] The term “sensing membrane” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to a permeable or semi-perme-
able membrane that can be comprised of two or more domains
and is typically constructed of materials of a few microns
thickness or more, which are permeable to oxygen and may or
may not be permeable to glucose. In one example, the sensing
membrane comprises an immobilized glucose oxidase
enzyme, which enables an electrochemical reaction to occur
to measure a concentration of glucose.

[0156] The term “biointerface membrane” as used herein is
a broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to a permeable membrane that
can be comprised of two or more domains and is typically
constructed of materials of a few microns thickness or more,
which can be placed over the sensor body to keep host cells
(e.g., macrophages) from gaining proximity to, and thereby
damaging, the sensing membrane or forming a barrier cell
layer and interfering with the transport of glucose across the
tissue-device interface.

[0157] The term “Clarke Error Grid” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to an error grid analysis, which
evaluates the clinical significance of the difference between a
reference glucose value and a sensor generated glucose value,
taking into account 1) the value of the reference glucose
measurement, 2) the value of the sensor glucose measure-
ment, 3) the relative difference between the two values, and 4)
the clinical significance of this difference. See Clarke et al.,
“Evaluating Clinical Accuracy of Systems for Self-Monitor-
ing of Blood Glucose,” Diabetes Care, Volume 10, Number 5,
September-October 1987, which is incorporated by reference
herein in its entirety.

[0158] The term “physiologically feasible” as used herein
is a broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to the physiological param-
eters obtained from continuous studies of glucose data in
humans and/or animals. For example, a maximal sustained
rate of change of glucose in humans of about 4 to 5 mg/dL/
min and a maximum acceleration of the rate of change of
about 0.1 to 0.2 mg/dl/min/min are deemed physiologically
feasible limits. Values outside of these limits would be con-
sidered non-physiological and likely a result of signal error,
for example. As another example, the rate of change of glu-
cose is lowest at the maxima and minima of the daily glucose
range, which are the areas of greatest risk in patient treatment,
thus a physiologically feasible rate of change can be set at the
maxima and minima based on continuous studies of glucose
data. As a further example, it has been observed that the best
solution for the shape of the curve at any point along glucose
signal data stream over a certain time period (e.g., about 20 to
30 minutes) is a straight line, which can be used to set physi-
ological limits.
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[0159] The term “ischemia” as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to local and temporary deficiency of blood
supply due to obstruction of circulation to a part (e.g., sensor).
Ischemia can be caused by mechanical obstruction (e.g., arte-
rial narrowing or disruption) of the blood supply, for example.
[0160] The term “system noise” as used herein is a broad
term and is to be given its ordinary and customary meaning to
aperson of ordinary skill in the art (and is not to be limited to
a special or customized meaning), and furthermore refers
without limitation to unwanted electronic or diffusion-related
noise which can include Gaussian, motion-related, flicker,
kinetic, or other white noise, for example.

[0161] The terms “noise,” “noise event(s),” “noise episode
(s),” “signal artifact(s),” “signal artifact event(s),” and “signal
artifact episode(s)” as used herein are broad terms and are to
be given their ordinary and customary meaning to a person of
ordinary skill in the art (and are not to be limited to a special
or customized meaning), and furthermore refer without limi-
tation to signal noise that is caused by substantially non-
glucose related, such as interfering species, macro- or micro-
motion, ischemia, pH changes, temperature changes,
pressure, stress, or even unknown sources of mechanical,
electrical and/or biochemical noise for example. In some
embodiments, signal artifacts are transient and characterized
by a higher amplitude than system noise, and described as
“transient non-glucose related signal artifact(s) that have a
higher amplitude than system noise.” In some embodiments,
noise is caused by rate-limiting (or rate-increasing) phenom-
ena. In some circumstances, the source of the noise is
unknown.

[0162] Theterms “low noise” as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to noise that substantially decreases signal
amplitude.

[0163] The terms “high noise” and “high spikes” as used
herein are broad terms and are to be given their ordinary and
customary meaning to a person of ordinary skill in the art (and
are not to be limited to a special or customized meaning), and
furthermore refer without limitation to noise that substan-
tially increases signal amplitude.

[0164] The term “frequency content” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to the spectral density, includ-
ing the frequencies contained within a signal and their power.
[0165] Theterm “spectral density” as used herein is a broad
term and is to be given its ordinary and customary meaning to
aperson of ordinary skill in the art (and is not to be limited to
a special or customized meaning), and furthermore refers
without limitation to power spectral density of a given band-
width of electromagnetic radiation is the total power in this
bandwidth divided by the specified bandwidth. Spectral den-
sity is usually expressed in Watts per Hertz (W/Hz).

[0166] The term “orthogonal transform™ as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to a general integral transform
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that is defined by g(o)=[,*f()K(c,t)dt, where K(c,t) repre-
sents a set of orthogonal basis functions.

[0167] The term “Fourier Transform™ as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to a technique for expressing a
waveform as a weighted sum of sines and cosines.

[0168] The term “Discrete Fourier Transform™ as used
herein is a broad term and is to be given its ordinary and
customary meaning to a person of ordinary skill in the art (and
is not to be limited to a special or customized meaning), and
furthermore refers without limitation to a specialized Fourier
transform where the variables are discrete.

[0169] The term “wavelet transform™ as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to a transform which converts
a signal into a series of wavelets, which in theory allows
signals processed by the wavelet transform to be stored more
efficiently than ones processed by Fourier transform. Wave-
lets can also be constructed with rough edges, to better
approximate real-world signals.

[0170] The term “chronoamperometry” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to an electrochemical measur-
ing technique used for electrochemical analysis or for the
determination of the kinetics and mechanism of electrode
reactions. A fast-rising potential pulse is enforced on the
working (or reference) electrode of an electrochemical cell
and the current flowing through this electrode is measured as
a function of time.

[0171] The term “pulsed amperometric detection” as used
herein is a broad term and is to be given its ordinary and
customary meaning to a person of ordinary skill in the art (and
is not to be limited to a special or customized meaning), and
furthermore refers without limitation to an electrochemical
flow cell and a controller, which applies the potentials and
monitors current generated by the electrochemical reactions.
The cell can include one or multiple working electrodes at
different applied potentials. Multiple electrodes can be
arranged so that they face the chromatographic flow indepen-
dently (parallel configuration), or sequentially (series con-
figuration).

[0172] The term “linear regression” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to finding a line in which a set
of data has a minimal measurement from that line. Byprod-
ucts of this algorithm include a slope, a y-intercept, and an
R-Squared value that determine how well the measurement
data fits the line.

[0173] The term “non-linear regression” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to fitting a set of data to
describe the relationship between a response variable and one
or more explanatory variables in a non-linear fashion.
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[0174] The term “mean” as used herein is a broad term and
is to be given its ordinary and customary meaning to a person
of ordinary skill in the art (and is not to be limited to a special
or customized meaning), and furthermore refers without limi-
tation to the sum of the observations divided by the number of
observations.

[0175] The term “trimmed mean™ as used herein is a broad
term and is to be given its ordinary and customary meaning to
aperson of ordinary skill in the art (and is not to be limited to
a special or customized meaning), and furthermore refers
without limitation to a mean taken after extreme values in the
tails of a variable (e.g., highs and lows) are eliminated or
reduced (e.g., “trimmed”). The trimmed mean compensates
for sensitivities to extreme values by dropping a certain per-
centage of values on the tails. For example, the 50% trimmed
mean is the mean of the values between the upper and lower
quartiles. The 90% trimmed mean is the mean of the values
after truncating the lowest and highest 5% of the values. In
one example, two highest and two lowest measurements are
removed from a data set and then the remaining measure-
ments are averaged.

[0176] The term “non-recursive filter” as used herein is a
broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to an equation that uses mov-
ing averages as inputs and outputs.

[0177] The terms “recursive filter” and “auto-regressive
algorithm” as used herein are broad terms and are to be given
their ordinary and customary meaning to a person of ordinary
skill in the art (and are not to be limited to a special or
customized meaning), and furthermore refer without limita-
tion to an equation in which includes previous averages are
part of the next filtered output. More particularly, the genera-
tion of a series of observations whereby the value of each
observation is partly dependent on the values of those that
have immediately preceded it. One example is a regression
structure in which lagged response values assume the role of
the independent variables.

[0178] The term “signal estimation algorithm factors” as
used herein is a broad term and is to be given its ordinary and
customary meaning to a person of ordinary skill in the art (and
is not to be limited to a special or customized meaning), and
furthermore refers without limitation to one or more algo-
rithms that use historical and/or present signal data stream
values to estimate unknown signal data stream values. For
example, signal estimation algorithm factors can include one
or more algorithms, such as linear or non-linear regression.
As another example, signal estimation algorithm factors can
include one or more sets of coefficients that can be applied to
one algorithm.

[0179] The term “variation™ as used herein is a broad term
and is to be given its ordinary and customary meaning to a
person of ordinary skill in the art (and is not to be limited to a
special or customized meaning), and furthermore refers with-
out limitation to a divergence or amount of change from a
point, line, or set of data. In one embodiment, estimated
analyte values can have a variation including a range of values
outside of the estimated analyte values that represent a range
of possibilities based on known physiological patterns, for
example.

[0180] The terms “physiological parameters” and “physi-
ological boundaries” as used herein are broad terms and are to
be given their ordinary and customary meaning to a person of
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ordinary skill in the art (and are not to be limited to a special
or customized meaning), and furthermore refer without limi-
tation to the parameters obtained from continuous studies of
physiological data in humans and/or animals. For example, a
maximal sustained rate of change of glucose in humans of
about 4 to 5 mg/dl/min and a maximum acceleration of the
rate of change of about 0.1 to 0.2 mg/dL/min” are deemed
physiologically feasible limits; values outside of these limits
would be considered non-physiological. As another example,
the rate of change of glucose is lowest at the maxima and
minima of the daily glucose range, which are the areas of
greatest risk in patient treatment, thus a physiologically fea-
sible rate of change can be set at the maxima and minima
based on continuous studies of glucose data. As a further
example, it has been observed that the best solution for the
shape of the curve at any point along glucose signal data
stream over a certain time period (for example, about 20 to 30
minutes) is a straight line, which can be used to set physi-
ological limits. These terms are broad enough to include
physiological parameters for any analyte.

[0181] The term “measured analyte values™ as used herein
is a broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to an analyte value or set of
analyte values for a time period for which analyte data has
been measured by an analyte sensor. The term is broad
enough to include data from the analyte sensor before or after
data processing in the sensor and/or receiver (for example,
data smoothing, calibration, and the like).

[0182] The term “estimated analyte values™ as used herein
is a broad term and is to be given its ordinary and customary
meaning to a person of ordinary skill in the art (and is not to
be limited to a special or customized meaning), and further-
more refers without limitation to an analyte value or set of
analyte values, which have been algorithmically extrapolated
from measured analyte values. Typically, estimated analyte
values are estimated for a time period during which no data
exists. However, estimated analyte values can also be esti-
mated during a time period for which measured data exists,
but is to be replaced by algorithmically extrapolated (e.g.
processed or filtered) data due to noise or a time lag in the
measured data, for example.

[0183] The terms “interferants” and “interfering species”
as used herein are broad terms and are to be given their
ordinary and customary meaning to a person of ordinary skill
in the art (and are not to be limited to a special or customized
meaning), and furthermore refer without limitation to effects
and/or species that interfere with the measurement of an
analyte of interest in a sensor to produce a signal that does not
accurately represent the analyte concentration. In one
example of an electrochemical sensor, interfering species are
compounds with an oxidation potential that overlap that of the
analyte to be measured, thereby producing a false positive
signal.

[0184] As employed herein, the following abbreviations
apply: Eq and Egs (equivalents); mEq (milliequivalents); M
(molar); mM (millimolar) uM (micromolar); N (Normal);
mol (moles); mmol (millimoles); umol (micromoles); nmol
(nanomoles); g (grams); mg (milligrams); ug (micrograms);
Kg (kilograms); L (liters); mL (milliliters); dL. (deciliters); ul.
(microliters); cm (centimeters); mm (millimeters); um (mi-
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crometers); nm (nanometers); h and hr (hours); min. (min-
utes); s and sec. (seconds); © C. (degrees Centigrade).

Overview

[0185] The preferred embodiments relate to the use of a
glucose sensor that measures a concentration of glucose or a
substance indicative of the concentration or presence of the
glucose. In some embodiments, the glucose sensor is a con-
tinuous device, for example a subcutaneous, transdermal, or
intravascular device. In some embodiments, the device can
analyze a plurality of intermittent blood samples. The glucose
sensor can use any method of glucose-measurement, includ-
ing enzymatic, chemical, physical, electrochemical, spectro-
photometric, polarimetric, calorimetric, iontophoretic, radio-
metric, and the like.

[0186] The glucose sensor can use any known method,
including invasive, minimally invasive, and non-invasive
sensing techniques, to provide a data stream indicative of the
concentration of glucose in ahost. The data stream is typically
a raw data signal that is used to provide a useful value of
glucose to a user, such as a patient or doctor, who may be
using the sensor. It is well known that raw data streams
typically include system noise such as defined herein; how-
ever the preferred embodiments address the detection and
replacement of “signal artifacts” as defined herein. Accord-
ingly, appropriate signal estimation (e.g., filtering, data
smoothing, augmenting, projecting, and/or other methods)
replace such erroneous signals (e.g., signal artifacts) in the
raw data stream.

Glucose Sensor

[0187] The glucose sensor can be any device capable of
measuring the concentration of glucose. One exemplary
embodiment is described below, which utilizes an implant-
able glucose sensor. However, it should be understood that the
devices and methods described herein can be applied to any
device capable of detecting a concentration of glucose and
providing an output signal that represents the concentration
of glucose.

[0188] In one preferred embodiment, the analyte sensor is
an implantable glucose sensor, such as described with refer-
ence to U.S. Pat. No. 6,001,067 and U.S. Publication No.
US-2005-0027463-A1. In another preferred embodiment, the
analyte sensor is a transcutaneous glucose sensor, such as
described with reference to U.S. Publication No. US-2006-
0020187-A1. In one alternative embodiment, the continuous
glucose sensor comprises a transcutaneous sensor such as
described in U.S. Pat. No. 6,565,509 to Say et al., for
example. In another alternative embodiment, the continuous
glucose sensor comprises a subcutaneous sensor such as
described with reference to U.S. Pat. No. 6,579,690 to Bon-
necaze et al. or U.S. Pat. No. 6,484,046 to Say et al., for
example. In another alternative embodiment, the continuous
glucose sensor comprises a refillable subcutaneous sensor
such as described with reference to U.S. Pat. No. 6,512,939 to
Colvin etal., for example. In another alternative embodiment,
the continuous glucose sensor comprises an intravascular
sensor such as described with reference to U.S. Pat. No.
6,477,395 to Schulman et al., for example. In another alter-
native embodiment, the continuous glucose sensor comprises
an intravascular sensor such as described with reference to
U.S. Pat. No. 6,424,847 to Mastrototaro et al.
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[0189] FIG. 1A is an exploded perspective view of one
exemplary embodiment comprising an implantable glucose
sensor 10 that utilizes amperometric electrochemical sensor
technology to measure glucose concentration. In this exem-
plary embodiment, a body 12 and head 14 house the elec-
trodes 16 and sensor electronics, which are described in more
detail below with reference to FIG. 2. Three electrodes 16 are
operably connected to the sensor electronics (FIG. 2) and are
covered by a sensing membrane 17 and a biointerface mem-
brane 18, which are attached by a clip 19.

[0190] In one embodiment, the three electrodes 16, which
protrude through the head 14, include a platinum working
electrode, a platinum counter electrode, and a silver/silver
chloride reference electrode. The top ends of the electrodes
are in contact with an electrolyte phase (not shown), which is
a free-flowing fluid phase disposed between the sensing
membrane 17 and the electrodes 16. The sensing membrane
17 includes an enzyme, e.g., glucose oxidase, which covers
the electrolyte phase. The biointerface membrane 18 covers
the sensing membrane 17 and serves, at least in part, to protect
the sensor 10 from external forces that can result in environ-
mental stress cracking of the sensing membrane 17.

[0191] Intheillustrated embodiment, the counter electrode
is provided to balance the current generated by the species
being measured at the working electrode. In the case of a
glucose oxidase based glucose sensor, the species being mea-
sured at the working electrode is H,0,. Glucose oxidase
catalyzes the conversion of oxygen and glucose to hydrogen
peroxide and gluconate according to the following reaction:

Glucose+0O,—Gluconate+H,0,

[0192] The change in H,O, can be monitored to determine
glucose concentration because for each glucose molecule
metabolized, there is a proportional change in the product
H,0,. Oxidation of H,0O, by the working electrode is bal-
anced by reduction of ambient oxygen, enzyme generated
H,0,, or other reducible species at the counter electrode. The
H,0, produced from the glucose oxidase reaction further
reacts at the surface of working electrode and produces two
protons (2H™), two electrons (2e7), and one oxygen molecule
(0.).

[0193] FIG. 1B is side view of a distal portion of a trans-
cutaneously-inserted sensor 100 in one embodiment, show-
ing working and reference electrodes. In preferred embodi-
ments, the sensor 100 is formed from a working electrode 244
and a reference electrode 246 helically wound around the
working electrode 244. An insulator 245 is disposed between
the working and reference electrodes to provide necessary
electrical insulation therebetween. Certain portions of the
electrodes are exposed to enable electrochemical reaction
thereon, for example, a window 243 can be formed in the
insulator to expose a portion of the working electrode 244 for
electrochemical reaction.

[0194] Inpreferred embodiments, each electrode is formed
from a fine wire with a diameter of from about 0.001 orless to
about 0.010 inches or more, for example, and is formed from,
e.g., a plated insulator, a plated wire, or bulk electrically
conductive material. Although the illustrated electrode con-
figuration and associated text describe one preferred method
of forming a transcutaneous sensor, a variety of known tran-
scutaneous sensor configurations can be employed with the
transcutaneous analyte sensor system of the preferred
embodiments, such as are described in U.S. Pat. No. 6,695,
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860 to Ward et al., U.S. Pat. No. 6,565,509 to Say et al., U.S.
Pat. No. 6,248,067 to Causey IIL, et al., and U.S. Pat. No.
6,514,718 to Heller et al.

[0195] In preferred embodiments, the working electrode
comprises a wire formed from a conductive material, such as
platinum, platinum-iridium, palladium, graphite, gold, car-
bon, conductive polymer, alloys, and the like. Although the
electrodes can by formed by a variety of manufacturing tech-
niques (bulk metal processing, deposition of metal onto a
substrate, and the like), it can be advantageous to form the
electrodes from plated wire (e.g., platinum on steel wire) or
bulk metal (e.g., platinum wire). It is believed that electrodes
formed from bulk metal wire provide superior performance
(e.g., in contrast to deposited electrodes), including increased
stability of assay, simplified manufacturability, resistance to
contamination (e.g., which can be introduced in deposition
processes), and improved surface reaction (e.g., due to purity
of material) without peeling or delamination.

[0196] The working electrode 244 is configured to measure
the concentration of an analyte. In an enzymatic electro-
chemical sensor for detecting glucose, for example, the work-
ing electrode measures the hydrogen peroxide produced by
an enzyme catalyzed reaction of the analyte being detected
and creates a measurable electronic current. For example, in
the detection of glucose wherein glucose oxidase produces
hydrogen peroxide as a byproduct, hydrogen peroxide reacts
with the surface of the working electrode producing two
protons (2H™), two electrons (2e7) and one molecule of oxy-
gen (O,), which produces the electronic current being
detected.

[0197] In preferred embodiments, the working electrode
244 is covered with an insulating material 45, for example, a
non-conductive polymer. Dip-coating, spray-coating, vapor-
deposition, or other coating or deposition techniques can be
used to deposit the insulating material on the working elec-
trode. In one embodiment, the insulating material comprises
parylene, which can be an advantageous polymer coating for
its strength, lubricity, and electrical insulation properties.
Generally, parylene is produced by vapor deposition and
polymerization of para-xylylene (or its substituted deriva-
tives). However, any suitable insulating material can be used,
for example, fluorinated polymers, polyethyleneterephtha-
late, polyurethane, polyimide, other nonconducting poly-
mers, and the like. Glass or ceramic materials can also be
employed. Other materials suitable for use include surface
energy modified coating systems such as are marketed under
the trade names AMC18, AMC148, AMC141, and AMC321
by Advanced Materials Components Express of Bellafonte,
Pa. In some alternative embodiments, however, the working
electrode may not require a coating of insulator.

[0198] The reference electrode 246, which can function as
areference electrode alone, or as a dual reference and counter
electrode, is formed from silver, silver/silver chloride, and the
like. Preferably, the reference electrode 246 is juxtaposi-
tioned and/or twisted with or around the working electrode
244; however other configurations are also possible. In the
illustrated embodiments, the reference electrode 246 is heli-
cally wound around the working electrode 244. The assembly
of'wires is then optionally coated or adhered together with an
insulating material, similar to that described above, so as to
provide an insulating attachment.

[0199] In embodiments wherein an outer insulator is dis-
posed, a portion of the coated assembly structure can be
stripped or otherwise removed, for example, by hand, exci-
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mer lasing, chemical etching, laser ablation, grit-blasting
(e.g., with sodium bicarbonate or other suitable grit), and the
like, to expose the electroactive surfaces. Alternatively, a
portion of the electrode can be masked prior to depositing the
insulator in order to maintain an exposed electroactive sur-
face area. In one exemplary embodiment, grit blasting is
implemented to expose the electroactive surfaces, preferably
utilizing a grit material that is sufficiently hard to ablate the
polymer material, while being sufficiently soft so as to mini-
mize or avoid damage to the underlying metal electrode (e.g.,
a platinum electrode). Although a variety of “grit” materials
can be used (e.g., sand, talc, walnut shell, ground plastic, sea
salt, and the like), in some preferred embodiments, sodium
bicarbonate is an advantageous grit-material because it is
sufficiently hard to ablate, e.g., a parylene coating without
damaging, e.g., an underlying platinum conductor. One addi-
tional advantage of sodium bicarbonate blasting includes its
polishing action on the metal as it strips the polymer layer,
thereby eliminating a cleaning step that might otherwise be
necessary.

[0200] In the embodiment illustrated in FIG. 1B, a radial
window 243 is formed through the insulating material 245 to
expose a circumferential electroactive surface of the working
electrode. Additionally, sections 241 of electroactive surface
of' the reference electrode are exposed. For example, the 241
sections of electroactive surface can be masked during depo-
sition of an outer insulating layer or etched after deposition of
an outer insulating layer.

[0201] Insome applications, cellular attack or migration of
cells to the sensor can cause reduced sensitivity and/or func-
tion of the device, particularly after the first day of implanta-
tion. However, when the exposed electroactive surface is
distributed circumferentially about the sensor (e.g., as in a
radial window), the available surface area for reaction can be
sufficiently distributed so as to minimize the effect of local
cellular invasion of the sensor on the sensor signal. Alterna-
tively, a tangential exposed electroactive window can be
formed, for example, by stripping only one side of the coated
assembly structure. In other alternative embodiments, the
window can be provided at the tip of the coated assembly
structure such that the electroactive surfaces are exposed at
the tip of the sensor. Other methods and configurations for
exposing electroactive surfaces can also be employed.

[0202] In some embodiments, the working electrode has a
diameter of from about 0.001 inches or less to about 0.010
inches or more, preferably from about 0.002 inches to about
0.008 inches, and more preferably from about 0.004 inches to
about 0.005 inches. The length of the window can be from
about 0.1 mm (about 0.004 inches) or less to about 2 mm
(about 0.078 inches) or more, and preferably from about 0.5
mm (about 0.02 inches) to about 0.75 mm (0.03 inches). In
such embodiments, the exposed surface area of the working
electrode is preferably from about 0.000013 in* (0.0000839
cm?) or less to about 0.0025 in* (0.016129 cm®) or more
(assuming a diameter of from about 0.001 inches to about
0.010 inches and a length of from about 0.004 inches to about
0.078 inches). The preferred exposed surface area of the
working electrode is selected to produce an analyte signal
with a current in the picoAmp range, such as is described in
more detail elsewhere herein. However, a current in the pico-
Amp range can be dependent upon a variety of factors, for
example the electronic circuitry design (e.g., sample rate,
current draw, A/D converter bit resolution, etc.), the mem-
brane system (e.g., permeability of the analyte through the
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membrane system), and the exposed surface area of the work-
ing electrode. Accordingly, the exposed electroactive work-
ing electrode surface area can be selected to have a value
greater than or less than the above-described ranges taking
into consideration alterations in the membrane system and/or
electronic circuitry. In preferred embodiments of a glucose
sensor, it can be advantageous to minimize the surface area of
the working electrode while maximizing the diffusivity of
glucose in order to optimize the signal-to-noise ratio while
maintaining sensor performance in both high and low glucose
concentration ranges.

[0203] In some alternative embodiments, the exposed sur-
face area of the working (and/or other) electrode can be
increased by altering the cross-section of the electrode itself.
For example, in some embodiments the cross-section of the
working electrode can be defined by a cross, star, cloverleaf,
ribbed, dimpled, ridged, irregular, or other non-circular con-
figuration; thus, for any predetermined length of electrode, a
specific increased surface area can be achieved (as compared
to the area achieved by a circular cross-section). Increasing
the surface area of the working electrode can be advantageous
in providing an increased signal responsive to the analyte
concentration, which in turn can be helpful in improving the
signal-to-noise ratio, for example.

[0204] In some alternative embodiments, additional elec-
trodes can be included within the assembly, for example, a
three-electrode system (working, reference, and counter elec-
trodes) and/or an additional working electrode (e.g., an elec-
trode which can be used to generate oxygen, which is config-
ured as a baseline subtracting electrode, or which is
configured for measuring additional analytes). U.S. Publica-
tion No. US-2005-0161346-A1 and U.S. Publication No.
US-2005-0143635-A1 describe some systems and methods
for implementing and using additional working, counter, and/
or reference electrodes. In one implementation wherein the
sensor comprises two working electrodes, the two working
electrodes are juxtapositioned (e.g., extend parallel to each
other), around which the reference electrode is disposed (e.g.,
helically wound). In some embodiments wherein two or more
working electrodes are provided, the working electrodes can
be formed in a double-, triple-, quad-, etc. helix configuration
along the length of the sensor (for example, surrounding a
reference electrode, insulated rod, or other support structure).
The resulting electrode system can be configured with an
appropriate membrane system, wherein the first working
electrode is configured to measure a first signal comprising
glucose and baseline and the additional working electrode is
configured to measure a baseline signal consisting of baseline
only (e.g., configured to be substantially similar to the first
working electrode without an enzyme disposed thereon). In
this way, the baseline signal can be subtracted from the first
signal to produce a glucose-only signal that is substantially
not subject to fluctuations in the baseline and/or interfering
species on the signal.

[0205] Although the preferred embodiments illustrate one
electrode configuration including one bulk metal wire heli-
cally wound around another bulk metal wire, other electrode
configurations are also contemplated. In an alternative
embodiment, the working electrode comprises a tube with a
reference electrode disposed or coiled inside, including an
insulator therebetween. Alternatively, the reference electrode
comprises a tube with a working electrode disposed or coiled
inside, including an insulator therebetween. In another alter-
native embodiment, a polymer (e.g., insulating) rod is pro-
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vided, wherein the electrodes are deposited (e.g., electro-
plated) thereon. In yet another alternative embodiment, a
metallic (e.g., steel) rod is provided, coated with an insulating
material, onto which the working and reference electrodes are
deposited. In yet another alternative embodiment, one or
more working electrodes are helically wound around a refer-
ence electrode.

[0206] Preferably, the electrodes and membrane systems of
the preferred embodiments are coaxially formed, namely, the
electrodes and/or membrane system all share the same central
axis. While not wishing to be bound by theory, it is believed
that a coaxial design of the sensor enables a symmetrical
design without a preferred bend radius. Namely, in contrast to
prior art sensors comprising a substantially planar configura-
tion that can suffer from regular bending about the plane of
the sensor, the coaxial design of the preferred embodiments
do not have a preferred bend radius and therefore are not
subject to regular bending about a particular plane (which can
cause fatigue failures and the like). However, non-coaxial
sensors can be implemented with the sensor system of the
preferred embodiments.

[0207] In addition to the above-described advantages, the
coaxial sensor design of the preferred embodiments enables
the diameter of the connecting end of the sensor (proximal
portion) to be substantially the same as that of the sensing end
(distal portion) such that the needle is able to insert the sensor
into the host and subsequently slide back over the sensor and
release the sensor from the needle, without slots or other
complex multi-component designs.

[0208] In one such alternative embodiment, the two wires
of the sensor are held apart and configured for insertion into
the host in proximal but separate locations. The separation of
the working and reference electrodes in such an embodiment
can provide additional electrochemical stability with simpli-
fied manufacture and electrical connectivity. It is appreciated
by one skilled in the art that a variety of electrode configura-
tions can be implemented with the preferred embodiments.

[0209] Preferably, amembrane systemis deposited over the
electroactive surfaces of the sensor 100 and includes a plu-
rality of domains or layers. The membrane system may be
deposited on the exposed electroactive surfaces using known
thin film techniques (for example, spraying, electro-deposit-
ing, dipping, and the like). In one exemplary embodiment,
each domain is deposited by dipping the sensor into a solution
and drawing out the sensor at a speed that provides the appro-
priate domain thickness. In general, the membrane system
may be disposed over (deposited on) the electroactive sur-
faces using methods appreciated by one skilled in the art.

[0210] In one exemplary embodiment, the sensor is an
enzyme-based electrochemical sensor, wherein the glucose-
measuring working electrode measures the hydrogen perox-
ide produced by the enzyme catalyzed reaction of glucose
being detected and creates a measurable electronic current
(for example, detection of glucose utilizing glucose oxidase
produces H,O, peroxide as a by product, H,O, reacts with the
surface of the working electrode producing two protons
(2H"), two electrons (2e”) and one molecule of oxygen (O,)
which produces the electronic current being detected), such
as described in more detail above and as is appreciated by one
skilled in the art. Typically, the working and reference elec-
trodes operatively connect with sensor electronics, such as
described in more detail elsewhere herein. Additional aspects
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of the above-described transcutaneously inserted sensor can
be found in co-pending U.S. Publication No. US-2006-
0020187-A1.

[0211] In some embodiments (e.g., sensors such as illus-
trated in FIGS. 1A and 1B), a potentiostat is employed to
monitor the electrochemical reaction at the electrochemical
cell. The potentiostat applies a constant potential to the work-
ing and reference electrodes to determine a current value. The
current that is produced at the working electrode (and flows
through the circuitry to the counter electrode) is proportional
to the amount of H, O, that diffuses to the working electrode.
Accordingly, a raw signal can be produced that is represen-
tative of the concentration of glucose in the user’s body, and
therefore can be utilized to estimate a meaningful glucose
value, such as described herein.

[0212] One problem with raw data stream output of enzy-
matic glucose sensors such as described above is caused by
transient non-glucose reaction rate-limiting phenomenon.
For example, if oxygen is deficient, relative to the amount of
glucose, then the enzymatic reaction will be limited by oxy-
gen rather than glucose. Consequently, the output signal will
be indicative of the oxygen concentration rather than the
glucose concentration, producing erroneous signals. Other
non-glucose reaction rate-limiting phenomenon could
include interfering species, temperature and/or pH changes,
or even unknown sources of mechanical, electrical and/or
biochemical noise, for example. Accordingly, reduction of
signal noise, and particularly replacement of transient non-
glucose related signal artifacts in the data stream that have a
higher amplitude than system noise, can be performed in the
sensor and/or in the receiver, such as described in more detail
below in the sections entitled “Signal Artifacts Detection”
and “Signal Artifacts Replacement,” for example.

[0213] FIG. 2 is a block diagram that illustrates one pos-
sible configuration of the sensor electronics in one embodi-
ment. In this embodiment, a potentiostat 20 is shown, which
is operatively connected to an electrode system (FIG. 1A or
1B) and provides a voltage to the electrodes, which biases the
sensor to enable measurement of a current value indicative of
the analyte concentration in the host (also referred to as the
analog portion). In some embodiments, the potentiostat
includes a resistor (not shown) that translates the current into
voltage. In some alternative embodiments, a current to fre-
quency converter is provided that is configured to continu-
ously integrate the measured current, for example, using a
charge counting device. In the illustrated embodiment, an
A/D converter 21 digitizes the analog signal into “counts” for
processing. Accordingly, the resulting raw data stream in
counts is directly related to the current measured by the poten-
tiostat 20.

[0214] A processor module 22 is the central control unit
that controls the processing of the sensor electronics. In some
embodiments, the processor module includes a microproces-
sor, however a computer system other than a microprocessor
can be used to process data as described herein, for example
an ASIC can be used for some or all of the sensor’s central
processing. The processor typically provides semi-perma-
nent storage of data, for example, storing data such as sensor
identifier (ID) and programming to process data streams (for
example, programming for data smoothing and/or replace-
ment of signal artifacts such as is described in more detail
elsewhere herein). The processor additionally can be used for
the system’s cache memory, for example for temporarily stor-
ing recent sensor data. In some embodiments, the processor
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module comprises memory storage components such as
ROM, RAM, dynamic-RAM, static-RAM, non-static RAM,
EEPROM, rewritable ROMs, flash memory, and the like. In
one exemplary embodiment, EEPROM 23 provides semi-
permanent storage of data, for example, storing data such as
sensor identifier (ID) and programming to process data
streams (e.g., programming for signal artifacts detection and/
or replacement such as described elsewhere herein). In one
exemplary embodiment, SRAM 24 can be used for the sys-
tem’s cache memory, for example for temporarily storing
recent sensor data.

[0215] In some embodiments, the processor module com-
prises a digital filter, for example, an IIR or FIR filter, con-
figured to smooth the raw data stream from the A/D converter.
Generally, digital filters are programmed to filter data
sampled at a predetermined time interval (also referred to as
a sample rate). In some embodiments, wherein the poten-
tiostat is configured to measure the analyte at discrete time
intervals, these time intervals determine the sample rate of the
digital filter. In some alternative embodiments, wherein the
potentiostat is configured to continuously measure the ana-
lyte, for example, using a current-to-frequency converter, the
processor module can be programmed to request a digital
value from the A/D converter at a predetermined time inter-
val, also referred to as the acquisition time. In these alterna-
tive embodiments, the values obtained by the processor are
advantageously averaged over the acquisition time due the
continuity of the current measurement. Accordingly, the
acquisition time determines the sample rate of the digital
filter. In preferred embodiments, the processor module is
configured with a programmable acquisition time, namely,
the predetermined time interval for requesting the digital
value from the A/D converter is programmable by a user
within the digital circuitry of the processor module. An acqui-
sition time of from about 2 seconds to about 512 seconds is
preferred; however any acquisition time can be programmed
into the processor module. A programmable acquisition time
is advantageous in optimizing noise filtration, time lag, and
processing/battery power.

[0216] Preferably, the processor module is configured to
build the data packet for transmission to an outside source, for
example, an RF transmission to a receiver as described in
more detail below. Generally, the data packet comprises a
plurality of bits that can include a sensor ID code, raw data,
filtered data, and/or error detection or correction. The proces-
sor module can be configured to transmit any combination of
raw and/or filtered data.

[0217] A battery 25 is operatively connected to the proces-
sor 22 and provides the necessary power for the sensor (e.g.,
10 or 100). In one embodiment, the battery is a Lithium
Manganese Dioxide battery, however any appropriately sized
and powered battery can be used (e.g., AAA, Nickel-cad-
mium, Zinc-carbon, Alkaline, Lithium, Nickel-metal
hydride, Lithium-ion, Zinc-air, Zinc-mercury oxide, Silver-
zine, or hermetically-sealed). In some embodiments the bat-
tery is rechargeable. In some embodiments, a plurality of
batteries can be used to power the system. In yet other
embodiments, the receiver can be transcutaneously powered
via an inductive coupling, for example. A Quartz Crystal 26 is
operatively connected to the processor 22 and maintains sys-
tem time for the computer system as a whole.

[0218] AnRF module, (e.g., an RF Transceiver) 27 is oper-
ably connected to the processor 22 and transmits the sensor
data from the sensor (e.g., 10 or 100) to a receiver (see FIGS.
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3 and 4). Although an RF transceiver is shown here, some
other embodiments can include a wired rather than wireless
connection to the receiver. A second quartz crystal 28 pro-
vides the system time for synchronizing the data transmis-
sions from the RF transceiver. It is noted that the transceiver
27 can be substituted with a transmitter in other embodi-
ments. In some alternative embodiments, however, other
mechanisms, such as optical, infrared radiation (IR), ultra-
sonic, and the like, can be used to transmit and/or receive data.
[0219] In some embodiments, a Signal Artifacts Detector
29 is provided that includes one or more of the following: an
oxygen detector 29a, a pH detector 295, a temperature detec-
tor 29¢, and a pressure/stress detector 294, which is described
in more detail with reference to signal artifacts detection. It is
noted that in some embodiments the signal artifacts detector
29 is a separate entity (e.g., temperature detector) operatively
connected to the processor, while in other embodiments, the
signal artifacts detector is a part of the processor and utilizes
readings from the electrodes, for example, to detect ischemia
and other signal artifacts. Although the above description is
focused on an embodiment of the Signal Artifacts Detector
within the sensor, some embodiments provide for systems
and methods for detecting signal artifacts in the sensor and/or
receiver electronics (e.g., processor module) as described in
more detail elsewhere herein.

Receiver

[0220] FIGS.3A to 3D are schematic views ofa receiver 30
including representations of estimated glucose values on its
user interface in first, second, third, and fourth embodiments,
respectively. The receiver 30 comprises systems to receive,
process, and display sensor data from the glucose sensor (e.g.,
10 0r 100), such as described herein. Particularly, the receiver
30 can be a pager-sized device, for example, and comprise a
user interface that has a plurality of buttons 32 and a liquid
crystal display (LCD) screen 34, and which can optionally
include a backlight. In some embodiments, the user interface
can also include a keyboard, a speaker, and a vibrator, as
described below with reference to FIG. 4A.

[0221] FIG. 3A illustrates a first embodiment wherein the
receiver 30 shows a numeric representation of the estimated
glucose value on its user interface, which is described in more
detail elsewhere herein.

[0222] FIG. 3B illustrates a second embodiment wherein
the receiver 30 shows an estimated glucose value and
approximately one hour of historical trend data on its user
interface, which is described in more detail elsewhere herein.
[0223] FIG. 3C illustrates a third embodiment wherein the
receiver 30 shows an estimated glucose value and approxi-
mately three hours of historical trend data on its user inter-
face, which is described in more detail elsewhere herein.
[0224] FIG. 3D illustrates a fourth embodiment wherein
the receiver 30 shows an estimated glucose value and
approximately nine hours of historical trend data on its user
interface, which is described in more detail elsewhere herein.
[0225] In some embodiments, a user can toggle through
some or all of the screens shown in FIGS. 3A to 3D using a
toggle button on the receiver. In some embodiments, the user
will be able to interactively select the type of output displayed
on their user interface. In other embodiments, the sensor
output can have alternative configurations.

[0226] FIG. 4A is a block diagram that illustrates one pos-
sible configuration of the receiver’s 30 electronics. It is noted
that the receiver 30 can comprise a configuration such as
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described with reference to FIGS. 3A to 3D, above. Alterna-
tively, the receiver 30 can comprise other configurations,
including a desktop computer, laptop computer, a personal
digital assistant (PDA), a server (local or remote to the
receiver), and the like. In some embodiments, the receiver 30
can be adapted to connect (via wired or wireless connection)
to a desktop computer, laptop computer, PDA, server (local or
remote to the receiver), and the like, in order to download data
from the receiver 30. In some alternative embodiments, the
receiver 30 and/or receiver electronics can be housed within
or directly connected to the sensor (e.g., 10 or 100) in a
manner that allows sensor and receiver electronics to work
directly together and/or share data processing resources.
Accordingly, the receiver’s electronics can be generally
referred to as a “computer system.”

[0227] A quartz crystal 40 is operatively connected to an
RF transceiver 41 that together function to receive and syn-
chronize data streams (e.g., raw data streams transmitted
from the RF transceiver). Once received, a processor 42 pro-
cesses the signals, such as described below.

[0228] The processor 42, also referred to as the processor
module, is the central control unit that performs the process-
ing, such as storing data, analyzing data streams, calibrating
analyte sensor data, estimating analyte values, comparing
estimated analyte values with time corresponding measured
analyte values, analyzing a variation of estimated analyte
values, downloading data, and controlling the user interface
by providing analyte values, prompts, messages, warnings,
alarms, and the like. The processor includes hardware and
software that performs the processing described herein, for
example flash memory provides permanent or semi-perma-
nent storage of data, storing data such as sensor 1D, receiver
1D, and programming to process data streams (for example,
programming for performing estimation and other algorithms
described elsewhere herein) and random access memory
(RAM) stores the system’s cache memory and is helpful in
data processing.

[0229] In one exemplary embodiment, the processor is a
microprocessor that provides the processing, such as calibra-
tion algorithms stored within an EEPROM 43. The EEPROM
43 is operatively connected to the processor 42 and provides
semi-permanent storage of data, storing data such as receiver
1D and programming to process data streams (e.g., program-
ming for performing calibration and other algorithms
described elsewhere herein). In this exemplary embodiment,
an SRAM 44 is used for the system’s cache memory and is
helpful in data processing.

[0230] A battery 45 is operatively connected to the proces-
sor 42 and provides power for the receiver. In one embodi-
ment, the battery is a standard AAA alkaline battery, however
any appropriately sized and powered battery can be used. In
some embodiments, a plurality of batteries can be used to
power the system. A quartz crystal 46 is operatively con-
nected to the processor 42 and maintains system time for the
computer system as a whole.

[0231] A userinterface 47 comprises a keyboard 2, speaker
3, vibrator 4, backlight 5, liquid crystal display (LCD 6), and
one or more buttons 7. The components that comprise the user
interface 47 provide controls to interact with the user. The
keyboard 2 can allow, for example, input of user information
about himself/herself, such as mealtime, exercise, insulin
administration, and reference glucose values. The speaker 3
can provide, for example, audible signals or alerts for condi-
tions such as present and/or predicted hyper- and hypoglyce-
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mic conditions. The vibrator 4 can provide, for example,
tactile signals or alerts for reasons such as described with
reference to the speaker, above. The backlight 5 can be pro-
vided, for example, to aid the user in reading the LCD in low
light conditions. The LCD 6 can be provided, for example, to
provide the user with visual data output such as is illustrated
in FIGS.3Ato 3D. The buttons 7 can provide for toggle, menu
selection, option selection, mode selection, and reset, for
example.

[0232] In some embodiments, prompts or messages can be
displayed on the user interface to convey information to the
user, such as reference outlier values, requests for reference
analyte values, therapy recommendations, deviation of the
measured analyte values from the estimated analyte values,
and the like. Additionally, prompts can be displayed to guide
the user through calibration or trouble-shooting of the cali-
bration.

Input and Output

[0233] In general, the above-described estimative algo-
rithms, including estimation of measured analyte values and
variation analysis of the estimated analyte values are useful
when provided to a patient, doctor, family member, and the
like. Even more, the estimative algorithms are useful when
they are able to provide information helpful in modifying a
patient’s behavior so that they experience less clinically risky
situations and higher quality of life than may otherwise be
possible. Therefore, the above-described data analysis can be
output in a variety of forms useful in caring for the health of
a patient.

[0234] Output can be provided via a user interface, includ-
ing but not limited to, visually on a screen, audibly through a
speaker, or tactilely through a vibrator. Additionally, output
can be provided via wired or wireless connection to an exter-
nal device, including but not limited to, computer, laptop,
server, personal digital assistant, modem connection, insulin
delivery mechanism, medical device, or other device that can
be useful in interfacing with the receiver.

[0235] Output can be continuously provided, or certain out-
put can be selectively provided based on events, analyte con-
centrations and the like. For example, an estimated analyte
path can be continuously provided to a patient on an LCD
screen, while audible alerts can be provided only during a
time of existing or approaching clinical risk to a patient. As
another example, estimation can be provided based on event
triggers (for example, when an analyte concentration is near-
ing or entering a clinically risky zone). As yet another
example, analyzed deviation of estimated analyte values can
be provided when a predetermined level of variation (for
example, due to known error or clinical risk) is known.

[0236] In some embodiments, alarms prompt or alert a
patient when a measured or projected analyte value or rate of
change simply passes a predetermined threshold. In some
embodiments, the clinical risk alarms combine intelligent and
dynamic estimative algorithms to provide greater accuracy,
more timeliness in pending danger, avoidance of false alarms,
and less annoyance for the patient. For example, clinical risk
alarms of these embodiments include dynamic and intelligent
estimative algorithms based on analyte value, rate of change,
acceleration, clinical risk, statistical probabilities, known
physiological constraints, and/or individual physiological
patterns, thereby providing more appropriate, clinically safe,
and patient-friendly alarms.
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[0237] In some embodiments, clinical risk alarms can be
activated for a predetermined time period to allow for the user
to attend to his/her condition. Additionally, the clinical risk
alarms can be de-activated when leaving a clinical risk zone
s0 as not to annoy the patient by repeated clinical risk alarms,
when the patient’s condition is improving.

[0238] In some embodiments, the dynamic and intelligent
estimation determines a possibility of the patient avoiding
clinical risk, based on the analyte concentration, the rate of
change, and other aspects of the dynamic and intelligent
estimative algorithms of the preferred embodiments. If there
is minimal or no possibility of avoiding the clinical risk, a
clinical risk alarm will be triggered. However, if there is a
possibility of avoiding the clinical risk, the system can wait a
predetermined amount of time and re-analyze the possibility
of avoiding the clinical risk. In some embodiments, when
there is a possibility of avoiding the clinical risk, the system
will further provide targets, therapy recommendations, or
other information that can aid the patient in proactively avoid-
ing the clinical risk.

[0239] Insome embodiments, a variety of different display
methods are used, such as described in the preferred embodi-
ments, which can be toggled through or selectively displayed
to the user based on conditions or by selecting a button, for
example. As one example, a simple screen can be normally
shown that provides an overview of analyte data, for example
present analyte value and directional trend. More complex
screens can then be selected when a user desires more detailed
information, for example, historical analyte data, alarms,
clinical risk zones, and the like.

[0240] FIG. 4B is an illustration of the receiver in one
embodiment showing an analyte trend graph, including mea-
sured analyte values, estimated analyte values, and a clinical
risk zone. The receiver 30 includes an LCD screen 34, buttons
7, and a speaker 3 and/or microphone. The screen 34 displays
a trend graph in the form of a line representing the historical
trend of a patient’s analyte concentration. Although axes may
or may not be shown on the screen 34, it is understood that a
theoretical x-axis represents time and a theoretical y-axis
represents analyte concentration.

[0241] Insomeembodiments such as shown inFIG. 4B, the
screen shows thresholds, including a high threshold 200 and
a low threshold 202, which represent boundaries between
clinically safe and clinically risky conditions for the patients.
In one exemplary embodiment, a normal glucose threshold
for a glucose sensor is set between about 100 and 160 mg/dL,
and the clinical risk zones 204 are illustrated outside of these
thresholds. In alternative embodiments, the normal glucose
threshold is between about 80 and about 200 mg/dL, between
about 55 and about 220 mg/dL, or other threshold that can be
set by the manufacturer, physician, patient, computer pro-
gram, and the like. Although a few examples of glucose
thresholds are given for a glucose sensor, the setting of any
analyte threshold is not limited by the preferred embodi-
ments.

[0242] In some embodiments, the screen 34 shows clinical
risk zones 204, also referred to as danger zones, through
shading, gradients, or other graphical illustrations that indi-
cate areas of increasing clinical risk. Clinical risk zones 204
can be set by a manufacturer, customized by a doctor, and/or
set by a user via buttons 7, for example. In some embodi-
ments, the danger zone 204 can be continuously shown on the
screen 34, or the danger zone can appear when the measured
and/or estimated analyte values fall into the danger zone 204.
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Additional information can be displayed on the screen, such
as an estimated time to clinical risk. In some embodiments,
the danger zone can be divided into levels of danger (for
example, low, medium, and high) and/or can be color-coded
(forexample, yellow, orange, and red) or otherwise illustrated
to indicate the level of danger to the patient. Additionally, the
screen or portion of the screen can dynamically change colors
or illustrations that represent a nearness to the clinical risk
and/or a severity of clinical risk.

[0243] In some embodiments, such as shown in FIG. 4B,
the screen 34 displays a trend graph of measured analyte data
206. Measured analyte data can be smoothed and calibrated
such as described in more detail elsewhere herein. Measured
analyte data can be displayed for a certain time period (for
example, previous 1 hour, 3 hours, 9 hours, etc.) In some
embodiments, the user can toggle through screens using but-
tons 7 to view the measured analyte data for different time
periods, using different formats, or to view certain analyte
values (for example, highs and lows).

[0244] Insomeembodiments such as shownin FIG. 4B, the
screen 34 displays estimated analyte data 208 using dots. In
this illustration, the size of the dots can represent the confi-
dence of the estimation, a variation of estimated values, and
the like. For example, as the time gets farther away from the
present (t=0) the confidence level in the accuracy of the esti-
mation can decline as is appreciated by one skilled in the art.
In some alternative embodiments, dashed lines, symbols,
icons, and the like can be used to represent the estimated
analyte values. In some alternative embodiments, shaded
regions, colors, patterns, and the like can also be used to
represent the estimated analyte values, a confidence in those
values, and/or a variation of those values, such as described in
more detail in preferred embodiments.

[0245] Axes, including time and analyte concentration val-
ues, can be provided on the screen, however are not required.
While not wishing to be bound by theory, it is believed that
trend information, thresholds, and danger zones provide suf-
ficient information to represent analyte concentration and
clinically educate the user. In some embodiments, time can be
represented by symbols, such as a sun and moon to represent
day and night. In some embodiments, the present or most
recent measured analyte concentration, from the continuous
sensor and/or from the reference analyte monitor can be con-
tinually, intermittently, or selectively displayed on the screen.
[0246] Theestimated analyte values 208 of FIG. 4B include
a portion, which extends into the danger zone 204. By pro-
viding data in a format that emphasizes the possibility of
clinical risk to the patient, appropriate action can be taken by
the user (for example, patient, or caretaker) and clinical risk
can be preempted.

[0247] FIG. 4C is an illustration of the receiver in another
embodiment showing a representation of analyte concentra-
tion and directional trend using a gradient bar. In this embodi-
ment, the screen illustrates the measured analyte values and
estimated analyte values in a simple but effective manner that
communicates valuable analyte information to the user.
[0248] In this embodiment, a gradient bar 210 is provided
that includes thresholds 212 set at high and lows such as
described in more detail with reference to FIG. 4B, above.
Additionally, colors, shading, or other graphical illustration
can be present to represent danger zones 214 on the gradient
bar 210 such as described in more detail with reference to
FIG. 4B, above.
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[0249] The measured analyte value is represented on the
gradient bar 210 by a marker 216, such as a darkened or
colored bar. By representing the measured analyte value with
a bar 216, a low-resolution analyte value is presented to the
user (for example, within a range of values). For example,
each segment on the gradient bar 210 can represent about 10
mg/dl, of glucose concentration. As another example, each
segment can dynamically represent the range of values that
fall within the “A” and “B” regions of the Clarke Error Grid.
While not wishing to be bound by theory, it is believed that
inaccuracies known both in reference analyte monitors and/or
continuous analyte sensors are likely due to known variables
such as described in more detail elsewhere herein, and can be
de-emphasized such that a user focuses on proactive care of
the condition, rather than inconsequential discrepancies
within and between reference analyte monitors and continu-
ous analyte sensors.

[0250] Additionally, the representative gradient bar com-
municates the directional trend of the analyte concentration to
the user in a simple and effective manner, namely by a direc-
tional arrow 218. For example, in conventional diabetic blood
glucose monitoring, a person with diabetes obtains a blood
sample and measures the glucose concentration using a test
strip, and the like. Unfortunately, this information does not
tell the person with diabetes whether the blood glucose con-
centration is rising or falling. Rising or falling directional
trend information can be particularly important in a situation
such as illustrated in FIG. 4C, wherein if the user does not
know that the glucose concentration is rising, he/she may
assume that the glucose concentration is falling and not attend
to his/her condition. However, because rising directional
trend information 218 is provided, the person with diabetes
can preempt the clinical risk by attending to his/her condition
(for example, administer insulin). Estimated analyte data can
be incorporated into the directional trend information by
characteristics of the arrow, for example, size, color, flash
speed, and the like.

[0251] In some embodiments, the gradient bar can be a
vertical instead of horizontal bar. In some embodiments, a
gradient fill can be used to represent analyte concentration,
variation, or clinical risk, for example. In some embodiments,
the bar graph includes color, for example the center can be
green in the safe zone that graduates to red in the danger
zones; this can be in addition to or in place of the divided
segments. In some embodiments, the segments of the bar
graph are clearly divided by lines; however color, gradation,
and the like can be used to represent areas of the bar graph. In
some embodiments, the directional arrow can be represented
by a cascading level of arrows to a represent slow or rapid rate
of'change. In some embodiments, the directional arrow can be
flashing to represent movement or pending danger.

[0252] The screen 34 of FIG. 4C can further comprise a
numerical representation of analyte concentration, date, time,
or other information to be communicated to the patient. How-
ever, a user can advantageously extrapolate information help-
ful for his/her condition using the simple and effective repre-
sentation of this embodiment shown in FIG. 4C, without
reading a numeric representation of his/her analyte concen-
tration.

[0253] In some alternative embodiments, a trend graph or
gradient bar, a dial, pie chart, or other visual representation
can provide analyte data using shading, colors, patterns,
icons, animation, and the like.
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[0254] FIG. 4D is an illustration of a receiver 30 in another
embodiment, including a screen 34 that shows a numerical
representation of the most recent measured analyte value 252.
This numerical value 252 is preferably a calibrated analyte
value, such as described in more detail with reference to
FIGS. 5 and 6. Additionally, this embodiment preferably pro-
vides an arrow 254 on the screen 34, which represents the rate
of change of the host’s analyte concentration. A bold “up”
arrow is shown on the drawing, which preferably represents a
relatively quickly increasing rate of change. The arrows
shown with dotted lines illustrate examples of other direc-
tional arrows (for example, rotated by 45 degrees), which can
be useful on the screen to represent various other positive and
negative rates of change. Although the directional arrows
shown have a relative low resolution (45 degrees of accuracy),
other arrows can be rotated with a high resolution of accuracy
(for example one degree of accuracy) to more accurately
represent the rate of change of the host’s analyte concentra-
tion. In some alternative embodiments, the screen provides an
indication of the acceleration of the host’s analyte concentra-
tion.

[0255] A second numerical value 256 is shown, which is
representative of a variation of the measured analyte value
252. The second numerical value is preferably determined
from a variation analysis based on statistical, clinical, or
physiological parameters, such as described in more detail
elsewhere herein. In one embodiment, the second numerical
value 256 is determined based on clinical risk (for example,
weighted for the greatest possible clinical risk to a patient). In
another embodiment, the second numerical representation
256 is an estimated analyte value extrapolated to compensate
for a time lag, such as described in more detail elsewhere
herein. In some alternative embodiments, the receiver dis-
plays a range of numerical analyte values that best represents
the host’s estimated analyte value (for example, +/-10%). In
some embodiments, the range is weighted based on clinical
risk to the patient. In some embodiments, the range is repre-
sentative of a confidence in the estimated analyte value and/or
avariation of those values. In some embodiments, the range is
adjustable.

[0256] Referring again to FIG. 4A, communication ports,
including a PC communication (com) port 48 and a reference
glucose monitor com port 49 can be provided to enable com-
munication with systems that are separate from, or integral
with, the receiver 30. The PC com port 48, for example, a
serial communications port, allows for communicating with
another computer system (e.g., PC, PDA, server, and the like).
In one exemplary embodiment, the receiver 30 is able to
download historical data to a physician’s PC for retrospective
analysis by the physician. The reference glucose monitor com
port 49 allows for communicating with a reference glucose
monitor (not shown) so that reference glucose values can be
downloaded into the receiver 30, for example, automatically.
In one embodiment, the reference glucose monitor is integral
with the receiver 30, and the reference glucose com port 49
allows internal communication between the two integral sys-
tems. In another embodiment, the reference glucose monitor
com port 49 allows a wireless or wired connection to refer-
ence glucose monitor such as a self-monitoring blood glucose
monitor (e.g., for measuring finger stick blood samples).

Calibration

[0257] Reference is now made to FIG. 5, which is a flow
chart 50 that illustrates the process of initial calibration and
data output of the glucose sensor (e.g., 10 or 100) in one
embodiment.
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[0258] Calibration of the glucose sensor comprises data
processing that converts a sensor data stream into an esti-
mated glucose measurement that is meaningful to a user.
Accordingly, a reference glucose value can be used to cali-
brate the data stream from the glucose sensor. In one embodi-
ment, the analyte sensor is a continuous glucose sensor and
one or more reference glucose values are used to calibrate the
data stream from the sensor. The calibration can be performed
on a real-time basis and/or retrospectively recalibrated. How-
ever in alternative embodiments, other calibration techniques
can be utilized, for example using another constant analyte
(for example, folic acid, ascorbate, urate, and the like) as a
baseline, factory calibration, periodic clinical calibration,
oxygen calibration (for example, using a plurality of sensor
heads), and the like can be used.

[0259] At block 51, a sensor data receiving module, also
referred to as the sensor data module, or processor module,
receives sensor data (e.g., a data stream), including one or
more time-spaced sensor data points hereinafter referred to as
“data stream,” “‘sensor data,” “sensor analyte data”, “glucose
signal,” from a sensor via the receiver, which can be in wired
or wireless communication with the sensor. The sensor data
can be raw or smoothed (filtered), or include both raw and
smoothed data. In some embodiments, raw sensor data may
include an integrated digital data value, e.g., a value averaged
over a time period such as by a charge capacitor. Smoothed
sensor data point(s) can be filtered in certain embodiments
using a filter, for example, a finite impulse response (FIR) or
infinite impulse response (IIR) filter. Some or all ofthe sensor
data point(s) can be replaced by estimated signal values to
address signal noise such as described in more detail else-
where herein. It is noted that during the initialization of the
sensor, prior to initial calibration, the receiver 30 (e.g., com-
puter system) receives and stores the sensor data, however it
may not display any data to the user until initial calibration
and eventually stabilization of the sensor has been deter-
mined.

[0260] Atblock 52, a reference data receiving module, also
referred to as the reference input module, or the processor
module, receives reference data from a reference glucose
monitor, including one or more reference data points. In one
embodiment, the reference glucose points can comprise
results from a self-monitored blood glucose test (e.g., from a
finger stick test). In one such embodiment, the user can
administer a self-monitored blood glucose test to obtain a
glucose value (e.g., point) using any known glucose sensor,
and enter the numeric glucose value into the computer sys-
tem. In another such embodiment, a self-monitored blood
glucose test comprises a wired or wireless connection to the
receiver 30 (e.g. computer system) so that the user simply
initiates a connection between the two devices, and the ref-
erence glucose data is passed or downloaded between the
self-monitored blood glucose test and the receiver 30. In yet
another such embodiment, the self-monitored glucose test is
integral with the receiver 30 so that the user simply provides
ablood sample to the receiver 30, and the receiver 30 runs the
glucose test to determine a reference glucose value.

[0261] In some embodiments, the calibration process 50
monitors the continuous analyte sensor data stream to deter-
mine a preferred time for capturing reference analyte concen-
tration values for calibration of the continuous sensor data
stream. In an example wherein the analyte sensor is a con-
tinuous glucose sensor, when data (for example, observed
from the data stream) changes too rapidly, the reference glu-
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cose value may not be sufficiently reliable for calibration due
to unstable glucose changes in the host. In contrast, when
sensor glucose data are relatively stable (for example, rela-
tively low rate of change), a reference glucose value can be
taken for a reliable calibration. In one embodiment, the cali-
bration process 38 can prompt the user via the user interface
to “calibrate now” when the analyte sensor is considered
stable.

[0262] In some embodiments, the calibration process 50
can prompt the user via the user interface 47 to obtain a
reference analyte value for calibration at intervals, for
example when analyte concentrations are at high and/or low
values. In some additional embodiments, the user interface 47
can prompt the user to obtain a reference analyte value for
calibration based upon certain events, such as meals, exercise,
large excursions in analyte levels, faulty or interrupted data
readings, and the like. In some embodiments, the estimative
algorithms can provide information useful in determining
when to request a reference analyte value. For example, when
estimated analyte values indicate approaching clinical risk,
the user interface 47 can prompt the user to obtain a reference
analyte value.

[0263] Certain acceptability parameters can be set for ref-
erence values received from the user. For example, in one
embodiment, the receiver may only accept reference glucose
values between about 40 and about 400 mg/dL..

[0264] In some embodiments, the calibration process 50
performs outlier detection on the reference data and time
corresponding sensor data. Outlier detection compares a ref-
erence analyte value with a time corresponding measured
analyte value to ensure a predetermined statistically, physi-
ologically, or clinically acceptable correlation between the
corresponding data exists. In an example wherein the analyte
sensor is a glucose sensor, the reference glucose data is
matched with substantially time corresponding calibrated
sensor data and the matched data are plotted on a Clarke Error
Grid to determine whether the reference analyte value is an
outlier based on clinical acceptability, such as described in
more detail with reference U.S. Publication No. US-2005-
0027463-A1. In some embodiments, outlier detection com-
pares a reference analyte value with a corresponding esti-
mated analyte value, such as described in more detail
elsewhere herein and with reference to the above-described
patent application, and the matched data is evaluated using
statistical, clinical, and/or physiological parameters to deter-
mine the acceptability of the matched data pair. In alternative
embodiments, outlier detection can be determined by other
clinical, statistical, and/or physiological boundaries.

[0265] Insomeembodiments, outlier detection utilizes sig-
nal artifacts detection, described in more detail elsewhere
herein, to determine the reliability of the reference data and/or
sensor data responsive to the results of the signal artifacts
detection. For example, if a certain level of signal artifacts is
not detected in the data signal, then the sensor data is deter-
mined to be reliable. As another example, if a certain level of
signal artifacts are detected in the data signal, then the reli-
ability of the reference glucose data if the signal artifact is
determined.

[0266] At block 53, a data matching module, also referred
to as the processor module, matches reference data (e.g., one
ormore reference glucose data points) with substantially time
corresponding sensor data (e.g., one or more sensor data
points) to provide one or more matched data pairs. In one
embodiment, one reference data point is matched to one time

Aug. 23,2012

corresponding sensor data point to form a matched data pair.
In another embodiment, a plurality of reference data points
are averaged (e.g., equally or non-equally weighted average,
mean-value, median, and the like) and matched to one time
corresponding sensor data point to form a matched data pair.
In another embodiment, one reference data point is matched
to a plurality of time corresponding sensor data points aver-
aged to form a matched data pair. In yet another embodiment,
aplurality of reference data points are averaged and matched
to a plurality of time corresponding sensor data points aver-
aged to form a matched data pair.

[0267] In one embodiment, a time corresponding sensor
data comprises one or more sensor data points that occur, for
example, 15+5 min after the reference glucose data times-
tamp (e.g., the time that the reference glucose data is
obtained). In this embodiment, the 15 minute time delay has
been chosen to account for an approximately 10 minute delay
introduced by the filter used in data smoothing and an
approximately 5 minute diffusional time-lag (e.g., the time
necessary for the glucose to diffusion through a membrane(s)
of a glucose sensor). In alternative embodiments, the time
corresponding sensor value can be more or less than in the
above-described embodiment, for example +60 minutes.
Variability in time correspondence of sensor and reference
data can be attributed to, for example, a longer or shorter time
delay introduced during signal estimation, or if the configu-
ration of the glucose sensor incurs a greater or lesser physi-
ological time lag.

[0268] Insome practical implementations of the sensor, the
reference glucose data can be obtained at a time that is dif-
ferent from the time that the data is input into the receiver 30.
Accordingly, it should be noted that the “time stamp” of the
reference glucose (e.g., the time at which the reference glu-
cose value was obtained) may not be the same as the time at
which the receiver 30 obtained the reference glucose data.
Therefore, some embodiments include a time stamp require-
ment that ensures that the receiver 30 stores the accurate time
stamp for each reference glucose value, that is, the time at
which the reference value was actually obtained from the
user.

[0269] Insome embodiments, tests are used to evaluate the
best-matched pair using a reference data point against indi-
vidual sensor values over a predetermined time period (e.g.,
about 30 minutes). In one such embodiment, the reference
data point is matched with sensor data points at S-minute
intervals and each matched pair is evaluated. The matched
pair with the best correlation can be selected as the matched
pair for data processing. In some alternative embodiments,
matching a reference data point with an average of a plurality
of'sensor data points over a predetermined time period can be
used to form a matched pair.

[0270] In some embodiments wherein the data signal is
evaluated for signal artifacts, as described in more detail
elsewhere herein, the processor module is configured to form
amatching data pair only if a signal artifact is not detected. In
some embodiments wherein the data signal is evaluated for
signal artifacts, the processor module is configured to prompt
auser for a reference glucose value during a time when one or
more signal artifact(s) is not detected.

[0271] At block 54, a calibration set module, also referred
to as the processor module, forms an initial calibration set
from a set of one or more matched data pairs, which are used
to determine the relationship between the reference glucose
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data and the sensor glucose data, such as described in more
detail with reference to block 55, below.

[0272] The matched data pairs, which make up the initial
calibration set, can be selected according to predetermined
criteria. In some embodiments, the number (n) of data pair(s)
selected for the initial calibration set is one. In other embodi-
ments, n data pairs are selected for the initial calibration set
wherein n is a function of the frequency of the received
reference data points. In one exemplary embodiment, six data
pairs make up the initial calibration set. In another embodi-
ment, the calibration set includes only one data pair.

[0273] In some embodiments, the data pairs are selected
only within a certain glucose value threshold, for example
wherein the reference glucose value is between about 40 and
about 400 mg/dL.. In some embodiments, the data pairs that
form the initial calibration set are selected according to their
time stamp. In certain embodiments, the data pairs that form
the initial calibration set are selected according to their time
stamp, for example, by waiting a predetermined “break-in”
time period after implantation, the stability of the sensor data
can be increased. In certain embodiments, the data pairs that
form the initial calibration set are spread out over a predeter-
mined time period, for example, a period of two hours or
more. In certain embodiments, the data pairs that form the
initial calibration set are spread out over a predetermined
glucose range, for example, spread out over a range of at least
90 mg/dL or more.

[0274] In some embodiments, wherein the data signal is
evaluated for signal artifacts, as described in more detail
elsewhere herein, the processor module is configured to uti-
lize the reference data for calibration of the glucose sensor
only if a signal artifact is not detected.

[0275] At block 55, the conversion function module, also
referred to as the processor module, uses the calibration set to
create a conversion function. The conversion function sub-
stantially defines the relationship between the reference glu-
cose data and the glucose sensor data. A variety of known
methods can be used with the preferred embodiments to cre-
ate the conversion function from the calibration set. In one
embodiment, wherein a plurality of matched data points form
the initial calibration set, a linear least squares regression is
performed on the initial calibration set such as described in
more detail with reference to FIG. 6.

[0276] At block 56, a sensor data transformation module,
also referred to as the processor module, uses the conversion
function to transform sensor data into substantially real-time
glucose value estimates, also referred to as calibrated data, or
converted sensor data, as sensor data is continuously (or
intermittently) received from the sensor. For example, the
sensor data, which can be provided to the receiver in “counts,”
is translated in to estimate analyte value(s) in mg/dL.. In other
words, the offset value at any given point in time can be
subtracted from the raw value (e.g., in counts) and divided by
the slope to obtain the estimated glucose value:

(rawvalue — offset)
mg/dl= ——M
slope

[0277] Insome alternative embodiments, the sensor and/or
reference glucose values are stored in a database for retro-
spective analysis.

[0278] Atblock57, an output module, also referred to as the
processor module, provides output to the user via the user
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interface. The output is representative of the estimated glu-
cose value, which is determined by converting the sensor data
into a meaningful glucose value such as described in more
detail with reference to block 56, above. User output can be in
the form of a numeric estimated glucose value, an indication
of directional trend of glucose concentration, and/or a graphi-
cal representation of the estimated glucose data over a period
of time, for example. Other representations of the estimated
glucose values are also possible, for example audio and tac-
tile.

[0279] In one embodiment, such as shown in FIG. 3A, the
estimated glucose value is represented by a numeric value. In
other exemplary embodiments, such as shown in FIGS. 3B to
3D, the user interface graphically represents the estimated
glucose data trend over predetermined a time period (e.g.,
one, three, and nine hours, respectively). In alternative
embodiments, other time periods can be represented. In alter-
native embodiments, other time periods can be represented.
In alternative embodiments, pictures, animation, charts,
graphs, ranges of values, and numeric data can be selectively
displayed.

[0280] Accordingly, after initial calibration of the sensor,
real-time continuous glucose information can be displayed on
the user interface so that the user can regularly and proac-
tively care for his/her diabetic condition within the bounds set
by his/her physician.

[0281] Inalternative embodiments, the conversion function
is used to predict glucose values at future points in time.
These predicted values can be used to alert the user of upcom-
ing hypoglycemic or hyperglycemic events. Additionally,
predicted values can be used to compensate for a time lag
(e.g., 15 minute time lag such as described elsewhere herein),
if any, so that an estimated glucose value displayed to the user
represents the instant time, rather than a time delayed esti-
mated value.

[0282] In some embodiments, the substantially real-time
estimated glucose value, a predicted future estimated glucose
value, a rate of change, and/or a directional trend of the
glucose concentration is used to control the administration of
a constituent to the user, including an appropriate amount and
time, in order to control an aspect of the user’s biological
system. One such example is a closed loop glucose sensor and
insulin pump, wherein the glucose data (e.g., estimated glu-
cose value, rate of change, and/or directional trend) from the
glucose sensoris used to determine the amount of insulin, and
time of administration, that can be given to a diabetic user to
evade hyper- and hypoglycemic conditions.

[0283] FIG. 6 is a graph that illustrates one embodiment of
a regression performed on a calibration set to create a con-
version function such as described with reference to FIG. 5,
block 55, above. In this embodiment, a linear least squares
regression is performed on the initial calibration set. The
x-axis represents reference glucose data; the y-axis represents
sensor data. The graph pictorially illustrates regression of
matched pairs 66 in the calibration set. The regression calcu-
lates a slope 62 and an offset 64, for example, using the
well-known slope-intercept equation (y=mx+b), which
defines the conversion function.

[0284] In alternative embodiments, other algorithms could
be used to determine the conversion function, for example
forms of linear and non-linear regression, for example fuzzy
logic, neural networks, piece-wise linear regression, polyno-
mial fit, genetic algorithms, and other pattern recognition and
signal estimation techniques.
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[0285] In yet other alternative embodiments, the conver-
sion function can comprise two or more different optimal
conversions because an optimal conversion at any time is
dependent on one or more parameters, such as time of day,
calories consumed, exercise, or glucose concentration above
or below a set threshold, for example. In one such exemplary
embodiment, the conversion function is adapted for the esti-
mated glucose concentration (e.g., high vs. low). For example
in an implantable glucose sensor it has been observed that the
cells surrounding the implant will consume at least a small
amount of glucose as it diffuses toward the glucose sensor.
Assuming the cells consume substantially the same amount
of glucose whether the glucose concentration is low or high,
this phenomenon will have a greater effect on the concentra-
tion of glucose during low blood sugar episodes than the
effect on the concentration of glucose during relatively higher
blood sugar episodes. Accordingly, the conversion function
can be adapted to compensate for the sensitivity differences in
blood sugar level. In one implementation, the conversion
function comprises two different regression lines, wherein a
first regression line is applied when the estimated blood glu-
cose concentration is at or below a certain threshold (e.g., 150
mg/dl) and a second regression line is applied when the
estimated blood glucose concentration is at or above a certain
threshold (e.g., 150 mg/dL). In one alternative implementa-
tion, a predetermined pivot of the regression line that forms
the conversion function can be applied when the estimated
blood is above or below a set threshold (e.g., 150 mg/dL),
wherein the pivot and threshold are determined from a retro-
spective analysis of the performance of a conversion function
and its performance at a range of glucose concentrations. In
another implementation, the regression line that forms the
conversion function is pivoted about a point in order to com-
ply with clinical acceptability standards (e.g., Clarke Error
Grid, Consensus Grid, mean absolute relative difference, or
other clinical cost function). Although only a few example
implementations are described, other embodiments include
numerous implementations wherein the conversion function
is adaptively applied based on one or more parameters that
can affect the sensitivity of the sensor data over time.

[0286] Additional methods for processing sensor glucose
data are disclosed in U.S. Publication No. US-2005-
0027463-Al. In view of the above-described data processing,
it should be obvious that improving the accuracy of the data
stream will be advantageous for improving output of glucose
sensor data. Accordingly, the following description is related
to improving data output by decreasing signal artifacts on the
raw data stream from the sensor. The data smoothing methods
of preferred embodiments can be employed in conjunction
with any sensor or monitor measuring levels of an analyte in
vivo, wherein the level of the analyte fluctuates over time,
including but not limited to such sensors as described in U.S.
Pat. No. 6,001,067 to Shults et al.; U.S. Patent Application
2003/0023317 to Brauker et al.; U.S. Pat. No. 6,212,416 to
Ward et al.; U.S. Pat. No. 6,119,028 to Schulman et al; U.S.
Pat. No. 6,400,974 to Lesho; U.S. Pat. No. 6,595,919 to
Berner et al.; U.S. Pat. No. 6,141,573 to Kurnik et al.; U.S.
Pat. No. 6,122,536 to Sun et al.; European Patent Application
EP 1153571 to Varall etal.; U.S. Pat. No. 6,512,939 to Colvin
et al.; U.S. Pat. No. 5,605,152 to Slate et al.; U.S. Pat. No.
4,431,004 to Bessman et al.; U.S. Pat. No. 4,703,756 to
Gough et al; U.S. Pat. No. 6,514,718 to Heller et al; and U.S.
Pat. No. 5,985,129 to Gough et al.

Signal Artifacts

[0287] Typically, a glucose sensor produces a data stream
that is indicative of the glucose concentration of a host, such
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as described in more detail above. However, it is well known
that the above described glucose sensors includes only a few
examples of an abundance of glucose sensors that are able to
provide raw data output indicative of the concentration of
glucose. Thus, it should be understood that the systems and
methods described herein, including signal artifacts detec-
tion, signal artifacts replacement, and other data processing,
can be applied to a data stream obtained from any glucose
sensor.

[0288] Raw data streams typically have some amount of
“system noise,” caused by unwanted electronic or diffusion-
related noise that degrades the quality of the signal and thus
the data. Accordingly, conventional glucose sensors are
known to smooth raw data using methods that filter out this
system noise, and the like, in order to improve the signal to
noise ratio, and thus data output. One example of a conven-
tional data-smoothing algorithm includes a finite impulse
response filter (FIR), which is particularly suited for reducing
high-frequency noise (see Steil et al. U.S. Pat. No. 6,558,
351).

[0289] FIGS. 7A and 7B are graphs of raw data streams
from an implantable glucose sensor prior to data smoothing.
FIG. 7A is a graph that shows a raw data stream obtained from
a glucose sensor over an approximately 4 hour time span in
one example. FIG. 7B is a graph that shows a raw data stream
obtained from a glucose sensor over an approximately 36
hourtime span in another example. The x-axis represents time
in minutes. The y-axis represents sensor data in counts. In
these examples, sensor output in counts is transmitted every
30-seconds.

[0290] The “system noise” such as shown in sections 72a,
72b of the data streams of FIGS. 7A and 7B, respectively,
illustrate time periods during which system noise can be seen
on the data stream. This system noise can be characterized as
Gaussian, Brownian, and/or linear noise, and can be substan-
tially normally distributed about the mean. The system noise
is likely electronic and diffusion-related, and the like, and can
be smoothed using techniques such as by using an FIR filter.
As another example, the raw data can be represented by an
integrated value, for example, by integrating the signal over a
time period (e.g., 30 seconds or 5 minutes), and providing an
averaged (e.g., integrated) data point there from. The system
noise such as shown in the data of sections 72a, 724 is a fairly
accurate representation of glucose concentration and can be
confidently used to report glucose concentration to the user
when appropriately calibrated.

[0291] The “signal artifacts” such as shown in sections 74a,
74b of the data stream of FIGS. 7A and 7B, respectively,
illustrate time periods during which “signal artifacts” can be
seen, which are significantly different from the previously
described system noise (sections 72a, 72b). This noise, such
as shown in section 74a and 74b, is referred to herein as
“signal artifacts” and may be described as “transient non-
glucose dependent signal artifacts that have a higher ampli-
tude than system noise.” At times, signal artifacts comprise
low noise, which generally refers to noise that substantially
decreases signal amplitude 764, 765 herein, which is best
seen in the signal artifacts 7456 of FIG. 7B. Occasional high
spikes 78a, 78b, which generally correspond to noise that
substantially increases signal amplitude, can also be seen in
the signal artifacts, which generally occur after a period of
low noise. These high spikes are generally observed after
transient low noise and typically result after reaction rate-
limiting phenomena occur. For example, in an embodiment
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where a glucose sensor requires an enzymatic reaction, local
ischemia creates a reaction that is rate-limited by oxygen,
which is responsible for low noise. In this situation, glucose
would be expected to build up in the membrane because it
would not be completely catabolized during the oxygen defi-
cit. When oxygen is again in excess, there would also be
excess glucose due to the transient oxygen deficit. The
enzyme rate would speed up for a short period until the excess
glucose is catabolized, resulting in high noise. Additionally,
noise can be distributed both above and below the expected
signal.

[0292] Analysis of signal artifacts such as shown sections
74a, 745 of FIGS. 7A and 7B, respectively, indicates that the
observed low noise is caused by substantially non-glucose
reaction dependent phenomena, such as ischemia that occurs
within or around a glucose sensor in vivo, for example, which
results in the reaction becoming oxygen dependent. As a first
example, at high glucose levels, oxygen can become limiting
to the enzymatic reaction, resulting in a non-glucose depen-
dent downward trend in the data (best seen in FIG. 7B). As a
second example, certain movements or postures taken by the
patient can cause transient downward noise as blood is
squeezed out of the capillaries resulting in local ischemia, and
causing non-glucose dependent low noise. Because excess
oxygen (relative to glucose) is necessary for proper sensor
function, transient ischemia can result in a loss of signal gain
in the sensor data. In this second example oxygen can also
become transiently limited due to contracture of tissues
around the sensor interface. This is similar to the blanching of
skin that can be observed when one puts pressure on it. Under
such pressure, transient ischemia can occur in both the epi-
dermis and subcutaneous tissue. Transient ischemia is com-
mon and well tolerated by subcutaneous tissue.

[0293] In another example of non-glucose reaction rate-
limiting phenomena, skin temperature can vary dramatically,
which can result in thermally related erosion of the signal
(e.g., temperature changes between 32 and 39 degrees Celsius
have been measured in humans). In yet another embodiment,
wherein the glucose sensor is placed intravenously, increased
impedance can result from the sensor resting against wall of
the blood vessel, for example, producing this non-glucose
reaction rate-limiting noise due to oxygen deficiency.

[0294] Because signal artifacts are not mere system noise,
but rather are caused by known or unknown non-glucose
related mechanisms, methods used for conventional random
noise filtration produce data lower (or in some cases higher)
than the actual blood glucose levels due to the expansive
nature of these signal artifacts. To overcome this, the pre-
ferred embodiments provide systems and methods for replac-
ing at least some of the signal artifacts by estimating glucose
signal values.

[0295] FIG. 8 is a flow chart that illustrates the process of
detecting and replacing signal artifacts in certain embodi-
ments. It is noted that “signal artifacts™ particularly refers to
the transient non-glucose related artifacts such as described in
more detail elsewhere herein. Typically, signal artifacts are
caused by non-glucose rate-limiting phenomenon such as
described in more detail above.

[0296] At block 82, a sensor data receiving module, also
referred to as the sensor data module 82, or processor module,
receives sensor data (e.g., a data stream), including one or
more time-spaced sensor data points. In some embodiments,
the data stream is stored in the sensor for additional process-
ing; in some alternative embodiments, the sensor periodically
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transmits the data stream to the receiver 30, which can be in
wired or wireless communication with the sensor. In some
embodiments, raw and/or filtered data is stored in the sensor
and/or receiver.

[0297] Atblock 84, asignal artifacts detection module, also
referred to as the signal artifacts detector 84 or signal reliabil-
ity module, is programmed to detect transient non-glucose
related signal artifacts in the data stream, such as described in
more detail with reference to FIGS. 7A and 7B, above. The
signal artifacts detector can comprise an oxygen detector, a
pH detector, a temperature detector, and/or a pressure/stress
detector, for example, the signal artifacts detector 29 in FIG.
2. In some embodiments, the signal artifacts detector at block
84 is located within the processor 22 in FIG. 2 and utilizes
existing components of the glucose sensor to detect signal
artifacts, for example by pulsed amperometric detection,
counter electrode monitoring, reference electrode monitor-
ing, and frequency content monitoring, which are described
elsewhere herein. In yet other embodiments, the data stream
can be sent from the sensor to the receiver which comprises
programming in the processor 42 in FIG. 4 that performs
algorithms to detect signal artifacts, for example such as
described with reference to “Cone of Possibility Detection”
method and/or by comparing raw data vs. filtered data, both of
which are described in more detail below. Numerous embodi-
ments for detecting signal artifacts are described in more
detail in the section entitled, “Signal Artifacts Detection,” all
of' which are encompassed by the signal artifacts detection at
block 84.

[0298] In certain embodiments, the processor module in
either the sensor electronics and/or the receiver electronics
can evaluate an intermittent or continuous signal-to-noise
measurement to determine aberrancy of sensor data respon-
sive to a signal-to-noise ratio above a set threshold. In certain
embodiments, signal residuals (e.g., by comparing raw and
filtered data) can be intermittently or continuously analyzed
for noise above a set threshold. In certain embodiments, pat-
tern recognition can be used to identify noise associated with
physiological conditions, such as low oxygen, or other known
signal aberrancies. Accordingly, in these embodiments, the
system can be configured, in response to aberrancies in the
data stream, to trigger signal estimation, adaptively filter the
data stream according to the aberrancy, and the like, as
described in more detail elsewhere herein.

[0299] At block 86, the signal artifacts replacement mod-
ule, also referred to as the signal estimation module, replaces
some or an entire data stream with estimated glucose signal
values using signal estimation. Numerous embodiments for
performing signal estimation are described in more detail in
the section entitled “Signal Artifacts Replacement,” all of
which are encompassed by the signal artifacts replacement
module, block 86. It is noted that in some embodiments,
signal estimation/replacement is initiated in response to posi-
tive detection of signal artifacts on the data stream, and sub-
sequently stopped in response to detection of negligible sig-
nal artifacts on the data stream. In some embodiments, the
system waits a predetermined time period (e.g., between 30
seconds and 30 minutes) before switching the signal estima-
tion on or off to ensure that a consistent detection has been
ascertained. In some embodiments, however, signal estima-
tion/replacement can continuously or continually run.

[0300] Some embodiments of signal estimation can addi-
tionally include discarding data that is considered sufficiently
unreliable and/or erroneous such that the data should not be
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used in a signal estimation algorithm. In these embodiments,
the system can be programmed to discard outlier data points,
for example data points that are so extreme that they can skew
the data even with the most comprehensive filtering or signal
estimation, and optionally replace those points with a pro-
jected value based on historical data or present data (e.g.,
linear regression, recursive filtering, and the like). One
example of discarding sensor data includes discarding sensor
data that falls outside of a “Cone of Possibility” such as
described in more detail elsewhere herein. Another example
includes discarding sensor data when signal artifacts detec-
tion detects values outside of a predetermined threshold (e.g.,
oxygen concentration below a set threshold, temperature
above a certain threshold, signal amplitude above a certain
threshold, etc). Any of the signal estimation/replacement
algorithms described herein can then be used to project data
values for those data that were discarded.

Signal Artifacts Detection

[0301] Analysis of signals from glucose sensors indicates
at least two types of noise, which are characterized herein as
1) system noise and 2) signal artifacts, such as described in
more detail above. It is noted that system noise is easily
smoothed using the algorithms provided herein; however, the
systems and methods described herein particularly address
signal artifacts, by replacing transient erroneous signal noise
caused by rate-limiting phenomenon (e.g., non-glucose
related signal) with estimated signal values, for example.
[0302] Incertain embodiments of signal artifacts detection,
oxygen monitoring is used to detect whether transient non-
glucose dependent signal artifacts due to ischemia. Low oxy-
gen concentrations in or near the glucose sensor can account
for a large part of the transient non-glucose related signal
artifacts as defined herein on a glucose sensor signal, particu-
larly in subcutaneously implantable glucose sensors. Accord-
ingly, detecting oxygen concentration, and determining if
ischemia exists can discover ischemia-related signal artifacts.
A variety of methods can be used to test for oxygen. For
example, an oxygen-sensing electrode, or other oxygen sen-
sor can be employed. The measurement of oxygen concen-
tration can be sent to a processor, which determines if the
oxygen concentration indicates ischemia.

[0303] In some embodiments of ischemia detection, an
oxygen sensor is placed proximal to or within the glucose
sensor. For example, the oxygen sensor can be located on or
near the glucose sensor such that their respective local envi-
ronments are shared and oxygen concentration measurement
from the oxygen sensor represents an accurate measurement
of the oxygen concentration on or within the glucose sensor.
In some alternative embodiments of ischemia detection, an
oxygen sensor is also placed distal to the glucose sensor. For
example, the oxygen sensor can be located sufficiently far
from the glucose sensor such that their respective local envi-
ronments are not shared and oxygen measurements from the
proximal and distal oxygen sensors can be compared to deter-
mine the relative difference between the respective local envi-
ronments. By comparing oxygen concentration at proximal
and distal oxygen sensors, change in local (proximal) oxygen
concentration can be determined from a reference (distal)
oxygen concentration.

[0304] Oxygen sensors are useful for a variety of purposes.
For example, U.S. Pat. No. 6,512,939 to Colvin et al., which
is incorporated herein by reference, discloses an oxygen sen-
sor that measures background oxygen levels. However,
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Colvin et al. rely on the oxygen sensor for the data stream of
glucose measurements by subtraction of oxygen remaining
after exhaustion of glucose by an enzymatic reaction from
total unreacted oxygen concentration.

[0305] In another embodiment of ischemia detection,
wherein the glucose sensor is an electrochemical sensor that
includes a potentiostat, pulsed amperometric detection can be
employed to determine an oxygen measurement. Pulsed
amperometric detection includes switching, cycling, or puls-
ing the voltage of the working electrode (or reference elec-
trode) in an electrochemical system, for example between a
positive voltage (e.g., +0.6 for detecting glucose) and a nega-
tive voltage (e.g., —0.6 for detecting oxygen). U.S. Pat. No.
4,680,268 to Clark, Jr., which is incorporated by reference
herein, describes pulsed amperometric detection. In contrast
to using signal replacement, Clark, Jr. addresses oxygen defi-
ciency by supplying additional oxygen to the enzymatic reac-
tion.

[0306] In another embodiment of ischemia detection,
wherein the glucose sensor is an electrochemical sensor and
contains a potentiostat, oxygen deficiency can be seen at the
counter electrode when insufficient oxygen is available for
reduction, which thereby affects the counter electrode in that
it is unable to balance the current coming from the working
electrode. When insufficient oxygen is available for the
counter electrode, the counter electrode can be driven in its
electrochemical search for electrons all the way to its most
negative value, which could be ground or 0.0V, which causes
the reference to shift, reducing the bias voltage such as
described in more detail below. In other words, a common
result of ischemia will be seen as a drop off in sensor current
as a function of glucose concentration (e.g., lower sensitiv-
ity). This happens because the working electrode no longer
oxidizes all of the H,O, arriving at its surface because of the
reduced bias. In some extreme circumstances, an increase in
glucose can produce no increase in current or even a decrease
in current.

[0307] FIG. 9is a graph that shows a comparison of sensor
current and counter-electrode voltage in a host over time. The
X-axis represents time in minutes. The first y-axis 91 repre-
sents sensor counts from the working electrode and thus plots
a raw sensor data stream 92 for the glucose sensor over a
period of time. The second y-axis 93 represents counter-
electrode voltage 94 in counts. The graph illustrates the cor-
relation between sensor data 92 and counter-electrode voltage
94; particularly, that erroneous counter electrode function 96
where the counter voltages drops approximately to zero sub-
stantially coincides with transient non-glucose related signal
artifacts 98. In other words, when counter-electrode voltage is
at or near zero, sensor data includes signal artifacts.

[0308] In another embodiment of ischemia detection,
wherein the glucose sensor is an electrochemical sensor and
contains a two- or three-cell electrochemical cell, signal arti-
facts are detected by monitoring the reference electrode. This
“reference drift detection” embodiment takes advantage of
the fact that the reference electrode will vary or drift in order
to maintain a stable bias potential with the working electrode,
such as described in more detail herein. This “drifting” gen-
erally indicates non-glucose reaction rate-limiting noise, for
example due to ischemia. It is noted that the following
example describes an embodiment wherein the sensor
includes a working, reference, and counter electrodes, such as
described in more detail elsewhere herein; however the prin-
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ciples of this embodiment are applicable to a two-cell (e.g.,
anode and cathode) electrochemical cell as is understood in
the art.

[0309] FIG. 10A is a circuit diagram of a potentiostat that
controls a typical three-electrode system, which can be
employed with a glucose sensor such as described with ref-
erence to FIGS. 1 and 2. The potentiostat includes a working
electrode 100, a reference electrode 102, and a counter elec-
trode 104. The voltage applied to the working electrode is a
constant value (e.g., +1.2V) and the voltage applied to the
reference electrode is also set at a constant value (e.g., +0.6V)
such that the potential (Vz;,<) applied between the working
and reference electrodes is maintained at a constant value
(e.g., +0.6V). The counter electrode is configured to have a
constant current (equal to the current being measured by the
working electrode), which is accomplished by varying the
voltage at the counter electrode in order to balance the current
going through the working electrode 100 such that current
does not pass through the reference electrode 102. A negative
feedback loop 107 is constructed from an operational ampli-
fier (OP AMP), the reference electrode 102, the counter elec-
trode 104, and a reference potential, to maintain the reference
electrode at a constant voltage.

[0310] In practice, a glucose sensor of one embodiment
comprises a membrane that contains glucose oxidase that
catalyzes the conversion of oxygen and glucose to hydrogen
peroxide and gluconate, such as described with reference to
FIGS. 1 and 2. Therefore, for each glucose molecule metabo-
lized there is a change equivalent in molecular concentration
in the co-reactant O, and the product H,O,. Consequently,
one can use an electrode (e.g., working electrode 100) to
monitor the concentration-induced current change in either
the co-reactant or the product to determine glucose concen-
tration.

[0311] One limitation of the electrochemistry is seen when
insufficient negative voltage is available to the counter elec-
trode 104 to balance the working electrode 100. This limita-
tion can occur when insufficient oxygen is available to the
counter electrode 104 for reduction, for example. When this
limitation occurs, the counter electrode can no longer vary its
voltage to maintain a balanced current with the working elec-
trode and thus the negative feedback loop 107 used to main-
tain the reference electrode is compromised. Consequently,
the reference electrode voltage will change or “drift,” altering
the applied bias potential (i.e., the potential applied between
the working and reference electrodes), thereby decreasing the
applied bias potential. When this change in applied bias
potential occurs, the working electrode can produce errone-
ous glucose measurements due to either increased or
decreased signal strength (Izasz)-

[0312] FIG. 10B a diagram referred to as Cyclic-Voltam-
metry (CV) curve, wherein the x-axis represents the applied
potential (Vz,,¢) and the y-axis represents the signal strength
of the working electrode (Izysz)- A curve 108 illustrates an
expected CV curve when the potentiostat is functioning nor-
mally. Typically, desired bias voltage can be set (e.g., Vg,451)
and a resulting current will be sensed (e.g., Iqzngz;)- As the
voltage decreases (e.g., Vg, due to reference voltage drift,
for example, a new resulting current is sensed (e.g., I znozs)-
Therefore, the change in bias is an indicator of signal artifacts
and can be used in signal estimation and to replace the erro-
neous resulting signals. In addition to ischemia, the local
environment at the electrode surfaces can affect the CV curve,

Aug. 23,2012

for example, changes in pH, temperature, and other local
biochemical species can significantly alter the location of the
CV curve.

[0313] FIG.10CisaCV curve thatillustrates an alternative
embodiment of signal artifacts detection, wherein pH and/or
temperature can be monitoring using the CV curve and diag-
nosed to detect transient non-glucose related signal artifacts.
For example, signal artifacts can be attributed to thermal
changes and/or pH changes in some embodiments because
certain changes in pH and temperature affect data from a
glucose sensor that relies on an enzymatic reaction to mea-
sure glucose. Signal artifacts caused by pH changes, tempera-
ture changes, changes in available electrode surface area, and
other local biochemical species can be detected and signal
estimation can be applied an/or optimized such as described
in more detail elsewhere herein. In FIG. 10C, a first curve 108
illustrates an expected CV curve when the potentiostat is
functioning normally. A second curve 109 illustrates a CV
curve wherein the environment has changed as indicated by
the upward shift of the CV curve.

[0314] Insome embodiments, pH and/or temperature mea-
surements are obtained proximal to the glucose sensor; in
some embodiments, pH and/or temperature measurements
are also obtained distal to the glucose sensor and the respec-
tive measurements compared, such as described in more
detail above with reference to oxygen sensors.

[0315] Inanother implementation of signal artifacts detec-
tion, wherein temperature is detected, an electronic thermom-
eter can be proximal to or within the glucose sensor, such that
the temperature measurement is representative of the tem-
perature of the glucose sensor’s local environment. It is noted
that accurate sensor function depends on diffusion of mol-
ecules from the blood to the interstitial fluid, and then through
the membranes of the device to the enzyme membrane. Addi-
tionally, diffusion transport of hydrogen peroxide from the
enzyme membrane to the electrode is required for accurate
sensor function in some embodiments. Therefore, tempera-
tures can be a rate determining parameter of diffusion. As
temperature decreases, diffusion transport decreases. Under
certain human conditions, such as hypothermia or fever, the
variations can be considerably greater. Additionally, under
normal conditions, the temperature of subcutaneous tissue is
known to vary considerably more than core tissues (e.g., core
temperature). Temperature thresholds can be set to detect
signal artifacts accordingly.

[0316] Inanother implementation, a pH detector is used to
detect signal artifacts. In glucose sensors that rely on enzy-
matic reactions, a pH of the fluid to be sensed can be within
the range of about 5.5 to 7.5. Outside of this range, effects
may be seen in the enzymatic reaction and therefore data
output of the glucose sensor. Accordingly, by detecting if the
pH is outside of a predetermined range (e.g., 5.5 to 7.5), apH
detector may detect transient non-glucose related signal arti-
facts such as described herein. It is noted that the pH threshold
can be set at ranges other than provided herein without depart-
ing from the preferred embodiments.

[0317] In an alternative embodiment of signal artifacts
detection, pressure and/or stress can be monitored using
known techniques for example by a strain gauge placed onthe
sensor that detects stress/strain on the circuit board, sensor
housing, or other components. A variety of microelectrome-
chanical systems (MEMS) can be utilized to measure pres-
sure and/or stress within the sensor.
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[0318] In another alternative embodiment of signal arti-
facts detection, the processor in the sensor (or receiver) peri-
odically evaluates the data stream for high amplitude noise,
which is defined by noisy data wherein the amplitude of the
noise is above a predetermined threshold. For example, in the
graph of FIGS. 7A and 7B, the system noise sections such as
72a and 725 have a substantially low amplitude noise thresh-
old; in contrast to system noise, signal artifacts sections such
as 74a and 74b have signal artifacts (noise) with an amplitude
that is much higher than that of system noise. Therefore, a
threshold can be set at or above the amplitude of system noise,
such that when noisy data is detected above that amplitude, it
can be considered “signal artifacts” as defined herein.

[0319] In another alternative embodiment of signal arti-
facts detection, a method hereinafter referred to as the “Cone
of Possibility Detection Method,” utilizes physiological
information along with glucose signal values in order define
a “cone” of physiologically feasible glucose signal values
within a human, such that signal artifacts are detected when-
ever the glucose signal falls outside of the cone of possibility.
Particularly, physiological information depends upon the
physiological parameters obtained from continuous studies in
the literature as well as our own observations. A first physi-
ological parameter uses a maximal sustained rate of change of
glucose in humans (e.g., about 4 to 5 mg/d[./min) and a
maximum acceleration of that rate of change (e.g., about 0.1
to 0.2 mg/dL/min®). A second physiological parameter uses
the knowledge that rate of change of glucose is lowest at the
minima, which is the areas of greatest risk in patient treat-
ment, and the maxima, which has the greatest long-term
effect on secondary complications associated with diabetes.
A third physiological parameter uses the fact that the best
solution for the shape of the curve at any point along the curve
over a certain time period (e.g., about 20-30 minutes) is a
straight line. Additional physiological parameters can be
incorporated and are within the scope of this embodiment.

[0320] In practice, the Cone of Possibility Detection
Method combines any one or more of the above-described
physiological parameters to form an algorithm that defines a
cone of possible glucose levels for glucose data captured over
a predetermined time period. In one exemplary implementa-
tion of the Cone of Possibility Detection Method, the system
(processor in the sensor or receiver) calculates a maximum
physiological rate of change and determines if the data falls
within these physiological limits; if not, signal artifacts are
identified. It is noted that the maximum rate of change can be
narrowed (e.g., decreased) in some instances. Therefore,
additional physiological data could be used to modify the
limits imposed upon the Cone of Possibilities Detection
Method for sensor glucose values. For example, the maxi-
mum per minute rate change can be lower when the subject is
sleeping or hasn’t eaten in eight hours; on the other hand, the
maximum per minute rate change can be higher when the
subject is exercising or has consumed high levels of glucose,
for example. In general, it has been observed that rates of
change are slowest near the maxima and minima of the curve,
and that rates of change are highest near the midpoint between
the maxima and minima. It should further be noted that rate of
change limits are derived from analysis of a range of data
significantly higher unsustained rates of change can be
observed.

[0321] In another alternative embodiment of signal arti-
facts detection, examination of the spectral content (e.g.,
frequency content) of the data stream can yield measures
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useful in detecting signal artifacts. For example, data that has
high frequency, and in some cases can be characterized by a
large negative slope, are indicative of signal artifacts and can
cause sensor signal loss. Specific signal content can be moni-
tored using an orthogonal transform, for example a Fourier
transform, a Discrete Fourier Transform (DFT), or any other
method known in the art.

[0322] FIG. 11 is a graph of 110 a raw data stream from a
glucose sensor and a spectrogram 114 that shows the fre-
quency content of the raw data stream in one embodiment.
Particularly, the graph 110 illustrates the raw data stream 112
and includes an x-axis that represents time in hours and a
y-axis that represents sensor data output in counts; the spec-
trogram 114 illustrates the frequency content 116 corre-
sponding to the raw data stream 112 and includes an x-axis
that represents time in hours corresponding to the x-axis of
the graph 110 and a y-axis that represents frequency content
in cycles per hour. The darkness of each point represents the
amplitude of that frequency at that time. Darker points relate
to higher amplitudes. Frequency content on the spectrogram
114 was obtained using a windowed Discrete Fourier trans-
form.

[0323] The raw data stream in the graph 110 has been
adjusted by a linear mapping similar to the calibration algo-
rithm. In this example, the bias (or intercept) has been
adjusted but not the proportion (or slope). The slope of the
raw data stream would typically be determined by some cali-
bration, but since the calibration has not occurred in this
example, the gray levels in the spectrogram 114 indicate
relative values. The lower values of the graph 110 are white.
They are colored as white below a specific value, highlighting
only the most intense areas of the graph.

[0324] By monitoring the frequency content 116, high fre-
quency cycles 118 can be observed. The high frequency
cycles 118 correspond to signal artifacts 119 such as
described herein. Thus, signal artifacts can be detected on a
data stream by monitoring frequency content and setting a
threshold (e.g., 30 cycles per hour). The set threshold can vary
depending on the signal source.

[0325] In another alternative embodiment of signal arti-
facts detection, examination of the signal information content
can yield measures useful in detecting signal artifacts. Time
series analysis can be used to measure entropy, approximate
entropy, variance, and/or percent change of the information
content over consecutive windows (e.g., 30 and 60 minute
windows of data) of the raw data stream. In one exemplary
embodiment, the variance of the raw data signal is measured
over 15 minute and 45 minute windows, and signal artifacts
are detected when the variance of the data within the
15-minute window exceeds the variance of the data within the
45-minute window. Alternatively, other methods of self-di-
agnosis can be performed on the signal to determine a level of
signal artifacts. One example includes performing a first
derivative analysis that compares consecutive points, and
detects signal artifacts when point to point changes are above
a physiologically feasible threshold, for example. Another
example of signal self-diagnosis includes performing a sec-
ond derivative analysis that considers turning points, for
example, detects signal artifacts when changes are not suffi-
ciently gradual (e.g., within thresholds), for example.

[0326] Inyetanother alternative embodiment of signal arti-
facts detection that utilizes examination or evaluation of the
signal information content, filtered (e.g., smoothed) data is
compared to raw data (e.g., in sensor electronics or in receiver
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electronics). In one such embodiment, a signal residual is
calculated as the difference between the filtered data and the
raw data. For example, at one time point (or one time period
that is represented by a single raw value and single filtered
value), the filtered data can be measured at 50,000 counts and
the raw data can be measured at 55,500 counts, which would
result in a signal residual of 5,500 counts. In some embodi-
ments, a threshold can be set (e.g., 5000 counts) that repre-
sents a first level of noise (e.g., signal artifact) in the data
signal, when the residual exceeds that level. Similarly, a sec-
ond threshold can be set (e.g., 8,000 counts) that represents a
second level of noise in the data signal. Additional thresholds
and/or noise classifications can be defined as is appreciated
by one skilled in the art. Consequently, signal filtering, pro-
cessing, and/or displaying decisions can be executed based on
these conditions (e.g., the predetermined levels of noise).

[0327] Although the above-described example illustrates
one method of determining a level of noise, or signal artifact
(s), based on a comparison of raw vs. filtered data for a time
point (or single values representative of a time period). In an
alternative exemplary embodiment for determining noise,
signal artifacts are evaluated for noise episodes lasting a
certain period of time. For example, the processor (in the
sensor or receiver) can be configured to look for a certain
number of signal residuals above a predetermined threshold
(representing noise time points or noisy time periods) for a
predetermined period of time (e.g., a few minutes to a few
hours or more).

[0328] In one exemplary embodiment, a processor is con-
figured to determine a signal residual by subtracting the fil-
tered signal from the raw signal for a predetermined time
period. Itis noted that the filtered signal can be filtered by any
known smoothing algorithm such as described herein, for
example a 3-point moving average-type filter. It is further
noted that the raw signal can include an average value, e.g.,
wherein the value is integrated over a predetermined time
period (such as 5-minutes). Furthermore, it is noted that the
predetermined time period can be a time point or representa-
tive data for a time period (e.g., 5 minutes). In some embodi-
ments, wherein a noise episode for a predetermined time
period is being evaluated, a differential can be obtained by
comparing a signal residual with a previous signal residual
(e.g., aresidual at time (t)=0 as compared to a residual at (t)-5
minutes.) Similar to the thresholds described above with
regard to the signal residual, one or more thresholds can be set
for the differentials, whereby one or more differentials above
one of the predetermined differential thresholds defines a
particular noise level. It has been shown in certain circum-
stances that a differential measurement as compared to a
residual measurement as described herein, amplifies noise
and therefore may be a more sensitive to noise episodes.
Accordingly, a noise episode, or noise episode level, can be
defined by one or more points (e.g., residuals or differentials)
above a predetermined threshold, and in some embodiments,
for a predetermined period of time. Similarly, a noise level
determination can be reduced or altered when a different
(e.g., reduced) number of points above the predetermined
threshold are calculated in a predetermined period of time.

[0329] One or a plurality of the above signal artifacts detec-
tion models can be used alone or in combination to detect
signal artifacts such as described herein. Accordingly, the
data stream associated with the signal artifacts can be dis-
carded, replaced, or otherwise processed in order to reduce or
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eliminate these signal artifacts and thereby improve the value
of the glucose measurements that can be provided to a user.

Signal Artifacts Replacement

[0330] Signal Artifacts Replacement, such as described
above, can use systems and methods that reduce or replace
these signal artifacts that can be characterized by transience,
high frequency, high amplitude, and/or substantially non-
linear noise. Accordingly, a variety of filters, algorithms, and
other data processing are provided that address the detected
signal artifacts by replacing the data stream, or portion of the
data stream, with estimated glucose signal values. It is noted
that “signal estimation” as used herein, is a broad term, which
includes filtering, data smoothing, augmenting, projecting,
and/or other algorithmic methods that estimate glucose signal
values based on present and historical data.

[0331] It is noted that a glucose sensor can contain a pro-
cessor and the like that processes periodically received raw
sensor data (e.g., every 30 seconds). Although a data point can
be available constantly, for example by use of an electrical
integration system in a chemo-electric sensor, relatively fre-
quent (e.g., every 30 seconds), or less frequent data point
(e.g., every 5 minutes), can be more than sufficient for patient
use. It is noted that accordingly Nyquist Theory, a data point
is required about every 10 minutes to accurately describe
physiological change in glucose in humans. This represents
the lowest useful frequency of sampling. However, it should
be recognized that it is desirable to sample more frequently
than the Nyquist minimum, to provide for sufficient data in
the event that one or more data points are lost, for example.
Additionally, more frequently sampled data (e.g., 30-second)
can be used to smooth the less frequent data (e.g., 5S-minute)
that are transmitted. It is noted that in this example, during the
course of a S-minute period, 10 determinations are made at
30-second intervals.

[0332] In some embodiments of Signal Artifacts Replace-
ment, signal estimation can be implemented in the sensor and
transmitted to a receiver for additional processing. In some
embodiments of Signal Artifacts Replacement, raw data can
be sent from the sensor to a receiver for signal estimation and
additional processing therein. In some embodiments of Sig-
nal Artifacts Replacement, signal estimation is performed
initially in the sensor, with additional signal estimation in the
receiver.

[0333] In some embodiments of Signal Artifacts Replace-
ment, wherein the sensor is an implantable glucose sensor,
signal estimation can be performed in the sensor to ensure a
continuous stream of data. In alternative embodiments, data
can be transmitted from the sensor to the receiver, and the
estimation performed at the receiver; It is noted however that
there can be a risk of transmit-loss in the radio transmission
from the sensor to the receiver when the transmission is
wireless. For example, in embodiments wherein a sensor is
implemented in vivo, the raw sensor signal can be more
consistent within the sensor (in vivo) than the raw signal
transmitted to a source (e.g., receiver) outside the body (e.g.,
if a patient were to take the receiver off to shower, commu-
nication between the sensor and receiver can be lost and data
smoothing in the receiver would halt accordingly). Conse-
quently, It is noted that a multiple point data loss in the filter
can take for example, about 25 to about 40 minutes for the
data to recover to near where it would have been had there
been no data loss.
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[0334] In some embodiments of Signal Artifacts Replace-
ment, signal estimation is initiated only after signal artifacts
are positively detected and stopped once signal artifacts are
negligibly detected. In some alternative embodiments signal
estimation is initiated after signal artifacts are positively
detected and then stopped after a predetermined time period.
In some alternative embodiments, signal estimation can be
continuously or continually performed. In some alternative
embodiments, one or more forms of signal estimation can be
accomplished based on the severity of the signal artifacts,
such as will be described with reference the section entitled,
“Selective Application of Signal Artifacts Replacement.”

[0335] In some embodiments of Signal Artifacts Replace-
ment, the processor performs a linear regression. In one such
implementation, the processor performs a linear regression
analysis of the n (e.g., 10) most recent sampled sensor values
to smooth out the noise. A linear regression averages over a
number of points in the time course and thus reduces the
influence of wide excursions of any point from the regression
line. Linear regression defines a slope and intercept, which is
used to generate a “Projected Glucose Value,” which can be
used to replace sensor data. This regression can be continually
performed on the data stream or continually performed only
during the transient signal artifacts. In some alternative
embodiments, signal estimation can include non-linear
regression.

[0336] Inanother embodiment of Signal Artifacts Replace-
ment, the processor performs a trimmed regression, which is
a linear regression of a trimmed mean (e.g., after rejecting
wide excursions of any point from the regression line). In this
embodiment, after the sensor records glucose measurements
at a predetermined sampling rate (e.g., every 30 seconds), the
sensor calculates a trimmed mean (e.g., removes highest and
lowest measurements from a data set and then regresses the
remaining measurements to estimate the glucose value.

[0337] FIG. 12 is a graph that illustrates a raw data stream
from a glucose sensor and a trimmed regression that can be
used to replace some of or the entire data stream. The x-axis
represents time in minutes; the y-axis represents sensor data
output in counts. A raw data signal 120, which is illustrated as
a dotted line, shows a data stream wherein some system noise
can be detected, however signal artifacts 122 can be particu-
larly seen in a portion thereof (and can be detected by meth-
ods such as described above). The trimmed regression line
124, which is illustrated as a solid line, is the data stream after
signal estimation using a trimmed linear regression algo-
rithm, such as described above, and appears at least somewhat
“smoothed” on the graph. In this particular example, the
trimmed regression uses the most recent 60 points (30 min-
utes) and trims out the highest and lowest values, then uses the
leftover 58 points to project the next point. It is noted that the
trimmed regression 124 provides a good estimate throughout
the majority data stream, however is only somewhat effective
in smoothing the data in during signal artifacts 122. To pro-
vide an optimized estimate of the glucose data values, the
trimmed regression can be optimized by changing the param-
eters of the algorithm, for example by trimming more or less
raw glucose data from the top and/or bottom of the signal
artifacts 122 prior to regression. Additionally, trimmed
regression, because of its inherent properties, can be particu-
larly suited for noise of a certain amplitude and/or character-
istic. In one embodiment, for example trimmed regression
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can be selectively applied based on the severity of the signal
artifacts, which is described in more detail below with refer-
ence to FIGS. 15 to 17.

[0338] Inanother embodiment of Signal Artifacts Replace-
ment, the processor runs a non-recursive filter, such as a finite
impulse response (FIR) filter. A FIR filter is a digital signal
filter, in which every sample of output is the weighted sum of
past and current samples of input, using only some finite
number of past samples.

[0339] FIG. 13 is a graph that illustrates a raw data stream
from a glucose sensor and an FIR-estimated signal that can be
used to replace some of or the entire data stream. The x-axis
represents time in minutes; the y-axis represents sensor data
output in counts. A raw data signal 130, which is illustrated as
adotted line, shows a data stream wherein some system noise
can be detected, however signal artifacts 132 can be particu-
larly seen in a portion thereof (and can be detected by meth-
ods such as described above). The FIR-estimated signal 134,
which is illustrated as a solid line, is the data stream after
signal estimation using a FIR filter, such as described above,
and appears at least somewhat “smoothed” on the graph. It is
noted that the FIR-estimated signal provides a good estimate
throughout the majority of the data stream; however like
trimmed regression it is only somewhat effective in smooth-
ing the data during signal artifacts 132. To provide an opti-
mized estimate of the glucose data values, the FIR filter can be
optimized by changing the parameters of the algorithm, for
example the tuning of the filter, particularly the frequencies of
the pass band and the stop band. Additionally, it is noted that
the FIR filter, because of its inherent properties, can be par-
ticularly suited for noise of a certain amplitude and/or char-
acteristic. In one embodiment, for example the FIR filter can
be selectively applied based on the severity of the signal
artifacts, which is described in more detail below with refer-
ence to FIGS. 15 to 17. It is noted that the FIR-estimated
signal induces a time lag on the data stream, which can be
increased or decreased in order to optimize the filtering or to
minimize the time lag, for example.

[0340] Inanother embodiment of Signal Artifacts Replace-
ment, the processor runs a recursive filter, such as an infinite
impulse response (IIR) filter. An IIR filter is a type of digital
signal filter, in which every sample of output is the weighted
sum of past and current samples of input. In one exemplary
implementation of an IIR filter, the output is computed using
6 additions/subtractions and 7 multiplications as shown in the
following equation:

agxx(m)+ay xx(n— 1) +ayxx(n—2)+ az =x(n—3) —
brxyln—1)—byxy(n-2)-byxy(n-3)
b

)=

This polynomial equation includes coefficients that are
dependent on sample rate and frequency behavior of the filter.
Frequency behavior passes low frequencies up to cycle
lengths of 40 minutes, and is based on a 30 second sample
rate. In alternative implementations, the sample rate and cycle
lengths can be more or less. See Lynn “Recursive Digital
Filters for Biological Signals” Med. & Biol. Engineering,
Vol. 9, pp. 37-43, which is incorporated herein by reference in
its entirety.

[0341] FIG. 14 is a graph that illustrates a raw data stream
from a glucose sensor and an [TR-estimated signal that can be
used to replace some of or the entire data stream. The x-axis
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represents time in minutes; the y-axis represents sensor data
output in counts. A raw data signal 140, which is illustrated as
a dotted line, shows a data stream wherein some system noise
can be detected, however signal artifacts 142 can be particu-
larly seen in a portion thereof (and can be detected by meth-
ods such as described above). The IIR-estimated signal 144,
which is illustrated as a solid line, represents the data stream
after signal estimation using an IIR filter, such as described
above, and appears at least somewhat “smoothed” on the
graph. It is noted that the I[IR-estimated signal induces a time
lag on the data stream; however it appears to be a particularly
good estimate of glucose data values during signal artifacts
142, as compared to the FIR filter (FIG. 13), for example.

[0342] To optimize the estimation of the glucose data val-
ues, the parameters of the IIR filter can be optimized, for
example by increasing or decreasing the cycle lengths (e.g.,
10 minutes, 20 minute, 40 minutes, 60 minutes) that are used
in the algorithm. Although an increased cycle length can
increase the time lag induced by the IIR filter, an increased
cycle length can also better estimate glucose data values
during severe signal artifacts. In other words, the IIR filter,
because of its inherent properties, can be particularly suited
for noise of a certain amplitude and/or characteristic. In one
exemplary embodiment, the IIR filter can be continually
applied, however the parameters such as described above can
be selectively altered based on the severity of the signal
artifacts; in another exemplary embodiment, the IIR filter can
be applied only after positive detection of signal artifacts.
Selective application of the IIR filter based on the severity of
the signal artifacts is described in more detail below with
reference to FIGS. 15 to 17.

[0343] Itis noted that a comparison of linear regression, an
FIR filter, and an IIR filter can be advantageous for optimiz-
ing their usage in the preferred embodiments. That is, an
understanding the design considerations for each algorithm
can lead to optimized selection and implementation of the
algorithm, as described in the section entitled, “Selective
Application of Signal Replacement Algorithms™ herein. Dur-
ing system noise, as defined herein, all of the above algo-
rithms can be successtully implemented during system noise
with relative ease. During signal artifacts, however, compu-
tational efficiency is greater with an IIR-filter as compared
with linear regression and FIR-filter. Additionally, although
the time lag associated with an IR filter can be substantially
greater than that of the linear regression or FIR-filter, this can
be advantageous during severe signal artifacts in order to
assign greater weight toward the previous, less noisy data in
signal estimation.

[0344] Inanother embodiment of Signal Artifacts Replace-
ment, the processor runs a maximum-average (max-average)
filtering algorithm. The max-average algorithm smoothes
data based on the discovery that the substantial majority of
signal artifacts observed after implantation of glucose sensors
in humans, for example, is not distributed evenly above and
below the actual blood glucose levels. It has been observed
that many data sets are actually characterized by extended
periods in which the noise appears to trend downwardly from
maximum values with occasional high spikes such as
described in more detail above with reference to FIG. 7B,
section 745, which is likely in response to limitations in the
system that do not allow the glucose to fully react at the
enzyme layer and/or proper reduction of H,O, at the counter
electrode, for example. To overcome these downward trend-
ing signal artifacts, the max-average calculation tracks with
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the highest sensor values, and discards the bulk of the lower
values. Additionally, the max-average method is designed to
reduce the contamination of the data with non-physiologi-
cally high data from the high spikes.

[0345] The max-average calculation smoothes data at a
sampling interval (e.g., every 30 seconds) for transmission to
the receiver at a less frequent transmission interval (e.g.,
every 5 minutes) to minimize the effects of low non-physi-
ological data. First, the processor finds and stores a maximum
sensor counts value in a first set of sampled data points (e.g.,
5 consecutive, accepted, thirty-second data points). A frame
shift time window finds a maximum sensor counts value for
each set of sampled data (e.g., each 5-point cycle length) and
stores each maximum value. The processor then computes a
rolling average (e.g., S-point average) of these maxima for
each sampling interval (e.g., every 30 seconds) and stores
these data. Periodically (e.g., every 107 interval), the sensor
outputs to the receiver the current maximum of the rolling
average (e.g., over the last 10 thirty-second intervals as a
smoothed value for that time period (e.g., 5 minutes)). In one
example implementation, a 10-point window can be used, and
atthe 10” interval, the processor computes the average of the
most recent 5 or 10 average maxima as the smoothed value for
a 5 minute time period.

[0346] In some embodiments of the max-average algo-
rithm, an acceptance filter can also be applied to new sensor
data to minimize effects of high non-physiological data. In
the acceptance filter, each sampled data point (e.g., every 30
seconds) is tested for acceptance into the maximum average
calculation. Each new point is compared against the most
representative estimate of the sensor curve at the previous
sampling interface (e.g., 30-second time point), or at a pro-
jection to a current estimated value. To reject high data, the
current data point is compared to the most recent value of the
average maximum values over a time period (e.g., 5 sampled
data points over a 2.5 minute period). If the ratio of current
value to the comparison value is greater than a certain thresh-
old (e.g., about 1.02), then the current data point is replaced
with a previously accepted value (e.g., 30-second value). If
the ratio of current value to the comparison value is in at or
within a certain range (e.g., about 1.02 to 0.90), then the
current data point is accepted. If the ratio of current value to
the comparison value is less than a certain threshold (e.g.,
about 0.90), then the current data point is replaced with a
previously accepted value. The acceptance filter step and
max-average calculation are continuously run throughout the
data set (e.g., fixed S-minute windows) on a rolling window
basis (e.g., every 30 seconds).

[0347] In some implementations of the acceptance filter,
the comparison value for acceptance could also be the most
recent maximum of 5 accepted sensor points (more sensitive)
or the most recent average over 10 averages of 5 maximum
values (least sensitive), for example. In some exemplary
implementations of the acceptance filter, the projected value
for the current time point can be based on regression of the last
4 accepted 30-second values and/or the last 2 to 4 (5 to 15
min) of the 5S-minute smoothed values, for example. In some
exemplary implementations of the acceptance filter, the per-
centage comparisons of +2% and -10% of counts value
would be replaced by percentage comparisons based on the
most recent 24 hour range of counts values; this method
would provide improved sensor specificity as compared to a
method based on total counts.
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[0348] Inanother embodiment of Signal Artifacts Replace-
ment, the processor runs a “Cone of Possibility Replacement
Method.” It is noted that this method can be performed in the
sensor and/or in the receiver. The Cone of Possibility Detec-
tion Method utilizes physiological information along with
glucose signal values in order define a “cone” of physiologi-
cally feasible glucose signal values within a human. Particu-
larly, physiological information depends upon the physi-
ological parameters obtained from continuous studies in the
literature as well as our own observations. A first physiologi-
cal parameter uses a maximal sustained rate of change of
glucose in humans (e.g., about 4 to 5 mg/dl/min) and a maxi-
mum sustained acceleration of that rate of change (e.g., about
0.1 to 0.2 mg/min/min). A second physiological parameter
uses the knowledge that rate of change of glucose is lowest at
the maxima and minima, which are the area of greatest risk in
patient treatment, such as described with reference to Cone of
Possibility Detection, above. A third physiological parameter
uses the fact that the best solution for the shape of the curve at
any point along the curve over a certain time period (e.g.,
about 20-25 minutes) is a straight line. It is noted that the
maximum rate of change can be narrowed in some instances.
Therefore, additional physiological data can be used to
modify the limits imposed upon the Cone of Possibility
Replacement Method for sensor glucose values. For example,
the maximum per minute rate change can be lower when the
subject is lying down or sleeping; on the other hand, the
maximum per minute rate change can be higher when the
subject is exercising, for example.

[0349] The Cone of Possibility Replacement Method uti-
lizes physiological information along with blood glucose data
in order to improve the estimation of blood glucose values
within a human in an embodiment of Signal Artifacts
Replacement. The Cone of Possibility Replacement Method
can be performed on raw data in the sensor, on raw data in the
receiver, or on smoothed data (e.g., data that has been
replaced/estimated in the sensor or receiver by one of the
methods described above) in the receiver.

[0350] In a first implementation of the Cone of Possibility
Replacement Method, a centerline of the cone can be pro-
jected from a number of previous, optionally smoothed,
incremental data points (e.g., previous four, S-minute data
points). Each predicted cone centerline point (e.g., 5 minute
point) increases by the slope (S) (e.g., for the regression in
counts/minute) multiplied by the data point increment (e.g., 5
minutes). Counts/mg/dL. is estimated from glucose and sen-
sor range calculation over the data set.

[0351] In this first implementation of the Cone of Possibil-
ity Replacement Method, positive and negative cone limits
are simple linear functions. Periodically (e.g., every 5 min-
utes), each sensor data point (optionally smoothed) is com-
pared to the cone limits projected from the last four points. If
the sensor value observed is within the cone limits, the sensor
value is retained and used to generate the cone for the next
data point increment (e.g., S-minute point). [fthe sensor value
observed falls outside the high or low cone limit, the value is
replaced by the cone limit value, and that value is used to
project the next data point increment (e.g., 5 minute point,
high point, or low point). For example, if the difference
between two adjacent S-minute points exceeds 20 mg/dL,,
then cone limits are capped at 20 mg/dlL increments per 5
minutes, with the positive limit of the cone being generated by
the addition of 0.5* A*t> to mid cone value, where A is 0.1
mg/dl./min/min and t is 5 minute increments (A is converted
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to counts/min/min for the calculation), and the negative limit
of the cone being generated by the addition of —0.5*A*{* to
mid cone value. This implementation provides a high degree
of accuracy and is minimally sensitive to non-physiological
rapid changes.

[0352] The following Table 1 illustrates one example
implementation of the Cone of Possibility Replacement
Method, wherein the maximum sustained value observed for
S is about +/-4 mg/dL./min and the maximum value observed
for A is about +/—0.1 mg/dL/min*:

TABLE 1
Mid line
Time (mg/dL) Positive Cone Limit Negative Cone Limit
0 100 100 100
5 100+5*S  100+5*S+125%A 100+5*S—
125 A
10 100+10*S 100+10*S+50*A 100+10*S -
50%A
15 100+15*S 100+15*S+1125%A 100+15*S -
112.5*A
20 100+20*S 100+20*S+200*A 100+20*S -
200 % A
25 100+25*S 100+25*S+312.5%A 100 +25*S -
3125 %A

[0353] The cone widens for each 5-minute increment for
which a sensor value fails to fall inside the cone up to 30
minutes, such as can be seen in the table above. At 30 minutes,
a cone has likely widened enough to capture an observed
sensor value, which is used, and the cone collapses back to a
S-minute increment width. If no sensor values are captured
within 30 minutes, the cone generation routine starts over
using the next four observed points. In some implementations
special rules can be applied, for example in a case where the
change in counts in one 5-minute interval exceeds an esti-
mated 30-mg/dl. amount. In this case, the next acceptable
point can be more than 20 to 30 minutes later. It is noted that
an implementation of this algorithm includes utilizing the
cone of possibility to predict glucose levels and alert patients
to present or upcoming dangerous blood glucose levels.
[0354] In another alternative embodiment of cone widen-
ing, the cone can widen in set multiples (e.g., 20 mg/dL) of
equivalent amounts for each additional time interval (e.g., 5
minutes), which rapidly widens the cone to accept data.
[0355] It is noted that the numerical parameters represent
only one example implementation of the Cone of Possibility
Replacement Method. The concepts can be applied to any
numerical parameters as desired for various glucose sensor
applications.

[0356] In another implementation of the Cone of Possibil-
ity Replacement Method, sensor calibration data is optimized
using the Clarke Error Grid, the Consensus Grid, or an alter-
native error assessment that assigns risk levels based on the
accuracy of matched data pairs. In an example using the
Clarke Error Grid, because the 10 regions of the Clarke Error
Grid are not all symmetric around the Y=X perfect regression,
fits to the grid can be improved by using a multi-line regres-
sion to the data.

[0357] Accordingly the pivot point method for the counts
vs. glucose regression fit can be used to optimize sensor
calibration data to the Clarke Error Grid, Consensus Grid, or
other clinical acceptability standard. First, the glucose range
is divided according to meter values (e.g., at 200 mg/dL.). Two
linear fitting lines are used, which cross at the pivot point. The
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coordinates of the pivot point in counts and glucose value,
plus the slope and intercept of the two lines are variable
parameters. Some of pivot point coordinates (e.g., 4 out of 6)
and slope or intercept of each line can be reset with each
iteration, while the chosen coordinates define the remainder.
The data are then re-plotted on the Clarke Error Grid, and
changes in point placement and percentages in each region of
the grid are evaluated. To optimize the fit of a data set to a
Clark Error Grid, the regression of counts vs. reference glu-
cose can be adjusted such that the maximum number of points
are in the A+B zones without reducing the A+B percentage,
and the number of points are optimized such that the highest
percentage are in the A zone and lowest percentage are in the
D, E and C zones. In general, the points should be distributed
as evenly as possible around the Y=X line. In some embodi-
ments, three distinct lines optimized for clinical acceptability
can represent the regression line. In some embodiments, an
additional useful criterion can be used to compute the root
mean squared percentage bias for the data set. Better fits are
characterized by reduction in the total root mean squared
percentage bias. In an alternative implementation of the pivot
point methods, a predetermined pivot (e.g., 10 degree) of the
regression line can be applied when the estimated blood is
above or below a set threshold (e.g., 150 mg/dL), wherein the
pivot and threshold are determined from a retrospective
analysis of the performance of a conversion function and its
performance at a range of glucose concentrations.

[0358] Inanother embodiment of Signal Artifacts Replace-
ment, reference changes in electrode potential can be used to
estimate glucose sensor data during positive detection of sig-
nal artifacts from an electrochemical glucose sensor, the
method hereinafter referred to as reference drift replacement.
In this embodiment, the electrochemical glucose sensor com-
prises working, counter, and reference electrodes, such as
described with reference to FIGS. 1, 2 and 10 above. This
method exploits the function of the reference electrode as it
drifts to compensate for counter electrode limitations during
oxygen deficits, pH changes, and/or temperature changes
such as described in more detail above with reference to
FIGS. 10A, 10B, and 10C.

[0359] Such as described with in more detail with reference
to FIG. 10A a potentiostat is generally designed so that a
regulated potential difference between the reference elec-
trode 102 and working electrode 100 is maintained as a con-
stant. The potentiostat allows the counter electrode voltage to
float within a certain voltage range (e.g., from between close
to the +1.2V observed for the working electrode to as low as
battery ground or 0.0V). The counter electrode voltage mea-
surement will reside within this voltage range dependent on
the magnitude and sign of current being measured at the
working electrode and the electroactive species type and con-
centration available in the electrolyte adjacent to the counter
electrode 104. This species will be electrochemically
recruited (e.g., reduced/accepting electrons) to equal the cur-
rent of opposite sign (e.g., oxidized/donating electrons)
occurring at the working electrode 100. It has been discovered
that the reduction of dissolved oxygen or hydrogen peroxide
from oxygen converted in the enzyme layer are the primary
species reacting at the counter electrode to provide this elec-
tronic current balance in this embodiment. If there are inad-
equate reducible species (e.g., oxygen) available for the
counter electrode, or if other non-glucose reaction rate limit-
ing phenomena occur (e.g., temperature or pH), the counter
electrode can be driven in its electrochemical search for elec-
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trons all the way to ground or 0.0V. However, regardless of the
voltage in the counter electrode, the working and counter
electrode currents must still maintain substantially equivalent
currents. Therefore, the reference electrode 102 will drift
upward creating new oxidizing and reducing potentials that
maintain equal currents at the working and counter elec-
trodes.

[0360] Because of the function of the reference electrode
102, including the drift that occurs during periods of signal
artifacts (e.g., ischemia), the reference electrode can be moni-
tored to determine the severity of the signal artifacts on the
data stream. Particularly, a substantially direct relationship
between the reference electrode drift and signal artifacts has
been discovered. Using the information contained within the
CV curve (FIGS. 10B and/or 10C), the measured glucose
signal (Iszysz) can be automatically scaled accordingly to
replace these undesired transient effects on the data stream. It
is noted that the circuit described with reference to FIG. 10A
can be used to determine the CV curve on a regularly sched-
uled basis or as needed. To this end, the desired reference
voltage and applied potential are made variable, and the ref-
erence voltage can be changed at a defined rate while mea-
suring the signal strength from the working electrode, which
allows for generation of a CV curve while a sensor is in vivo.
[0361] In alternative implementations of the reference drift
replacement method, a variety of algorithms can therefore be
implemented that replaces the signal artifacts based on the
changes measured in the reference electrode. Linear algo-
rithms, and the like, are suitable for interpreting the direct
relationship between reference electrode drift and the non-
glucose rate limiting signal noise such that appropriate con-
version to signal noise compensation can be derived.

[0362] In other embodiments of Signal Artifacts Replace-
ment, prediction algorithms, also referred to as projection
algorithms, can be used to replace glucose data signals for
data which does not exist because 1) it has been discarded, 2)
it is missing due to signal transmission errors and the like, or
3) it represents a time period (e.g., future) for which a data
stream has not yet been obtained based on historic and/or
present data. Prediction/projection algorithms include any of
the above described Signal Artifacts Replacement algo-
rithms, and differ only in the fact that they are implemented to
replace time points/periods during which no data is available
(e.g., for the above-described reasons), rather than including
that existing data, within the algorithmic computation.
[0363] In some embodiments, signal replacement/estima-
tion algorithms are used to predict where the glucose signal
should be, and if the actual data stream varies beyond a certain
threshold of that projected value, then signal artifacts are
detected. In alternative embodiments, other data processing
can be applied alone, or in combination with the above-
described methods, to replace data signals during system
noise and/or signal artifacts.

Selective Application of Signal Replacement Algorithms

[0364] FIG. 15 is a flow chart that illustrates a process of
selectively applying signal estimation in embodiments.
[0365] At block 152, a sensor data receiving module, also
referred to as the sensor data module, receives sensor data
(e.g., a data stream), including one or more time-spaced sen-
sor data points, such as described in more detail with refer-
ence to block 82 in FIG. 8.

[0366] At block 154, a signal artifacts detection module,
also referred to as the signal artifacts detector 154, is pro-
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grammed to detect transient non-glucose related signal arti-
facts in the data stream that have a higher amplitude than
system noise, such as described in more detail with reference
to block 84 in FIG. 8. However, the signal artifacts detector of
this embodiment can additionally detect a severity of signal
artifacts. In some embodiments, the signal artifacts detector
has one or more predetermined thresholds for the severity of
the signal artifacts (e.g., low, medium, and high). In some
embodiments, the signal artifacts detector numerically repre-
sents the severity of signal artifacts based on a calculation for
example, which representation can be used to apply to the
signal estimation algorithm factors, such as described in more
detail with reference to block 156.

[0367] In one exemplary embodiment, the signal artifacts
detection module evaluates the amplitude and/or frequency of
the transient non-glucose related signal artifacts, which
amplitude and/or frequency can be used to define the severity
in terms of a threshold (e.g., high or low) or a numeric rep-
resentation (e.g., a value from 1 to 10). In another exemplary
embodiment, the signal artifacts detection module evaluates a
duration of the transient non-glucose related signal artifacts,
such that as the duration increases, a severity can be defined in
terms of a threshold (e.g., short or long) or a numeric repre-
sentation (e.g., 10, 20, 30, 40, 50, or 60 minutes). In another
exemplary embodiment, the signal artifacts detection module
evaluates the frequency content from a Fourier Transform and
defines severity in terms of a threshold (e.g., above or below
30 cycles per hour) or a numeric representation (e.g., 50
cycles per hour). All of the signal artifacts detection methods
described herein can be implemented to include determining
a severity of the signal artifacts, threshold, and/or numerical
representations.

[0368] Atblock 156, the signal artifacts replacement mod-
ule, also referred to as the signal estimation module, selec-
tively applies one of a plurality of signal estimation algorithm
factors in response to the severity of said signal artifacts.
[0369] In one embodiment, signal artifacts replacement is
normally turned off, except during detected signal artifacts. In
another embodiment, a first signal estimation algorithm (e.g.,
linear regression, FIR filter etc.) is turned on all the time, and
a second signal estimation algorithm optimized for signal
artifacts (e.g., IIR filter, Cone of Possibility Replacement
Method, etc.) is turned on only during positive detection of
signal artifacts.

[0370] In another embodiment, the signal replacement
module comprises programming to selectively switch on and
off a plurality of distinct signal estimation algorithms based
on the severity of the detected signal artifacts. For example,
the severity of the signal artifacts can be defined as high and
low. In such an example, a first filter (e.g., trimmed regres-
sion, linear regression, FIR, Reference Electrode Method,
etc.) can be applied during low signal artifacts and a second
filter (e.g., IIR, Cone of Possibility Method, etc.) can be
applied during high signal artifacts. It is noted that all of the
above signal replacement algorithms can be selectively
applied in this manner based on the severity of the detected
signal artifacts.

[0371] FIG. 16 is a graph that illustrates an embodiment
wherein the signal replacement module comprises program-
ming to selectively switch on and off a signal artifacts
replacement algorithm responsive to detection of signal arti-
facts. The x-axis represents time in minutes; the first y-axis
160 represents sensor data output in counts. A raw data signal
161, which is illustrated as a dotted line, shows a data stream
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wherein some system noise can be detected; however signal
artifacts 162 can be particularly seen in a portion thereof. The
second y-axis 164 represents counter-electrode voltage in
counts; counter electrode voltage data 165 is illustrated as a
solid line. It is noted that a counter voltage drop to approxi-
mately zero in this example, which is one of numerous meth-
ods provided for detecting signal artifacts, detects signal arti-
facts 162. Accordingly, when the system detects the signal
artifacts 162, an [IR-filter is selectively switched on in order
to replace the signal artifact with an I[R-estimated glucose
signal 166, which is illustrated as a heavy solid line. The IIR
filter is switched off upon detection of negligible signal arti-
facts (e.g., counter electrode voltage increasing from about
zero in this embodiment).

[0372] FIG. 17 is a graph that illustrates an embodiment
wherein the signal artifacts replacement module comprises
programming to selectively apply different signal artifacts
replacement algorithms responsive to detection of signal arti-
facts. The x-axis represents time in minutes; the first y-axis
170 represents sensor data output in counts. A raw data signal
171, which is illustrated as a dotted line, shows a data stream
wherein some system noise can be detected; however signal
artifacts 172 can be particularly seen in a portion thereof. The
second y-axis 174 represents counter-electrode voltage in
counts; counter electrode voltage data 175 is illustrated as a
solid line. It is noted that a counter voltage drop to approxi-
mately zero in this example, which is one of numerous meth-
ods provided for detecting signal artifacts, detects signal arti-
facts 172.

[0373] In this embodiment, an FIR filter is applied to the
data stream during detection of negligible or no signal arti-
facts (e.g., during no noise to system noise in the data stream).
Accordingly, normal signal noise (e.g., system noise) can be
filtered to replace the data stream with an FIR-filtered data
signal 176, which is illustrated by a slightly heavy solid line.
However, upon positive detection of signal artifacts (e.g.,
detected by approximately zero counter electrode voltage in
this embodiment), the FIR filter is switched off and an IIR-
filter is switched on in order to replace the signal artifacts with
an IIR-filtered glucose signal 178, which is illustrated as a
heavy solid line. The IIR filter is subsequently switched off
and the FIR filter is switched back on upon detection of
negligible signal artifacts (e.g., counter electrode voltage
increasing from about zero in this embodiment).

[0374] In another embodiment, the signal replacement
module comprises programming to selectively apply differ-
ent parameters to a single signal artifacts replacement algo-
rithm (e.g., IIR, Cone of Possibility Replacement Method,
etc.). As an example, the parameters of an algorithm can be
switched according to signal artifacts detection; in such an
example, an IR filter with a 30-minute cycle length can be
used during times of'no noise or system noise and a 60-minute
cycle length can be used during signal artifacts. As another
example, the severity of the signal artifacts can be defined as
short and long; in such an example, an IIR filter with a
30-minute cycle length can be used during the short signal
artifacts and a 60-minute cycle length can be used during long
signal artifacts. As yet another example, the severity of the
signal artifacts can be defined by a numerical representation;
in such an example, the numerical representation can be used
to calculate the parameters of the signal replacement algo-
rithm (e.g., IIR, Cone of Possibility Replacement Method,
and Reference Drift Method).
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[0375] FIG. 18 is a flow chart that illustrates dynamic and
intelligent estimation algorithm selection process 296 in an
alternative embodiment.

[0376] At block 298, the dynamic and intelligent estima-
tion algorithm selection process 296 obtains sensor data,
which can be raw, smoothed, and/or otherwise processed. In
some embodiments, data matching can use data from a raw
data stream received from an analyte sensor, such as
described at block 53. In some embodiments, data matching
can use calibrated data.

[0377] At block 300, the dynamic and intelligent estima-
tion algorithm selection process 296 includes selecting one or
more algorithms from a plurality of algorithms that best fits
the measured analyte values. In some embodiments, the esti-
mative algorithm can be selected based on physiological
parameters; for example, in an embodiment wherein the ana-
lyte sensor is a glucose sensor, a first order regression can be
selected when the rate of change of the glucose concentration
is high, indicating correlation with a straight line, while a
second order regression can be selected when the rate of
change of the glucose concentration is low, indicating corre-
lation with a curved line. In some embodiments, a first order
regression can be selected when the reference glucose data is
within a certain threshold (for example, 100 to 200 mg/dL),
indicating correlation with a straight line, while a second
order regression can be selected when the reference glucose
data is outside of a certain threshold (for example, 100 to 200
mg/dL), indicating correlation with a curved line because the
likelihood of the glucose concentration turning around (for
example, having a curvature) is greatest at high and low
values.

[0378] Generally, algorithms that estimate analyte values
from measured analyte values include any algorithm that fits
the measured analyte values to a pattern, and/or extrapolates
estimated values for another time period (for example, for a
future time period or for a time period during which data
needs to be replaced). In some embodiments, a polynomial
regression (for example, first order, second order, third order,
etc.) can be used to fit measured analyte values to a pattern,
and then extrapolated. In some embodiments, autoregressive
algorithms (for example, IIR filter) can be used to fit mea-
sured analyte values to a pattern, and then extrapolated. In
some embodiments, measured analyte values can be filtered
by frequency before projection (for example, by converting
the analyte values with a Fourier transform, filtering out high
frequency noise, and converting the frequency data back to
time values by using an inverse Fourier transform); this data
can then be projected forward (extrapolated) along lower
frequencies. In some embodiments, measured analyte values
can be represented with a Wavelet transform (for example
filtering out specific noise depending on wavelet function),
and then extrapolate forward. In some alternative embodi-
ments, computational intelligence (for example, neural net-
work-based mapping, fuzzy logic based pattern matching,
genetic-algorithms based pattern matching, and the like) can
be used to fit measured analyte values to a pattern, and/or
extrapolate forward. In yet other alternative embodiments,
time-series forecasting is employed using methods such as
moving average (single or double), exponential smoothing
(single, double, or triple), time series decomposition, growth
curves, Box-Jenkins, and the like. The plurality of algorithms
of the preferred embodiments can utilize any one or more of
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the above-described algorithms, or equivalents, in order to
intelligently select estimative algorithms and thereby esti-
mate analyte values.

[0379] In some embodiments, estimative algorithms fur-
ther include parameters that consider external influences,
such as insulin therapy, carbohydrate consumption, and the
like. In one such example, these additional parameters can be
user input via the user interface 47 or transmitted from an
external device, such as an insulin pump, remote device, or
other computer system. By including such external influences
in additional to historical trend data (measured analyte val-
ues), analyte concentration changes can be better anticipated.
[0380] At block 302, the selected one or more algorithms
are evaluated based on statistical, clinical, or physiological
parameters. In some embodiments, running each algorithm
on the data stream tests each of the one or more algorithms,
and the algorithmic result with the best correlation to the
measured analyte values is selected. In some embodiments,
the pluralities of algorithms are each compared for best cor-
relation with physiological parameters (for example, within
known or expected rates of change, acceleration, concentra-
tion, etc). In some embodiments, the pluralities of algorithms
are each compared for best fit within a clinical error grid (for
example, within “A” region of Clarke Error Grid). Although
first and second order algorithms are exemplified herein, any
two or more algorithms such as described in more detail
below could be programmed and selectively used based on a
variety of conditions, including physiological, clinical, and/
or statistical parameters.

[0381] At block 304, the algorithm(s) selected from the
evaluation step is employed to estimate analyte values for a
time period. Accordingly, analyte values are more dynami-
cally and intelligently estimated to accommodate the
dynamic nature of physiological data. Additional processes,
for example applying physiological boundaries, evaluation of
the estimation algorithms after employing the algorithms,
evaluating a variation of estimated analyte values, measuring
and comparing analyte values, and the like (e.g., such as
described in co-pending U.S. Published Patent Application
2005-0203360 to Brauker et al.) can be applied to the
dynamic and intelligent estimative algorithms described
herein

[0382] FIG. 19 s a graph that illustrates dynamic and intel-
ligent estimation algorithm selection applied to a data stream
in one embodiment showing first order estimation, second
order estimation, and the measured glucose values for the
time period, wherein the second order estimation shows a
better correlation to the measured glucose data than the first
order estimation. The x-axis represents time in minutes. The
y-axis represents glucose concentration in mg/dL.

[0383] Inthe data of FIG. 19, measured (calibrated) sensor
glucose data 306 was obtained up to time t=0. At t=0, a first
order regression 308 was performed on the measured data 306
to estimate the upcoming 15-minute time period. A second
order regression 310 was also performed on the data to esti-
mate the upcoming 15-minute time period. The intelligent
estimation of the preferred embodiments, such as described in
more detail below, chose the second order regression 310 as
the preferred algorithm for estimation based on programmed
conditions (at t=0). The graph of FIG. 19 further shows the
measured glucose values 312 from t=0 to t=15 to illustrate
that second order regression 310 does in fact more accurately
correlate with the measured glucose data 312 than first order
regression 308 from t=0 to t=15.
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[0384] In the example of FIG. 19, the dynamic and intelli-
gent estimation algorithm selection determined that the sec-
ond order regression 310 was the preferred algorithm for
estimation at t=0 based on conditions. A first condition was
based on a set threshold that considers second order regres-
sion a better fit when measured glucose values are above 200
mg/dl, and trending upwardly. A second condition verifies
that the curvature of the second order regression line appro-
priately shows a deceleration above 200 mg/dL. Although
two specific examples of conditions are described herein,
dynamic and intelligent estimation can have as many or as
few conditions programmed therein as can be imagined or
contrived. Some additional examples of conditions for select-
ing from a plurality of algorithms are listed above, however
the scope of'this aspect of dynamic and intelligent estimation
includes any conditional statements that can be programmed
and applied to any algorithms that can be implemented for
estimation.

[0385] FIG. 20 is a flow chart thatillustrates the process 330
of dynamic and intelligent estimation and evaluation of ana-
lyte values in one embodiment, wherein the estimation algo-
rithms are continuously, periodically, or intermittently evalu-
ated based on statistical, clinical, or physiological parameters
to maintain accuracy of estimation.

[0386] At block 332, the dynamic and intelligent estima-
tion and evaluation process 130 obtains sensor data, which
can be raw, smoothed, calibrated and/or otherwise processed.
[0387] At block 334, the dynamic and intelligent estima-
tion and evaluation process 330 estimates one or more analyte
values using one or more estimation algorithms. In some
embodiments, this analyte value estimation uses conven-
tional projection using first or second order regression, for
example. In some embodiments, dynamically and intelli-
gently selecting of one or more algorithms from a plurality of
algorithms, dynamically and intelligently estimating analyte
values within physiological boundaries, evaluating a varia-
tion of estimated analyte values, measuring and comparing
analyte values, and the like (e.g., such as described in U.S.
Publication No. US-2005-0203360-A1) can be applied to the
dynamic and intelligent estimation and evaluation process
described herein.

[0388] The estimative algorithms described elsewhere
herein consider mathematical equations, for example, which
may or may not be sufficient to accurately estimate analyte
values in some circumstances due to the dynamic nature of
mammalian behavior. For example, in a circumstance where
a patient’s glucose concentration is trending upwardly at a
constant rate of change (for example, 120 mg/dL at 2 mg/dl/
min), an expected physiological pattern would likely estimate
a continued increase at substantially the same rate of change
over the upcoming approximately 40 minutes, which would
fall within physiological boundaries. However, if a person
with diabetes were to engage in heavy aerobic exercise, which
may not be known by the estimative algorithm, a slowing of
the upward trend, and possibly a change to a downward trend
can possibly result, leading to inaccuracies in the estimated
analyte values. Numerous such circumstances can occur in
the lifestyle of a person with diabetes. However, although
analyte values can sometimes be estimated under “normal”
circumstances, other circumstances exist that are not “nor-
mal” or “expected” and can result in estimative algorithms
that produce apparently erroneous results, for example, if
they are based solely on mathematical calculations and/or
physiological patterns. Accordingly, evaluation of the estima-
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tive algorithms can be performed to ensure the accuracy or
quantify a measure of confidence in the estimative algo-
rithms.

[0389] At block 336, the dynamic and intelligent estima-
tion and evaluation process 330 evaluates the estimation algo-
rithms employed at block 334 to evaluate a “goodness” of the
estimated analyte values. The evaluation process performs an
evaluation of the measured analyte data with the correspond-
ing estimated analyte data (e.g., by performing the algorithm
on the data stream and comparing the measured with the
corresponding analyte data for a time period). In some
embodiments, evaluation can be performed continually or
continuously so that the dynamic and intelligent algorithms
are continuously adapting to the changing physiological ana-
lyte data. In some embodiments, the evaluation can be per-
formed periodically so that the dynamic and intelligent algo-
rithms are periodically and systematically adapting to the
changing physiological analyte data. In some embodiments,
evaluation can be performed intermittently, for example when
an estimative algorithm is initiated or when other such trig-
gers occur, so that the dynamic and intelligent algorithms can
be evaluated when new or updated data or algorithms are
being processed.

[0390] This evaluation process 330 uses any known evalu-
ation method, for example based on statistical, clinical, or
physiological standards. One example of statistical evalua-
tion is provided below with reference to FIG. 21; however
other methods are also possible. In some embodiments, the
evaluation process 330 determines a correlation coefficient of
regression. In some embodiments wherein the sensor is a
glucose sensor, the evaluation process 330 determines if the
selected estimative algorithm shows that analyte values fall
with the “A” and “B” regions of the Clarke Error Grid. Other
parameters or methods for evaluation are considered within
the scope of the preferred embodiments. In some embodi-
ments, the evaluation process 330 includes performing a cur-
vature formula to determine fiducial information about the
curvature, which results in an evaluation of the amount of
noise on the signal.

[0391] In some embodiments, the evaluation process 330
calculates physiological boundaries to evaluate whether the
estimated analyte values fall within known physiological
constraints. In this embodiment, the estimative algorithm(s)
are evaluated to ensure that they do not allow estimated ana-
lyte values to fall outside of physiological boundaries, some
examples of which are described in more detail elsewhere
herein, and in co-pending U.S. Published Patent Application
2005-0203360 to Brauker et al., for example. In some alter-
native embodiments, clinical or statistical parameters can be
used in a similar manner to bound estimated analyte values.
[0392] If the result of the evaluation is satisfactory (for
example, 10% average deviation, correlation coefficient
above 0.79, all estimated analyte values within A or B region
of the Clarke Error Grid, all estimated analyte values within
physiological boundaries, and the like), the processing con-
tinues to the next step, using the selected estimative algo-
rithm. However, if the result of the evaluation is unsatisfac-
tory, the process can start the algorithm selection process
again, optionally considering additional information, or the
processor can determine that estimation is not appropriate for
a certain time period. In one alternative embodiment, a signal
noise measurement can be evaluated, and if the signal to noise
ratio is unacceptable, the processor can modify its estimative
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algorithm or other action that can help compensate for signal
noise (e.g., signal artifacts, such as described elsewhere
herein).

[0393] FIG.211is a graph thatillustrates an evaluation of the
selected estimative algorithm in one embodiment, wherein a
correlation is measured to determine a deviation of the mea-
sured glucose data with the selected estimative algorithm, if
any. The x-axis represents time in minutes. The y-axis repre-
sents glucose concentration in mg/dL.. Measured glucose val-
ues 340 are shown for about 90 minutes up to t=0. At t=0, the
selected algorithm is performed on 40 minutes of the mea-
sured glucose values 340 up to t=0, which is represented by a
regression line 342 in this embodiment. A data association
function is used to determine a goodness of fit of the estima-
tive algorithm on the measured glucose data 340; namely, the
estimative algorithm is performed retrospectively on the mea-
sured glucose data 340, and is hereinafter referred to as ret-
rospectively estimated glucose data 342 (e.g., estimation
prior to t=0), after which a correlation (or deviation) with the
measured glucose data is determined. In this example, the
goodness of fit shows a mean absolute relative difference
(MARD) 0f3.3% between the measured glucose data 340 and
the retrospectively estimated glucose data 342. While not
wishing to be bound to theory, it is believed that this correla-
tion of the measured glucose data 340 to the retrospectively
estimated glucose data 342 can be indicative of the correla-
tion of future estimated glucose data to the measured glucose
data for that estimated time period.

[0394] Reference is now made to FIG. 22, which is a flow
chart that illustrates the process 450 of analyzing a variation
of estimated future analyte value possibilities in one embodi-
ment. This embodiment takes into consideration that analyte
values are subject to a variety of external influences, which
can cause the measured analyte values to alter from the esti-
mated analyte values as the time period that was estimated
passes. External influences include, but are not limited to,
exercise, sickness, consumption of food and alcohol, injec-
tions of insulin, other medications, and the like. For a person
with diabetes, for example, even when estimation does not
accurately predict the upcoming measured analyte values, the
estimated analyte values can be valuable to a patient in treat-
ment and in fact can even alter the estimated path by encour-
aging proactive patient behavior that can cause the patient to
avoid the estimated clinical risk. In other words, the deviation
of measured analyte values from their corresponding esti-
mated analyte values may not be an “error” in the estimative
algorithm, and is in fact one of the benefits of the continuous
analyte sensor of the preferred embodiments, namely encour-
aging patient behavior modification and thereby improving
patient health through minimizing clinically risky analyte
values. Proactive behavior modification (for example, thera-
pies such as insulin injections, carbohydrate consumption,
exercise, and the like) can cause the patient’s measured glu-
cose to change from the estimated path, and analyzing a
variation that can be associated with the estimated analyte
values can encompass many of these changes. Therefore, in
addition to estimated analyte values, a variation can be cal-
culated or estimated based on statistical, clinical, and/or
physiological parameters that provides a range of values in
which the estimated analyte values can fall.

[0395] At block 452, the variation of possible estimated
analyte values analysis process 450 obtains sensor data,
which can be raw, smoothed, calibrated and/or otherwise
processed.
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[0396] At block 454, the variation of possible estimated
analyte values analysis process 450 estimates one or more
analyte values using one or more estimation algorithms. In
some embodiments, this analyte values estimation uses con-
ventional projection using first or second order regression, for
example. In some embodiments, dynamically and intelli-
gently selecting of one or more algorithms from a plurality of
algorithms, dynamically and intelligently estimating analyte
values within physiological boundaries, dynamic and intelli-
gent estimation and evaluation of estimated analyte values,
measuring and comparing analyte values (e.g., such as
described in U.S. Publication No. US-2005-0203360-A1),
and the like can be applied to the dynamic and intelligent
estimation and evaluation process described herein.

[0397] At block 456, the variation of possible estimated
analyte values evaluation process 450 analyzes a variation of
the estimated analyte data. Particularly, a statistical, clinical,
and/or physiological variation of estimated analyte values can
be calculated when applying the estimative algorithms and/or
can be calculated at regular intervals to dynamically change
as the measured analyte values are obtained. In general,
analysis of trends and their variation allows the estimation of
the preferred embodiments to dynamically and intelligently
anticipate upcoming conditions, by considering internal and
external influences that can affect analyte concentration.
[0398] Insomeembodiments, physiological boundaries for
analytes in mammals can be used to set the boundaries of
variation. For example, known physiological boundaries of
glucose in humans are discussed in detail with reference to
U.S. Publication No. US-2005-0203360-A1, however any
physiological parameters for any measured analyte can be
implemented here to provide this variation of physiologically
feasible analyte values.

[0399] In some embodiments, statistical variation can be
used to determine a variation of possible analyte values. Sta-
tistical variation can be any known divergence or change from
a point, line, or set of data based on statistical information.
Statistical information includes patterns or data analysis
resulting from experiments, published or unpublished, for
example. In some embodiments, statistical information can
include normal patterns that have been measured statistically
in studies of analyte concentrations in mammals, for
example. In some embodiments, statistical information can
include errors observed and measured statistically in studies
of analyte concentrations in mammals, for example. In some
embodiments, statistical information can include predeter-
mined statistical standards, for example, deviation less than
or equal to 5% on the analyte value. In some embodiments,
statistical variation can be a measured or otherwise known
signal noise level.

[0400] In some embodiments, a variation is determined
based on the fact that the conventional blood glucose meters
are known to have up to a +/-20% error in glucose values
(namely, on average in the hands of a patient). For example,
gross errors in glucose readings are known to occur due to
patient error in self-administration of the blood glucose test.
In one such example, if the user has traces of sugar on his/her
finger while obtaining a blood sample for a glucose concen-
tration test, then the measured glucose value will likely be
much higher than the measured glucose value in the blood.
Additionally, it is known that self-monitored blood glucose
tests (for example, test strips) are occasionally subject to
manufacturing error. In view of this statistical information, in
an embodiment wherein a continuous glucose sensor relies
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upon a conventional blood glucose meter for calibration, this
+/-20% error should be considered because of the potential
for translated effect on the calibrated sensor analyte data.
Accordingly, this exemplary embodiment would provide for
a +/-20% variation of estimated glucose values based on the
above-described statistical information.

[0401] Insome embodiments, a variation of estimated ana-
lyte values can be analyzed based on individual physiological
patterns. Physiological patterns are affected by a combination
of at least biological mechanisms, physiological boundaries,
and external influences such as exercise, sickness, consump-
tion of food and alcohol, injections of insulin, other medica-
tions, and the like. Advantageously, pattern recognition can
be used with continuous analyte sensors to characterize an
individual’s physiology; for example the metabolism of a
person with diabetes can be individually characterized, which
has been difficult to quantify with conventional glucose sens-
ing mechanisms due to the unique nature of an individual’s
metabolism. Additionally, this information can be advanta-
geously linked with external influences (for example, patient
behavior) to better understand the nature of individual human
physiology, which can be helpful in controlling the basal rate
in a person with diabetes, for example.

[0402] While not wishing to be bound to theory, it is
believed that monitoring of individual historical physiologi-
cal analyte data can be used to recognize patterns that can be
used to estimate analyte values, or ranges of values, in a
mammal. For example, measured analyte data for a patient
can show certain peaks of glucose levels during a specific
time of day, “normal” AM and PM eating behaviors (for
example, that follow a pattern), weekday versus weekend
glucose patterns, individual maximum rate of change, and the
like, that can be quantified using patient-dependent pattern
recognition algorithms, for example. Pattern recognition
algorithms that can be used in this embodiment include, but
are not limited to, stochastic nonlinear time-series analysis,
exponential (non-linear) autoregressive model, process feed-
back nonlinear autoregressive (PFNAR) model, neural net-
works, and the like.

[0403] Accordingly, statistically calculated patterns can
provide information useful in analyzing a variation of esti-
mated analyte values for a patient that includes consideration
of the patient’s normal physiological patterns. Pattern recog-
nition enables the algorithmic analysis of analyte data to be
customized to a user, which is useful when analyte informa-
tion is variable with each individual user, such as has been
seen in glucose in humans, for example.

[0404] Insome embodiments, a variation of estimated ana-
lyte values is on clinical risk analysis. Estimated analyte
values can have higher clinical risk in certain ranges of ana-
lyte values, for example analyte values that are in a clinically
risky zone or analyte values that are changing at a clinically
risky rate of change. When a measured analyte value or an
estimated analyte value shows existing or approaching clini-
cal risk, it can be important to analyze the variation of esti-
mated analyte values in view of the clinical risk to the patient.
For example, in an effort to aid a person with diabetes in
avoiding clinically risky hyper- or hypoglycemia, a variation
can be weighted toward the clinically risk zone, which can be
used to emphasize the pending danger to the patient, doctor,
or care taker, for example. As another example, the variation
of measured or estimated analyte values can be based on
values that fall within the “A” and/or “B” regions of an error
grid Analysis Method.
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[0405] In case of variation analysis based on clinical risk,
the estimated analyte values are weighted in view of pending
clinical risk. For example, if estimated glucose values show a
trend toward hypoglycemia at a certain rate of change, a
variation of possible trends toward hypoglycemia are
weighted to show how quickly the glucose concentration
could reach 40 mg/dL, for example. As another example, if
estimated glucose values show a trend toward hyperglycemia
ata certain acceleration, a variation of possible trends toward
hyperglycemia are weighted to show how quickly the glucose
concentration could reach 200 mg/dL, for example.

[0406] In some embodiments, when a variation of the esti-
mated analyte values shows higher clinical risk as a possible
path within that variation analysis as compared to the esti-
mated analyte path, the estimated analyte values can be
adjusted to show the analyte values with the most clinical risk
to a patient. While not wishing to be bound by theory, adjust-
ing the estimated analyte values for the highest variation of
clinical risk exploits the belief that by showing the patient the
“worst case scenario,” the patient is more likely to address the
clinical risk and make timely behavioral and therapeutic
modifications and/or decisions that will slow or reverse the
approaching clinical risk.

[0407] At block 458, the variation of possible estimated
analyte values evaluation process 150 provides output based
on the variation analysis. In some embodiments, the result of
this variation analysis provides a “zone” of possible values,
which can be displayed to the user, considered in data analy-
sis, and/or used in evaluating of performance of the estima-
tion, for example.

[0408] FIG. 23 is a graph that illustrates variation analysis
of estimated glucose values in one embodiment, wherein a
variation of the estimated glucose values is analyzed and
determined based on known physiological parameters. The
x-axis represents time in minutes. The y-axis represents glu-
cose concentration in mg/dL. In this embodiment, the known
maximum rate of change and acceleration of glucose in
humans are used to provide the variation about the estimated
glucose path.

[0409] The measured glucose values 460 are shown for
about 90 minutes up to t=0. At t=0, intelligent and dynamic
estimation of the preferred embodiments is performed to
obtain estimated glucose values 462. A variation of estimated
glucose values is then determined based on physiological
parameters, including an upper limit 464 and a lower limit
466 of variation defined by known physiological parameters,
including rate of change and acceleration of glucose concen-
tration in humans.

[0410] FIG. 24 is a graph that illustrates variation of esti-
mated analyte values in another embodiment, wherein the
variation is based on statistical parameters. The x-axis repre-
sents time in minutes and the y-axis represents glucose con-
centration in mg/dl.. The measured glucose values 470 are
shown for about 160 minutes up to t=0. At t=0, intelligent and
dynamic estimation of the preferred embodiments is
employed to obtain estimated glucose values 472. A variation
is defined by upper and lower limits 474 that were determined
using 95% confidence intervals. Bremer, T.; Gough, D. A. “Is
blood glucose predictable from previous values? A solicita-
tion for data.” Diabetes 1999, 48, 445-451, which is incorpo-
rated by reference herein in its entirety, teaches a method of
determining a confidence interval in one embodiment.
[0411] Although some embodiments have been described
for a glucose sensor, any measured analyte pattern, data
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analysis resulting from an experiment, or otherwise known
statistical information, whether official or unofficial, pub-
lished or unpublished, proven or anecdotal, and the like, can
be used to provide the statistical variation described herein.

[0412] FIG.25is aflow chart thatillustrates the process 480
of estimating, measuring, and comparing analyte values in
one embodiment.

[0413] At block 482, the estimating, measuring, and com-
paring analyte values process 480 obtains sensor data, which
can be raw, smoothed, calibrated and/or otherwise processed.

[0414] At block 484, the estimating, measuring, and com-
paring analyte values process 480 estimates one or more
analyte values for a time period. In some embodiments, this
analyte values estimation uses conventional projection using
first or second order regression, for example. In some
embodiments, dynamically and intelligently selecting of one
or more algorithms from a plurality of algorithms, dynami-
cally and intelligently estimating analyte values within physi-
ological boundaries), dynamic and intelligent estimation and
evaluation of estimated analyte values, variation analysis
(e.g., such as described in co-pending U.S. Published Patent
Application 2005-0203360 to Brauker et al.), and the like can
be applied to the process described herein.

[0415] At block 486, the estimating, measuring, and com-
paring analyte values process 480 obtains sensor data for the
time period for which the estimated analyte values were cal-
culated at block 484. In some embodiments, the measured
analyte data can be raw, smoothed, calibrated, and/or other-
wise processed.

[0416] At block 488, the estimating, measuring, and com-
paring analyte values process 480 compares the estimated
analyte data to the measured analyte data for that estimated
time period. In general, it can be useful to compare the esti-
mated analyte data to the measured analyte data for that
estimated time period after estimation of analyte values. This
comparison can be performed continuously, namely, at regu-
lar intervals as data streams are processed into measured
analyte values. Alternatively, this comparison can be per-
formed based on events, such as during estimation of mea-
sured analyte values, selection of a estimative algorithm,
evaluation of estimative algorithms, variation analysis of esti-
mated analyte values, calibration and transformation of sen-
sor analyte data, and the like.

[0417] One embodiment is shown in FIG. 26, wherein
MARD is used to determine a correlation (or deviation), if
any, between the estimated and measured data sets. In other
embodiments, other methods, such as linear regression, non-
linear mapping/regression, rank (for example, non-paramet-
ric) correlation, least mean square fit, mean absolute devia-
tion (MAD), and the like, can be used to compare the
estimated analyte data to the measured analyte data to deter-
mine a correlation (or deviation), if any.

[0418] In one embodiment, wherein estimation is used in
outlier detection and/or in matching data pairs for a continu-
ous glucose sensor (see FIGS. 5 and 6), the estimated glucose
data canbe plotted against reference glucose dataon a clinical
error grid (for example, Clarke Error Grid or rate grid) and
then compared to the measured glucose data for that esti-
mated time period plotted against the same reference analyte
data on the same clinical error grid. In alternative embodi-
ments, other clinical error analysis methods can be used, such
as Consensus Error Grid, rate of change calculation, consen-
sus grid, and standard clinical acceptance tests, for example.
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The deviation can be quantified by percent deviation, or can
be classified as pass/fail, for example.

[0419] Insomeembodiments, the results ofthe comparison
provide a quantitative deviation value, which can be used to
provide a statistical variation; for example, if the % deviation
is calculated as 8%, then the statistical variation such as
described with reference to FIG. 22 can be updated with a
+/-8% wvariation. In some alternative embodiments, the
results of the comparison can be used to turn on/off the
estimative algorithms, estimative output, and the like. In gen-
eral, the comparison produces a confidence interval (for
example, +/-8% of estimated values) which can be used in
data analysis, output of data to a user, and the like.

[0420] A resulting deviation from this comparison between
estimated and corresponding measured analyte values may or
may not imply error in the estimative algorithms. While not
wishing to be bound by theory, it is believed that the deviation
between estimated and corresponding measured analyte val-
ues is due, at least in part, to behavioral changes by a patient,
who observes estimated analyte values and determines to
change the present trend of analyte values by behavioral
and/or therapeutic changes (for example, medication, carbo-
hydrate consumption, exercise, rest, and the like). Accord-
ingly, the deviation can also be used to illustrate positive
changes resulting from the educational aspect of providing
estimated analyte values to the user, for example.

[0421] FIG. 26 is a graph that illustrates comparison of
estimated analyte values in one embodiment, wherein previ-
ously estimated analyte values are compared to time corre-
sponding measured analyte values to determine a correlation
(or deviation), if any. The x-axis represents time in minutes.
The y-axis represents glucose concentration in mg/dL.. The
measured glucose values 492 are shown for about 105 min-
utes up to t=15. The estimated analyte values 494, which were
estimated at t=0 for 15 minutes, are shown superimposed over
the measured analyte values 492. Using a 3-point MARD for
t=0to t=15, the estimated analyte values 494 can be compared
with the measured analyte values 492 to determine a 0.55%
average deviation.

[0422] FIG. 27 provides a flow chart 520 that illustrates the
evaluation of reference and/or sensor data for statistical, clini-
cal, and/or physiological acceptability in one embodiment.
Although some acceptability tests are disclosed herein, any
known statistical, clinical, physiological standards and meth-
odologies can be applied to evaluate the acceptability of ref-
erence and sensor analyte data.

[0423] One cause for discrepancies in reference and sensor
data is a sensitivity drift that can occur over time, when a
sensor is inserted into a host and cellular invasion of the
sensor begins to block transport of the analyte to the sensor,
for example. Therefore, it can be advantageous to validate the
acceptability of converted sensor data against reference ana-
lyte data, to determine if a drift of sensitivity has occurred and
whether the calibration should be updated.

[0424] In one embodiment, the reference analyte data is
evaluated with respect to substantially time corresponding
converted sensor data to determine the acceptability of the
matched pair. For example, clinical acceptability considers a
deviation between time corresponding analyte measurements
(for example, data from a glucose sensor and data from a
reference glucose monitor) and the risk (for example, to the
decision making of a person with diabetes) associated with
that deviation based on the glucose value indicated by the
sensor and/or reference data. Evaluating the clinical accept-
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ability of reference and sensor analyte data, and controlling
the user interface dependent thereon, can minimize clinical
risk. Preferably, the receiver evaluates clinical acceptability
each time reference data is obtained.

[0425] After initial calibration, such as is described in more
detail with reference to FIG. 5, the sensor data receiving
module receives substantially continuous sensor data (e.g., a
data stream) via a receiver and converts that data into esti-
mated analyte values. As used herein, the term “substantially
continuous” is a broad term and is used in its ordinary sense,
without limitation, to refer to a data stream of individual
measurements taken at time intervals (e.g., time-spaced)
ranging from fractions of a second up to, e.g., 1, 2, or 5
minutes or more. As sensor data is continuously converted, it
can be occasionally recalibrated in response to changes in
sensor sensitivity (drift), for example. Initial calibration and
re-calibration of the sensor require a reference analyte value.
Accordingly, the receiver can receive reference analyte data
at any time for appropriate processing.

[0426] At block 522, the reference data receiving module,
also referred to as the reference input module, receives refer-
ence analyte data from a reference analyte monitor. In one
embodiment, the reference data comprises one analyte value
obtained from a reference monitor. In some alternative
embodiments however, the reference data includes a set of
analyte values entered by a user into the interface and aver-
aged by known methods, such as are described elsewhere
herein. In some alternative embodiments, the reference data
comprises a plurality of analyte values obtained from another
continuous analyte sensor.

[0427] The reference data can be pre-screened according to
environmental and physiological issues, such as time of day,
oxygen concentration, postural effects, and patient-entered
environmental data. In one exemplary embodiment, wherein
the sensor comprises an implantable glucose sensor, an oxy-
gen sensor within the glucose sensor is used to determine if
sufficient oxygen is being provided to successfully complete
the necessary enzyme and electrochemical reactions for accu-
rate glucose sensing. In another exemplary embodiment, the
patient is prompted to enter data into the user interface, such
as meal times and/or amount of exercise, which can be used to
determine likelihood of acceptable reference data. In yet
another exemplary embodiment, the reference data is
matched with time-corresponding sensor data, which is then
evaluated on a modified clinical error grid to determine its
clinical acceptability.

[0428] Some evaluation data, such as described in the para-
graph above, can be used to evaluate an optimum time for
reference analyte measurement. Correspondingly, the user
interface can then prompt the user to provide a reference data
point for calibration within a given time period. Conse-
quently, because the receiver proactively prompts the user
during optimum calibration times, the likelihood of error due
to environmental and physiological limitations can decrease
and consistency and acceptability of the calibration can
increase.

[0429] Atblock 524, the evaluation module, also referred to
as acceptability module, evaluates newly received reference
data. In one embodiment, the evaluation module evaluates the
clinical acceptability of newly received reference data and
time corresponding converted sensor data (new matched data
pair). In one embodiment, a clinical acceptability evaluation
module 524 matches the reference data with a substantially
time corresponding converted sensor value, and determines
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the Clarke Error Grid coordinates. In this embodiment,
matched pairs that fall within the A and B regions of the
Clarke Error Grid are considered clinically acceptable, while
matched pairs that fall within the C, D, and E regions of the
Clarke Error Grid are not considered clinically acceptable.
[0430] A variety of other known methods of evaluating
clinical acceptability can be utilized. In one alternative
embodiment, the Consensus Grid is used to evaluate the clini-
cal acceptability of reference and sensor data. In another
alternative embodiment, a mean absolute difference calcula-
tion can be used to evaluate the clinical acceptability of the
reference data. In another alternative embodiment, the clini-
cal acceptability can be evaluated using any relevant clinical
acceptability test, such as a known grid (e.g., Clarke Error or
Consensus), and additional parameters, such as time of day
and/or the increase or decreasing trend of the analyte concen-
tration. In another alternative embodiment, a rate of change
calculation can be used to evaluate clinical acceptability. In
yet another alternative embodiment, wherein the received
reference data is in substantially real time, the conversion
function could be used to predict an estimated glucose value
at a time corresponding to the time stamp of the reference
analyte value (this can be required due to a time lag of the
sensor data such as described elsewhere herein). Accordingly,
a threshold can be set for the predicted estimated glucose
value and the reference analyte value disparity, if any. In some
alternative embodiments, the reference data is evaluated for
physiological and/or statistical acceptability as described in
more detail elsewhere herein.

[0431] At decision block 526, results of the evaluation are
assessed. If acceptability is determined, then processing con-
tinues to block 528 to re-calculate the conversion function
using the new matched data pair in the calibration set.
[0432] At block 528, the conversion function module re-
creates the conversion function using the new matched data
pair associated with the newly received reference data. In one
embodiment, the conversion function module adds the newly
received reference data (e.g., including the matched sensor
data) into the calibration set, and recalculates the conversion
function accordingly. In alternative embodiments, the conver-
sion function module displaces the oldest, and/or least con-
cordant matched data pair from the calibration set, and recal-
culates the conversion function accordingly.

[0433] At block 530, the sensor data transformation mod-
ule uses the new conversion function (from block 528) to
continually (or intermittently) convert sensor data into esti-
mated analyte values, also referred to as calibrated data, or
converted sensor data, such as is described in more detail
above.

[0434] At block 532, an output module provides output to
the user via the user interface. The output is representative of
the estimated analyte value, which is determined by convert-
ing the sensor data into a meaningful analyte value. User
output can be in the form of a numeric estimated analyte
value, an indication of directional trend of analyte concentra-
tion, and/or a graphical representation of the estimated ana-
lyte data over a period of time, for example. Other represen-
tations of the estimated analyte values are also possible, for
example audio and tactile.

[0435] If, however, acceptability is determined at decision
block 526 as negative (unacceptable), then the processing
progresses to block 534 to adjust the calibration set. In one
embodiment of a calibration set adjustment, the conversion
function module removes one or more oldest matched data
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pair(s) and recalculates the conversion function accordingly.
In an alternative embodiment, the conversion function mod-
ule removes the least concordant matched data pair from the
calibration set, and recalculates the conversion function
accordingly.

[0436] At block 536, the conversion function module re-
creates the conversion function using the adjusted calibration
set. While not wishing to be bound by theory, it is believed
that removing the least concordant and/or oldest matched
data pair(s) from the calibration set can reduce or eliminate
the effects of sensor sensitivity drift over time, adjusting the
conversion function to better represent the current sensitivity
of the sensor.

[0437] At block 524, the evaluation module re-evaluates
the acceptability of newly received reference data with time
corresponding converted sensor data that has been converted
using the new conversion function (block 536). The flow
continues to decision block 538 to assess the results of the
evaluation, such as described with reference to decision block
526, above. If acceptability is determined, then processing
continues to block 530 to convert sensor data using the new
conversion function and continuously display calibrated sen-
sor data on the user interface.

[0438] If, however, acceptability is determined at decision
block 526 as negative, then the processing loops back to block
534 to adjust the calibration set once again. This process can
continue until the calibration set is no longer sufficient for
calibration, for example, when the calibration set includes
only one or no matched data pairs with which to create a
conversion function. In this situation, the system can return to
the initial calibration or start-up mode, which is described in
more detail with reference to FIGS. 16 and 19, for example.
Alternatively, the process can continue until inappropriate
matched data pairs have been sufficiently purged and accept-
ability is positively determined.

[0439] In alternative embodiments, the acceptability is
determined by a quality evaluation, for example, calibration
quality can be evaluated by determining the statistical asso-
ciation of data that forms the calibration set, which deter-
mines the confidence associated with the conversion function
used in calibration and conversion of raw sensor data into
estimated analyte values. See, e.g., U.S. Publication No.
US-2005-0027463-Al.

[0440] Alternatively, each matched data pair can be evalu-
ated based on clinical or statistical acceptability such as
described above; however, when a matched data pair does not
pass the evaluation criteria, the system can be configured to
ask for another matched data pair from the user. In this way, a
secondary check can be used to determine whether the error is
more likely due to the reference glucose value or to the sensor
value. If the second reference glucose value substantially
correlates to the first reference glucose value, it can be pre-
sumed that the reference glucose value is more accurate and
the sensor values are errant. Some reasons for errancy of the
sensor values include a shift in the baseline of the signal or
noise on the signal due to low oxygen, for example. In such
cases, the system can be configured to re-initiate calibration
using the secondary reference glucose value. If, however, the
reference glucose values do not substantially correlate, it can
be presumed that the sensor glucose values are more accurate
and the reference glucose values eliminated from the algo-
rithm.

[0441] FIG. 28 is a flow chart 550 that illustrates the evalu-
ation of calibrated sensor data for aberrant values in one
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embodiment. Although sensor data are typically accurate and
reliable, it can be advantageous to perform a self-diagnostic
check of the calibrated sensor data prior to displaying the
analyte data on the user interface.

[0442] One reason for anomalies in calibrated sensor data
includes transient events, such as local ischemia at the
implant site, which can temporarily cause erroneous readings
caused by insufficient oxygen to react with the analyte.
Accordingly, the flow chart 550 illustrates one self-diagnostic
check that can be used to catch erroneous data before display-
ing it to the user.

[0443] At block 552, a sensor data receiving module, also
referred to as the sensor data module, receives new sensor
data from the sensor.

[0444] At block 554, the sensor data transformation mod-
ule continuously (or intermittently) converts new sensor data
into estimated analyte values, also referred to as calibrated
data.

[0445] At block 556, a self-diagnostic module compares
the new calibrated sensor data with previous calibrated sensor
data, for example, the most recent calibrated sensor data
value. In comparing the new and previous sensor data, a
variety of parameters can be evaluated. In one embodiment,
the rate of change and/or acceleration (or deceleration) of
change of various analytes, which have known physiological
limits within the body, and sensor data can be evaluated
accordingly. For example, a limit can be set to determine if the
new sensor data is within a physiologically feasible range,
indicated by a rate of change from the previous data that is
within known physiological (and/or statistical) limits. Simi-
larly, any algorithm that predicts a future value of an analyte
can be used to predict and then compare an actual value to a
time corresponding predicted value to determine if the actual
value falls within a statistically and/or clinically acceptable
range based on the predictive algorithm, for example. In
certain embodiments, identifying a disparity between pre-
dicted and measured analyte data can be used to identity a
shift in signal baseline responsive to an evaluated difference
between the predicted data and time-corresponding measured
data. In some alternative embodiments, a shift in signal base-
line and/or sensitivity can be determined by monitoring a
change in the conversion function; namely, when a conver-
sion function is re-calculated using the equation y=mx+b, a
change in the values of m (sensitivity) or b (baseline) above a
pre-selected “normal” threshold, can be used to trigger a
fail-safe or further diagnostic evaluation.

[0446] Although the above-described self-diagnostics are
generally employed with calibrated sensor data, some alter-
native embodiments are contemplated that check for aber-
rancy of consecutive sensor values prior to sensor calibration,
for example, on the raw data stream and/or after filtering of
the raw data stream. In certain embodiments, an intermittent
or continuous signal-to-noise measurement can be evaluated
to determine aberrancy of sensor data responsive to a signal-
to-noise ratio above a set threshold. In certain embodiments,
signal residuals (e.g., by comparing raw and filtered data) can
be intermittently or continuously analyzed for noise above a
set threshold. In certain embodiments, pattern recognition
can be used to identify noise associated with physiological
conditions, such as low oxygen or other known signal aber-
rancies. Accordingly, in these embodiments, the system can
be configured, in response to aberrancies in the data stream, to
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trigger signal estimation, adaptively filter the data stream
according to the aberrancy, and the like, as described in more
detail herein.

[0447] Inanotherembodiment, reference analyte values are
processed to determine a level of confidence, wherein refer-
ence analyte values are compared to their time-corresponding
calibrated sensor values and evaluated for clinical or statisti-
cal accuracy. In yet another alternative embodiment, new and
previous reference analyte data are compared in place of or in
addition to sensor data. In general, there exist known patterns
and limitations of analyte values that can be used to diagnose
certain anomalies in raw or calibrated sensor and/or reference
analyte data.

[0448] At decision block 558, the system determines
whether the comparison returned aberrant values. In one
embodiment, the slope (rate of change) between the new and
previous sensor data is evaluated, wherein values greater than
+/-10, 15, 20, 25, or 30% or more change and/or +/-2, 3, 4, 5,
6 or more mg/dl./min, more preferably +/-4 mg/dl./min, rate
of change are considered aberrant. In certain embodiments,
other known physiological parameters can be used to deter-
mine aberrant values. However, a variety of comparisons and
limitations can be set.

[0449] At block 560, if the values are not found to be
aberrant, the sensor data transformation module continuously
(or intermittently) converts received new sensor data into
estimated analyte values, also referred to as calibrated data.

[0450] At block 562, if the values are found to be aberrant,
the system goes into a suspended mode, also referred to as
fail-safe mode in some embodiments, which is described in
more detail below with reference to FIG. 29. In general,
suspended mode suspends display of calibrated sensor data
and/or insertion of matched data pairs into the calibration set.
Preferably, the system remains in suspended mode until
received sensor data is not found to be aberrant. In certain
embodiments, a time limit or threshold for suspension is set,
after which system and/or user interaction can be required, for
example, requesting additional reference analyte data,
replacement of the electronics unit, and/or reset.

[0451] In some alternative embodiments, in response to a
positive determination of aberrant value(s), the system can be
configured to estimate one or more glucose values for the time
period during which aberrant values exist. Signal estimation
generally refers to filtering, data smoothing, augmenting,
projecting, and/or other methods for estimating glucose val-
ues based on historical data, for example. In one implemen-
tation of signal estimation, physiologically feasible values are
calculated based on the most recent glucose data, and the
aberrant values are replaced with the closest physiologically
feasible glucose values. See also U.S. Publication No.
US-2005-0027463-Al.

[0452] FIG. 29 provides a flow chart 580 that illustrates a
self-diagnostic of sensor data in one embodiment. Although
reference analyte values can useful for checking and calibrat-
ing sensor data, self-diagnostic capabilities of the sensor pro-
vide for a fail-safe for displaying sensor data with confidence
and enable minimal user interaction (for example, requiring
reference analyte values only as needed).

[0453] At block 582, a sensor data receiving module, also
referred to as the sensor data module, receives new sensor
data from the sensor.
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[0454] At block 584, the sensor data transformation mod-
ule continuously (or intermittently) converts received new
sensor data into estimated analyte values, also referred to as
calibrated data.

[0455] At block 586, a self-diagnostics module, also
referred to as a fail-safe module, performs one or more cal-
culations to determine the accuracy, reliability, and/or clinical
acceptability of the sensor data. Some examples of the self-
diagnostics module are described above, with reference block
556. The self-diagnostics module can be further configured to
run periodically (e.g., intermittently or in response to a trig-
ger), for example, on raw data, filtered data, calibrated data,
predicted data, and the like.

[0456] In certain embodiments, the self-diagnostics mod-
ule evaluates an amount of time since sensor insertion into the
host, wherein a threshold is set for the sensor’s usable life,
after which time period the sensor is considered to be unreli-
able. In certain embodiments, the self-diagnostics module
counts the number of times a failure or reset is required (for
example, how many times the system is forced into suspended
or start-up mode), wherein a count threshold is set for a
predetermined time period, above which the system is con-
sidered to be unreliable. In certain embodiments, the self-
diagnostics module compares newly received calibrated sen-
sor data with previously calibrated sensor data for aberrant
values, such as is described in more detail elsewhere herein.
In certain embodiments, the self-diagnostics module evalu-
ates clinical acceptability, such as is described in more detail
with reference to FIG. 28, above. In certain embodiments,
diagnostics, such as are described in U.S. Publication No.
US-2005-0161346-A1 and U.S. Publication No. US-2005-
0143635-A1, can be incorporated into the systems of pre-
ferred embodiments for system diagnosis, for example, for
identifying interfering species on the sensor signal and for
identifying drifts in baseline and sensitivity of the sensor
signal.

[0457] Atblock 588, a mode determination module, which
can be a part of the sensor evaluation module 524, determines
in which mode the sensor should be set (or remain). In some
embodiments, the system is programmed with three modes:
1) start-up mode; 2) normal mode; and 3) suspended mode.
Although three modes are described herein, the preferred
embodiments are limited to the number or types of modes
with which the system can be programmed. In some embodi-
ments, the system is defined as “in-cal” (in calibration) in
normal mode; otherwise, the system is defined as “out-of-cal’
(out of calibration) in start-up and suspended mode. The
terms as used herein are meant to describe the functionality
and are not limiting in their definitions.

[0458] Preferably, a start-up mode is provided, wherein the
start-up mode is set when the system determines that it can no
longer remain in suspended or normal mode (for example,
due to problems detected by the self-diagnostics module,
such as described in more detail above) and/or wherein the
system is notified that a new sensor has been inserted. Upon
initialization of start-up mode, the system ensures that any old
matched data pairs and/or calibration information is purged.
In start-up mode, the system initializes the calibration set,
such as described in more detail with reference to U.S. Pub-
lication No. 2006-0036142-A1. Once the calibration set has
been initialized, sensor data is ready for conversion and the
system is set to normal mode.

[0459] Preferably, a normal mode is provided, wherein the
normal mode is set when the system is accurately and reliably
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converting sensor data, for example, wherein clinical accept-
ability is positively determined, aberrant values are nega-
tively determined, and/or the self-diagnostics modules con-
firms reliability of data. In normal mode, the system
continuously (or intermittently) converts (calibrates) sensor
data. Additionally, reference analyte values received by the
system are matched with sensor data points and added to the
calibration set.

[0460] In certain embodiments, the calibration set is lim-
ited to a predetermined number of matched data pairs, after
which the systems purges old or less desirable matched data
pairs when a new matched data pair is added to the calibration
set. Less desirable matched data pairs can be determined by
inclusion criteria, which include one or more criteria that
define a set of matched data pairs that form a substantially
optimal calibration set.

[0461] One inclusion criterion comprises ensuring the time
stamp of the matched data pairs (that make up the calibration
set) span at least a preselected time period (e.g., three hours).
Another inclusion criterion comprises ensuring that the time
stamps of the matched data pairs are not more than a prese-
lected age (e.g., one week old). Another inclusion criterion
ensures that the matched pairs of the calibration set have a
substantially evenly distributed amount of high and low raw
sensor data points, estimated sensor analyte values, and/or
reference analyte values. Another criterion comprises ensur-
ing all raw sensor data, estimated sensor analyte values, and/
or reference analyte values are within a predetermined range
(e.g., 40 mg/dL to 400 mg/dL. for glucose values). Another
criterion comprises evaluating the rate of change of the ana-
lyte concentration (e.g., from sensor data) during the time
stamp of the matched pair(s). For example, sensor and refer-
ence data obtained during the time when the analyte concen-
tration is undergoing a slow rate of change can be less sus-
ceptible to inaccuracies caused by time lag and other
physiological and non-physiological effects. Another crite-
rion comprises evaluating the congruence of respective sen-
sor and reference data in each matched data pair; the matched
pairs with the most congruence can be chosen. Another cri-
terion comprises evaluating physiological changes (e.g., low
oxygen due to a user’s posture, position, or motion that can
cause pressure on the sensor and effect the function of a
subcutaneously implantable analyte sensor, or other effects)
to ascertain a likelihood of error in the sensor value. Evalua-
tion of calibration set criteria can comprise evaluating one,
some, or all of the above described inclusion criteria. It is
contemplated that additional embodiments can comprise
additional inclusion criteria not explicitly described herein.
[0462] Unfortunately, some circumstances can exist
wherein a system in normal mode can be changed to start-up
or suspended mode. In general, the system is programmed to
change to suspended mode when a failure of clinical accept-
ability, aberrant value check and/or other self-diagnostic
evaluation is determined, such as described in more detail
above, and wherein the system requires further processing to
determine whether a system re-start is required (e.g., start-up
mode). In general, the system will change to start-up mode
when the system is unable to resolve itself in suspended mode
and/or when the system detects a new sensor has been
inserted (e.g., via system trigger or user input).

[0463] Preferably, a suspended mode is provided wherein
the suspended mode is set when a failure of clinical accept-
ability, aberrant value check, and/or other self-diagnostic
evaluation determines unreliability of sensor data. In certain
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embodiments, the system enters suspended mode when a
predetermined time period passes without receiving a refer-
ence analyte value. In suspended mode, the calibration set is
not updated with new matched data pairs, and sensor data can
optionally be converted, but not displayed on the user inter-
face. The system can be changed to normal mode upon reso-
Iution of a problem (positive evaluation of sensor reliability
from the self-diagnostics module, for example). The system
can be changed to start-up mode when the system is unable to
resolve itself in suspended mode and/or when the system
detects a new sensor has been inserted (via system trigger or
user input).

[0464] The systems of preferred embodiments, including a
transcutaneous analyte sensor, mounting unit, electronics
unit, applicator, and receiver for inserting the sensor, and
measuring, processing, and displaying sensor data, provide
improved convenience and accuracy because of their
designed stability within the host’s tissue with minimum
invasive trauma, while providing a discreet and reliable data
processing and display, thereby increasing overall host com-
fort, confidence, safety, and convenience. Namely, the geo-
metric configuration, sizing, and material of the sensor of the
preferred embodiments enable the manufacture and use of an
atraumatic device for continuous measurement of analytes, in
contrast to conventional continuous glucose sensors available
to persons with diabetes, for example. Additionally, the sen-
sor systems of preferred embodiments provide a comfortable
and reliable system for inserting a sensor and measuring an
analyte level for up to 7 days or more without surgery. The
sensor systems of the preferred embodiments are designed for
host comfort, with chemical and mechanical stability that
provides measurement accuracy. Furthermore, the mounting
unit is designed with a miniaturized and reusable electronics
unit that maintains a low profile during use. The usable life of
the sensor can be extended by incorporation of a bioactive
agent into the sensor that provides local release of an anti-
inflammatory, for example, in order to slow the subcutaneous
foreign body response to the sensor.

[0465] After the usable life of the sensor (for example, due
to a predetermined expiration, potential infection, or level of
inflammation), the host can remove the sensor and mounting
from the skin, and dispose of the sensor and mounting unit
(preferably saving the electronics unit for reuse). Another
sensor system can be inserted with the reusable electronics
unit and thus provide continuous sensor output for long peri-
ods of time.

[0466] FIG.30is aflow chart 600 that illustrates the process
of detecting and processing signal artifacts in some embodi-
ments.

[0467] At block 602, a sensor data receiving module, also
referred to as the sensor data module, or processor module,
receives sensor data (e.g., a data stream), including one or
more time-spaced sensor data points. In some embodiments,
the data stream is stored in the sensor for additional process-
ing; in some alternative embodiments, the sensor periodically
transmits the data stream to the receiver, which can be in
wired or wireless communication with the sensor. In some
embodiments, raw and/or filtered data is stored in the sensor
and/or transmitted and stored in the receiver, as described in
more detail elsewhere herein.

[0468] At block 604, a signal artifacts detection module,
also referred to as the signal artifacts detector, or signal reli-
ability module, is programmed to detect transient non-glu-
cose related signal artifacts in the data stream, In some
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embodiments, the signal artifacts detector can comprise an
oxygen detector, a pH detector, a temperature detector, and/or
a pressure/stress detector, for example, the signal artifacts
detector 29 in FIG. 2. In some embodiments, the signal arti-
facts detector is located within the processor 22 (FIG. 2) and
utilizes existing components of the glucose sensor to detect
signal artifacts, for example by pulsed amperometric detec-
tion, counter electrode monitoring, reference electrode moni-
toring, and frequency content monitoring, which are
described elsewhere herein. In yet other embodiments, the
data can be sent from the sensor to the receiver which com-
prises programming in the processor 42 (FIG. 4) that per-
forms algorithms to detect signal artifacts, for example such
as described with reference to “Cone of Possibility Detec-
tion” method and/or by comparing raw data vs. filtered data,
both of which are described in more detail elsewhere herein.

[0469] In some exemplary embodiments, the processor
module in either the sensor electronics and/or the receiver
electronics evaluates an intermittent or continuous signal-to-
noise measurement to determine aberrancy of sensor data
responsive to a signal-to-noise ratio above a set threshold. In
some exemplary embodiments, signal residuals (e.g., by
comparing raw and filtered data) are intermittently or con-
tinuously analyzed for noise above a set threshold. In some
exemplary embodiments, pattern recognition can be used to
identify noise associated with physiological conditions, such
as low oxygen, or other known signal aberrancies. Accord-
ingly, in these embodiments, the system can be configured, in
response to aberrancies in the data stream, to trigger signal
estimation, adaptively filter the data stream according to the
aberrancy, and the like, as described in more detail elsewhere
herein.

[0470] Insome embodiments, one or more signal residuals
are obtained by comparing received data with filtered data,
whereby a signal artifact can be determined. In some embodi-
ments, a signal artifact event is determined to have occurred if
the residual is greater than a threshold. In some exemplary
embodiments, another signal artifact event is determined to
have occurred if the residual is greater than a second thresh-
old. In some exemplary embodiments, a signal artifact event
is determined to have occurred if the residual is greater than a
threshold for a period of time or amount of data. In some
exemplary embodiments, a signal artifact eventis determined
to have occurred if a predetermined number of signal residu-
als above a predetermined threshold occur within a predeter-
mined time period (or amount of data). In some exemplary
embodiments, an average of a plurality of residuals is evalu-
ated over a period of time or amount of data to determine
whether a signal artifact has occurred. The use of residuals for
noise detection can be preferred in circumstances where data
gaps (non-continuous) data exists.

[0471] In some exemplary embodiments, a differential,
also referred to as a derivative of the residual, is determined
by comparing a first residual (e.g., at a first time point) and a
second residual (e.g., at a second time point), wherein a signal
artifact event is determined to have occurred when the differ-
ential is above a predetermined threshold. In some exemplary
embodiments, a signal artifact event is determined to have
occurred if the differential is greater than a threshold for a
period of time or amount of data. In some exemplary embodi-
ments, an average of a plurality of differentials is calculated
over a period of time or amount of data to determine whether
a signal artifact has occurred.
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[0472] Numerous embodiments for detecting signal arti-
facts are described in more detail in the section entitled,
“Signal Artifacts Detection,” all of which are encompassed by
the signal artifacts detection at block 604.

[0473] Atblock 606, the processor module is configured to
process the sensor data based at least in part on whether the
signal artifact event has occurred.

[0474] In some embodiments, the sensor data is filtered in
the receiver processor to generate filtered data if the signal
artifact event is determined to have occurred; filtering can be
performed either on the raw data, or can be performed to
further filter received filtered data, or both.

[0475] Insomeembodiments, signal artifacts detection and
processing is utilized in outlier detection, such as described in
more detail elsewhere herein, wherein a disagreement
between time corresponding reference data and sensor data
can be analyzed, e.g., noise analysis data (e.g., signal artifacts
detection and signal processing) can be used to determine
which value is likely more reliable (e.g., whether the sensor
data and/or reference data can be used for processing). In
some exemplary embodiments wherein the processor module
receives reference data from a reference analyte monitor, a
reliability of the received data is determined based on signal
artifacts detection (e.g., if a signal artifact event is determined
to have occurred.) In some exemplary embodiments, a reli-
ability of the sensor data is determined based on signal arti-
facts detection (e.g., if the signal artifact event is determined
to have not occurred.) The term “reliability,” as used herein, is
a broad term and is used in its ordinary sense, including,
without limitation, a level of confidence in the data (e.g.,
sensor or reference data), for example, a positive or negative
reliance on the data (e.g., for calibration, display, and the like)
and/or a rating (e.g., of at least 60%, 70%, 80%, 90% or 100%
confidence thereon.)

[0476] Insomeembodiments wherein a matching data pair
is formed by matching reference data to substantially time
corresponding sensor data (e.g., for calibration and/or outlier
detection) described in more detail elsewhere herein, match-
ing of a data pair can be configured to occur based on signal
artifacts detection (e.g., only if a signal artifact event is deter-
mined to have not occurred.) In some embodiments wherein
the reference data is included in a calibration factor for use in
calibration of the glucose sensor as described in more detail
elsewhere herein, the reference data can be configured to be
included based on signal artifacts detection (e.g., only if the
signal artifact event is determined to have not occurred.) In
general, results of noise analysis (e.g., signal artifact detec-
tion and/or signal processing) can be used to determine when
to use or eliminate a matched pair for use in calibration (e.g.,
calibration set).

[0477] In some embodiments, a user is prompted for a
reference glucose value based on signal artifacts detection
(e.g., only if a signal artifact event is determined to have not
occurred.) While not wishing to be bound by theory, it is
believed certain more preferable times for calibration (e.g.,
not during noise episodes) can be detected and processed by
prompting the user for calibration during those times.
[0478] In some embodiments, results of noise analysis
(e.g., signal artifact detection and/or signal processing) can be
used to determine how to process the sensor data. For
example, different levels of signal processing and display
(e.g., raw data, integrated data, filtered data utilizing a first
filter, filtered data utilizing a second filter, which may be
“more aggressive” than the first filter by filtering over a larger
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time period, and the like.) Accordingly, the different levels of
signal processing and display can be selectively chosen
responsive to a reliability measurement, a positive or negative
determination of signal artifact, and/or signal artifacts above
first and second predetermined thresholds.

[0479] In some embodiments, results of noise analysis
(e.g., signal artifact detection and/or signal processing) can be
used to determine when to utilize and/or display different
representations of the sensor data (e.g., raw vs. filtered data),
when to turn filters on and/or off (e.g., processing and/or
display of certain smoothing algorithms), and/or when to
further process the sensor data (e.g., filtering and/or display-
ing). In some embodiments, the display of the sensor data is
dependent upon the determination of signal artifact(s). For
example, when a certain predetermined threshold of signal
artifacts have been detected (e.g., noisy sensor data), the
system is configured to modify or turn off a particular display
of the sensor data (e.g., display filtered data, display pro-
cessed data, disable display of sensor data, display range of
possible data values, display indication of direction of glu-
cose trend data, replace sensor data with predicted/estimated
sensor data, and/or display confidence interval representative
of'alevel of confidence in the sensor data.) In some exemplary
embodiments, a graphical representation of filtered sensor
data is displayed if the signal artifact event is determined to
have occurred. Alternatively, when a certain predetermined
threshold of signal artifacts has not been detected (e.g., mini-
mal, insignificant, or no noise in the data signal), the system
is configured to modify or turn on a particular display of the
sensor data (e.g., display unfiltered (e.g., raw or integrated)
data, a single data value, an indication of direction of glucose
trend data, predicted glucose data for a future time period
and/or a confidence interval representative of a level of con-
fidence in the sensor data.)

[0480] Insome embodiments wherein a residual (or differ-
ential) is determined as described in more detail elsewhere
herein, the residual (or differential) is used to modify the
filtered data during signal artifact event(s). In one such exem-
plary embodiment, the residual is measured and then added
back into the filtered signal. While not wishing to be bound by
theory, it is believed that some smoothing algorithms may
result in some loss of dynamic behavior representative of the
glucose concentration, which disadvantage may be reduced
or eliminated by the adding of the residual back into the
filtered signal in some circumstances.

[0481] Insome embodiments, the sensor data can be modi-
fied to compensate for atime lag, for example by predicting or
estimating an actual glucose concentration for a time period
considering a time lag associated with diffusion of the glu-
cose through the membrane, digital signal processing, and/or
algorithmically induced time lag, for example.

[0482] FIG. 31 is a graph that illustrates a raw data stream
from a glucose sensor for approximately 24 hours with a
filtered version of the same data stream superimposed on the
same graph. Additionally, this graph illustrates a noise epi-
sode, the beginning and end of which was detected by a noise
detection algorithm of the preferred embodiments, and dur-
ing which a particular filter was applied to the data. The x-axis
represents time in minutes; the y-axis represents the raw and
filtered data values in counts. In this example, the raw data
stream was obtained in 5 minute intervals from a transcuta-
neous glucose sensor such as described in more detail above,
with reference to FIG. 1B and in U.S. Publication No.
US-2006-00201087-A1.
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[0483] In section 608 of the data, which encompasses an
approximately 14 hour period up to time=2:22, the filtered
data was obtained by applying a 3-point moving average
window to the raw data. During that period, the noise detec-
tion algorithm was applied to detect a noise episode. In this
example, the algorithm included the following: calculating a
residual signal by subtracting the filtered data from the raw
data (e.g., for each 5-minute point); calculating a differential
by subtracting the residual for each 5-minute point from its
previous S-minute residual; determining if each differential
exceeds a threshold of 5000 counts (and declaring a noisy
point if s0); and determining whether 6 out of 12 points in the
past 1 hour exceed that threshold (and declaring a noise
episode if s0). Accordingly, a noise episode was declared at
time=2:22 and a more aggressive filter was applied as
described with reference to section 610.

[0484] Insection 610 of the data, also referred to as a noise
episode, which encompasses an approximately 52 hour
period up to time=7:57, the filtered data was obtained by
applying a 7-point moving average window to the raw data.
The 7-point moving average window was in this example was
an effective filter in smoothing out the noise in the data signal
as can be seen on the graph. During that period, an algorithm
was applied to detect when the noise episode had ended. In
this example, the algorithm included the following: calculat-
ing a residual signal by subtracting the filtered data (using the
3-point moving average filter described above) from the raw
data (e.g., for each 5-minute point); calculating a differential
of the residual by subtracting the residual for each 5-minute
point from its previous 5-minute residual; determining if each
differential exceeds a threshold of 5000 counts (and declaring
anoisy pointif'so); and determining whether less than 2 noisy
points had occurred in the past hour (and declaring the noise
episode over if so). Accordingly, the noise episode was
declared as over at time-7:57 and the less aggressive filter
(e.g., 3-point moving average) was again applied with the
noise detection algorithm as described with reference to sec-
tion 608, above.

[0485] Insection 612 ofthe data, which encompasses more
than 4 hours of data, the filtered data was obtained by apply-
ing a 3-point moving average window to the raw data. During
that period, the noise detection algorithm (described above)
did not detect a noise episode. Accordingly, raw or minimally
filtered data could be displayed to the patient during this time
period.

[0486] Itwas shown that the above-described example pro-
vided smoother glucose information during noise episodes,
by applying a more aggressive filter to smooth out the noise.
It is believed that when displayed, the smoother data will
avoid presenting potentially misleading or inaccurate infor-
mation to the user. Additionally, it was shown in the above-
described example that during non-noisy periods (when noise
episodes are not detected), raw or less aggressively filtered
data can be displayed to the user in order to provide more
accurate data with minimal or no associated filter-induced
time lag in the data. Furthermore, it is believed that proper
detection of noise episodes aids in determining proper times
for calibration, ensuring more accurate calibration than may
otherwise be possible.

[0487] In the above-described example, the criteria for the
onset & offset of noise episodes were different; for example,
the onset criteria included 6 out of 12 points in the past 1 hour
exceeding a threshold, while the offset criteria included less
than 2 noisy points in the past 1 hour. In this example, these
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different criteria were found to create smoother transitions in
the data between the raw and filtered data and avoided false
detections of noise episodes.

[0488] FIG. 32 is a flowchart 700 that illustrates a method
for processing data from a glucose sensor in certain embodi-
ments. In general, prior art systems display either real-time
sensor data (e.g., prospectively calibrated/analyzed) or his-
torical sensor data (e.g., retrospectively calibrated/analyzed).
Regarding real-time sensor data display, the sensor data is
typically prospectively processed (e.g., calibrated, smoothed,
etc) in substantially real-time by a predetermined algorithm,
wherein the real-time prospectively processed data are dis-
played periodically or substantially continuously based on
that prospective analysis. Regarding historical sensor data
display, the sensor data is typically retrospectively processed
(e.g., calibrated, smoothed, etc) after collection of an entire
sensor data set, wherein the historical retrospectively pro-
cessed data are displayed based on the retrospective analysis.
[0489] In contrast to the prior art, the preferred embodi-
ments describe systems and methods for periodically or sub-
stantially continuously post-processing (e.g., updating) the
substantially real-time graphical representation of glucose
data (e.g., trend graph representative of glucose concentration
over a previous number of minutes or hours) with processed
data, wherein the data has been processed responsive to detec-
tion of signal artifacts.

[0490] At block 702, a sensor data receiving module, also
referred to as the sensor data module, or processor module,
receives sensor data (e.g., a data stream), including one or
more time-spaced sensor data points. In some embodiments,
the data stream is stored in the sensor for additional process-
ing; in some alternative embodiments, the sensor periodically
transmits the data stream to the receiver, which can be in
wired or wireless communication with the sensor. In some
embodiments, raw and/or filtered data is stored in the sensor
and/or transmitted and stored in the receiver, as described in
more detail elsewhere herein.

[0491] At block 704, a signal artifacts detection module,
also referred to as the signal artifacts detector, or signal reli-
ability module, optionally detects transient non-glucose
related signal artifacts in the data stream, such as described in
more detail above with reference to block 604.

[0492] Atblock 706, the processor module is configured to
optionally process the sensor data based at least in part on
whether the signal artifact event has occurred, such as
described in more detail with reference to block 606 above.
[0493] At block 708, an output module, also referred to as
the processor module, provides output to the user via the user
interface. The output is representative of the estimated glu-
cose value, which is determined by converting the sensor data
into a meaningful glucose value such as described in more
detail elsewhere herein. User output can be in the form of a
numeric estimated glucose value, an indication of directional
trend of glucose concentration, and/or a graphical represen-
tation of the estimated glucose data over a period of time, for
example. Other representations of the estimated glucose val-
ues are also possible, for example audio and tactile. In some
embodiments, the output module displays both a “real-time”
glucose value (e.g., a number representative of the most
recently measure glucose concentration) and a graphical rep-
resentation of the post-processed sensor data, which is
described in more detail, below.

[0494] In one embodiment, such as shown in FIG. 3A, the
estimated glucose value is represented by a numeric value. In
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other exemplary embodiments, such as shown in FIGS. 3B to
3D, the user interface graphically represents the estimated
glucose data trend over predetermined a time period (e.g.,
one, three, and nine hours, respectively). In alternative
embodiments, other time periods can be represented. In some
embodiments, the measured analyte value is represented by a
numeric value. In alternative embodiments, other time peri-
ods can be represented. In alternative embodiments, pictures,
animation, charts, graphs, ranges of values, and numeric data
can be selectively displayed.

[0495] Atblock 710, the processor module is configured to
periodically or substantially continuously post-process (e.g.,
update) the displayed graphical representation of the data
corresponding to the time period according to the received
data. For example, the glucose trend information (e.g., for the
previous 1-, 3-, or 9-hour trend graphs shown in FIGS. 3B to
3D) can be updated to better represent actual glucose values
during signal artifacts. In some embodiments, the processor
module post-processes segments of data (e.g., 1-, 3-, or
9-hour trend graph data) every few seconds, minutes, hours,
days, or anywhere in between, and/or when requested by a
user (e.g., in responsive to a button-activation such as a
request for display of a 3-hour trend graph screen).

[0496] In general, post-processing includes the processing
performed by the processor module (e.g., within the hand-
held receiver unit) on “recent” sensor data (e.g., data that is
inclusive of time points within the past few minutes to few
hours) after its initial display of the sensor data and prior to
what is generally termed “retrospective analysis” in the art
(e.g., analysis that is typically accomplished retrospectively
at one time, in contrast to intermittently, periodically, or con-
tinuously, on an entire data set, such as for display of sensor
data for physician analysis). Post-processing can include pro-
gramming performed to recalibrate the sensor data (e.g., to
better match to reference values), fill in data gaps (e.g., data
eliminated due to noise or other problems), smooth out (filter)
sensor data, compensate for a time lag in the sensor data, and
the like, which is described in more detail, below. Preferably,
the post-processed data is displayed on a personal hand-held
unit (e.g., such as on the 1-, 3-, and 9-hour trend graphs of the
receiver of FIGS. 3A to 3D) in “real time” (e.g., inclusive of
recent data within the past few minutes or hours) and can be
updated (post-processed) automatically (e.g., periodically,
intermittently, or continuously) or selectively (e.g., respon-
sive to a request) when new or additional information is
available (e.g., new reference data, new sensor data, etc). In
some alternative embodiments, post-processing can be trig-
gered dependent upon the duration of a noise episode; for
example, data associated with noise events extending past
about 30 minutes can be processed and/or displayed difter-
ently than data during the initial 30 minutes of a noise epi-
sode.

[0497] Inone exemplary embodiment, the processor mod-
ule filters the data stream to recalculate data for a previous
time period and periodically or substantially continuously
displays a graphical representation of the recalculated data
for that time period (e.g., trend graph).

[0498] In another exemplary embodiment, the processor
module adjusts the data for a time lag (e.g., removes a time lag
induced by real-time filtering) from data for a previous time
period and displays a graphical representation of the time lag
adjusted data for that time period (e.g., trend graph).

[0499] In another exemplary embodiment, the processor
module algorithmically smoothes one or more sensor data
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points over a moving window (e.g., including time points
before and after the one or more sensor data points) for data
for a previous time period and displays a graphical represen-
tation of the updated, smoothed data for that time period (e.g.,
trend graph).

[0500] Although a few examples of post-processing are
described herein, one skilled in the art appreciates a variety of
data processing that can be applied to these systems and
methods, including any of the processing steps described in
more detail elsewhere herein.

[0501] Methods and devices that are suitable for use in
conjunction with aspects of the preferred embodiments are
disclosedinU.S. Pat. No. 4,994,167, U.S. Pat. No. 4,757,022,
U.S. Pat. No. 6,001,067; U.S. Pat. No. 6,741,877; U.S. Pat.
No. 6,702,857, U.S. Pat. No. 6,558,321; U.S. Pat. No. 6,931,
327; and U.S. Pat. No. 6,862,465.

[0502] Methods and devices that are suitable for use in
conjunction with aspects of the preferred embodiments are
disclosed in U.S. Publication No. US-2005-0176136-A1;
U.S. Publication No. US-2005-0251083-A1; U.S. Publica-
tion No. US-2005-0143635-A1; U.S. Publication No.
US-2005-0181012-A1; U.S. Publication No. US-2005-
0177036-A1; U.S. Publication No. US-2005-0124873-A1;
U.S. Publication No. US-2005-0051440-A1; U.S. Publica-
tion No. US-2005-0115832-A1; U.S. Publication No.
US-2005-0245799-A1; U.S. Publication No. US-2005-
0245795-A1; U.S. Publication No. US-2005-0242479-A1;
U.S. Publication No. US-2005-0182451-A1; U.S. Publica-
tion No. US-2005-0056552-A1; U.S. Publication No.
US-2005-0192557-A1; U.S. Publication No. US-2005-
0154271-A1; U.S. Publication No. US-2004-0199059-A1;
U.S. Publication No. US-2005-0054909-A1; U.S. Publica-
tion No. US-2005-0112169-A1; U.S. Publication No.
US-2005-0051427-A1; U.S. Publication No. US-2003-
0032874-A1; U.S. Publication No. US-2005-0103625-A1;
U.S. Publication No. US-2005-0203360-A1; U.S. Publica-
tion No. US-2005-0090607-A1; U.S. Publication No.
US-2005-0187720-A1; U.S. Publication No. US-2005-
0161346-A1; U.S. Publication No. US-2006-0015020-A1;
U.S. Publication No. US-2005-0043598-A1; U.S. Publica-
tion No. US-2003-0217966-A1; U.S. Publication No.
US-2005-0033132-A1; U.S. Publication No. US-2005-
0031689-A1; U.S. Publication No. US-2004-0045879-A1;
U.S. Publication No. US-2004-0186362-A1; U.S. Publica-
tion No. US-2005-0027463-A1; U.S. Publication No.
US-2005-0027181-A1; U.S. Publication No. US-2005-
0027180-A1; U.S. Publication No. US-2006-0020187-A1;
U.S. Publication No. US-2006-0036142-A1; U.S. Publica-
tion No. US-2006-0020192-A1; U.S. Publication No.
US-2006-0036143-A1; U.S. Publication No. US-2006-
0036140-A1; U.S. Publication No. US-2006-0019327-A1;
U.S. Publication No. US-2006-0020186-A1; U.S. Publica-
tion No. US-2006-0020189-A1; U.S. Publication No.
US-2006-0036139-A1; U.S. Publication No. US-2006-
0020191-A1; U.S. Publication No. US-2006-0020188-A1;
U.S. Publication No. US-2006-0036141-A1; U.S. Publica-
tion No. US-2006-0020190-A1; U.S. Publication No.
US-2006-0036145-A1; U.S. Publication No. US-2006-
0036144-A1; U.S. Publication No. US-2006-0016700-A1;
U.S. Publication No. US-2006-0142651-A1; U.S. Publica-
tion No. US-2006-0086624-A1; U.S. Publication No.
US-2006-0068208-A1; U.S. Publication No. US-2006-
0040402-A1; U.S. Publication No. US-2006-0036142-A1;
U.S. Publication No. US-2006-0036141-A1; U.S. Publica-
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tion No. US-2006-0036143-A1; U.S. Publication No.
US-2006-0036140-A1; U.S. Publication No. US-2006-
0036139-A1; U.S. Publication No. US-2006-0142651-A1;
U.S. Publication No. US-2006-0036145-A1; and U.S. Publi-
cation No. US-2006-0036144-A1.

[0503] Methods and devices that are suitable for use in
conjunction with aspects of the preferred embodiments are
disclosed in U.S. application Ser. No. 09/447,227 filed Nov.
22, 1999 and entitled “DEVICE AND METHOD FOR
DETERMINING ANALYTE LEVELS”; U.S. application
Ser. No. 11/335,879 filed Jan. 18, 2006 and entitled “CEL-
LULOSIC-BASED INTERFERENCE DOMAIN FOR AN
ANALYTE SENSOR”; U.S. application Ser. No. 11/334,876
filed Jan. 18, 2006 and entitled “TRANSCUTANEOUS
ANALYTE SENSOR”; U.S. application Ser. No. 11/333,837
filed Jan. 17, 2006 and entitled “LOW OXYGEN IN VIVO
ANALYTE SENSOR”.

[0504] Allreferences cited herein, including but not limited
to published and unpublished applications, patents, and lit-
erature references, are incorporated herein by reference in
their entirety and are hereby made a part of this specification.
To the extent publications and patents or patent applications
incorporated by reference contradict the disclosure contained
in the specification, the specification is intended to supersede
and/or take precedence over any such contradictory material.
[0505] The term “comprising” as used herein is synony-
mous with “including,” “containing,” or “characterized by,”
and is inclusive or open-ended and does not exclude addi-
tional, unrecited elements or method steps.

[0506] All numbers expressing quantities of ingredients,
reaction conditions, and so forth used in the specification are
to beunderstood as being modified in all instances by the term
“about”” Accordingly, unless indicated to the contrary, the
numerical parameters set forth herein are approximations that
may vary depending upon the desired properties sought to be
obtained. At the very least, and not as an attempt to limit the
application of the doctrine of equivalents to the scope of any
claims in any application claiming priority to the present
application, each numerical parameter should be construed in
light of the number of significant digits and ordinary rounding
approaches.

[0507] The above description discloses several methods
and materials of the present invention. This invention is sus-
ceptible to modifications in the methods and materials, as
well as alterations in the fabrication methods and equipment.
Such modifications will become apparent to those skilled in
the art from a consideration of this disclosure or practice of
the invention disclosed herein. Consequently, it is not
intended that this invention be limited to the specific embodi-
ments disclosed herein, but that it cover all modifications and
alternatives coming within the true scope and spirit of the
invention.

What is claimed is:
1. A method for processing data from a glucose sensor, the
method comprising:

receiving sensor data corresponding to a time period from
the glucose sensor, the sensor data representative of
glucose values of a host for the time period;

processing and displaying a graphical representation of the
sensor data on a hand-held unit; and

post-processing and re-displaying a graphical representa-
tion of the sensor data corresponding to the time period
on the handheld unit, whereby the post-processed and
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re-displayed graphical representation more closely rep-
resents the actual glucose values of the host for the time
period.

2. The method of claim 1, wherein post-processing is con-
ducted responsive to a request.

3. The method of claim 1, wherein post-processing is con-
ducted automatically.

4. The method of claim 1, further comprising determining
whether a signal artifact event has occurred, wherein the
post-processing is based at least in part upon whether the
signal artifact event has occurred.

5. The method of claim 4, wherein a signal artifact event is
determined to have occurred if a residual associated with the
sensor data exceeds a threshold value.

6. The method of claim 1, wherein the displaying com-
prises displaying calibrated sensor data, and wherein the post-
processing comprises re-calibrating the sensor data corre-
sponding to the time period, and wherein the re-displaying
comprises displaying a graphical representation of the recal-
culated sensor data corresponding to the time period.

7. The method of claim 1, wherein post-processing com-
prises filtering the data to recalculate data corresponding to
the time period.

8. The method of claim 1, wherein the post-processing
comprises recalculating the sensor data corresponding to the
time period, wherein a time lag induced by real-time filtering
is substantially removed from the sensor data corresponding
to the time period.

9. The method of claim 1, wherein post-processing the data
comprises algorithmically smoothing the sensor data over a
moving window, wherein the moving window comprises time
points before and after each sensor data point is obtained.

10. A system configured to process data from an analyte
sensor, the system comprising:

a data receiving module configured to receive sensor data
corresponding to a time period from the analyte sensor,
the sensor data representative of glucose values of a host
for the time period;

an output module configured to display a substantially
real-time numerical value corresponding to a most
recently received sensor data point and a graphical rep-
resentation of sensor data corresponding to the time
period; and
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a processor module configured to post-process the sensor
data corresponding to the time period, wherein the out-
put module is configured to re-display a graphical rep-
resentation of the post-processed sensor data corre-
sponding to the time period, whereby the graphical
representation of the post-processed sensor data more
closely represents the actual glucose values of the host
for the time period.

11. The system of claim 10, wherein processor module is
configured to post-process the displayed data responsive to a
request.

12. The system of claim 10, wherein processor module is
configured to post-process substantially automatically.

13. The system of claim 10, wherein the processor module
is configured to determine whether a signal artifact event has
occurred, wherein the post-processing is based at least in part
upon whether the signal artifact event has occurred.

14. The system of claim 13, wherein the processor module
is configured determining whether a signal artifact has
occurred by comparing the received data with filtered data to
obtain at least one residual, wherein a signal artifact event is
determined to have occurred if the residual is exceeds a
threshold value.

15. The system of claim 10, wherein the processor module
is configured to post-process the sensor data by filtering and
recalculate the data corresponding to the time period,
whereby the output module displays the graphical represen-
tation of the recalculated data corresponding to the time
period.

16. The system of claim 10, wherein the processor module
is configured to post-process the sensor data by recalculating
the sensor data corresponding to the time period, wherein a
time lag induced by real-time filtering is substantially
removed from the sensor data corresponding to the time
period, and wherein the output module is further configured
to display a graphical representation of the recalculated data
corresponding to the time period.

17. The system of claim 10, wherein processor module is
configured to post-process the sensor data by algorithmically
smoothing a plurality of sensor data points of the sensor data
over a moving window, wherein the moving window com-
prises time points before and after each smoothed data point
was obtained.



