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(57) ABSTRACT 

Systems and methods for minimizing or eliminating transient 
non-glucose related signal noise due to non-glucose rate lim 
iting phenomenon Such as interfering species, ischemia, pH 
changes, temperatures changes, known or unknown sources 
of mechanical, electrical and/or biochemical noise, and the 
like. The system monitors a data stream from a glucose sensor 
and detects signal artifacts that have higher amplitude than 
electronic or diffusion-related system noise. The system pro 
cesses some or the entire data stream continually or intermit 
tently based at least in part on whether the signal artifact event 
has occurred. 
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SYSTEMS AND METHODS FOR REPLACING 
SIGNAL ARTIFACTS IN A GLUCOSE SENSOR 

DATA STREAM 

RELATED APPLICATIONS 

0001. This application is a continuation of U.S. applica 
tion Ser. No. 1 1/498,410, filed Aug. 2, 2006, which is a 
continuation-in-part of U.S. application Ser. No. 10/648,849, 
filed Aug. 22, 2003, now U.S. Pat. No. 8,010,174. U.S. appli 
cation Ser. No. 1 1/498,410 is a continuation-in-part of U.S. 
application Ser. No. 11/007,920, filed Dec. 8, 2004, which 
claims the benefit of U.S. Provisional Application No. 
60/528,382 filed Dec. 9, 2003. U.S. application Ser. No. 
1 1/498,410 is a continuation-in-part of U.S. application Ser. 
No. 1 1/077,739, filed Mar. 10, 2005, which claims the benefit 
of U.S. Provisional Application No. 60/587,787 filed Jul. 13, 
2004; U.S. Provisional Application No. 60/587,800 filed Jul. 
13, 2004; U.S. Provisional Application No. 60/614,683 filed 
Sep. 30, 2004; and U.S. Provisional Application No. 60/614, 
764 filed Sep. 30, 2004. Each of the aforementioned applica 
tions is incorporated by reference herein in its entirety, and 
each is hereby expressly made a part of this specification. 

FIELD OF THE INVENTION 

0002 The present invention relates generally to systems 
and methods for processing data received from a glucose 
sensor. Particularly, the present invention relates to systems 
and methods for detecting and processing signal artifacts, 
including detecting, estimating, predicting, filtering, display 
ing, and otherwise minimizing the effects of signal artifacts in 
a glucose sensor data stream. 

BACKGROUND OF THE INVENTION 

0003 Diabetes mellitus is a disorder in which the pancreas 
cannot create Sufficient insulin (Type I or insulin dependent) 
and/or in which insulin is not effective (Type 2 or non-insulin 
dependent). In the diabetic state, the victim suffers from high 
blood Sugar, which causes an array of physiological derange 
ments (kidney failure, skin ulcers, or bleeding into the vitre 
ous of the eye) associated with the deterioration of small 
blood vessels. A hypoglycemic reaction (low blood Sugar) is 
induced by an inadvertent overdose of insulin, or after a 
normal dose of insulin or glucose-lowering agent accompa 
nied by extraordinary exercise or insufficient food intake. 
0004 Conventionally, a diabetic person carries a self 
monitoring blood glucose (SMBG) monitor, which typically 
comprises uncomfortable fingerpricking methods. Due to the 
lack of comfort and convenience, a diabetic will normally 
only measure his or her glucose level two to four times per 
day. Unfortunately, these time intervals are so far spread apart 
that the diabetic will likely find out too late, sometimes incur 
ring dangerous side effects, of a hyperglycemic or hypogly 
cemic condition. In fact, it is not only unlikely that a diabetic 
will take a timely SMBG value, but additionally the diabetic 
will not know if their blood glucose value is going up (higher) 
or down (lower) based on conventional methods. 
0005 Consequently, a variety of transdermal and implant 
able electrochemical sensors are being developed for continu 
ous detecting and/or quantifying blood glucose values. Many 
implantable glucose sensors suffer from complications 
within the body and provide only short-term and less-than 
accurate sensing of blood glucose. Similarly, transdermal 
sensors have run into problems in accurately sensing and 
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reporting back glucose values continuously over extended 
periods of time. Some efforts have been made to obtain blood 
glucose data from implantable devices and retrospectively 
determine blood glucose trends for analysis; however these 
efforts do not aid the diabetic in determining real-time blood 
glucose information. Some efforts have also been made to 
obtain blood glucose data from transdermal devices for pro 
spective data analysis, however similar problems have 
occurred. 
0006 Data streams from glucose sensors are known to 
have some amount of noise, caused by unwanted electronic 
and/or diffusion-related system noise that degrades the qual 
ity of the data stream. Some attempts have been made in 
conventional glucose sensors to Smooth the raw output data 
stream representative of the concentration of blood glucose in 
the sample, for example by Smoothing or filtering of Gauss 
ian, white, random, and/or other relatively low amplitude 
noise in order to improve the signal to noise ratio, and thus 
data output. 

SUMMARY OF THE INVENTION 

0007 Systems and methods are provided that accurately 
detect signal noise that is caused by Substantially non-glucose 
reaction rate-limiting phenomena, Such as interfering species, 
ischemia, pH changes, temperature changes, pressure, and 
stress, for example, which are referred to herein as signal 
artifacts or “noise episodes'. Detecting signal artifacts and 
processing the sensor databased on detection of signal arti 
facts provides accurate estimated glucose measurements to a 
diabetic patient so that they can proactively care for their 
condition to safely avoid hyperglycemic and hypoglycemic 
conditions. 
0008 Accordingly, in a first aspect, a method of analyzing 
data from an analyte sensor is provided, the method compris 
ing receiving data from the analyte sensor, the data compris 
ing at least one sensor data point; determining whether a 
signal artifact eventhas occurred; and processing the received 
data, wherein the processing is based at least in part upon 
whether the signal artifact event has occurred. 
0009. In an embodiment of the first aspect, the method 
further comprises filtering the received data to generate fil 
tered data. 
0010. In an embodiment of the first aspect, determining 
whether a signal artifact has occurred comprises comparing 
the received data with the filtered data to obtain at least one 
residual. 
0011. In an embodiment of the first aspect, a signal artifact 
event is determined to have occurred if the residual is exceeds 
a threshold value. 
0012. In an embodiment of the first aspect, the method 
further comprises determining whether another signal artifact 
event has occurred, wherein another signal artifact event has 
occurred if the residual exceeds a second threshold value. 
0013. In an embodiment of the first aspect, a signal artifact 
event is determined to have occurred if the residual is exceeds 
a threshold value for a predetermined period of time or for a 
predetermined amount of data. 
0014. In an embodiment of the first aspect, determining 
whethera signal artifact has occurred further comprises deter 
mining whether a predetermined number of residuals exceed 
a threshold over a predetermined period of time, or whether a 
predetermined amount of data exceeds a threshold. 
0015. In an embodiment of the first aspect, determining 
whether a signal artifact event has occurred further comprises 
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determining a differential between a first residual at a first 
time point and a second residual at a second time point. 
0016. In an embodiment of the first aspect, determining 
whether a signal artifact eventhas occurred further comprises 
determining whether a predetermined number of differentials 
exceed a threshold over a predetermined period of time, or 
whether an amount of data exceeds a threshold. 
0017. In an embodiment of the first aspect, the method 
further comprises receiving reference data from a reference 
analyte monitor, the reference data including at least one 
reference data point. 
0018. In an embodiment of the first aspect, processing the 
received data further comprises determining a reliability of 
the received data, wherein processing is conducted if the 
signal artifact event is determined to have not occurred. 
0019. In an embodiment of the first aspect, the method 
further comprises matching the reference data to Substantially 
time corresponding received data to form a matching data 
pair, wherein the reference data is matched if the signal arti 
fact event is determined to have not occurred. 
0020. In an embodiment of the first aspect, the method 
further comprises including the reference data in a calibration 
factor for use in calibrating the glucose sensor, wherein the 
reference data is included if the signal artifact event is deter 
mined to have not occurred. 
0021. In an embodiment of the first aspect, the method 
further comprises prompting a user for a reference glucose 
value, wherein prompting is conducted if the signal artifact 
event is determined to have not occurred. 
0022. In an embodiment of the first aspect, processing the 
received data comprises displaying agraphical representation 
of the received data. 
0023. In an embodiment of the first aspect, processing the 
received data comprises filtering the received data, wherein 
filtering is conducted if the signal artifact event is determined 
to have occurred. 
0024. In an embodiment of the first aspect, the method 
further comprises filtering the received data, wherein pro 
cessing the received data comprises displaying a graphical 
representation of the filtered data, wherein processing is con 
ducted if the signal artifact event is determined to have 
occurred. 
0025. In an embodiment of the first aspect, the method 
further comprises filtering the received data to generate fil 
tered data, wherein determining whether a signal artifact 
event has occurred further comprises comparing the received 
data with the filtered data to obtain a residual, and wherein 
processing the received data comprises utilizing the residual 
to modify the filtered data. 
0026. In an embodiment of the first aspect, the method 
further comprises filtering the received data to generate fil 
tered data, wherein determining whether a signal artifact 
event has occurred further comprises comparing the received 
data with the filtered data to obtain a residual and deriving a 
differential of the residual by calculating a first derivative of 
the residual, and wherein processing the received data com 
prises utilizing the differential to modify the filtered data. 
0027. In an embodiment of the first aspect, processing the 
received data comprises compensating for a time lag. 
0028. In an embodiment of the first aspect, processing the 
received data comprises displaying agraphical representation 
of the received data. 
0029. In an embodiment of the first aspect, the received 
data is an unfiltered digital signal. 
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0030. In an embodiment of the first aspect, processing the 
received data comprises disabling display of a graphical rep 
resentation of the received data, wherein processing is con 
ducted if the signal artifact event is determined to have 
occurred. 
0031. In an embodiment of the first aspect, processing the 
received data comprises displaying a range of glucose values, 
wherein processing is conducted if the signal artifact event is 
determined to have occurred. 
0032. In an embodiment of the first aspect, processing the 
received data comprises displaying a graphical indication of 
glucose trend, wherein processing is conducted if the signal 
artifact event is determined to have occurred. 
0033. In an embodiment of the first aspect, processing the 
received data comprises generating at least one estimated 
glucose value and displaying a graphical representation of the 
estimated glucose value, wherein processing is conducted if 
the signal artifact event is determined to have occurred. 
0034. In an embodiment of the first aspect, processing the 
received data comprises generating a confidence interval for 
at least one estimated glucose value and displaying a graphi 
cal representation of the confidence interval, wherein pro 
cessing is conducted if the signal artifact event is determined 
to have occurred. 
0035. In a second aspect, a method for processing data 
from a glucose sensor is provided, the method comprising 
receiving data from the glucose sensor, the received data 
comprising at least one sensor data point; displaying a graphi 
cal representation of the data corresponding to a time period; 
and post-processing the displayed graphical representation of 
the data corresponding to the time period. 
0036. In an embodiment of the second aspect, post-pro 
cessing is conducted periodically. 
0037. In an embodiment of the second aspect, post-pro 
cessing is conducted Substantially continuously. 
0038. In an embodiment of the second aspect, the method 
further comprises determining whether a signal artifact event 
has occurred and processing the received data prior to the 
displaying step, wherein the processing is based at least in 
part upon whether the signal artifact event has occurred. 
0039. In an embodiment of the second aspect, post-pro 
cessing comprises filtering the data to recalculate data corre 
sponding to the time period and displaying a graphical rep 
resentation of the recalculated data corresponding to the time 
period. 
0040. In an embodiment of the second aspect, the step of 
post-processing comprises recalculating data corresponding 
to the time period, wherein a time lag induced by real-time 
filteringis Substantially removed from the data corresponding 
to the time period; and displaying a graphical representation 
of the recalculated data corresponding to the time period. 
0041. In an embodiment of the second aspect, recalculat 
ing the data comprises algorithmically smoothing at least one 
sensor data point over a moving window, wherein the moving 
window comprises time points before and after the sensor 
data point is obtained. 
0042. In an embodiment of the second aspect, the method 
further comprises displaying a current glucose value repre 
sentative of the most recently obtained sensor data point. 
0043. In a third aspect, a system configured to process data 
from an analyte sensor is provided, the system comprising a 
data receiving module configured to receive sensor data from 
the analyte sensor, the data comprising at least one sensor data 
point; a signal artifacts module configured to detect a signal 
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artifact in the sensor data; and a processor module configured 
to process the sensor data, wherein processing is dependent at 
least in part upon whether the signal artifact is detected. 
0044. In an embodiment of the third aspect, the signal 
artifacts module is configured to compare raw sensor data 
with filtered sensor data to determine a residual. 
0045. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if the 
residual exceeds a threshold value. 
0046. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if a 
predetermined number of residuals exceed a threshold value 
for a predetermined period of time or for a predetermined 
amount of data. 
0047. In an embodiment of the third aspect, the signal 
artifacts module is configured to compare a first residual with 
a second signal residual to determine a differential. 
0048. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if the 
differential exceeds a threshold value. 

0049. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if a 
predetermined number of differentials exceed a threshold 
value for a predetermined period of time or for a predeter 
mined amount of data. 

0050. In an embodiment of the third aspect, the system 
further comprises a reference data module configured to 
receive reference data from a reference glucose monitor, the 
reference data comprising at least one reference data point. 
0051. In an embodiment of the third aspect, the signal 
artifacts module is configured to determine a reliability of the 
sensor data if the signal artifact is detected. 
0052. In an embodiment of the third aspect, the processor 
module is configured to format least one matched data pair by 
matching reference data to Substantially time corresponding 
sensor data. 

0053. In an embodiment of the third aspect, the processor 
module is configured to form a matching data pair if a signal 
artifact is not detected. 

0054. In an embodiment of the third aspect, the processor 
module is configured to utilize the reference data for calibrat 
ing the glucose sensor if a signal artifact is not detected. 
0055. In an embodiment of the third aspect, the processor 
module is configured to prompt a user for a reference glucose 
value if a signal artifact is not detected. 
0056. In an embodiment of the third aspect, the data 
receiving module is configured to receive raw sensor data. 
0057. In an embodiment of the third aspect, the raw sensor 
data comprises integrated digital data. 
0058. In an embodiment of the third aspect, the processor 
module is configured to display a graphical representation of 
the raw sensor data if a signal artifact is not detected. 
0059. In an embodiment of the third aspect, the data 
receiving module is configured to receive filtered sensor data. 
0060. In an embodiment of the third aspect, the processor 
module is configured to display a graphical representation of 
the filtered sensor data if a signal artifact is detected. 
0061. In an embodiment of the third aspect, the processor 
module is configured to filter the sensor data. 
0062. In an embodiment of the third aspect, the processor 
module is configured to display a graphical representation of 
the filtered sensor data if a signal artifact is detected. 
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0063. In an embodiment of the third aspect, the processor 
module is configured to not display the sensor data if a signal 
artifact is detected. 
0064. In an embodiment of the third aspect, the processor 
module is configured to display a range of glucose values if a 
signal artifact is detected. 
0065. In an embodiment of the third aspect, the processor 
module is configured to display a directional indicator of 
glucose trend if a signal artifact is detected. 
0066. In an embodiment of the third aspect, the processor 
module is configured to display at least one estimated glucose 
value if a signal artifact is detected. 
0067. In an embodiment of the third aspect, the processor 
module is configured to display a confidence interval for at 
least one estimated glucose value if a signal artifact is 
detected. 
0068. In a fourth aspect, a system configured to process 
data from an analyte sensor is provided, the system compris 
ing a data receiving module configured to receive sensor data 
from the analyte sensor, the data comprising at least one 
sensor data point; an output module configured to display a 
Substantially real-time numerical value corresponding to a 
most recently received sensor data point and a graphical rep 
resentation of sensor data corresponding to a time period; and 
a processor module configured to post-process the graphical 
representation of the data corresponding to the time period, 
wherein the output module is configured to display the post 
processed data. 
0069. In an embodiment of the fourth aspect, post-pro 
cessing is conducted periodically. 
0070. In an embodiment of the fourth aspect, post-pro 
cessing is conducted Substantially continuously. 
0071. In an embodiment of the fourth aspect, the processor 
module is configured to automatically post-process the 
graphical representation of the data corresponding to the time 
period. 
0072. In an embodiment of the fourth aspect, the processor 
module is configured to post-process the graphical represen 
tation of the data corresponding to the time period responsive 
to a request. 
0073. In an embodiment of the fourth aspect, the output 
module is configured to automatically display the post-pro 
cessed graphical representation of the data corresponding to 
the time period. 
0074. In an embodiment of the fourth aspect, the output 
module is configured to display the post-processed graphical 
representation of the data corresponding to the time period 
responsive to a request. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0075 FIG. 1A is an exploded perspective view of a glu 
cose sensor in one embodiment. 
0076 FIG. 1B is side view of a distal portion of a trans 
cutaneously inserted sensor in one embodiment. 
0077 FIG. 2 is a block diagram that illustrates sensor 
electronics in one embodiment. 
0078 FIGS. 3A to 3D are schematic views of a receiver in 

first, second, third, and fourth embodiments, respectively. 
007.9 FIG. 4A is a block diagram of receiver electronics in 
one embodiment. 
0080 FIG. 4B is an illustration of the receiver in one 
embodiment showing an analyte trend graph, including mea 
Sured analyte values, estimated analyte values, and a clinical 
risk Zone. 
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0081 FIG. 4C is an illustration of the receiver in another 
embodiment showing a representation of analyte concentra 
tion and directional trend using a gradient bar. 
I0082 FIG. 4D is an illustration of the receiver in yet 
another embodiment, including a screen that shows a numeri 
cal representation of the most recent measured analyte value. 
I0083 FIG. 5 is a flow chart that illustrates the process of 
calibrating the sensor data in one embodiment. 
0084 FIG. 6 is a graph that illustrates a linear regression 
used to calibrate the sensor data in one embodiment. 
0085 FIG. 7A is a graph that shows a raw data stream 
obtained from a glucose sensor over a 4 hour time span in one 
example. 
I0086 FIG. 7B is a graph that shows a raw data stream 
obtained from a glucose sensor over a 36 hour time span in 
another example. 
I0087 FIG. 8 is a flow chart that illustrates the process of 
detecting and replacing transient non-glucose related signal 
artifacts in a data stream in one embodiment. 

0088 FIG. 9 is a graph that illustrates the correlation 
between the counter electrode Voltage and signal artifacts in a 
data stream from a glucose sensor in one embodiment. 
0089 FIG. 10A is a circuit diagram of a potentiostat that 
controls a typical three-electrode system in one embodiment. 
0090 FIG. 10B is a diagram known as Cyclic-Voltamme 

try (CV) curve, which illustrates the relationship between 
applied potential (Vis) and signal strength of the working 
electrode (Isis) and can be used to detect signal artifacts. 
0091 FIG. 10C is a diagram showing a CV curve that 
illustrates an alternative embodiment of signal artifacts detec 
tion, wherein pH and/or temperature can be monitoring using 
the CV curve. 
0092 FIG. 11 is a graph and spectrogram that illustrate the 
correlation between high frequency and signal artifacts 
observed by monitoring the frequency content of a data 
stream in one embodiment. 

0093 FIG. 12 is a graph that illustrates a data stream 
obtained from a glucose sensor and a signal Smoothed by 
trimmed linear regression that can be used to replace Some of 
or the entire raw data stream in one embodiment. 

0094 FIG. 13 is a graph that illustrates a data stream 
obtained from a glucose sensor and a FIR-Smoothed data 
signal that can be used to replace Some of or the entire raw 
data stream in one embodiment. 

0095 FIG. 14 is a graph that illustrates a data stream 
obtained from a glucose sensor and an IIR-Smoothed data 
signal that can be used to replace Some of or the entire raw 
data stream in one embodiment. 

0096 FIG. 15 is a flowchart that illustrates the process of 
selectively applying signal estimation based on the severity of 
signal artifacts on a data stream. 
0097 FIG. 16 is a graph that illustrates selectively apply 
ing a signal estimation algorithm responsive to positive detec 
tion of signal artifacts on the raw data stream. 
0098 FIG. 17 is a graph that illustrates selectively apply 
ing a plurality of signal estimation algorithm factors respon 
sive to a severity of signal artifacts on the raw data stream. 
0099 FIG. 18 is a flow chart that illustrates dynamic and 
intelligent estimation algorithm selection process in an alter 
native embodiment. 
0100 FIG. 19 is a graph that illustrates dynamic and intel 
ligent estimation algorithm selection applied to a data stream 
in one embodiment. 
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0101 FIG. 20 is a flow chart that illustrates the process of 
dynamic and intelligent estimation and evaluation of analyte 
values in one embodiment. 
0102 FIG. 21 is a graph that illustrates an evaluation of the 
selected estimative algorithm in one embodiment. 
0103 FIG. 22 is a flow chart that illustrates the process of 
analyzing a variation of estimated future analyte value pos 
sibilities in one embodiment. 
0104 FIG. 23 is a graph that illustrates variation analysis 
of estimated glucose values in one embodiment. 
0105 FIG. 24 is a graph that illustrates variation of esti 
mated analyte values in another embodiment. 
0106 FIG. 25 is a flow chart that illustrates the process of 
estimating, measuring, and comparing analyte values in one 
embodiment. 
0107 FIG. 26 is a graph that illustrates comparison of 
estimated analyte values in one embodiment. 
(0.108 FIG. 27 provides a flow chart that illustrates the 
evaluation of reference and/or sensor data for statistical, clini 
cal, and/or physiological acceptability in one embodiment. 
0109 FIG. 28 is a flow chart that illustrates the evaluation 
of calibrated sensor data for aberrant values in one embodi 
ment. 

0110 FIG. 29 provides a flow chart that illustrates a self 
diagnostic of sensor data in one embodiment. 
0111 FIG. 30 is a flow chart that illustrates the process of 
detecting and processing signal artifacts in certain embodi 
mentS. 

0112 FIG. 31 is a graph that illustrates a raw data stream 
from a glucose sensor for approximately 24 hours with a 
filtered version of the same data stream Superimposed on the 
same graph. 
0113 FIG. 32 is a flowchart that illustrates a method for 
processing data from a glucose sensor in certain embodi 
mentS. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

0114. The following description and examples illustrate 
Some exemplary embodiments of the disclosed invention in 
detail. Those of skill in the art will recognize that there are 
numerous variations and modifications of this invention that 
are encompassed by its scope. Accordingly, the description of 
a certain exemplary embodiment should not be deemed to 
limit the scope of the present invention. 

DEFINITIONS 

0.115. In order to facilitate an understanding of the pre 
ferred embodiments, a number of terms are defined below. 
0116. The term “analyte' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to a Substance or chemical constituent in a 
biological fluid (for example, blood, interstitial fluid, cerebral 
spinal fluid, lymph fluid or urine) that can be analyzed. Ana 
lytes can include naturally occurring Substances, artificial 
Substances, metabolites, and/or reaction products. In some 
embodiments, the analyte for measurement by the sensor 
heads, devices, and methods is analyte. However, other ana 
lytes are contemplated as well, including but not limited to 
acarboxyprothrombin; acylcarnitine; adenine phosphoribo 
Syl transferase; adenosine deaminase; albumin; alpha-feto 
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protein; amino acid profiles (arginine (Krebs cycle), histi 
dinefurocanic acid, homocysteine, phenylalanine?tyrosine, 
tryptophan); andrenostenedione; antipyrine; arabinitol enan 
tiomers; arginase; benzoylecgonine (cocaine); biotinidase; 
biopterin, c-reactive protein; carnitine; carnosinase; CD4; 
ceruloplasmin, chenodeoxycholic acid; chloroquine; choles 
terol, cholinesterase; conjugated 1-3 hydroxy-cholic acid; 
cortisol; creatine kinase; creatine kinase MM isoenzyme; 
cyclosporin A; d-penicillamine; de-ethylchloroquine; dehy 
droepiandrosterone sulfate; DNA (acetylator polymorphism, 
alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, 
Duchenne/Becker muscular dystrophy, analyte-6-phosphate 
dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin 
C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, 
beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, 
Leber hereditary optic neuropathy, MCAD, RNA, PKU. Plas 
modium vivax, sexual differentiation, 21-deoxycortisol); 
desbutylhalofantrine; dihydropteridine reductase; diptheria/ 
tetanus antitoxin; erythrocyte arginase; erythrocyte protopor 
phyrin, esterase D; fatty acids/acylglycines; free B-human 
chorionic gonadotropin; free erythrocyte porphyrin; free thy 
roxine (FT4); free triiodothyronine (FT3); fumarylacetoac 
etase; galactose/gal-1-phosphate; galactose-1-phosphate 
uridyltransferase; gentamicin; analyte-6-phosphate dehydro 
genase; glutathione; glutathione perioxidase; glycocholic 
acid; glycosylated hemoglobin; halofantrine; hemoglobin 
variants; hexosaminidase A.; human erythrocyte carbonic 
anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine 
phosphoribosyltransferase; immunoreactive trypsin; lactate: 
lead; lipoproteins ((a), B/A-1, B); lysozyme; mefloquine; 
netilmicin; phenobarbitone; phenytoin: phytanic/pristanic 
acid; progesterone; prolactin; prolidase; purine nucleoside 
phosphorylase; quinine; reverse tri-iodothyronine (rT3); 
Selenium; serum pancreatic lipase; Sissomicin; Somatomedin 
C; specific antibodies (adenovirus, anti-nuclear antibody, 
anti-Zeta antibody, arbovirus, Aujeszky's disease virus, den 
gue virus, Dracunculus medimensis, Echinococcus granulo 
sus, Entamoeba histolytica, enterovirus, Giardia duodenal 
isa, Helicobacter pylori, hepatitis B virus, herpesvirus, HIV 
1, IgE (atopic disease), influenza virus, Leishmania 
donovani, leptospira, measles/mumps/rubella, Mycobacte 
rium leprae, Mycoplasma pneumoniae, Myoglobin, 
Onchocerca volvulus, parainfluenza virus, Plasmodium fall 
ciparum, poliovirus, Pseudomonas aeruginosa, respiratory 
syncytial virus, rickettsia (Scrub typhus), Schistosoma man 
soni, Toxoplasma gondii, Trepenoma pallidium, Trypano 
Soma Cruzi/rangeli, Vesicular stomatis virus, Wuchereria 
bancrofti, yellow fever virus); specific antigens (hepatitis B 
virus, HIV-1); succinylacetone; sulfadoxine; theophylline; 
thyrotropin (TSH); thyroxine (T4); thyroxine-binding globu 
lin; trace elements; transferrin; UDP-galactose-4-epimerase; 
urea; uroporphyrinogen I synthase; vitamin A; white blood 
cells; and Zinc protoporphyrin. Salts, Sugar, protein, fat, Vita 
mins, and hormones naturally occurring in blood or intersti 
tial fluids can also constitute analytes in certain embodiments. 
The analyte can be naturally present in the biological fluid, for 
example, a metabolic product, a hormone, an antigen, an 
antibody, and the like. Alternatively, the analyte can be intro 
duced into the body, for example, a contrast agent for imag 
ing, a radioisotope, a chemical agent, a fluorocarbon-based 
synthetic blood, or a drug or pharmaceutical composition, 
including but not limited to insulin; ethanol; cannabis (mari 
juana, tetrahydrocannabinol, hashish); inhalants (nitrous 
oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydro 
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carbons); cocaine (crack cocaine); stimulants (amphet 
amines, methamphetamines, Ritalin, Cylert, Preludin, 
Didrex, PreState, Voranil, Sandrex, Plegine); depressants 
(barbituates, methaqualone, tranquilizers such as Valium, 
Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens 
(phencyclidine, lysergic acid, mescaline, peyote, psilocybin); 
narcotics (heroin, codeine, morphine, opium, meperidine, 
Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, 
Lomotil); designer drugs (analogs of fentanyl, meperidine, 
amphetamines, methamphetamines, and phencyclidine, for 
example, Ecstasy); anabolic steroids; and nicotine. The meta 
bolic products of drugs and pharmaceutical compositions are 
also contemplated analytes. Analytes Such as neurochemicals 
and other chemicals generated within the body can also be 
analyzed, such as, for example, ascorbic acid, uric acid, 
dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4- 
Dihydroxyphenylacetic acid (DOPAC), Homovanillic acid 
(HVA), 5-Hydroxytryptamine (5HT), and 5-Hydroxyin 
doleacetic acid (FHIAA). 
0117. The term “EEPROM as used herein is abroad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to electrically erasable programmable read 
only memory, which is user-modifiable read-only memory 
(ROM) that can be erased and reprogrammed (e.g., writtento) 
repeatedly through the application of higher than normal 
electrical Voltage. 
0118. The term “SRAM as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to static random access memory (RAM) that 
retains data bits in its memory as long as power is being 
Supplied. 
0119 The term “ROM as used herein is a broad term and 

is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to read-only memory, which is a type of data storage 
device manufactured with fixed contents. ROM is broad 
enough to include EEPROM, for example, which is electri 
cally erasable programmable read-only memory (ROM). 
0.120. The term “RAM as used herein is a broad term and 
is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to a data storage device for which the order of access to 
different locations does not affect the speed of access. RAM 
is broad enough to include SRAM, for example, which is 
static random access memory that retains data bits in its 
memory as long as power is being Supplied. 
0121. The term “A/D Converter as used herein is a broad 
term and is to be given its ordinary and customary meaning to 
a person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to hardware and/or software that converts 
analog electrical signals into corresponding digital signals. 
0.122 The terms “microprocessor and “processor as 
used herein are broad terms and are to be given their ordinary 
and customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized meaning), 
and furthermore refer without limitation to a computer sys 
tem, state machine, and the like that performs arithmetic and 
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logic operations using logic circuitry that responds to and 
processes the basic instructions that drive a computer. 
0123. The term “RF transceiver as used herein is a broad 
term and is to be given its ordinary and customary meaning to 
a person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a radio frequency transmitter and/or 
receiver for transmitting and/or receiving signals. 
0.124. The term jitter as used herein is a broad term and 

is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to noise above and below the mean caused by ubiqui 
tous noise caused by a circuit and/or environmental effects; 
jitter can be seen in amplitude, phase timing, or the width of 
the signal pulse. 
0125. The terms "raw data stream” and “data stream’ as 
used herein are broad terms and are to be given their ordinary 
and customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized meaning), 
and furthermore refer without limitation to an analog or digi 
tal signal directly related to the measured glucose from the 
glucose sensor. In one example, the raw data stream is digital 
data in “counts’ converted by an A/D converter from an 
analog signal (e.g., Voltage oramps) and includes one or more 
data points representative of a glucose concentration. The 
terms broadly encompass a plurality of time spaced data 
points from a Substantially continuous glucose sensor, which 
comprises individual measurements taken at time intervals 
ranging from fractions of a second up to, e.g., 1, 2, or 5 
minutes or longer. In another example, the raw data stream 
includes an integrated digital value, wherein the data includes 
one or more data points representative of the glucose sensor 
signal averaged over a time period. 
0126 The term "calibration” as used herein is abroad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to the process of determining the relationship 
between the sensor data and the corresponding reference data, 
which can be used to convert sensor data into meaningful 
values Substantially equivalent to the reference data. In some 
embodiments, namely, in continuous analyte sensors, calibra 
tion can be updated or recalibrated over time as changes in the 
relationship between the sensor data and reference data occur, 
for example, due to changes in sensitivity, baseline, transport, 
metabolism, and the like. 
0127. The terms “calibrated data and “calibrated data 
stream” as used herein are broad terms and are to be given 
their ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limita 
tion to data that has been transformed from its raw state to 
another state using a function, for example a conversion func 
tion, to provide a meaningful value to a user. 
0128. The terms “smoothed data and “filtered data as 
used herein are broad terms and are to be given their ordinary 
and customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized meaning), 
and furthermore refer without limitation to data that has been 
modified to make it Smoother and more continuous and/or to 
remove or diminish outlying points, for example, by perform 
ing a moving average of the raw data stream. Examples of 
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data filters include FIR (finite impulse response), IIR (infinite 
impulse response), moving average filters, and the like. 
I0129. The terms “smoothing” and “filtering as used 
herein are broad terms and are to be given their ordinary and 
customary meaning to a person of ordinary skill in the art (and 
are not to be limited to a special or customized meaning), and 
furthermore refer without limitation to modification of a set 
of data to make it smoother and more continuous or to remove 
or diminish outlying points, for example, by performing a 
moving average of the raw data stream. 
0.130. The term “algorithm' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to a computational process (for example, pro 
grams) involved in transforming information from one state 
to another, for example, by using computer processing. 
I0131 The term “matched data pairs” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to reference data (for example, 
one or more reference analyte data points) matched with 
Substantially time corresponding sensor data (for example, 
one or more sensor data points). 
(0132. The term “counts” as used herein is abroad term and 
is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to a unit of measurement of a digital signal. In one 
example, a raw data stream measured in counts is directly 
related to a Voltage (e.g., converted by an A/D converter), 
which is directly related to current from the working elec 
trode. In another example, counter electrode Voltage mea 
Sured in counts is directly related to a Voltage. 
0133. The term “sensor' as used herein is abroad term and 
is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to the component or region of a device by which an 
analyte can be quantified. 
0.134. The term “needle' as used herein is abroad term and 
is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to a slender hollow instrument for introducing material 
into or removing material from the body. 
0.135 The terms “glucose sensor' and “member for deter 
mining the amount of glucose in a biological sample.” as used 
herein, are broad terms and are used in an ordinary sense, 
including, without limitation, any mechanism (e.g., enzy 
matic or non-enzymatic) by which glucose can be quantified. 
For example, some embodiments utilize a membrane that 
contains glucose oxidase that catalyzes the conversion of 
oxygen and glucose to hydrogen peroxide and gluconate, as 
illustrated by the following chemical reaction: 

Glucose--O->Gluconate+H2O2 

0.136 Because for each glucose molecule metabolized, 
there is a proportional change in the co-reactant O and the 
product H2O, one can use an electrode to monitor the current 
change in either the co-reactant or the product to determine 
glucose concentration. 
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0137 The terms “operably connected” and “operably 
linked as used herein are broad terms and are to be given 
their ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limita 
tion to one or more components being linked to another 
component(s) in a manner that allows transmission of signals 
between the components. For example, one or more elec 
trodes can be used to detect the amount of glucose in a sample 
and convert that information into a signal, e.g., an electrical or 
electromagnetic signal; the signal can then be transmitted to 
an electronic circuit. In this case, the electrode is "operably 
linked to the electronic circuitry. These terms are broad 
enough to include wireless connectivity. 
0.138. The term “electronic circuitry’ as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to the components of a device 
configured to process biological information obtained from a 
host. In the case of a glucose-measuring device, the biological 
information is obtained by a sensor regarding a particular 
glucose in a biological fluid, thereby providing data regarding 
the amount of that glucose in the fluid. U.S. Pat. Nos. 4,757, 
022, 5,497,772 and 4,787,398, which are hereby incorporated 
by reference, describe suitable electronic circuits that can be 
utilized with devices including the biointerface membrane of 
a preferred embodiment. 
0.139. The term “substantially’ as used herein is a broad 
term and is to be given its ordinary and customary meaning to 
a person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to being largely but not necessarily wholly 
that which is specified. 
0140. The term “proximal' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to near to a point of reference such as an origin, 
a point of attachment, or the midline of the body. For example, 
in Some embodiments of a glucose sensor, wherein the glu 
cose sensor is the point of reference, an oxygen sensor located 
proximal to the glucose sensor will be in contact with or 
nearby the glucose sensor Such that their respective local 
environments are shared (e.g., levels of glucose, oxygen, pH, 
temperature, etc. are similar). 
0141. The term “distal” as used herein is abroad term and 

is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to spaced relatively far from a point of reference. Such 
as an origin or a point of attachment, or midline of the body. 
For example, in some embodiments of a glucose sensor, 
wherein the glucose sensor is the point of reference, an oxy 
gen sensor located distal to the glucose sensor will be suffi 
ciently far from the glucose sensor Such their respective local 
environments are not shared (e.g., levels of glucose, oxygen, 
pH, temperature, etc. may not be similar). 
0142. The term “domain” as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to a region of the membrane system that can be 

Aug. 23, 2012 

a layer, a uniform or non-uniform gradient (for example, an 
anisotropic region of a membrane), or a portion of a mem 
brane. 
0143. The terms “in vivo portion” and “distal portion' as 
used herein are broad terms and are to be given their ordinary 
and customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized meaning), 
and furthermore refer without limitation to the portion of the 
device (for example, a sensor) adapted for insertion into and/ 
or existence within a living body of a host. 
0144. The terms "ex vivo portion' and “proximal portion' 
as used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary skill 
in the art (and are not to be limited to a special or customized 
meaning), and furthermore refer without limitation to the 
portion of the device (for example, a sensor) adapted to 
remain and/or exist outside of a living body of a host. 
(0145 The term “electrochemical cell as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to a device in which chemical 
energy is converted to electrical energy. Such a cell typically 
consists of two or more electrodes held apart from each other 
and in contact with an electrolyte solution. Connection of the 
electrodes to a source of direct electric current renders one of 
them negatively charged and the other positively charged. 
Positive ions in the electrolyte migrate to the negative elec 
trode (cathode) and there combine with one or more elec 
trons, losing part or all of their charge and becoming new ions 
having lower charge or neutral atoms or molecules; at the 
same time, negative ions migrate to the positive electrode 
(anode) and transfer one or more electrons to it, also becom 
ing new ions or neutral particles. The overall effect of the two 
processes is the transfer of electrons from the negative ions to 
the positive ions, a chemical reaction. 
0146 The term “potentiostat” as used herein is a broad 
term and is to be given its ordinary and customary meaning to 
a person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to an electrical system that controls the 
potential between the working and reference electrodes of a 
three-electrode cell at a preset value. It forces whatever cur 
rent is necessary to flow between the working and counter 
electrodes to keep the desired potential, as long as the needed 
cell Voltage and current do not exceed the compliance limits 
of the potentiostat. 
0147 The term “electrical potential as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to the electrical potential dif 
ference between two points in a circuit which is the cause of 
the flow of a current. 
0.148. The term “host’ as used herein is abroad term and is 
to be given its ordinary and customary meaning to a person of 
ordinary skill in the art (and is not to be limited to a special or 
customized meaning), and furthermore refers without limita 
tion to mammals, particularly humans. 
014.9 The term “continuous analyte (or glucose) sensor' 
as used herein is a broad term and is to be given its ordinary 
and customary meaning to a person of ordinary skill in the art 
(and is not to be limited to a special or customized meaning), 
and furthermore refers without limitation to a device that 
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continuously or continually measures a concentration of an 
analyte, for example, at time intervals ranging from fractions 
of a second up to, for example, 1, 2, or 5 minutes, or longer. In 
one exemplary embodiment, the continuous analyte sensor is 
a glucose sensor such as described in U.S. Pat. No. 6,001,067, 
which is incorporated herein by reference in its entirety. 
0150. The term “continuous analyte (or glucose) sensing 
as used herein is a broad term and is to be given its ordinary 
and customary meaning to a person of ordinary skill in the art 
(and is not to be limited to a special or customized meaning), 
and furthermore refers without limitation to the period in 
which monitoring of an analyte is continuously or continually 
performed, for example, at time intervals ranging from frac 
tions of a second up to, for example, 1, 2, or 5 minutes, or 
longer. 
0151. The terms “reference analyte monitor,” “reference 
analyte meter,” and “reference analyte sensor as used herein 
are broad terms and are to be given their ordinary and cus 
tomary meaning to a person of ordinary skill in the art (and are 
not to be limited to a special or customized meaning), and 
furthermore refer without limitation to a device that measures 
a concentration of an analyte and can be used as a reference 
for the continuous analyte sensor, for example a self-moni 
toring blood glucose meter (SMBG) can be used as a refer 
ence for a continuous glucose sensor for comparison, calibra 
tion, and the like. 
0152 The terms “sensor head' and “sensing region” as 
used herein are broad terms and are to be given their ordinary 
and customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized meaning), 
and furthermore refer without limitation to the region of a 
monitoring device responsible for the detection of a particular 
analyte. The sensing region generally comprises a non-con 
ductive body, a working electrode (anode), a reference elec 
trode (optional), and/or a counter electrode (cathode) passing 
through and secured within the body forming electrochemi 
cally reactive surfaces on the body and an electronic connec 
tive means at another location on the body, and a multi 
domain membrane affixed to the body and covering the 
electrochemically reactive Surface. 
0153. The term "electrochemically reactive surface' as 
used herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art (and 
is not to be limited to a special or customized meaning), and 
furthermore refers without limitation to the surface of an 
electrode where an electrochemical reaction takes place. In 
the case of the working electrode, the hydrogen peroxide 
produced by the enzyme catalyzed reaction of the glucose 
being detected reacts creating a measurable electronic current 
(e.g., detection of glucose utilizing glucose oxidase produces 
H2O as a by product, HO reacts with the surface of the 
working electrode producing two protons (2H), two elec 
trons (2e) and one molecule of oxygen (O) which produces 
the electronic current being detected). In the case of the 
counter electrode, a reducible species, e.g., O is reduced at 
the electrode surface in order to balance the current being 
generated by the working electrode. 
0154 The term “electronic connection” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to any electronic connection 
known to those in the art that can be utilized to interface the 
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sensor head electrodes with the electronic circuitry of a 
device such as mechanical (e.g., pin and Socket) or soldered. 
0155 The term “sensing membrane' as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to a permeable or semi-perme 
able membrane that can be comprised of two or more domains 
and is typically constructed of materials of a few microns 
thickness or more, which are permeable to oxygen and may or 
may not be permeable to glucose. In one example, the sensing 
membrane comprises an immobilized glucose oxidase 
enzyme, which enables an electrochemical reaction to occur 
to measure a concentration of glucose. 
0156 The term “biointerface membrane' as used herein is 
a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to a permeable membrane that 
can be comprised of two or more domains and is typically 
constructed of materials of a few microns thickness or more, 
which can be placed over the sensor body to keep host cells 
(e.g., macrophages) from gaining proximity to, and thereby 
damaging, the sensing membrane or forming a barrier cell 
layer and interfering with the transport of glucose across the 
tissue-device interface. 

0157. The term “Clarke Error Grid as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to an error grid analysis, which 
evaluates the clinical significance of the difference between a 
reference glucose value and a sensor generated glucose value, 
taking into account 1) the value of the reference glucose 
measurement, 2) the value of the sensor glucose measure 
ment, 3) the relative difference between the two values, and 4) 
the clinical significance of this difference. See Clarke et al., 
“Evaluating Clinical Accuracy of Systems for Self-Monitor 
ing of Blood Glucose.” Diabetes Care, Volume 10, Number 5, 
September-October 1987, which is incorporated by reference 
herein in its entirety. 
0158. The term “physiologically feasible” as used herein 

is a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to the physiological param 
eters obtained from continuous studies of glucose data in 
humans and/or animals. For example, a maximal Sustained 
rate of change of glucose in humans of about 4 to 5 mg/dL/ 
min and a maximum acceleration of the rate of change of 
about 0.1 to 0.2 mg/dL/min/min are deemed physiologically 
feasible limits. Values outside of these limits would be con 
sidered non-physiological and likely a result of signal error, 
for example. As another example, the rate of change of glu 
cose is lowest at the maxima and minima of the daily glucose 
range, which are the areas of greatest riskin patient treatment, 
thus a physiologically feasible rate of change can be set at the 
maxima and minima based on continuous studies of glucose 
data. As a further example, it has been observed that the best 
Solution for the shape of the curve at any point along glucose 
signal data stream over a certaintime period (e.g., about 20 to 
30 minutes) is a straight line, which can be used to set physi 
ological limits. 
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0159. The term “ischemia' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to local and temporary deficiency of blood 
Supply due to obstruction of circulation to apart (e.g., sensor). 
Ischemia can be caused by mechanical obstruction (e.g., arte 
rial narrowing or disruption) of the blood Supply, for example. 
0160 The term “system noise' as used herein is a broad 
term and is to be given its ordinary and customary meaning to 
a person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to unwanted electronic or diffusion-related 
noise which can include Gaussian, motion-related, flicker, 
kinetic, or other white noise, for example. 
0161 The terms “noise.” “noise event(s). “noise episode 

(s). 'signal artifact(s). 'signal artifact event(s), and “signal 
artifact episode(s) as used herein are broad terms and are to 
be given their ordinary and customary meaning to a person of 
ordinary skill in the art (and are not to be limited to a special 
or customized meaning), and furthermore refer without limi 
tation to signal noise that is caused by Substantially non 
glucose related. Such as interfering species, macro- or micro 
motion, ischemia, pH changes, temperature changes, 
pressure, stress, or even unknown sources of mechanical, 
electrical and/or biochemical noise for example. In some 
embodiments, signal artifacts are transient and characterized 
by a higher amplitude than system noise, and described as 
“transient non-glucose related signal artifact(s) that have a 
higher amplitude than system noise. In some embodiments, 
noise is caused by rate-limiting (or rate-increasing) phenom 
ena. In some circumstances, the source of the noise is 
unknown. 

0162 The terms “low noise' as used herein is abroad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to noise that Substantially decreases signal 
amplitude. 
0163 The terms “high noise' and “high spikes' as used 
herein are broad terms and are to be given their ordinary and 
customary meaning to a person of ordinary skill in the art (and 
are not to be limited to a special or customized meaning), and 
furthermore refer without limitation to noise that substan 
tially increases signal amplitude. 
0164. The term “frequency content as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to the spectral density, includ 
ing the frequencies contained within a signal and their power. 
0.165. The term “spectral density’ as used herein is a broad 
term and is to be given its ordinary and customary meaning to 
a person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to power spectral density of a given band 
width of electromagnetic radiation is the total power in this 
bandwidth divided by the specified bandwidth. Spectral den 
sity is usually expressed in Watts per Hertz (W/Hz). 
0166 The term “orthogonal transform as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to a general integral transform 
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that is defined by g(C) i? f(t)K(C,t)dt, where K(c.,t) repre 
sents a set of orthogonal basis functions. 
(0167. The term “Fourier Transform as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to a technique for expressing a 
waveform as a weighted Sum of sines and cosines. 
(0168 The term “Discrete Fourier Transform as used 
herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art (and 
is not to be limited to a special or customized meaning), and 
furthermore refers without limitation to a specialized Fourier 
transform where the variables are discrete. 

(0169. The term “wavelet transform as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to a transform which converts 
a signal into a series of wavelets, which in theory allows 
signals processed by the wavelet transform to be stored more 
efficiently than ones processed by Fourier transform. Wave 
lets can also be constructed with rough edges, to better 
approximate real-world signals. 
0170 The term "chronoamperometry” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to an electrochemical measur 
ing technique used for electrochemical analysis or for the 
determination of the kinetics and mechanism of electrode 
reactions. A fast-rising potential pulse is enforced on the 
working (or reference) electrode of an electrochemical cell 
and the current flowing through this electrode is measured as 
a function of time. 

0171 The term “pulsed amperometric detection” as used 
herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art (and 
is not to be limited to a special or customized meaning), and 
furthermore refers without limitation to an electrochemical 
flow cell and a controller, which applies the potentials and 
monitors current generated by the electrochemical reactions. 
The cell can include one or multiple working electrodes at 
different applied potentials. Multiple electrodes can be 
arranged so that they face the chromatographic flow indepen 
dently (parallel configuration), or sequentially (series con 
figuration). 
0172. The term “linear regression” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to finding a line in which a set 
of data has a minimal measurement from that line. Byprod 
ucts of this algorithm include a slope, a y-intercept, and an 
R-Squared value that determine how well the measurement 
data fits the line. 

0173 The term “non-linear regression” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to fitting a set of data to 
describe the relationship between a response variable and one 
or more explanatory variables in a non-linear fashion. 
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0174 The term “mean” as used herein is abroad term and 
is to be given its ordinary and customary meaning to a person 
of ordinary skill in the art (and is not to be limited to a special 
or customized meaning), and furthermore refers without limi 
tation to the sum of the observations divided by the number of 
observations. 

0175. The term “trimmed mean” as used herein is a broad 
term and is to be given its ordinary and customary meaning to 
a person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a mean taken after extreme values in the 
tails of a variable (e.g., highs and lows) are eliminated or 
reduced (e.g., “trimmed'). The trimmed mean compensates 
for sensitivities to extreme values by dropping a certain per 
centage of values on the tails. For example, the 50% trimmed 
mean is the mean of the values between the upper and lower 
quartiles. The 90% trimmed mean is the mean of the values 
after truncating the lowest and highest 5% of the values. In 
one example, two highest and two lowest measurements are 
removed from a data set and then the remaining measure 
ments are averaged. 
0176 The term “non-recursive filter as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to an equation that uses mov 
ing averages as inputs and outputs. 
(0177. The terms “recursive filter” and “auto-regressive 
algorithm' as used herein are broad terms and are to be given 
their ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limita 
tion to an equation in which includes previous averages are 
part of the next filtered output. More particularly, the genera 
tion of a series of observations whereby the value of each 
observation is partly dependent on the values of those that 
have immediately preceded it. One example is a regression 
structure in which lagged response values assume the role of 
the independent variables. 
0.178 The term “signal estimation algorithm factors’ as 
used herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art (and 
is not to be limited to a special or customized meaning), and 
furthermore refers without limitation to one or more algo 
rithms that use historical and/or present signal data stream 
values to estimate unknown signal data stream values. For 
example, signal estimation algorithm factors can include one 
or more algorithms, such as linear or non-linear regression. 
As another example, signal estimation algorithm factors can 
include one or more sets of coefficients that can be applied to 
one algorithm. 
0179 The term “variation” as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to a 
special or customized meaning), and furthermore refers with 
out limitation to a divergence or amount of change from a 
point, line, or set of data. In one embodiment, estimated 
analyte values can have a variation including a range of values 
outside of the estimated analyte values that represent a range 
of possibilities based on known physiological patterns, for 
example. 
0180. The terms “physiological parameters' and “physi 
ological boundaries' as used herein are broad terms and are to 
be given their ordinary and customary meaning to a person of 
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ordinary skill in the art (and are not to be limited to a special 
or customized meaning), and furthermore refer without limi 
tation to the parameters obtained from continuous studies of 
physiological data in humans and/or animals. For example, a 
maximal Sustained rate of change of glucose in humans of 
about 4 to 5 mg/dL/min and a maximum acceleration of the 
rate of change of about 0.1 to 0.2 mg/dL/min are deemed 
physiologically feasible limits; values outside of these limits 
would be considered non-physiological. As another example, 
the rate of change of glucose is lowest at the maxima and 
minima of the daily glucose range, which are the areas of 
greatest risk in patient treatment, thus a physiologically fea 
sible rate of change can be set at the maxima and minima 
based on continuous studies of glucose data. As a further 
example, it has been observed that the best solution for the 
shape of the curve at any point along glucose signal data 
stream over a certain time period (for example, about 20 to 30 
minutes) is a straight line, which can be used to set physi 
ological limits. These terms are broad enough to include 
physiological parameters for any analyte. 
0181. The term “measured analyte values” as used herein 

is a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to an analyte value or set of 
analyte values for a time period for which analyte data has 
been measured by an analyte sensor. The term is broad 
enough to include data from the analyte sensor before or after 
data processing in the sensor and/or receiver (for example, 
data Smoothing, calibration, and the like). 
0182. The term “estimated analyte values” as used herein 

is a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not to 
be limited to a special or customized meaning), and further 
more refers without limitation to an analyte value or set of 
analyte values, which have been algorithmically extrapolated 
from measured analyte values. Typically, estimated analyte 
values are estimated for a time period during which no data 
exists. However, estimated analyte values can also be esti 
mated during a time period for which measured data exists, 
but is to be replaced by algorithmically extrapolated (e.g. 
processed or filtered) data due to noise or a time lag in the 
measured data, for example. 
0183 The terms “interferants’ and “interfering species' 
as used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary skill 
in the art (and are not to be limited to a special or customized 
meaning), and furthermore refer without limitation to effects 
and/or species that interfere with the measurement of an 
analyte of interestina sensor to produce a signal that does not 
accurately represent the analyte concentration. In one 
example of an electrochemical sensor, interfering species are 
compounds with an oxidation potential that overlap that of the 
analyte to be measured, thereby producing a false positive 
signal. 
0.184 As employed herein, the following abbreviations 
apply: Eq and Eqs (equivalents); mEq (milliequivalents); M 
(molar); mM (millimolar) uM (micromolar); N (Normal); 
mol (moles); mmol (millimoles); umol (micromoles); nmol 
(nanomoles); g (grams); mg (milligrams); Lug (micrograms); 
Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); LL 
(microliters); cm (centimeters); mm (millimeters); um (mi 
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crometers); nm (nanometers); h and hr (hours); min. (min 
utes); S and Sec. (seconds); C. (degrees Centigrade). 

Overview 

0185. The preferred embodiments relate to the use of a 
glucose sensor that measures a concentration of glucose or a 
Substance indicative of the concentration or presence of the 
glucose. In some embodiments, the glucose sensor is a con 
tinuous device, for example a Subcutaneous, transdermal, or 
intravascular device. In some embodiments, the device can 
analyze a plurality of intermittent blood samples. The glucose 
sensor can use any method of glucose-measurement, includ 
ing enzymatic, chemical, physical, electrochemical, spectro 
photometric, polarimetric, calorimetric, iontophoretic, radio 
metric, and the like. 
0186 The glucose sensor can use any known method, 
including invasive, minimally invasive, and non-invasive 
sensing techniques, to provide a data stream indicative of the 
concentration of glucose in a host. The data stream is typically 
a raw data signal that is used to provide a useful value of 
glucose to a user. Such as a patient or doctor, who may be 
using the sensor. It is well known that raw data streams 
typically include system noise Such as defined herein; how 
ever the preferred embodiments address the detection and 
replacement of “signal artifacts” as defined herein. Accord 
ingly, appropriate signal estimation (e.g., filtering, data 
Smoothing, augmenting, projecting, and/or other methods) 
replace Such erroneous signals (e.g., signal artifacts) in the 
raw data stream. 

Glucose Sensor 

0187. The glucose sensor can be any device capable of 
measuring the concentration of glucose. One exemplary 
embodiment is described below, which utilizes an implant 
able glucose sensor. However, it should be understood that the 
devices and methods described herein can be applied to any 
device capable of detecting a concentration of glucose and 
providing an output signal that represents the concentration 
of glucose. 
0188 In one preferred embodiment, the analyte sensor is 
an implantable glucose sensor, such as described with refer 
ence to U.S. Pat. No. 6,001,067 and U.S. Publication No. 
US-2005-0027463-A1. In another preferredembodiment, the 
analyte sensor is a transcutaneous glucose sensor, such as 
described with reference to U.S. Publication No. US-2006 
0020187-A1. In one alternative embodiment, the continuous 
glucose sensor comprises a transcutaneous sensor Such as 
described in U.S. Pat. No. 6,565,509 to Say et al., for 
example. In another alternative embodiment, the continuous 
glucose sensor comprises a Subcutaneous sensor Such as 
described with reference to U.S. Pat. No. 6,579,690 to Bon 
necaze et al. or U.S. Pat. No. 6,484,046 to Say et al., for 
example. In another alternative embodiment, the continuous 
glucose sensor comprises a refillable Subcutaneous sensor 
such as described with reference to U.S. Pat. No. 6,512,939 to 
Colvin et al., for example. In another alternative embodiment, 
the continuous glucose sensor comprises an intravascular 
sensor such as described with reference to U.S. Pat. No. 
6,477.395 to Schulman et al., for example. In another alter 
native embodiment, the continuous glucose sensor comprises 
an intravascular sensor Such as described with reference to 
U.S. Pat. No. 6,424,847 to Mastrototaro et al. 
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0189 FIG. 1A is an exploded perspective view of one 
exemplary embodiment comprising an implantable glucose 
sensor 10 that utilizes amperometric electrochemical sensor 
technology to measure glucose concentration. In this exem 
plary embodiment, a body 12 and head 14 house the elec 
trodes 16 and sensor electronics, which are described in more 
detail below with reference to FIG. 2. Three electrodes 16 are 
operably connected to the sensor electronics (FIG. 2) and are 
covered by a sensing membrane 17 and a biointerface mem 
brane 18, which are attached by a clip 19. 
0190. In one embodiment, the three electrodes 16, which 
protrude through the head 14, include a platinum working 
electrode, a platinum counter electrode, and a silver/silver 
chloride reference electrode. The top ends of the electrodes 
are in contact with an electrolyte phase (not shown), which is 
a free-flowing fluid phase disposed between the sensing 
membrane 17 and the electrodes 16. The sensing membrane 
17 includes an enzyme, e.g., glucose oxidase, which covers 
the electrolyte phase. The biointerface membrane 18 covers 
the sensing membrane 17 and serves, at least in part, to protect 
the sensor 10 from external forces that can result in environ 
mental stress cracking of the sensing membrane 17. 
(0191 In the illustrated embodiment, the counter electrode 
is provided to balance the current generated by the species 
being measured at the working electrode. In the case of a 
glucose oxidase based glucose sensor, the species being mea 
sured at the working electrode is HO. Glucose oxidase 
catalyzes the conversion of oxygen and glucose to hydrogen 
peroxide and gluconate according to the following reaction: 

Glucose--O->Gluconate+H2O2 

(0192 The change in HO can be monitored to determine 
glucose concentration because for each glucose molecule 
metabolized, there is a proportional change in the product 
HO. Oxidation of HO, by the working electrode is bal 
anced by reduction of ambient oxygen, enzyme generated 
H2O, or other reducible species at the counter electrode. The 
H2O produced from the glucose oxidase reaction further 
reacts at the Surface of working electrode and produces two 
protons (2H), two electrons (2e), and one oxygen molecule 
(O). 
0193 FIG. 1B is side view of a distal portion of a trans 
cutaneously-inserted sensor 100 in one embodiment, show 
ing working and reference electrodes. In preferred embodi 
ments, the sensor 100 is formed from a working electrode 244 
and a reference electrode 246 helically wound around the 
working electrode 244. An insulator 245 is disposed between 
the working and reference electrodes to provide necessary 
electrical insulation therebetween. Certain portions of the 
electrodes are exposed to enable electrochemical reaction 
thereon, for example, a window 243 can be formed in the 
insulator to expose a portion of the working electrode 244 for 
electrochemical reaction. 

0194 In preferred embodiments, each electrode is formed 
from a fine wire with a diameter of from about 0.001 or less to 
about 0.010 inches or more, for example, and is formed from, 
e.g., a plated insulator, a plated wire, or bulk electrically 
conductive material. Although the illustrated electrode con 
figuration and associated text describe one preferred method 
of forming a transcutaneous sensor, a variety of known tran 
Scutaneous sensor configurations can be employed with the 
transcutaneous analyte sensor system of the preferred 
embodiments, such as are described in U.S. Pat. No. 6,695, 
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860 to Ward et al., U.S. Pat. No. 6,565,509 to Say et al., U.S. 
Pat. No. 6.248,067 to Causey III, et al., and U.S. Pat. No. 
6,514,718 to Heller et al. 
0.195. In preferred embodiments, the working electrode 
comprises a wire formed from a conductive material. Such as 
platinum, platinum-iridium, palladium, graphite, gold, car 
bon, conductive polymer, alloys, and the like. Although the 
electrodes can by formed by a variety of manufacturing tech 
niques (bulk metal processing, deposition of metal onto a 
Substrate, and the like), it can be advantageous to form the 
electrodes from plated wire (e.g., platinum on steel wire) or 
bulk metal (e.g., platinum wire). It is believed that electrodes 
formed from bulk metal wire provide superior performance 
(e.g., in contrast to deposited electrodes), including increased 
stability of assay, simplified manufacturability, resistance to 
contamination (e.g., which can be introduced in deposition 
processes), and improved surface reaction (e.g., due to purity 
of material) without peeling or delamination. 
0196. The working electrode 244 is configured to measure 
the concentration of an analyte. In an enzymatic electro 
chemical sensor for detecting glucose, for example, the work 
ing electrode measures the hydrogen peroxide produced by 
an enzyme catalyzed reaction of the analyte being detected 
and creates a measurable electronic current. For example, in 
the detection of glucose wherein glucose oxidase produces 
hydrogen peroxide as a byproduct, hydrogen peroxide reacts 
with the surface of the working electrode producing two 
protons (2H), two electrons (2e) and one molecule of oxy 
gen (O), which produces the electronic current being 
detected. 
0197) In preferred embodiments, the working electrode 
244 is covered with an insulating material 45, for example, a 
non-conductive polymer. Dip-coating, spray-coating, vapor 
deposition, or other coating or deposition techniques can be 
used to deposit the insulating material on the working elec 
trode. In one embodiment, the insulating material comprises 
parylene, which can be an advantageous polymer coating for 
its strength, lubricity, and electrical insulation properties. 
Generally, parylene is produced by vapor deposition and 
polymerization of para-xylylene (or its substituted deriva 
tives). However, any suitable insulating material can be used, 
for example, fluorinated polymers, polyethyleneterephtha 
late, polyurethane, polyimide, other nonconducting poly 
mers, and the like. Glass or ceramic materials can also be 
employed. Other materials suitable for use include surface 
energy modified coating systems such as are marketed under 
the trade names AMC18, AMC148, AMC141, and AMC321 
by Advanced Materials Components Express of Bellafonte, 
Pa. In some alternative embodiments, however, the working 
electrode may not require a coating of insulator. 
0198 The reference electrode 246, which can function as 
a reference electrode alone, or as a dual reference and counter 
electrode, is formed from silver, silver/silver chloride, and the 
like. Preferably, the reference electrode 246 is juxtaposi 
tioned and/or twisted with or around the working electrode 
244; however other configurations are also possible. In the 
illustrated embodiments, the reference electrode 246 is heli 
cally wound around the working electrode 244. The assembly 
of wires is then optionally coated or adhered together with an 
insulating material, similar to that described above, so as to 
provide an insulating attachment. 
0199. In embodiments wherein an outer insulator is dis 
posed, a portion of the coated assembly structure can be 
stripped or otherwise removed, for example, by hand, exci 
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mer lasing, chemical etching, laser ablation, grit-blasting 
(e.g., with sodium bicarbonate or other Suitable grit), and the 
like, to expose the electroactive Surfaces. Alternatively, a 
portion of the electrode can be masked prior to depositing the 
insulator in order to maintain an exposed electroactive Sur 
face area. In one exemplary embodiment, grit blasting is 
implemented to expose the electroactive surfaces, preferably 
utilizing a grit material that is sufficiently hard to ablate the 
polymer material, while being sufficiently soft So as to mini 
mize or avoid damage to the underlying metal electrode (e.g., 
a platinum electrode). Although a variety of “grit” materials 
can be used (e.g., Sand, talc, walnut shell, ground plastic, sea 
salt, and the like), in Some preferred embodiments, sodium 
bicarbonate is an advantageous grit-material because it is 
Sufficiently hard to ablate, e.g., a parylene coating without 
damaging, e.g., an underlying platinum conductor. One addi 
tional advantage of sodium bicarbonate blasting includes its 
polishing action on the metal as it strips the polymer layer, 
thereby eliminating a cleaning step that might otherwise be 
necessary. 

0200. In the embodiment illustrated in FIG. 1B, a radial 
window 243 is formed through the insulating material 245 to 
expose a circumferential electroactive surface of the working 
electrode. Additionally, sections 241 of electroactive surface 
of the reference electrode are exposed. For example, the 241 
sections of electroactive Surface can be masked during depo 
sition of an outer insulating layer oretched after deposition of 
an outer insulating layer. 
0201 In some applications, cellular attack or migration of 
cells to the sensor can cause reduced sensitivity and/or func 
tion of the device, particularly after the first day of implanta 
tion. However, when the exposed electroactive surface is 
distributed circumferentially about the sensor (e.g., as in a 
radial window), the available surface area for reaction can be 
sufficiently distributed so as to minimize the effect of local 
cellular invasion of the sensor on the sensor signal. Alterna 
tively, a tangential exposed electroactive window can be 
formed, for example, by Stripping only one side of the coated 
assembly structure. In other alternative embodiments, the 
window can be provided at the tip of the coated assembly 
structure Such that the electroactive surfaces are exposed at 
the tip of the sensor. Other methods and configurations for 
exposing electroactive Surfaces can also be employed. 
0202 In some embodiments, the working electrode has a 
diameter of from about 0.001 inches or less to about 0.010 
inches or more, preferably from about 0.002 inches to about 
0.008 inches, and more preferably from about 0.004 inches to 
about 0.005 inches. The length of the window can be from 
about 0.1 mm (about 0.004 inches) or less to about 2 mm 
(about 0.078 inches) or more, and preferably from about 0.5 
mm (about 0.02 inches) to about 0.75 mm (0.03 inches). In 
Such embodiments, the exposed surface area of the working 
electrode is preferably from about 0.000013 in (0.0000839 
cm) or less to about 0.0025 in (0.016129 cm) or more 
(assuming a diameter of from about 0.001 inches to about 
0.010 inches and a length of from about 0.004 inches to about 
0.078 inches). The preferred exposed surface area of the 
working electrode is selected to produce an analyte signal 
with a current in the pico Amp range, Such as is described in 
more detail elsewhere herein. However, a current in the pico 
Amp range can be dependent upon a variety of factors, for 
example the electronic circuitry design (e.g., Sample rate, 
current draw, A/D converter bit resolution, etc.), the mem 
brane system (e.g., permeability of the analyte through the 
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membrane system), and the exposed surface area of the work 
ing electrode. Accordingly, the exposed electroactive work 
ing electrode surface area can be selected to have a value 
greater than or less than the above-described ranges taking 
into consideration alterations in the membrane system and/or 
electronic circuitry. In preferred embodiments of a glucose 
sensor, it can be advantageous to minimize the Surface area of 
the working electrode while maximizing the diffusivity of 
glucose in order to optimize the signal-to-noise ratio while 
maintaining sensor performance in both high and low glucose 
concentration ranges. 
0203. In some alternative embodiments, the exposed sur 
face area of the working (and/or other) electrode can be 
increased by altering the cross-section of the electrode itself. 
For example, in Some embodiments the cross-section of the 
working electrode can be defined by a cross, star, cloverleaf. 
ribbed, dimpled, ridged, irregular, or other non-circular con 
figuration; thus, for any predetermined length of electrode, a 
specific increased surface area can be achieved (as compared 
to the area achieved by a circular cross-section). Increasing 
the Surface area of the working electrode can be advantageous 
in providing an increased signal responsive to the analyte 
concentration, which in turn can be helpful in improving the 
signal-to-noise ratio, for example. 
0204. In some alternative embodiments, additional elec 
trodes can be included within the assembly, for example, a 
three-electrode system (working, reference, and counter elec 
trodes) and/or an additional working electrode (e.g., an elec 
trode which can be used to generate oxygen, which is config 
ured as a baseline Subtracting electrode, or which is 
configured for measuring additional analytes). U.S. Publica 
tion No. US-2005-0161346-A1 and U.S. Publication No. 
US-2005-0143635-A1 describe some systems and methods 
for implementing and using additional working, counter, and/ 
or reference electrodes. In one implementation wherein the 
sensor comprises two working electrodes, the two working 
electrodes are juxtapositioned (e.g., extend parallel to each 
other), around which the reference electrode is disposed (e.g., 
helically wound). In some embodiments wherein two or more 
working electrodes are provided, the working electrodes can 
beformed in a double-, triple-, quad-, etc. helix configuration 
along the length of the sensor (for example, Surrounding a 
reference electrode, insulated rod, or other Support structure). 
The resulting electrode system can be configured with an 
appropriate membrane system, wherein the first working 
electrode is configured to measure a first signal comprising 
glucose and baseline and the additional working electrode is 
configured to measure a baseline signal consisting of baseline 
only (e.g., configured to be substantially similar to the first 
working electrode without an enzyme disposed thereon). In 
this way, the baseline signal can be subtracted from the first 
signal to produce a glucose-only signal that is Substantially 
not subject to fluctuations in the baseline and/or interfering 
species on the signal. 
0205 Although the preferred embodiments illustrate one 
electrode configuration including one bulk metal wire heli 
cally wound around another bulk metal wire, other electrode 
configurations are also contemplated. In an alternative 
embodiment, the working electrode comprises a tube with a 
reference electrode disposed or coiled inside, including an 
insulator therebetween. Alternatively, the reference electrode 
comprises a tube with a working electrode disposed or coiled 
inside, including an insulator therebetween. In another alter 
native embodiment, a polymer (e.g., insulating) rod is pro 
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vided, wherein the electrodes are deposited (e.g., electro 
plated) thereon. In yet another alternative embodiment, a 
metallic (e.g., Steel) rod is provided, coated with an insulating 
material, onto which the working and reference electrodes are 
deposited. In yet another alternative embodiment, one or 
more working electrodes are helically wound around a refer 
ence electrode. 

0206 Preferably, the electrodes and membrane systems of 
the preferred embodiments are coaxially formed, namely, the 
electrodes and/or membrane system all share the same central 
axis. While not wishing to be bound by theory, it is believed 
that a coaxial design of the sensor enables a symmetrical 
design without a preferred bend radius. Namely, in contrast to 
prior art sensors comprising a Substantially planar configura 
tion that can Suffer from regular bending about the plane of 
the sensor, the coaxial design of the preferred embodiments 
do not have a preferred bend radius and therefore are not 
Subject to regular bending about a particular plane (which can 
cause fatigue failures and the like). However, non-coaxial 
sensors can be implemented with the sensor System of the 
preferred embodiments. 
0207. In addition to the above-described advantages, the 
coaxial sensor design of the preferred embodiments enables 
the diameter of the connecting end of the sensor (proximal 
portion) to be substantially the same as that of the sensing end 
(distal portion) such that the needle is able to insert the sensor 
into the host and Subsequently slide back over the sensor and 
release the sensor from the needle, without slots or other 
complex multi-component designs. 
0208. In one such alternative embodiment, the two wires 
of the sensor are held apart and configured for insertion into 
the host in proximal but separate locations. The separation of 
the working and reference electrodes in Such an embodiment 
can provide additional electrochemical stability with simpli 
fied manufacture and electrical connectivity. It is appreciated 
by one skilled in the art that a variety of electrode configura 
tions can be implemented with the preferred embodiments. 
0209 Preferably, a membrane system is deposited over the 
electroactive surfaces of the sensor 100 and includes a plu 
rality of domains or layers. The membrane system may be 
deposited on the exposed electroactive surfaces using known 
thin film techniques (for example, spraying, electro-deposit 
ing, dipping, and the like). In one exemplary embodiment, 
each domain is deposited by dipping the sensor into a solution 
and drawing out the sensor at a speed that provides the appro 
priate domain thickness. In general, the membrane system 
may be disposed over (deposited on) the electroactive Sur 
faces using methods appreciated by one skilled in the art. 
0210. In one exemplary embodiment, the sensor is an 
enzyme-based electrochemical sensor, wherein the glucose 
measuring working electrode measures the hydrogen peroX 
ide produced by the enzyme catalyzed reaction of glucose 
being detected and creates a measurable electronic current 
(for example, detection of glucose utilizing glucose oxidase 
produces H2Operoxide as a by product, H2O, reacts with the 
Surface of the working electrode producing two protons 
(2H), two electrons (2e) and one molecule of oxygen (O) 
which produces the electronic current being detected). Such 
as described in more detail above and as is appreciated by one 
skilled in the art. Typically, the working and reference elec 
trodes operatively connect with sensor electronics, such as 
described in more detail elsewhere herein. Additional aspects 
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of the above-described transcutaneously inserted sensor can 
be found in co-pending U.S. Publication No. US-2006 
OO2O187-A1. 

0211. In some embodiments (e.g., sensors such as illus 
trated in FIGS. 1A and 1B), a potentiostat is employed to 
monitor the electrochemical reaction at the electrochemical 
cell. The potentiostat applies a constant potential to the work 
ing and reference electrodes to determine a current value. The 
current that is produced at the working electrode (and flows 
through the circuitry to the counter electrode) is proportional 
to the amount of HO that diffuses to the working electrode. 
Accordingly, a raw signal can be produced that is represen 
tative of the concentration of glucose in the user's body, and 
therefore can be utilized to estimate a meaningful glucose 
value. Such as described herein. 
0212. One problem with raw data stream output of enzy 
matic glucose sensors such as described above is caused by 
transient non-glucose reaction rate-limiting phenomenon. 
For example, if oxygen is deficient, relative to the amount of 
glucose, then the enzymatic reaction will be limited by oxy 
gen rather than glucose. Consequently, the output signal will 
be indicative of the oxygen concentration rather than the 
glucose concentration, producing erroneous signals. Other 
non-glucose reaction rate-limiting phenomenon could 
include interfering species, temperature and/or pH changes, 
or even unknown sources of mechanical, electrical and/or 
biochemical noise, for example. Accordingly, reduction of 
signal noise, and particularly replacement of transient non 
glucose related signal artifacts in the data stream that have a 
higher amplitude than system noise, can be performed in the 
sensor and/or in the receiver, Such as described in more detail 
below in the sections entitled “Signal Artifacts Detection 
and “Signal Artifacts Replacement, for example. 
0213 FIG. 2 is a block diagram that illustrates one pos 
sible configuration of the sensor electronics in one embodi 
ment. In this embodiment, a potentiostat 20 is shown, which 
is operatively connected to an electrode system (FIG. 1A or 
1B) and provides a voltage to the electrodes, which biases the 
sensor to enable measurement of a current value indicative of 
the analyte concentration in the host (also referred to as the 
analog portion). In some embodiments, the potentiostat 
includes a resistor (not shown) that translates the current into 
Voltage. In some alternative embodiments, a current to fre 
quency converter is provided that is configured to continu 
ously integrate the measured current, for example, using a 
charge counting device. In the illustrated embodiment, an 
A/D converter 21 digitizes the analog signal into “counts’ for 
processing. Accordingly, the resulting raw data stream in 
counts is directly related to the current measured by the poten 
tiostat 20. 

0214) A processor module 22 is the central control unit 
that controls the processing of the sensor electronics. In some 
embodiments, the processor module includes a microproces 
Sor, however a computer system other than a microprocessor 
can be used to process data as described herein, for example 
an ASIC can be used for some or all of the sensor's central 
processing. The processor typically provides semi-perma 
nent storage of data, for example, storing data Such as sensor 
identifier (ID) and programming to process data streams (for 
example, programming for data Smoothing and/or replace 
ment of signal artifacts Such as is described in more detail 
elsewhere herein). The processor additionally can be used for 
the system's cache memory, for example for temporarily Stor 
ing recent sensor data. In some embodiments, the processor 
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module comprises memory storage components such as 
ROM, RAM, dynamic-RAM, static-RAM, non-static RAM, 
EEPROM, rewritable ROMs, flash memory, and the like. In 
one exemplary embodiment, EEPROM 23 provides semi 
permanent storage of data, for example, storing data Such as 
sensor identifier (ID) and programming to process data 
streams (e.g., programming for signal artifacts detection and/ 
or replacement such as described elsewhere herein). In one 
exemplary embodiment, SRAM 24 can be used for the sys 
tem's cache memory, for example for temporarily storing 
recent sensor data. 

0215. In some embodiments, the processor module com 
prises a digital filter, for example, an IIR or FIR filter, con 
figured to smooth the raw data stream from the A/D converter. 
Generally, digital filters are programmed to filter data 
sampled at a predetermined time interval (also referred to as 
a sample rate). In some embodiments, wherein the poten 
tiostat is configured to measure the analyte at discrete time 
intervals, these time intervals determine the sample rate of the 
digital filter. In some alternative embodiments, wherein the 
potentiostat is configured to continuously measure the ana 
lyte, for example, using a current-to-frequency converter, the 
processor module can be programmed to request a digital 
value from the A/D converter at a predetermined time inter 
val, also referred to as the acquisition time. In these alterna 
tive embodiments, the values obtained by the processor are 
advantageously averaged over the acquisition time due the 
continuity of the current measurement. Accordingly, the 
acquisition time determines the sample rate of the digital 
filter. In preferred embodiments, the processor module is 
configured with a programmable acquisition time, namely, 
the predetermined time interval for requesting the digital 
value from the A/D converter is programmable by a user 
within the digital circuitry of the processor module. An acqui 
sition time of from about 2 seconds to about 512 seconds is 
preferred; however any acquisition time can be programmed 
into the processor module. A programmable acquisition time 
is advantageous in optimizing noise filtration, time lag, and 
processing/battery power. 
0216 Preferably, the processor module is configured to 
build the data packet for transmission to an outside source, for 
example, an RF transmission to a receiver as described in 
more detail below. Generally, the data packet comprises a 
plurality of bits that can include a sensor ID code, raw data, 
filtered data, and/or error detection or correction. The proces 
Sor module can be configured to transmit any combination of 
raw and/or filtered data. 
0217. A battery 25 is operatively connected to the proces 
Sor 22 and provides the necessary power for the sensor (e.g., 
10 or 100). In one embodiment, the battery is a Lithium 
Manganese Dioxide battery, however any appropriately sized 
and powered battery can be used (e.g., AAA, Nickel-cad 
mium, Zinc-carbon, Alkaline, Lithium, Nickel-metal 
hydride, Lithium-ion, Zinc-air, Zinc-mercury oxide, Silver 
Zinc, or hermetically-sealed). In some embodiments the bat 
tery is rechargeable. In some embodiments, a plurality of 
batteries can be used to power the system. In yet other 
embodiments, the receiver can be transcutaneously powered 
via an inductive coupling, for example. A Quartz Crystal 26 is 
operatively connected to the processor 22 and maintains sys 
tem time for the computer system as a whole. 
0218. An RF module, (e.g., an RF Transceiver) 27 is oper 
ably connected to the processor 22 and transmits the sensor 
data from the sensor (e.g., 10 or 100) to a receiver (see FIGS. 
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3 and 4). Although an RF transceiver is shown here, some 
other embodiments can include a wired rather than wireless 
connection to the receiver. A second quartz crystal 28 pro 
vides the system time for synchronizing the data transmis 
sions from the RF transceiver. It is noted that the transceiver 
27 can be substituted with a transmitter in other embodi 
ments. In some alternative embodiments, however, other 
mechanisms, such as optical, infrared radiation (IR), ultra 
Sonic, and the like, can be used to transmit and/or receive data. 
0219. In some embodiments, a Signal Artifacts Detector 
29 is provided that includes one or more of the following: an 
oxygen detector 29a, a pH detector 29b, a temperature detec 
tor 29c, and a pressure/stress detector 29d, which is described 
in more detail with reference to signal artifacts detection. It is 
noted that in some embodiments the signal artifacts detector 
29 is a separate entity (e.g., temperature detector) operatively 
connected to the processor, while in other embodiments, the 
signal artifacts detector is a part of the processor and utilizes 
readings from the electrodes, for example, to detect ischemia 
and other signal artifacts. Although the above description is 
focused on an embodiment of the Signal Artifacts Detector 
within the sensor, some embodiments provide for systems 
and methods for detecting signal artifacts in the sensor and/or 
receiver electronics (e.g., processor module) as described in 
more detail elsewhere herein. 

Receiver 

0220 FIGS. 3A to 3D are schematic views of a receiver 30 
including representations of estimated glucose values on its 
user interface in first, second, third, and fourth embodiments, 
respectively. The receiver 30 comprises systems to receive, 
process, and display sensor data from the glucose sensor (e.g., 
10 or 100), such as described herein. Particularly, the receiver 
30 can be a pager-sized device, for example, and comprise a 
user interface that has a plurality of buttons 32 and a liquid 
crystal display (LCD) screen 34, and which can optionally 
include a backlight. In some embodiments, the user interface 
can also include a keyboard, a speaker, and a vibrator, as 
described below with reference to FIG. 4A. 
0221 FIG. 3A illustrates a first embodiment wherein the 
receiver 30 shows a numeric representation of the estimated 
glucose value on its user interface, which is described in more 
detail elsewhere herein. 
0222 FIG. 3B illustrates a second embodiment wherein 
the receiver 30 shows an estimated glucose value and 
approximately one hour of historical trend data on its user 
interface, which is described in more detail elsewhere herein. 
0223 FIG. 3C illustrates a third embodiment wherein the 
receiver 30 shows an estimated glucose value and approxi 
mately three hours of historical trend data on its user inter 
face, which is described in more detail elsewhere herein. 
0224 FIG. 3D illustrates a fourth embodiment wherein 
the receiver 30 shows an estimated glucose value and 
approximately nine hours of historical trend data on its user 
interface, which is described in more detail elsewhere herein. 
0225. In some embodiments, a user can toggle through 
some or all of the screens shown in FIGS. 3A to 3D using a 
toggle button on the receiver. In some embodiments, the user 
will be able to interactively select the type of output displayed 
on their user interface. In other embodiments, the sensor 
output can have alternative configurations. 
0226 FIG. 4A is a block diagram that illustrates one pos 
sible configuration of the receiver's 30 electronics. It is noted 
that the receiver 30 can comprise a configuration Such as 
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described with reference to FIGS. 3A to 3D, above. Alterna 
tively, the receiver 30 can comprise other configurations, 
including a desktop computer, laptop computer, a personal 
digital assistant (PDA), a server (local or remote to the 
receiver), and the like. In some embodiments, the receiver 30 
can be adapted to connect (via wired or wireless connection) 
to a desktop computer, laptop computer, PDA, server (local or 
remote to the receiver), and the like, in order to download data 
from the receiver 30. In some alternative embodiments, the 
receiver 30 and/or receiver electronics can be housed within 
or directly connected to the sensor (e.g., 10 or 100) in a 
manner that allows sensor and receiver electronics to work 
directly together and/or share data processing resources. 
Accordingly, the receiver's electronics can be generally 
referred to as a “computer system.” 
0227. A quartz crystal 40 is operatively connected to an 
RF transceiver 41 that together function to receive and syn 
chronize data streams (e.g., raw data streams transmitted 
from the RF transceiver). Once received, a processor 42 pro 
cesses the signals, such as described below. 
0228. The processor 42, also referred to as the processor 
module, is the central control unit that performs the process 
ing, such as storing data, analyzing data streams, calibrating 
analyte sensor data, estimating analyte values, comparing 
estimated analyte values with time corresponding measured 
analyte values, analyzing a variation of estimated analyte 
values, downloading data, and controlling the user interface 
by providing analyte values, prompts, messages, warnings, 
alarms, and the like. The processor includes hardware and 
software that performs the processing described herein, for 
example flash memory provides permanent or semi-perma 
nent storage of data, storing data Such as sensor ID, receiver 
ID, and programming to process data streams (for example, 
programming for performing estimation and otheralgorithms 
described elsewhere herein) and random access memory 
(RAM) stores the system's cache memory and is helpful in 
data processing. 
0229. In one exemplary embodiment, the processor is a 
microprocessor that provides the processing, Such as calibra 
tion algorithms stored within an EEPROM43. The EEPROM 
43 is operatively connected to the processor 42 and provides 
semi-permanent storage of data, storing data Such as receiver 
ID and programming to process data streams (e.g., program 
ming for performing calibration and other algorithms 
described elsewhere herein). In this exemplary embodiment, 
an SRAM 44 is used for the system's cache memory and is 
helpful in data processing. 
0230. A battery 45 is operatively connected to the proces 
sor 42 and provides power for the receiver. In one embodi 
ment, the battery is a standard AAA alkaline battery, however 
any appropriately sized and powered battery can be used. In 
Some embodiments, a plurality of batteries can be used to 
power the system. A quartz crystal 46 is operatively con 
nected to the processor 42 and maintains system time for the 
computer system as a whole. 
0231. A user interface 47 comprises a keyboard 2, speaker 
3, vibrator 4, backlight 5, liquid crystal display (LCD 6), and 
one or more buttons 7. The components that comprise the user 
interface 47 provide controls to interact with the user. The 
keyboard 2 can allow, for example, input of user information 
about himself/herself. Such as mealtime, exercise, insulin 
administration, and reference glucose values. The speaker 3 
can provide, for example, audible signals or alerts for condi 
tions such as present and/or predicted hyper- and hypoglyce 
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mic conditions. The vibrator 4 can provide, for example, 
tactile signals or alerts for reasons such as described with 
reference to the speaker, above. The backlight 5 can be pro 
vided, for example, to aid the user in reading the LCD in low 
light conditions. The LCD 6 can be provided, for example, to 
provide the user with visual data output such as is illustrated 
in FIGS. 3A to 3D. The buttons 7 can provide for toggle, menu 
selection, option selection, mode selection, and reset, for 
example. 
0232. In some embodiments, prompts or messages can be 
displayed on the user interface to convey information to the 
user, Such as reference outlier values, requests for reference 
analyte values, therapy recommendations, deviation of the 
measured analyte values from the estimated analyte values, 
and the like. Additionally, prompts can be displayed to guide 
the user through calibration or trouble-shooting of the cali 
bration. 

Input and Output 

0233. In general, the above-described estimative algo 
rithms, including estimation of measured analyte values and 
variation analysis of the estimated analyte values are useful 
when provided to a patient, doctor, family member, and the 
like. Even more, the estimative algorithms are useful when 
they are able to provide information helpful in modifying a 
patient's behavior so that they experience less clinically risky 
situations and higher quality of life than may otherwise be 
possible. Therefore, the above-described data analysis can be 
output in a variety of forms useful in caring for the health of 
a patient. 
0234 Output can be provided via a user interface, includ 
ing but not limited to, visually on a screen, audibly through a 
speaker, or tactilely through a vibrator. Additionally, output 
can be provided via wired or wireless connection to an exter 
nal device, including but not limited to, computer, laptop, 
server, personal digital assistant, modem connection, insulin 
delivery mechanism, medical device, or other device that can 
be useful in interfacing with the receiver. 
0235. Output can be continuously provided, or certain out 
put can be selectively provided based on events, analyte con 
centrations and the like. For example, an estimated analyte 
path can be continuously provided to a patient on an LCD 
screen, while audible alerts can be provided only during a 
time of existing or approaching clinical risk to a patient. As 
another example, estimation can be provided based on event 
triggers (for example, when an analyte concentration is near 
ing or entering a clinically risky Zone). As yet another 
example, analyzed deviation of estimated analyte values can 
be provided when a predetermined level of variation (for 
example, due to known error or clinical risk) is known. 
0236. In some embodiments, alarms prompt or alert a 
patient when a measured or projected analyte value or rate of 
change simply passes a predetermined threshold. In some 
embodiments, the clinical riskalarms combine intelligent and 
dynamic estimative algorithms to provide greater accuracy, 
more timeliness in pending danger, avoidance of false alarms, 
and less annoyance for the patient. For example, clinical risk 
alarms of these embodiments include dynamic and intelligent 
estimative algorithms based on analyte value, rate of change, 
acceleration, clinical risk, statistical probabilities, known 
physiological constraints, and/or individual physiological 
patterns, thereby providing more appropriate, clinically safe, 
and patient-friendly alarms. 
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0237. In some embodiments, clinical risk alarms can be 
activated for a predetermined time period to allow for the user 
to attend to his/her condition. Additionally, the clinical risk 
alarms can be de-activated when leaving a clinical risk Zone 
So as not to annoy the patient by repeated clinical risk alarms, 
when the patient's condition is improving. 
0238. In some embodiments, the dynamic and intelligent 
estimation determines a possibility of the patient avoiding 
clinical risk, based on the analyte concentration, the rate of 
change, and other aspects of the dynamic and intelligent 
estimative algorithms of the preferred embodiments. If there 
is minimal or no possibility of avoiding the clinical risk, a 
clinical risk alarm will be triggered. However, if there is a 
possibility of avoiding the clinical risk, the system can wait a 
predetermined amount of time and re-analyze the possibility 
of avoiding the clinical risk. In some embodiments, when 
there is a possibility of avoiding the clinical risk, the system 
will further provide targets, therapy recommendations, or 
other information that can aid the patient in proactively avoid 
ing the clinical risk. 
0239. In some embodiments, a variety of different display 
methods are used, such as described in the preferred embodi 
ments, which can be toggled through or selectively displayed 
to the user based on conditions or by selecting a button, for 
example. As one example, a simple screen can be normally 
shown that provides an overview of analyte data, for example 
present analyte value and directional trend. More complex 
screens can then be selected whena user desires more detailed 
information, for example, historical analyte data, alarms, 
clinical risk Zones, and the like. 
0240 FIG. 4B is an illustration of the receiver in one 
embodiment showing an analyte trend graph, including mea 
Sured analyte values, estimated analyte values, and a clinical 
risk Zone. The receiver 30 includes an LCD screen 34, buttons 
7, and a speaker 3 and/or microphone. The screen 34 displays 
a trend graph in the form of a line representing the historical 
trend of a patient's analyte concentration. Although axes may 
or may not be shown on the screen 34, it is understood that a 
theoretical X-axis represents time and a theoretical y-axis 
represents analyte concentration. 
0241. In some embodiments such as shown in FIG. 4B, the 
screen shows thresholds, including a high threshold 200 and 
a low threshold 202, which represent boundaries between 
clinically safe and clinically risky conditions for the patients. 
In one exemplary embodiment, a normal glucose threshold 
for a glucose sensor is set between about 100 and 160 mg/dL, 
and the clinical risk Zones 204 are illustrated outside of these 
thresholds. In alternative embodiments, the normal glucose 
threshold is between about 80 and about 200 mg/dL, between 
about 55 and about 220 mg/dL, or other threshold that can be 
set by the manufacturer, physician, patient, computer pro 
gram, and the like. Although a few examples of glucose 
thresholds are given for a glucose sensor, the setting of any 
analyte threshold is not limited by the preferred embodi 
mentS. 

0242. In some embodiments, the screen 34 shows clinical 
risk Zones 204, also referred to as danger Zones, through 
shading, gradients, or other graphical illustrations that indi 
cate areas of increasing clinical risk. Clinical risk Zones 204 
can be set by a manufacturer, customized by a doctor, and/or 
set by a user via buttons 7, for example. In some embodi 
ments, the danger Zone 204 can be continuously shown on the 
screen 34, or the danger Zone can appear when the measured 
and/or estimated analyte values fall into the danger Zone 204. 
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Additional information can be displayed on the screen, Such 
as an estimated time to clinical risk. In some embodiments, 
the danger Zone can be divided into levels of danger (for 
example, low, medium, and high) and/or can be color-coded 
(for example, yellow, orange, and red) or otherwise illustrated 
to indicate the level of danger to the patient. Additionally, the 
screen orportion of the screen can dynamically change colors 
or illustrations that represent a nearness to the clinical risk 
and/or a severity of clinical risk. 
0243 In some embodiments, such as shown in FIG. 4B, 
the screen 34 displays a trend graph of measured analyte data 
206. Measured analyte data can be smoothed and calibrated 
such as described in more detail elsewhere herein. Measured 
analyte data can be displayed for a certain time period (for 
example, previous 1 hour, 3 hours, 9 hours, etc.) In some 
embodiments, the user can toggle through screens using but 
tons 7 to view the measured analyte data for different time 
periods, using different formats, or to view certain analyte 
values (for example, highs and lows). 
0244. In some embodiments such as shown in FIG. 4B, the 
screen 34 displays estimated analyte data 208 using dots. In 
this illustration, the size of the dots can represent the confi 
dence of the estimation, a variation of estimated values, and 
the like. For example, as the time gets farther away from the 
present (t=0) the confidence level in the accuracy of the esti 
mation can decline as is appreciated by one skilled in the art. 
In some alternative embodiments, dashed lines, symbols, 
icons, and the like can be used to represent the estimated 
analyte values. In some alternative embodiments, shaded 
regions, colors, patterns, and the like can also be used to 
represent the estimated analyte values, a confidence in those 
values, and/or a variation of those values, such as described in 
more detail in preferred embodiments. 
0245 Axes, including time and analyte concentration val 
ues, can be provided on the screen, however are not required. 
While not wishing to be bound by theory, it is believed that 
trend information, thresholds, and danger Zones provide Suf 
ficient information to represent analyte concentration and 
clinically educate the user. In some embodiments, time can be 
represented by symbols, such as a Sun and moon to represent 
day and night. In some embodiments, the present or most 
recent measured analyte concentration, from the continuous 
sensor and/or from the reference analyte monitor can be con 
tinually, intermittently, or selectively displayed on the screen. 
0246 The estimated analyte values 208 of FIG.4B include 
a portion, which extends into the danger Zone 204. By pro 
viding data in a format that emphasizes the possibility of 
clinical risk to the patient, appropriate action can be taken by 
the user (for example, patient, or caretaker) and clinical risk 
can be preempted. 
0247 FIG. 4C is an illustration of the receiver in another 
embodiment showing a representation of analyte concentra 
tion and directional trend using a gradient bar. In this embodi 
ment, the screen illustrates the measured analyte values and 
estimated analyte values in a simple but effective manner that 
communicates valuable analyte information to the user. 
0248. In this embodiment, a gradient bar 210 is provided 
that includes thresholds 212 set at high and lows such as 
described in more detail with reference to FIG. 4B, above. 
Additionally, colors, shading, or other graphical illustration 
can be present to represent danger Zones 214 on the gradient 
bar 210 such as described in more detail with reference to 
FIG. 4B, above. 
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0249. The measured analyte value is represented on the 
gradient bar 210 by a marker 216, such as a darkened or 
colored bar. By representing the measured analyte value with 
a bar 216, a low-resolution analyte value is presented to the 
user (for example, within a range of values). For example, 
each segment on the gradient bar 210 can represent about 10 
mg/dL of glucose concentration. As another example, each 
segment can dynamically represent the range of values that 
fall within the “A” and “B” regions of the Clarke Error Grid. 
While not wishing to be bound by theory, it is believed that 
inaccuracies known both in reference analyte monitors and/or 
continuous analyte sensors are likely due to known variables 
such as described in more detail elsewhere herein, and can be 
de-emphasized such that a user focuses on proactive care of 
the condition, rather than inconsequential discrepancies 
within and between reference analyte monitors and continu 
ous analyte sensors. 
0250 Additionally, the representative gradient bar com 
municates the directional trend of the analyte concentration to 
the user in a simple and effective manner, namely by a direc 
tional arrow 218. For example, in conventional diabetic blood 
glucose monitoring, a person with diabetes obtains a blood 
sample and measures the glucose concentration using a test 
strip, and the like. Unfortunately, this information does not 
tell the person with diabetes whether the blood glucose con 
centration is rising or falling. Rising or falling directional 
trend information can be particularly important in a situation 
such as illustrated in FIG. 4C, wherein if the user does not 
know that the glucose concentration is rising, he/she may 
assume that the glucose concentration is falling and not attend 
to his/her condition. However, because rising directional 
trend information 218 is provided, the person with diabetes 
can preempt the clinical risk by attending to his/her condition 
(for example, administer insulin). Estimated analyte data can 
be incorporated into the directional trend information by 
characteristics of the arrow, for example, size, color, flash 
speed, and the like. 
0251. In some embodiments, the gradient bar can be a 
Vertical instead of horizontal bar. In some embodiments, a 
gradient fill can be used to represent analyte concentration, 
variation, or clinical risk, for example. In some embodiments, 
the bar graph includes color, for example the center can be 
green in the safe Zone that graduates to red in the danger 
Zones; this can be in addition to or in place of the divided 
segments. In some embodiments, the segments of the bar 
graph are clearly divided by lines; however color, gradation, 
and the like can be used to represent areas of the bar graph. In 
Some embodiments, the directional arrow can be represented 
by a cascading level of arrows to a represent slow or rapid rate 
of change. In some embodiments, the directional arrow can be 
flashing to represent movement or pending danger. 
(0252) The screen 34 of FIG. 4C can further comprise a 
numerical representation of analyte concentration, date, time, 
or other information to be communicated to the patient. How 
ever, a user can advantageously extrapolate information help 
ful for his/her condition using the simple and effective repre 
sentation of this embodiment shown in FIG. 4C, without 
reading a numeric representation of his/her analyte concen 
tration. 

0253) In some alternative embodiments, a trend graph or 
gradient bar, a dial, pie chart, or other visual representation 
can provide analyte data using shading, colors, patterns, 
icons, animation, and the like. 
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0254 FIG. 4D is an illustration of a receiver 30 in another 
embodiment, including a screen 34 that shows a numerical 
representation of the most recent measured analyte value 252. 
This numerical value 252 is preferably a calibrated analyte 
value, such as described in more detail with reference to 
FIGS. 5 and 6. Additionally, this embodiment preferably pro 
vides an arrow 254 on the screen 34, which represents the rate 
of change of the host's analyte concentration. A bold “up' 
arrow is shown on the drawing, which preferably represents a 
relatively quickly increasing rate of change. The arrows 
shown with dotted lines illustrate examples of other direc 
tional arrows (for example, rotated by 45 degrees), which can 
be useful on the screen to represent various other positive and 
negative rates of change. Although the directional arrows 
shown have a relative low resolution (45 degrees of accuracy), 
other arrows can be rotated with a high resolution of accuracy 
(for example one degree of accuracy) to more accurately 
represent the rate of change of the host's analyte concentra 
tion. In some alternative embodiments, the screen provides an 
indication of the acceleration of the hosts analyte concentra 
tion. 
0255. A second numerical value 256 is shown, which is 
representative of a variation of the measured analyte value 
252. The second numerical value is preferably determined 
from a variation analysis based on statistical, clinical, or 
physiological parameters, such as described in more detail 
elsewhere herein. In one embodiment, the second numerical 
value 256 is determined based on clinical risk (for example, 
weighted for the greatest possible clinical risk to a patient). In 
another embodiment, the second numerical representation 
256 is an estimated analyte value extrapolated to compensate 
for a time lag, such as described in more detail elsewhere 
herein. In some alternative embodiments, the receiver dis 
plays a range of numerical analyte values that best represents 
the host's estimated analyte value (for example, +/-10%). In 
Some embodiments, the range is weighted based on clinical 
risk to the patient. In some embodiments, the range is repre 
sentative of a confidence in the estimated analyte value and/or 
a variation of those values. In some embodiments, the range is 
adjustable. 
0256 Referring again to FIG. 4A, communication ports, 
including a PC communication (com) port 48 and a reference 
glucose monitor comport 49 can be provided to enable com 
munication with systems that are separate from, or integral 
with, the receiver 30. The PC comport 48, for example, a 
serial communications port, allows for communicating with 
another computer system (e.g., PC, PDA, server, and the like). 
In one exemplary embodiment, the receiver 30 is able to 
download historical data to a physician’s PC for retrospective 
analysis by the physician. The reference glucose monitor com 
port 49 allows for communicating with a reference glucose 
monitor (not shown) so that reference glucose values can be 
downloaded into the receiver 30, for example, automatically. 
In one embodiment, the reference glucose monitor is integral 
with the receiver 30, and the reference glucose comport 49 
allows internal communication between the two integral sys 
tems. In another embodiment, the reference glucose monitor 
com port 49 allows a wireless or wired connection to refer 
ence glucose monitor Such as a self-monitoring blood glucose 
monitor (e.g., for measuring finger Stick blood samples). 
Calibration 

0257 Reference is now made to FIG. 5, which is a flow 
chart 50 that illustrates the process of initial calibration and 
data output of the glucose sensor (e.g., 10 or 100) in one 
embodiment. 
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0258 Calibration of the glucose sensor comprises data 
processing that converts a sensor data stream into an esti 
mated glucose measurement that is meaningful to a user. 
Accordingly, a reference glucose value can be used to cali 
brate the data stream from the glucose sensor. In one embodi 
ment, the analyte sensor is a continuous glucose sensor and 
one or more reference glucose values are used to calibrate the 
data stream from the sensor. The calibration can be performed 
on a real-time basis and/or retrospectively recalibrated. How 
ever in alternative embodiments, other calibration techniques 
can be utilized, for example using another constant analyte 
(for example, folic acid, ascorbate, urate, and the like) as a 
baseline, factory calibration, periodic clinical calibration, 
oxygen calibration (for example, using a plurality of sensor 
heads), and the like can be used. 
0259. At block 51, a sensor data receiving module, also 
referred to as the sensor data module, or processor module, 
receives sensor data (e.g., a data stream), including one or 
more time-spaced sensor data points hereinafter referred to as 
“data stream.” “sensor data.” “sensor analyte data”, “glucose 
signal.” from a sensor via the receiver, which can be in wired 
or wireless communication with the sensor. The sensor data 
can be raw or smoothed (filtered), or include both raw and 
Smoothed data. In some embodiments, raw sensor data may 
include an integrated digital data value, e.g., a value averaged 
over a time period such as by a charge capacitor. Smoothed 
sensor data point(s) can be filtered in certain embodiments 
using a filter, for example, a finite impulse response (FIR) or 
infinite impulse response (IIR) filter. Some or all of the sensor 
data point(s) can be replaced by estimated signal values to 
address signal noise Such as described in more detail else 
where herein. It is noted that during the initialization of the 
sensor, prior to initial calibration, the receiver 30 (e.g., com 
puter system) receives and stores the sensor data, however it 
may not display any data to the user until initial calibration 
and eventually stabilization of the sensor has been deter 
mined. 

0260. At block 52, a reference data receiving module, also 
referred to as the reference input module, or the processor 
module, receives reference data from a reference glucose 
monitor, including one or more reference data points. In one 
embodiment, the reference glucose points can comprise 
results from a self-monitored blood glucose test (e.g., from a 
finger Stick test). In one such embodiment, the user can 
administer a self-monitored blood glucose test to obtain a 
glucose value (e.g., point) using any known glucose sensor, 
and enter the numeric glucose value into the computer sys 
tem. In another such embodiment, a self-monitored blood 
glucose test comprises a wired or wireless connection to the 
receiver 30 (e.g. computer system) so that the user simply 
initiates a connection between the two devices, and the ref 
erence glucose data is passed or downloaded between the 
self-monitored blood glucose test and the receiver 30. In yet 
another such embodiment, the self-monitored glucose test is 
integral with the receiver 30 so that the user simply provides 
a blood sample to the receiver 30, and the receiver 30 runs the 
glucose test to determine a reference glucose value. 
0261. In some embodiments, the calibration process 50 
monitors the continuous analyte sensor data stream to deter 
mine a preferred time for capturing reference analyte concen 
tration values for calibration of the continuous sensor data 
stream. In an example wherein the analyte sensor is a con 
tinuous glucose sensor, when data (for example, observed 
from the data stream) changes too rapidly, the reference glu 
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cose value may not be sufficiently reliable for calibration due 
to unstable glucose changes in the host. In contrast, when 
sensor glucose data are relatively stable (for example, rela 
tively low rate of change), a reference glucose value can be 
taken for a reliable calibration. In one embodiment, the cali 
bration process 38 can prompt the user via the user interface 
to “calibrate now when the analyte sensor is considered 
stable. 
0262. In some embodiments, the calibration process 50 
can prompt the user via the user interface 47 to obtain a 
reference analyte value for calibration at intervals, for 
example when analyte concentrations are at high and/or low 
values. In some additional embodiments, the user interface 47 
can prompt the user to obtain a reference analyte value for 
calibration based upon certain events, such as meals, exercise, 
large excursions in analyte levels, faulty or interrupted data 
readings, and the like. In some embodiments, the estimative 
algorithms can provide information useful in determining 
when to request a reference analyte value. For example, when 
estimated analyte values indicate approaching clinical risk, 
the user interface 47 can prompt the user to obtain a reference 
analyte value. 
0263. Certain acceptability parameters can be set for ref 
erence values received from the user. For example, in one 
embodiment, the receiver may only accept reference glucose 
values between about 40 and about 400 mg/dL. 
0264. In some embodiments, the calibration process 50 
performs outlier detection on the reference data and time 
corresponding sensor data. Outlier detection compares a ref 
erence analyte value with a time corresponding measured 
analyte value to ensure a predetermined Statistically, physi 
ologically, or clinically acceptable correlation between the 
corresponding data exists. In an example wherein the analyte 
sensor is a glucose sensor, the reference glucose data is 
matched with Substantially time corresponding calibrated 
sensor data and the matched data are plotted on a Clarke Error 
Grid to determine whether the reference analyte value is an 
outlier based on clinical acceptability, Such as described in 
more detail with reference U.S. Publication No. US-2005 
0027463-A1. In some embodiments, outlier detection com 
pares a reference analyte value with a corresponding esti 
mated analyte value. Such as described in more detail 
elsewhere herein and with reference to the above-described 
patent application, and the matched data is evaluated using 
statistical, clinical, and/or physiological parameters to deter 
mine the acceptability of the matched data pair. In alternative 
embodiments, outlier detection can be determined by other 
clinical, statistical, and/or physiological boundaries. 
0265. In some embodiments, outlier detection utilizes sig 
nal artifacts detection, described in more detail elsewhere 
herein, to determine the reliability of the reference data and/or 
sensor data responsive to the results of the signal artifacts 
detection. For example, if a certain level of signal artifacts is 
not detected in the data signal, then the sensor data is deter 
mined to be reliable. As another example, if a certain level of 
signal artifacts are detected in the data signal, then the reli 
ability of the reference glucose data if the signal artifact is 
determined. 

0266. At block 53, a data matching module, also referred 
to as the processor module, matches reference data (e.g., one 
or more reference glucose data points) with Substantially time 
corresponding sensor data (e.g., one or more sensor data 
points) to provide one or more matched data pairs. In one 
embodiment, one reference data point is matched to one time 
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corresponding sensor data point to form a matched data pair. 
In another embodiment, a plurality of reference data points 
are averaged (e.g., equally or non-equally weighted average, 
mean-value, median, and the like) and matched to one time 
corresponding sensor data point to form a matched data pair. 
In another embodiment, one reference data point is matched 
to a plurality of time corresponding sensor data points aver 
aged to form a matched data pair. In yet another embodiment, 
a plurality of reference data points are averaged and matched 
to a plurality of time corresponding sensor data points aver 
aged to form a matched data pair. 
0267 In one embodiment, a time corresponding sensor 
data comprises one or more sensor data points that occur, for 
example, 15ts min after the reference glucose data times 
tamp (e.g., the time that the reference glucose data is 
obtained). In this embodiment, the 15 minute time delay has 
been chosen to account for an approximately 10 minute delay 
introduced by the filter used in data Smoothing and an 
approximately 5 minute diffusional time-lag (e.g., the time 
necessary for the glucose to diffusion through a membrane(s) 
of a glucose sensor). In alternative embodiments, the time 
corresponding sensor value can be more or less than in the 
above-described embodiment, for example +60 minutes. 
Variability in time correspondence of sensor and reference 
data can be attributed to, for example, alonger or shorter time 
delay introduced during signal estimation, or if the configu 
ration of the glucose sensor incurs a greater or lesser physi 
ological time lag. 
0268. In some practical implementations of the sensor, the 
reference glucose data can be obtained at a time that is dif 
ferent from the time that the data is input into the receiver 30. 
Accordingly, it should be noted that the “time stamp' of the 
reference glucose (e.g., the time at which the reference glu 
cose value was obtained) may not be the same as the time at 
which the receiver 30 obtained the reference glucose data. 
Therefore, some embodiments include a time stamp require 
ment that ensures that the receiver 30 stores the accurate time 
stamp for each reference glucose value, that is, the time at 
which the reference value was actually obtained from the 
USC. 

0269. In some embodiments, tests are used to evaluate the 
best-matched pair using a reference data point against indi 
vidual sensor values over a predetermined time period (e.g., 
about 30 minutes). In one such embodiment, the reference 
data point is matched with sensor data points at 5-minute 
intervals and each matched pair is evaluated. The matched 
pair with the best correlation can be selected as the matched 
pair for data processing. In some alternative embodiments, 
matching a reference data point with an average of a plurality 
of sensor data points over a predetermined time period can be 
used to form a matched pair. 
0270. In some embodiments wherein the data signal is 
evaluated for signal artifacts, as described in more detail 
elsewhere herein, the processor module is configured to form 
a matching data pair only if a signal artifact is not detected. In 
Some embodiments wherein the data signal is evaluated for 
signal artifacts, the processor module is configured to prompt 
a user for a reference glucose value during a time when one or 
more signal artifact(s) is not detected. 
0271 At block 54, a calibration set module, also referred 
to as the processor module, forms an initial calibration set 
from a set of one or more matched data pairs, which are used 
to determine the relationship between the reference glucose 
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data and the sensor glucose data, Such as described in more 
detail with reference to block 55, below. 
0272. The matched data pairs, which make up the initial 
calibration set, can be selected according to predetermined 
criteria. In some embodiments, the number (n) of data pair(s) 
selected for the initial calibration set is one. In other embodi 
ments, in data pairs are selected for the initial calibration set 
wherein n is a function of the frequency of the received 
reference data points. In one exemplary embodiment, six data 
pairs make up the initial calibration set. In another embodi 
ment, the calibration set includes only one data pair. 
0273. In some embodiments, the data pairs are selected 
only within a certain glucose value threshold, for example 
wherein the reference glucose value is between about 40 and 
about 400 mg/dL. In some embodiments, the data pairs that 
form the initial calibration set are selected according to their 
time stamp. In certain embodiments, the data pairs that form 
the initial calibration set are selected according to their time 
stamp, for example, by waiting a predetermined “break-in' 
time period after implantation, the stability of the sensor data 
can be increased. In certain embodiments, the data pairs that 
form the initial calibration set are spread out over a predeter 
mined time period, for example, a period of two hours or 
more. In certain embodiments, the data pairs that form the 
initial calibration set are spread out over a predetermined 
glucose range, for example, spread out over a range of at least 
90 mg/dL or more. 
0274. In some embodiments, wherein the data signal is 
evaluated for signal artifacts, as described in more detail 
elsewhere herein, the processor module is configured to uti 
lize the reference data for calibration of the glucose sensor 
only if a signal artifact is not detected. 
0275. At block 55, the conversion function module, also 
referred to as the processor module, uses the calibration set to 
create a conversion function. The conversion function Sub 
stantially defines the relationship between the reference glu 
cose data and the glucose sensor data. A variety of known 
methods can be used with the preferred embodiments to cre 
ate the conversion function from the calibration set. In one 
embodiment, wherein a plurality of matched data points form 
the initial calibration set, a linear least squares regression is 
performed on the initial calibration set such as described in 
more detail with reference to FIG. 6. 
0276. At block 56, a sensor data transformation module, 
also referred to as the processor module, uses the conversion 
function to transform sensor data into Substantially real-time 
glucose value estimates, also referred to as calibrated data, or 
converted sensor data, as sensor data is continuously (or 
intermittently) received from the sensor. For example, the 
sensor data, which can be provided to the receiver in "counts.” 
is translated in to estimate analyte value(s) in mg/dL. In other 
words, the offset value at any given point in time can be 
Subtracted from the raw value (e.g., in counts) and divided by 
the slope to obtain the estimated glucose value: 

(rawvalue - offset) mg/dL = H slope 

0277. In some alternative embodiments, the sensor and/or 
reference glucose values are stored in a database for retro 
spective analysis. 
0278. At block57, an output module, also referred to as the 
processor module, provides output to the user via the user 
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interface. The output is representative of the estimated glu 
cose value, which is determined by converting the sensor data 
into a meaningful glucose value Such as described in more 
detail with reference to block 56, above. User output can be in 
the form of a numeric estimated glucose value, an indication 
of directional trend of glucose concentration, and/or a graphi 
cal representation of the estimated glucose data over a period 
of time, for example. Other representations of the estimated 
glucose values are also possible, for example audio and tac 
tile. 
0279. In one embodiment, such as shown in FIG. 3A, the 
estimated glucose value is represented by a numeric value. In 
other exemplary embodiments, such as shown in FIGS. 3B to 
3D, the user interface graphically represents the estimated 
glucose data trend over predetermined a time period (e.g., 
one, three, and nine hours, respectively). In alternative 
embodiments, other time periods can be represented. In alter 
native embodiments, other time periods can be represented. 
In alternative embodiments, pictures, animation, charts, 
graphs, ranges of values, and numeric data can be selectively 
displayed. 
0280 Accordingly, after initial calibration of the sensor, 
real-time continuous glucose information can be displayed on 
the user interface so that the user can regularly and proac 
tively care for his/her diabetic condition within the bounds set 
by his/her physician. 
0281. In alternative embodiments, the conversion function 
is used to predict glucose values at future points in time. 
These predicted values can be used to alert the user of upcom 
ing hypoglycemic or hyperglycemic events. Additionally, 
predicted values can be used to compensate for a time lag 
(e.g., 15 minute time lag such as described elsewhere herein), 
if any, so that an estimated glucose value displayed to the user 
represents the instant time, rather than a time delayed esti 
mated value. 
0282. In some embodiments, the substantially real-time 
estimated glucose value, a predicted future estimated glucose 
value, a rate of change, and/or a directional trend of the 
glucose concentration is used to control the administration of 
a constituent to the user, including an appropriate amount and 
time, in order to control an aspect of the user's biological 
system. One Such example is a closed loop glucose sensor and 
insulin pump, wherein the glucose data (e.g., estimated glu 
cose value, rate of change, and/or directional trend) from the 
glucose sensor is used to determine the amount of insulin, and 
time of administration, that can be given to a diabetic user to 
evade hyper- and hypoglycemic conditions. 
0283 FIG. 6 is a graph that illustrates one embodiment of 
a regression performed on a calibration set to create a con 
version function such as described with reference to FIG. 5, 
block 55, above. In this embodiment, a linear least squares 
regression is performed on the initial calibration set. The 
X-axis represents reference glucose data; the y-axis represents 
sensor data. The graph pictorially illustrates regression of 
matched pairs 66 in the calibration set. The regression calcu 
lates a slope 62 and an offset 64, for example, using the 
well-known slope-intercept equation (y-mX+b), which 
defines the conversion function. 
0284. In alternative embodiments, other algorithms could 
be used to determine the conversion function, for example 
forms of linear and non-linear regression, for example fuZZy 
logic, neural networks, piece-wise linear regression, polyno 
mial fit, genetic algorithms, and other pattern recognition and 
signal estimation techniques. 
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0285. In yet other alternative embodiments, the conver 
sion function can comprise two or more different optimal 
conversions because an optimal conversion at any time is 
dependent on one or more parameters, such as time of day, 
calories consumed, exercise, or glucose concentration above 
or below a set threshold, for example. In one such exemplary 
embodiment, the conversion function is adapted for the esti 
mated glucose concentration (e.g., high VS. low). For example 
in an implantable glucose sensor it has been observed that the 
cells Surrounding the implant will consume at least a small 
amount of glucose as it diffuses toward the glucose sensor. 
Assuming the cells consume Substantially the same amount 
of glucose whether the glucose concentration is low or high, 
this phenomenon will have a greater effect on the concentra 
tion of glucose during low blood Sugar episodes than the 
effect on the concentration of glucose during relatively higher 
blood Sugar episodes. Accordingly, the conversion function 
can be adapted to compensate for the sensitivity differences in 
blood Sugar level. In one implementation, the conversion 
function comprises two different regression lines, wherein a 
first regression line is applied when the estimated blood glu 
cose concentration is at or below a certain threshold (e.g., 150 
mg/dL) and a second regression line is applied when the 
estimated blood glucose concentration is at or above a certain 
threshold (e.g., 150 mg/dL). In one alternative implementa 
tion, a predetermined pivot of the regression line that forms 
the conversion function can be applied when the estimated 
blood is above or below a set threshold (e.g., 150 mg/dL), 
wherein the pivot and threshold are determined from a retro 
spective analysis of the performance of a conversion function 
and its performance at a range of glucose concentrations. In 
another implementation, the regression line that forms the 
conversion function is pivoted about a point in order to com 
ply with clinical acceptability standards (e.g., Clarke Error 
Grid, Consensus Grid, mean absolute relative difference, or 
other clinical cost function). Although only a few example 
implementations are described, other embodiments include 
numerous implementations wherein the conversion function 
is adaptively applied based on one or more parameters that 
can affect the sensitivity of the sensor data over time. 
0286 Additional methods for processing sensor glucose 
data are disclosed in U.S. Publication No. US-2005 
0027463-A1. In view of the above-described data processing, 
it should be obvious that improving the accuracy of the data 
stream will be advantageous for improving output of glucose 
sensor data. Accordingly, the following description is related 
to improving data output by decreasing signal artifacts on the 
raw data stream from the sensor. The data Smoothing methods 
of preferred embodiments can be employed in conjunction 
with any sensor or monitor measuring levels of an analyte in 
vivo, wherein the level of the analyte fluctuates over time, 
including but not limited to such sensors as described in U.S. 
Pat. No. 6,001,067 to Shults et al.; U.S. Patent Application 
2003/0023317 to Brauker et al., U.S. Pat. No. 6,212,416 to 
Ward et al.; U.S. Pat. No. 6,119,028 to Schulman et al; U.S. 
Pat. No. 6,400,974 to Lesho; U.S. Pat. No. 6,595,919 to 
Berner et al.; U.S. Pat. No. 6,141,573 to Kurnik et al.; U.S. 
Pat. No. 6,122,536 to Sun et al.; European Patent Application 
EP 1153571 to Varallet al.; U.S. Pat. No. 6,512,939 to Colvin 
et al.; U.S. Pat. No. 5,605,152 to Slate et al.; U.S. Pat. No. 
4,431,004 to Bessman et al.; U.S. Pat. No. 4,703,756 to 
Gough et al; U.S. Pat. No. 6,514,718 to Helleretal; and U.S. 
Pat. No. 5,985,129 to Gough et al. 
Signal Artifacts 
0287. Typically, a glucose sensor produces a data stream 
that is indicative of the glucose concentration of a host. Such 
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as described in more detail above. However, it is well known 
that the above described glucose sensors includes only a few 
examples of an abundance of glucose sensors that are able to 
provide raw data output indicative of the concentration of 
glucose. Thus, it should be understood that the systems and 
methods described herein, including signal artifacts detec 
tion, signal artifacts replacement, and other data processing, 
can be applied to a data stream obtained from any glucose 
SSO. 

0288 Raw data streams typically have some amount of 
“system noise.” caused by unwanted electronic or diffusion 
related noise that degrades the quality of the signal and thus 
the data. Accordingly, conventional glucose sensors are 
known to Smooth raw data using methods that filter out this 
system noise, and the like, in order to improve the signal to 
noise ratio, and thus data output. One example of a conven 
tional data-Smoothing algorithm includes a finite impulse 
response filter (FIR), which is particularly suited for reducing 
high-frequency noise (see Steil et al. U.S. Pat. No. 6.558, 
351). 
(0289 FIGS. 7A and 7B are graphs of raw data streams 
from an implantable glucose sensor prior to data Smoothing. 
FIG. 7A is a graph that shows a raw data stream obtained from 
a glucose sensor over an approximately 4 hour time span in 
one example. FIG. 7B is a graph that shows a raw data stream 
obtained from a glucose sensor over an approximately 36 
hour time span in another example. The X-axis represents time 
in minutes. The y-axis represents sensor data in counts. In 
these examples, sensor output in counts is transmitted every 
30-seconds. 

0290 The “system noise' such as shown in sections 72a, 
72b of the data streams of FIGS. 7A and 7B, respectively, 
illustrate time periods during which system noise can be seen 
on the data stream. This system noise can be characterized as 
Gaussian, Brownian, and/or linear noise, and can be substan 
tially normally distributed about the mean. The system noise 
is likely electronic and diffusion-related, and the like, and can 
be smoothed using techniques such as by using an FIR filter. 
As another example, the raw data can be represented by an 
integrated value, for example, by integrating the signal over a 
time period (e.g., 30 seconds or 5 minutes), and providing an 
averaged (e.g., integrated) data point there from. The system 
noise such as shown in the data of sections 72a, 72b is a fairly 
accurate representation of glucose concentration and can be 
confidently used to report glucose concentration to the user 
when appropriately calibrated. 
0291. The “signal artifacts' such as shown in sections 74a, 
74b of the data stream of FIGS. 7A and 7B, respectively, 
illustrate time periods during which “signal artifacts' can be 
seen, which are significantly different from the previously 
described system noise (sections 72a, 72b). This noise, such 
as shown in section 74a and 74b, is referred to herein as 
“signal artifacts” and may be described as “transient non 
glucose dependent signal artifacts that have a higher ampli 
tude than system noise. At times, signal artifacts comprise 
low noise, which generally refers to noise that Substantially 
decreases signal amplitude 76a, 76b herein, which is best 
seen in the signal artifacts 74b of FIG. 7B. Occasional high 
spikes 78a, 78b, which generally correspond to noise that 
Substantially increases signal amplitude, can also be seen in 
the signal artifacts, which generally occur after a period of 
low noise. These high spikes are generally observed after 
transient low noise and typically result after reaction rate 
limiting phenomena occur. For example, in an embodiment 
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where a glucose sensor requires an enzymatic reaction, local 
ischemia creates a reaction that is rate-limited by oxygen, 
which is responsible for low noise. In this situation, glucose 
would be expected to build up in the membrane because it 
would not be completely catabolized during the oxygen defi 
cit. When oxygen is again in excess, there would also be 
excess glucose due to the transient oxygen deficit. The 
enzyme rate would speed up for a short period until the excess 
glucose is catabolized, resulting in high noise. Additionally, 
noise can be distributed both above and below the expected 
signal. 
0292 Analysis of signal artifacts such as shown sections 
74a, 74b of FIGS. 7A and 7B, respectively, indicates that the 
observed low noise is caused by Substantially non-glucose 
reaction dependent phenomena, such as ischemia that occurs 
within or around a glucose sensor in Vivo, for example, which 
results in the reaction becoming oxygen dependent. As a first 
example, at high glucose levels, oxygen can become limiting 
to the enzymatic reaction, resulting in a non-glucose depen 
dent downward trend in the data (best seen in FIG. 7B). As a 
second example, certain movements or postures taken by the 
patient can cause transient downward noise as blood is 
Squeezed out of the capillaries resulting in localischemia, and 
causing non-glucose dependent low noise. Because excess 
oxygen (relative to glucose) is necessary for proper sensor 
function, transient ischemia can result in a loss of signal gain 
in the sensor data. In this second example oxygen can also 
become transiently limited due to contracture of tissues 
around the sensorinterface. This is similar to the blanching of 
skin that can be observed when one puts pressure on it. Under 
Such pressure, transient ischemia can occur in both the epi 
dermis and Subcutaneous tissue. Transient ischemia is com 
mon and well tolerated by Subcutaneous tissue. 
0293. In another example of non-glucose reaction rate 
limiting phenomena, skin temperature can vary dramatically, 
which can result in thermally related erosion of the signal 
(e.g., temperature changes between 32 and 39 degrees Celsius 
have been measured in humans). In yet another embodiment, 
wherein the glucose sensor is placed intravenously, increased 
impedance can result from the sensor resting against wall of 
the blood vessel, for example, producing this non-glucose 
reaction rate-limiting noise due to oxygen deficiency. 
0294 Because signal artifacts are not mere system noise, 
but rather are caused by known or unknown non-glucose 
related mechanisms, methods used for conventional random 
noise filtration produce data lower (or in Some cases higher) 
than the actual blood glucose levels due to the expansive 
nature of these signal artifacts. To overcome this, the pre 
ferred embodiments provide systems and methods for replac 
ing at least some of the signal artifacts by estimating glucose 
signal values. 
0295 FIG. 8 is a flow chart that illustrates the process of 
detecting and replacing signal artifacts in certain embodi 
ments. It is noted that “signal artifacts' particularly refers to 
the transient non-glucose related artifacts Such as described in 
more detail elsewhere herein. Typically, signal artifacts are 
caused by non-glucose rate-limiting phenomenon Such as 
described in more detail above. 

0296. At block 82, a sensor data receiving module, also 
referred to as the sensor data module 82, or processor module, 
receives sensor data (e.g., a data stream), including one or 
more time-spaced sensor data points. In some embodiments, 
the data stream is stored in the sensor for additional process 
ing; in some alternative embodiments, the sensor periodically 
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transmits the data stream to the receiver 30, which can be in 
wired or wireless communication with the sensor. In some 
embodiments, raw and/or filtered data is stored in the sensor 
and/or receiver. 

0297. At block 84, a signal artifacts detection module, also 
referred to as the signal artifacts detector 84 or signal reliabil 
ity module, is programmed to detect transient non-glucose 
related signal artifacts in the data stream, Such as described in 
more detail with reference to FIGS. 7A and 7B, above. The 
signal artifacts detector can comprise an oxygen detector, a 
pH detector, a temperature detector, and/or a pressure/stress 
detector, for example, the signal artifacts detector 29 in FIG. 
2. In some embodiments, the signal artifacts detectorat block 
84 is located within the processor 22 in FIG. 2 and utilizes 
existing components of the glucose sensor to detect signal 
artifacts, for example by pulsed amperometric detection, 
counter electrode monitoring, reference electrode monitor 
ing, and frequency content monitoring, which are described 
elsewhere herein. In yet other embodiments, the data stream 
can be sent from the sensor to the receiver which comprises 
programming in the processor 42 in FIG. 4 that performs 
algorithms to detect signal artifacts, for example such as 
described with reference to “Cone of Possibility Detection” 
method and/or by comparing raw data vs. filtered data, both of 
which are described in more detail below. Numerous embodi 
ments for detecting signal artifacts are described in more 
detail in the section entitled, “Signal Artifacts Detection, all 
of which are encompassed by the signal artifacts detection at 
block 84. 

0298. In certain embodiments, the processor module in 
either the sensor electronics and/or the receiver electronics 
can evaluate an intermittent or continuous signal-to-noise 
measurement to determine aberrancy of sensor data respon 
sive to a signal-to-noise ratio above a set threshold. In certain 
embodiments, signal residuals (e.g., by comparing raw and 
filtered data) can be intermittently or continuously analyzed 
for noise above a set threshold. In certain embodiments, pat 
tern recognition can be used to identify noise associated with 
physiological conditions, such as low oxygen, or other known 
signal aberrancies. Accordingly, in these embodiments, the 
system can be configured, in response to aberrancies in the 
data stream, to trigger signal estimation, adaptively filter the 
data stream according to the aberrancy, and the like, as 
described in more detail elsewhere herein. 

0299. At block 86, the signal artifacts replacement mod 
ule, also referred to as the signal estimation module, replaces 
Some or an entire data stream with estimated glucose signal 
values using signal estimation. Numerous embodiments for 
performing signal estimation are described in more detail in 
the section entitled “Signal Artifacts Replacement, all of 
which are encompassed by the signal artifacts replacement 
module, block 86. It is noted that in some embodiments, 
signal estimation/replacement is initiated in response to posi 
tive detection of signal artifacts on the data stream, and Sub 
sequently stopped in response to detection of negligible sig 
nal artifacts on the data stream. In some embodiments, the 
system waits a predetermined time period (e.g., between 30 
seconds and 30 minutes) before Switching the signal estima 
tion on or off to ensure that a consistent detection has been 
ascertained. In some embodiments, however, signal estima 
tion/replacement can continuously or continually run. 
0300 Some embodiments of signal estimation can addi 
tionally include discarding data that is considered sufficiently 
unreliable and/or erroneous such that the data should not be 
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used in a signal estimation algorithm. In these embodiments, 
the system can be programmed to discard outlier data points, 
for example data points that are so extreme that they can skew 
the data even with the most comprehensive filtering or signal 
estimation, and optionally replace those points with a pro 
jected value based on historical data or present data (e.g., 
linear regression, recursive filtering, and the like). One 
example of discarding sensor data includes discarding sensor 
data that falls outside of a "Cone of Possibility” such as 
described in more detail elsewhere herein. Another example 
includes discarding sensor data when signal artifacts detec 
tion detects values outside of a predetermined threshold (e.g., 
oxygen concentration below a set threshold, temperature 
above a certain threshold, signal amplitude above a certain 
threshold, etc). Any of the signal estimation/replacement 
algorithms described herein can then be used to project data 
values for those data that were discarded. 

Signal Artifacts Detection 
0301 Analysis of signals from glucose sensors indicates 
at least two types of noise, which are characterized herein as 
1) system noise and 2) signal artifacts, such as described in 
more detail above. It is noted that system noise is easily 
Smoothed using the algorithms provided herein; however, the 
systems and methods described herein particularly address 
signal artifacts, by replacing transient erroneous signal noise 
caused by rate-limiting phenomenon (e.g., non-glucose 
related signal) with estimated signal values, for example. 
0302. In certain embodiments of signal artifacts detection, 
oxygen monitoring is used to detect whether transient non 
glucose dependent signal artifacts due to ischemia. Low oxy 
gen concentrations in or near the glucose sensor can account 
for a large part of the transient non-glucose related signal 
artifacts as defined herein on a glucose sensor signal, particu 
larly in Subcutaneously implantable glucose sensors. Accord 
ingly, detecting oxygen concentration, and determining if 
ischemia exists can discoverischemia-related signal artifacts. 
A variety of methods can be used to test for oxygen. For 
example, an oxygen-sensing electrode, or other oxygen sen 
Sor can be employed. The measurement of oxygen concen 
tration can be sent to a processor, which determines if the 
oxygen concentration indicates ischemia. 
0303. In some embodiments of ischemia detection, an 
oxygen sensor is placed proximal to or within the glucose 
sensor. For example, the oxygen sensor can be located on or 
near the glucose sensor Such that their respective local envi 
ronments are shared and oxygen concentration measurement 
from the oxygen sensor represents an accurate measurement 
of the oxygen concentration on or within the glucose sensor. 
In some alternative embodiments of ischemia detection, an 
oxygen sensor is also placed distal to the glucose sensor. For 
example, the oxygen sensor can be located Sufficiently far 
from the glucose sensor Such that their respective local envi 
ronments are not shared and oxygen measurements from the 
proximal and distal oxygen sensors can be compared to deter 
mine the relative difference between the respective local envi 
ronments. By comparing oxygen concentration at proximal 
and distal oxygen sensors, change in local (proximal) oxygen 
concentration can be determined from a reference (distal) 
oxygen concentration. 
0304 Oxygen sensors are useful for a variety of purposes. 
For example, U.S. Pat. No. 6.512,939 to Colvin et al., which 
is incorporated herein by reference, discloses an oxygen sen 
Sor that measures background oxygen levels. However, 
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Colvin et al. rely on the oxygen sensor for the data stream of 
glucose measurements by Subtraction of oxygen remaining 
after exhaustion of glucose by an enzymatic reaction from 
total unreacted oxygen concentration. 
0305. In another embodiment of ischemia detection, 
wherein the glucose sensor is an electrochemical sensor that 
includes a potentiostat, pulsedamperometric detection can be 
employed to determine an oxygen measurement. Pulsed 
amperometric detection includes Switching, cycling, or puls 
ing the Voltage of the working electrode (or reference elec 
trode) in an electrochemical system, for example between a 
positive Voltage (e.g., +0.6 for detecting glucose) and a nega 
tive Voltage (e.g., -0.6 for detecting oxygen). U.S. Pat. No. 
4,680,268 to Clark, Jr., which is incorporated by reference 
herein, describes pulsed amperometric detection. In contrast 
to using signal replacement, Clark, Jr. addresses oxygen defi 
ciency by Supplying additional oxygen to the enzymatic reac 
tion. 

0306. In another embodiment of ischemia detection, 
wherein the glucose sensor is an electrochemical sensor and 
contains a potentiostat, oxygen deficiency can be seen at the 
counter electrode when insufficient oxygen is available for 
reduction, which thereby affects the counter electrode in that 
it is unable to balance the current coming from the working 
electrode. When insufficient oxygen is available for the 
counter electrode, the counter electrode can be driven in its 
electrochemical search for electrons all the way to its most 
negative value, which could be ground or 0.0V, which causes 
the reference to shift, reducing the bias Voltage such as 
described in more detail below. In other words, a common 
result of ischemia will be seen as a drop off in sensor current 
as a function of glucose concentration (e.g., lower sensitiv 
ity). This happens because the working electrode no longer 
oxidizes all of the HO, arriving at its surface because of the 
reduced bias. In some extreme circumstances, an increase in 
glucose can produce no increase in current or even a decrease 
in current. 

0307 FIG. 9 is a graph that shows a comparison of sensor 
current and counter-electrode Voltage in a host over time. The 
x-axis represents time in minutes. The first y-axis 91 repre 
sents sensor counts from the working electrode and thus plots 
a raw sensor data stream 92 for the glucose sensor over a 
period of time. The second y-axis 93 represents counter 
electrode voltage 94 in counts. The graph illustrates the cor 
relation between sensor data 92 and counter-electrode voltage 
94; particularly, that erroneous counter electrode function 96 
where the counter Voltages drops approximately to Zero Sub 
stantially coincides with transient non-glucose related signal 
artifacts 98. In other words, when counter-electrode voltage is 
at or near Zero, sensor data includes signal artifacts. 
0308. In another embodiment of ischemia detection, 
wherein the glucose sensor is an electrochemical sensor and 
contains a two- or three-cell electrochemical cell, signal arti 
facts are detected by monitoring the reference electrode. This 
“reference drift detection' embodiment takes advantage of 
the fact that the reference electrode will vary or drift in order 
to maintain a stable bias potential with the working electrode, 
such as described in more detail herein. This “drifting gen 
erally indicates non-glucose reaction rate-limiting noise, for 
example due to ischemia. It is noted that the following 
example describes an embodiment wherein the sensor 
includes a working, reference, and counter electrodes, such as 
described in more detail elsewhere herein; however the prin 
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ciples of this embodiment are applicable to a two-cell (e.g., 
anode and cathode) electrochemical cell as is understood in 
the art. 

0309 FIG. 10A is a circuit diagram of a potentiostat that 
controls a typical three-electrode system, which can be 
employed with a glucose sensor Such as described with ref 
erence to FIGS. 1 and 2. The potentiostat includes a working 
electrode 100, a reference electrode 102, and a counter elec 
trode 104. The voltage applied to the working electrode is a 
constant value (e.g., +1.2V) and the Voltage applied to the 
reference electrode is also set at a constant value (e.g., +0.6V) 
Such that the potential (Vis) applied between the working 
and reference electrodes is maintained at a constant value 
(e.g., +0.6V). The counter electrode is configured to have a 
constant current (equal to the current being measured by the 
working electrode), which is accomplished by varying the 
voltage at the counter electrode in order to balance the current 
going through the working electrode 100 such that current 
does not pass through the reference electrode 102. A negative 
feedback loop 107 is constructed from an operational ampli 
fier (OP AMP), the reference electrode 102, the counter elec 
trode 104, and a reference potential, to maintain the reference 
electrode at a constant Voltage. 
0310. In practice, a glucose sensor of one embodiment 
comprises a membrane that contains glucose oxidase that 
catalyzes the conversion of oxygen and glucose to hydrogen 
peroxide and gluconate. Such as described with reference to 
FIGS. 1 and 2. Therefore, for each glucose molecule metabo 
lized there is a change equivalent in molecular concentration 
in the co-reactant O and the product H.O. Consequently, 
one can use an electrode (e.g., working electrode 100) to 
monitor the concentration-induced current change in either 
the co-reactant or the product to determine glucose concen 
tration. 

0311. One limitation of the electrochemistry is seen when 
insufficient negative Voltage is available to the counter elec 
trode 104 to balance the working electrode 100. This limita 
tion can occur when insufficient oxygen is available to the 
counter electrode 104 for reduction, for example. When this 
limitation occurs, the counter electrode can no longer vary its 
Voltage to maintain a balanced current with the working elec 
trode and thus the negative feedback loop 107 used to main 
tain the reference electrode is compromised. Consequently, 
the reference electrode voltage will change or “drift, altering 
the applied bias potential (i.e., the potential applied between 
the working and reference electrodes), thereby decreasing the 
applied bias potential. When this change in applied bias 
potential occurs, the working electrode can produce errone 
ous glucose measurements due to either increased or 
decreased signal strength (Iseys). 
0312 FIG. 10B a diagram referred to as Cyclic-Voltam 
metry (CV) curve, wherein the x-axis represents the applied 
potential (Vis) and the y-axis represents the signal strength 
of the working electrode (Isis). A curve 108 illustrates an 
expected CV curve when the potentiostat is functioning nor 
mally. Typically, desired bias Voltage can be set (e.g., Vs) 
and a resulting current will be sensed (e.g., Isis). As the 
Voltage decreases (e.g., Vs) due to reference Voltage drift, 
for example, a new resulting current is sensed (e.g., Isis). 
Therefore, the change in bias is an indicator of signal artifacts 
and can be used in signal estimation and to replace the erro 
neous resulting signals. In addition to ischemia, the local 
environment at the electrode surfaces can affect the CV curve, 

24 
Aug. 23, 2012 

for example, changes in pH, temperature, and other local 
biochemical species can significantly alter the location of the 
CV curve. 

0313 FIG. 10C is a CV curve that illustrates an alternative 
embodiment of signal artifacts detection, wherein pH and/or 
temperature can be monitoring using the CV curve and diag 
nosed to detect transient non-glucose related signal artifacts. 
For example, signal artifacts can be attributed to thermal 
changes and/or pH changes in some embodiments because 
certain changes in pH and temperature affect data from a 
glucose sensor that relies on an enzymatic reaction to mea 
Sure glucose. Signal artifacts caused by pH changes, tempera 
ture changes, changes in available electrode Surface area, and 
other local biochemical species can be detected and signal 
estimation can be applied an/or optimized such as described 
in more detail elsewhere herein. In FIG.10C, a first curve 108 
illustrates an expected CV curve when the potentiostat is 
functioning normally. A second curve 109 illustrates a CV 
curve wherein the environment has changed as indicated by 
the upward shift of the CV curve. 
0314. In some embodiments, pH and/or temperature mea 
Surements are obtained proximal to the glucose sensor; in 
Some embodiments, pH and/or temperature measurements 
are also obtained distal to the glucose sensor and the respec 
tive measurements compared, such as described in more 
detail above with reference to oxygen sensors. 
0315. In another implementation of signal artifacts detec 
tion, whereintemperature is detected, an electronic thermom 
eter can be proximal to or within the glucose sensor, Such that 
the temperature measurement is representative of the tem 
perature of the glucose sensor's local environment. It is noted 
that accurate sensor function depends on diffusion of mol 
ecules from the blood to the interstitial fluid, and then through 
the membranes of the device to the enzyme membrane. Addi 
tionally, diffusion transport of hydrogen peroxide from the 
enzyme membrane to the electrode is required for accurate 
sensor function in some embodiments. Therefore, tempera 
tures can be a rate determining parameter of diffusion. As 
temperature decreases, diffusion transport decreases. Under 
certain human conditions, such as hypothermia or fever, the 
variations can be considerably greater. Additionally, under 
normal conditions, the temperature of Subcutaneous tissue is 
known to vary considerably more than core tissues (e.g., core 
temperature). Temperature thresholds can be set to detect 
signal artifacts accordingly. 
0316. In another implementation, a pH detector is used to 
detect signal artifacts. In glucose sensors that rely on enzy 
matic reactions, a pH of the fluid to be sensed can be within 
the range of about 5.5 to 7.5. Outside of this range, effects 
may be seen in the enzymatic reaction and therefore data 
output of the glucose sensor. Accordingly, by detecting if the 
pH is outside of a predetermined range (e.g., 5.5 to 7.5), a pH 
detector may detect transient non-glucose related signal arti 
facts such as described herein. It is noted that the pH threshold 
can be set at ranges other than provided herein without depart 
ing from the preferred embodiments. 
0317. In an alternative embodiment of signal artifacts 
detection, pressure and/or stress can be monitored using 
known techniques for example by a strain gauge placed on the 
sensor that detects stress/strain on the circuit board, sensor 
housing, or other components. A variety of microelectrome 
chanical systems (MEMS) can be utilized to measure pres 
Sure and/or stress within the sensor. 
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0318. In another alternative embodiment of signal arti 
facts detection, the processor in the sensor (or receiver) peri 
odically evaluates the data stream for high amplitude noise, 
which is defined by noisy data wherein the amplitude of the 
noise is above a predetermined threshold. For example, in the 
graph of FIGS. 7A and 7B, the system noise sections such as 
72a and 72b have a substantially low amplitude noise thresh 
old; in contrast to system noise, signal artifacts sections such 
as 74a and 74b have signal artifacts (noise) with an amplitude 
that is much higher than that of system noise. Therefore, a 
threshold can be set at or above the amplitude of system noise, 
such that when noisy data is detected above that amplitude, it 
can be considered “signal artifacts” as defined herein. 
0319. In another alternative embodiment of signal arti 
facts detection, a method hereinafter referred to as the "Cone 
of Possibility Detection Method utilizes physiological 
information along with glucose signal values in order define 
a “cone' of physiologically feasible glucose signal values 
within a human, Such that signal artifacts are detected when 
ever the glucose signal falls outside of the cone of possibility. 
Particularly, physiological information depends upon the 
physiological parameters obtained from continuous studies in 
the literature as well as our own observations. A first physi 
ological parameteruses a maximal Sustained rate of change of 
glucose in humans (e.g., about 4 to 5 mg/dL/min) and a 
maximum acceleration of that rate of change (e.g., about 0.1 
to 0.2 mg/dL/min). A second physiological parameter uses 
the knowledge that rate of change of glucose is lowest at the 
minima, which is the areas of greatest risk in patient treat 
ment, and the maxima, which has the greatest long-term 
effect on secondary complications associated with diabetes. 
A third physiological parameter uses the fact that the best 
Solution for the shape of the curve at any point along the curve 
over a certain time period (e.g., about 20-30 minutes) is a 
straight line. Additional physiological parameters can be 
incorporated and are within the scope of this embodiment. 
0320 In practice, the Cone of Possibility Detection 
Method combines any one or more of the above-described 
physiological parameters to form an algorithm that defines a 
cone of possible glucose levels for glucose data captured over 
a predetermined time period. In one exemplary implementa 
tion of the Cone of Possibility Detection Method, the system 
(processor in the sensor or receiver) calculates a maximum 
physiological rate of change and determines if the data falls 
within these physiological limits; if not, signal artifacts are 
identified. It is noted that the maximum rate of change can be 
narrowed (e.g., decreased) in Some instances. Therefore, 
additional physiological data could be used to modify the 
limits imposed upon the Cone of Possibilities Detection 
Method for sensor glucose values. For example, the maxi 
mum per minute rate change can be lower when the Subject is 
sleeping or hasn’t eaten in eight hours; on the other hand, the 
maximum per minute rate change can be higher when the 
Subject is exercising or has consumed high levels of glucose, 
for example. In general, it has been observed that rates of 
change are slowest near the maxima and minima of the curve, 
and that rates of change are highest near the midpoint between 
the maxima and minima. It should further be noted that rate of 
change limits are derived from analysis of a range of data 
significantly higher unsustained rates of change can be 
observed. 

0321. In another alternative embodiment of signal arti 
facts detection, examination of the spectral content (e.g., 
frequency content) of the data stream can yield measures 
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useful in detecting signal artifacts. For example, data that has 
high frequency, and in some cases can be characterized by a 
large negative slope, are indicative of signal artifacts and can 
cause sensor signal loss. Specific signal content can be moni 
tored using an orthogonal transform, for example a Fourier 
transform, a Discrete Fourier Transform (DFT), or any other 
method known in the art. 

0322 FIG. 11 is a graph of 110 a raw data stream from a 
glucose sensor and a spectrogram 114 that shows the fre 
quency content of the raw data stream in one embodiment. 
Particularly, the graph 110 illustrates the raw data stream 112 
and includes an X-axis that represents time in hours and a 
y-axis that represents sensor data output in counts; the spec 
trogram 114 illustrates the frequency content 116 corre 
sponding to the raw data stream 112 and includes an X-axis 
that represents time in hours corresponding to the X-axis of 
the graph 110 and a y-axis that represents frequency content 
in cycles per hour. The darkness of each point represents the 
amplitude of that frequency at that time. Darker points relate 
to higher amplitudes. Frequency content on the spectrogram 
114 was obtained using a windowed Discrete Fourier trans 
form. 

0323. The raw data stream in the graph 110 has been 
adjusted by a linear mapping similar to the calibration algo 
rithm. In this example, the bias (or intercept) has been 
adjusted but not the proportion (or slope). The slope of the 
raw data stream would typically be determined by some cali 
bration, but since the calibration has not occurred in this 
example, the gray levels in the spectrogram 114 indicate 
relative values. The lower values of the graph 110 are white. 
They are colored as white below a specific value, highlighting 
only the most intense areas of the graph. 
0324 By monitoring the frequency content 116, high fre 
quency cycles 118 can be observed. The high frequency 
cycles 118 correspond to signal artifacts 119 such as 
described herein. Thus, signal artifacts can be detected on a 
data stream by monitoring frequency content and setting a 
threshold (e.g., 30 cycles per hour). The set threshold can vary 
depending on the signal Source. 
0325 In another alternative embodiment of signal arti 
facts detection, examination of the signal information content 
can yield measures useful in detecting signal artifacts. Time 
series analysis can be used to measure entropy, approximate 
entropy, variance, and/or percent change of the information 
content over consecutive windows (e.g., 30 and 60 minute 
windows of data) of the raw data stream. In one exemplary 
embodiment, the variance of the raw data signal is measured 
over 15 minute and 45 minute windows, and signal artifacts 
are detected when the variance of the data within the 
15-minute window exceeds the variance of the data within the 
45-minute window. Alternatively, other methods of self-di 
agnosis can be performed on the signal to determine a level of 
signal artifacts. One example includes performing a first 
derivative analysis that compares consecutive points, and 
detects signal artifacts when point to point changes are above 
a physiologically feasible threshold, for example. Another 
example of signal self-diagnosis includes performing a sec 
ond derivative analysis that considers turning points, for 
example, detects signal artifacts when changes are not suffi 
ciently gradual (e.g., within thresholds), for example. 
0326 In yet another alternative embodiment of signal arti 
facts detection that utilizes examination or evaluation of the 
signal information content, filtered (e.g., Smoothed) data is 
compared to raw data (e.g., in sensor electronics or in receiver 
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electronics). In one such embodiment, a signal residual is 
calculated as the difference between the filtered data and the 
raw data. For example, at one time point (or one time period 
that is represented by a single raw value and single filtered 
value), the filtered data can be measured at 50,000 counts and 
the raw data can be measured at 55,500 counts, which would 
result in a signal residual of 5,500 counts. In some embodi 
ments, a threshold can be set (e.g., 5000 counts) that repre 
sents a first level of noise (e.g., signal artifact) in the data 
signal, when the residual exceeds that level. Similarly, a sec 
ond threshold can be set (e.g., 8,000 counts) that represents a 
second level of noise in the data signal. Additional thresholds 
and/or noise classifications can be defined as is appreciated 
by one skilled in the art. Consequently, signal filtering, pro 
cessing, and/or displaying decisions can be executed based on 
these conditions (e.g., the predetermined levels of noise). 
0327. Although the above-described example illustrates 
one method of determining a level of noise, or signal artifact 
(s), based on a comparison of raw vs. filtered data for a time 
point (or single values representative of a time period). In an 
alternative exemplary embodiment for determining noise, 
signal artifacts are evaluated for noise episodes lasting a 
certain period of time. For example, the processor (in the 
sensor or receiver) can be configured to look for a certain 
number of signal residuals above a predetermined threshold 
(representing noise time points or noisy time periods) for a 
predetermined period of time (e.g., a few minutes to a few 
hours or more). 
0328. In one exemplary embodiment, a processor is con 
figured to determine a signal residual by Subtracting the fil 
tered signal from the raw signal for a predetermined time 
period. It is noted that the filtered signal can be filtered by any 
known Smoothing algorithm such as described herein, for 
example a 3-point moving average-type filter. It is further 
noted that the raw signal can include an average value, e.g., 
wherein the value is integrated over a predetermined time 
period (such as 5-minutes). Furthermore, it is noted that the 
predetermined time period can be a time point or representa 
tive data for a time period (e.g., 5 minutes). In some embodi 
ments, wherein a noise episode for a predetermined time 
period is being evaluated, a differential can be obtained by 
comparing a signal residual with a previous signal residual 
(e.g., a residual at time (t)=0 as compared to a residual at (t)-5 
minutes.) Similar to the thresholds described above with 
regard to the signal residual, one or more thresholds can be set 
for the differentials, whereby one or more differentials above 
one of the predetermined differential thresholds defines a 
particular noise level. It has been shown in certain circum 
stances that a differential measurement as compared to a 
residual measurement as described herein, amplifies noise 
and therefore may be a more sensitive to noise episodes. 
Accordingly, a noise episode, or noise episode level, can be 
defined by one or more points (e.g., residuals or differentials) 
above a predetermined threshold, and in some embodiments, 
for a predetermined period of time. Similarly, a noise level 
determination can be reduced or altered when a different 
(e.g., reduced) number of points above the predetermined 
threshold are calculated in a predetermined period of time. 
0329. One or a plurality of the above signal artifacts detec 
tion models can be used alone or in combination to detect 
signal artifacts such as described herein. Accordingly, the 
data stream associated with the signal artifacts can be dis 
carded, replaced, or otherwise processed in order to reduce or 
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eliminate these signal artifacts and thereby improve the value 
of the glucose measurements that can be provided to a user. 

Signal Artifacts Replacement 

0330 Signal Artifacts Replacement, such as described 
above, can use systems and methods that reduce or replace 
these signal artifacts that can be characterized by transience, 
high frequency, high amplitude, and/or substantially non 
linear noise. Accordingly, a variety of filters, algorithms, and 
other data processing are provided that address the detected 
signal artifacts by replacing the data stream, or portion of the 
data stream, with estimated glucose signal values. It is noted 
that "signal estimation' as used herein, is a broad term, which 
includes filtering, data Smoothing, augmenting, projecting, 
and/or otheralgorithmic methods that estimate glucose signal 
values based on present and historical data. 
0331. It is noted that a glucose sensor can contain a pro 
cessor and the like that processes periodically received raw 
sensor data (e.g., every 30 seconds). Although a data point can 
be available constantly, for example by use of an electrical 
integration system in a chemo-electric sensor, relatively fre 
quent (e.g., every 30 seconds), or less frequent data point 
(e.g., every 5 minutes), can be more than Sufficient for patient 
use. It is noted that accordingly Nyquist Theory, a data point 
is required about every 10 minutes to accurately describe 
physiological change in glucose in humans. This represents 
the lowest useful frequency of sampling. However, it should 
be recognized that it is desirable to sample more frequently 
than the Nyquist minimum, to provide for sufficient data in 
the event that one or more data points are lost, for example. 
Additionally, more frequently sampled data (e.g., 30-second) 
can be used to Smooth the less frequent data (e.g., 5-minute) 
that are transmitted. It is noted that in this example, during the 
course of a 5-minute period, 10 determinations are made at 
30-second intervals. 

0332. In some embodiments of Signal Artifacts Replace 
ment, signal estimation can be implemented in the sensor and 
transmitted to a receiver for additional processing. In some 
embodiments of Signal Artifacts Replacement, raw data can 
be sent from the sensor to a receiver for signal estimation and 
additional processing therein. In some embodiments of Sig 
nal Artifacts Replacement, signal estimation is performed 
initially in the sensor, with additional signal estimation in the 
receiver. 

0333. In some embodiments of Signal Artifacts Replace 
ment, wherein the sensor is an implantable glucose sensor, 
signal estimation can be performed in the sensor to ensure a 
continuous stream of data. In alternative embodiments, data 
can be transmitted from the sensor to the receiver, and the 
estimation performed at the receiver. It is noted however that 
there can be a risk of transmit-loss in the radio transmission 
from the sensor to the receiver when the transmission is 
wireless. For example, in embodiments wherein a sensor is 
implemented in vivo, the raw sensor signal can be more 
consistent within the sensor (in vivo) than the raw signal 
transmitted to a source (e.g., receiver) outside the body (e.g., 
if a patient were to take the receiver off to shower, commu 
nication between the sensor and receiver can be lost and data 
Smoothing in the receiver would halt accordingly). Conse 
quently. It is noted that a multiple point data loss in the filter 
can take for example, about 25 to about 40 minutes for the 
data to recover to near where it would have been had there 
been no data loss. 
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0334. In some embodiments of Signal Artifacts Replace 
ment, signal estimation is initiated only after signal artifacts 
are positively detected and stopped once signal artifacts are 
negligibly detected. In some alternative embodiments signal 
estimation is initiated after signal artifacts are positively 
detected and then stopped after a predetermined time period. 
In some alternative embodiments, signal estimation can be 
continuously or continually performed. In some alternative 
embodiments, one or more forms of signal estimation can be 
accomplished based on the severity of the signal artifacts, 
such as will be described with reference the section entitled, 
“Selective Application of Signal Artifacts Replacement.” 
0335. In some embodiments of Signal Artifacts Replace 
ment, the processor performs a linear regression. In one Such 
implementation, the processor performs a linear regression 
analysis of the n (e.g., 10) most recent sampled sensor values 
to Smooth out the noise. A linear regression averages over a 
number of points in the time course and thus reduces the 
influence of wide excursions of any point from the regression 
line. Linear regression defines a slope and intercept, which is 
used to generate a “Projected Glucose Value,” which can be 
used to replace sensor data. This regression can be continually 
performed on the data stream or continually performed only 
during the transient signal artifacts. In some alternative 
embodiments, signal estimation can include non-linear 
regression. 
0336. In another embodiment of Signal Artifacts Replace 
ment, the processor performs a trimmed regression, which is 
a linear regression of a trimmed mean (e.g., after rejecting 
wide excursions of any point from the regression line). In this 
embodiment, after the sensor records glucose measurements 
at a predetermined sampling rate (e.g., every 30 seconds), the 
sensor calculates a trimmed mean (e.g., removes highest and 
lowest measurements from a data set and then regresses the 
remaining measurements to estimate the glucose value. 
0337 FIG. 12 is a graph that illustrates a raw data stream 
from a glucose sensor and a trimmed regression that can be 
used to replace some of or the entire data stream. The X-axis 
represents time in minutes; the y-axis represents sensor data 
output in counts. A raw data signal 120, which is illustrated as 
a dotted line, shows a data stream wherein some system noise 
can be detected, however signal artifacts 122 can be particu 
larly seen in a portion thereof (and can be detected by meth 
ods such as described above). The trimmed regression line 
124, which is illustrated as a solid line, is the data stream after 
signal estimation using a trimmed linear regression algo 
rithm, such as described above, and appears at least somewhat 
“Smoothed on the graph. In this particular example, the 
trimmed regression uses the most recent 60 points (30 min 
utes) and trims out the highest and lowest values, then uses the 
leftover 58 points to project the next point. It is noted that the 
trimmed regression 124 provides a good estimate throughout 
the majority data stream, however is only somewhat effective 
in Smoothing the data in during signal artifacts 122. To pro 
vide an optimized estimate of the glucose data values, the 
trimmed regression can be optimized by changing the param 
eters of the algorithm, for example by trimming more or less 
raw glucose data from the top and/or bottom of the signal 
artifacts 122 prior to regression. Additionally, trimmed 
regression, because of its inherent properties, can be particu 
larly Suited for noise of a certain amplitude and/or character 
istic. In one embodiment, for example trimmed regression 
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can be selectively applied based on the severity of the signal 
artifacts, which is described in more detail below with refer 
ence to FIGS 15 to 17. 
0338. In another embodiment of Signal Artifacts Replace 
ment, the processor runs a non-recursive filter, Such as a finite 
impulse response (FIR) filter. A FIR filter is a digital signal 
filter, in which every sample of output is the weighted sum of 
past and current samples of input, using only some finite 
number of past samples. 
0339 FIG. 13 is a graph that illustrates a raw data stream 
from a glucose sensor and an FIR-estimated signal that can be 
used to replace Some of or the entire data stream. The X-axis 
represents time in minutes; the y-axis represents sensor data 
output in counts. A raw data signal 130, which is illustrated as 
a dotted line, shows a data stream wherein some system noise 
can be detected, however signal artifacts 132 can be particu 
larly seen in a portion thereof (and can be detected by meth 
ods such as described above). The FIR-estimated signal 134, 
which is illustrated as a solid line, is the data stream after 
signal estimation using a FIR filter, Such as described above, 
and appears at least somewhat “smoothed' on the graph. It is 
noted that the FIR-estimated signal provides a good estimate 
throughout the majority of the data stream; however like 
trimmed regression it is only somewhat effective in Smooth 
ing the data during signal artifacts 132. To provide an opti 
mized estimate of the glucose data values, the FIR filter can be 
optimized by changing the parameters of the algorithm, for 
example the tuning of the filter, particularly the frequencies of 
the pass band and the stop band. Additionally, it is noted that 
the FIR filter, because of its inherent properties, can be par 
ticularly Suited for noise of a certain amplitude and/or char 
acteristic. In one embodiment, for example the FIR filter can 
be selectively applied based on the severity of the signal 
artifacts, which is described in more detail below with refer 
ence to FIGS. 15 to 17. It is noted that the FIR-estimated 
signal induces a time lag on the data stream, which can be 
increased or decreased in order to optimize the filtering or to 
minimize the time lag, for example. 
0340. In another embodiment of Signal Artifacts Replace 
ment, the processor runs a recursive filter, such as an infinite 
impulse response (IIR) filter. An IIR filter is a type of digital 
signal filter, in which every sample of output is the weighted 
Sum of past and current samples of input. In one exemplary 
implementation of an IIR filter, the output is computed using 
6 additions/subtractions and 7 multiplications as shown in the 
following equation: 

ao : x(n) -- a 3 x(n - 1) + a2 : x(n - 2) + as : x(n-3) - 
b1 : y (n - 1) - b : y (n - 2) - b3 : y (n-3) 

bo 

This polynomial equation includes coefficients that are 
dependent on sample rate and frequency behavior of the filter. 
Frequency behavior passes low frequencies up to cycle 
lengths of 40 minutes, and is based on a 30 second sample 
rate. In alternative implementations, the sample rate and cycle 
lengths can be more or less. See Lynn “Recursive Digital 
Filters for Biological Signals' Med. & Biol. Engineering, 
Vol. 9, pp. 37-43, which is incorporated herein by reference in 
its entirety. 
0341 FIG. 14 is a graph that illustrates a raw data stream 
from a glucose sensor and an IIR-estimated signal that can be 
used to replace Some of or the entire data stream. The X-axis 
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represents time in minutes; the y-axis represents sensor data 
output in counts. A raw data signal 140, which is illustrated as 
a dotted line, shows a data stream wherein some system noise 
can be detected, however signal artifacts 142 can be particu 
larly seen in a portion thereof (and can be detected by meth 
ods such as described above). The IIR-estimated signal 144, 
which is illustrated as a solid line, represents the data stream 
after signal estimation using an IIR filter, Such as described 
above, and appears at least somewhat “smoothed on the 
graph. It is noted that the IIR-estimated signal induces a time 
lag on the data stream; however it appears to be a particularly 
good estimate of glucose data values during signal artifacts 
142, as compared to the FIR filter (FIG. 13), for example. 
0342. To optimize the estimation of the glucose data val 
ues, the parameters of the IIR filter can be optimized, for 
example by increasing or decreasing the cycle lengths (e.g., 
10 minutes, 20 minute, 40 minutes, 60 minutes) that are used 
in the algorithm. Although an increased cycle length can 
increase the time lag induced by the IIR filter, an increased 
cycle length can also better estimate glucose data values 
during severe signal artifacts. In other words, the IIR filter, 
because of its inherent properties, can be particularly Suited 
for noise of a certain amplitude and/or characteristic. In one 
exemplary embodiment, the IIR filter can be continually 
applied, however the parameters such as described above can 
be selectively altered based on the severity of the signal 
artifacts; in another exemplary embodiment, the IIR filter can 
be applied only after positive detection of signal artifacts. 
Selective application of the IIR filter based on the severity of 
the signal artifacts is described in more detail below with 
reference to FIGS. 15 to 17. 

0343. It is noted that a comparison of linear regression, an 
FIR filter, and an IIR filter can be advantageous for optimiz 
ing their usage in the preferred embodiments. That is, an 
understanding the design considerations for each algorithm 
can lead to optimized selection and implementation of the 
algorithm, as described in the section entitled, “Selective 
Application of Signal Replacement Algorithms' herein. Dur 
ing system noise, as defined herein, all of the above algo 
rithms can be successfully implemented during system noise 
with relative ease. During signal artifacts, however, compu 
tational efficiency is greater with an IIR-filter as compared 
with linear regression and FIR-filter. Additionally, although 
the time lag associated with an IIR filter can be substantially 
greater than that of the linear regression or FIR-filter, this can 
be advantageous during severe signal artifacts in order to 
assign greater weight toward the previous, less noisy data in 
signal estimation. 
0344. In another embodiment of Signal Artifacts Replace 
ment, the processor runs a maximum-average (max-average) 
filtering algorithm. The max-average algorithm Smoothes 
data based on the discovery that the substantial majority of 
signal artifacts observed after implantation of glucose sensors 
in humans, for example, is not distributed evenly above and 
below the actual blood glucose levels. It has been observed 
that many data sets are actually characterized by extended 
periods in which the noise appears to trend downwardly from 
maximum values with occasional high spikes Such as 
described in more detail above with reference to FIG. 7B, 
section 74b, which is likely in response to limitations in the 
system that do not allow the glucose to fully react at the 
enzyme layer and/or proper reduction of H2O at the counter 
electrode, for example. To overcome these downward trend 
ing signal artifacts, the max-average calculation tracks with 
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the highest sensor values, and discards the bulk of the lower 
values. Additionally, the max-average method is designed to 
reduce the contamination of the data with non-physiologi 
cally high data from the high spikes. 
0345 The max-average calculation smoothes data at a 
sampling interval (e.g., every 30 seconds) for transmission to 
the receiver at a less frequent transmission interval (e.g., 
every 5 minutes) to minimize the effects of low non-physi 
ological data. First, the processor finds and stores a maximum 
sensor counts value in a first set of sampled data points (e.g., 
5 consecutive, accepted, thirty-second data points). A frame 
shift time window finds a maximum sensor counts value for 
each set of sampled data (e.g., each 5-point cycle length) and 
stores each maximum value. The processor then computes a 
rolling average (e.g., 5-point average) of these maxima for 
each sampling interval (e.g., every 30 seconds) and stores 
these data. Periodically (e.g., every 10" interval), the sensor 
outputs to the receiver the current maximum of the rolling 
average (e.g., over the last 10 thirty-second intervals as a 
Smoothed value for that time period (e.g., 5 minutes)). In one 
example implementation, a 10-point window can be used, and 
at the 10" interval, the processor computes the average of the 
most recent 5 or 10 average maxima as the Smoothed value for 
a 5 minute time period. 
0346. In some embodiments of the max-average algo 
rithm, an acceptance filter can also be applied to new sensor 
data to minimize effects of high non-physiological data. In 
the acceptance filter, each sampled data point (e.g., every 30 
seconds) is tested for acceptance into the maximum average 
calculation. Each new point is compared against the most 
representative estimate of the sensor curve at the previous 
sampling interface (e.g., 30-second time point), or at a pro 
jection to a current estimated value. To reject high data, the 
current data point is compared to the most recent value of the 
average maximum values over a time period (e.g., 5 sampled 
data points over a 2.5 minute period). If the ratio of current 
value to the comparison value is greater than a certain thresh 
old (e.g., about 1.02), then the current data point is replaced 
with a previously accepted value (e.g., 30-second value). If 
the ratio of current value to the comparison value is in at or 
within a certain range (e.g., about 1.02 to 0.90), then the 
current data point is accepted. If the ratio of current value to 
the comparison value is less than a certain threshold (e.g., 
about 0.90), then the current data point is replaced with a 
previously accepted value. The acceptance filter step and 
max-average calculation are continuously run throughout the 
data set (e.g., fixed 5-minute windows) on a rolling window 
basis (e.g., every 30 seconds). 
0347 In some implementations of the acceptance filter, 
the comparison value for acceptance could also be the most 
recent maximum of 5 accepted sensorpoints (more sensitive) 
or the most recent average over 10 averages of 5 maximum 
values (least sensitive), for example. In some exemplary 
implementations of the acceptance filter, the projected value 
for the current time point can be based on regression of the last 
4 accepted 30-second values and/or the last 2 to 4 (5 to 15 
min) of the 5-minute Smoothed values, for example. In some 
exemplary implementations of the acceptance filter, the per 
centage comparisons of +2% and -10% of counts value 
would be replaced by percentage comparisons based on the 
most recent 24 hour range of counts values; this method 
would provide improved sensor specificity as compared to a 
method based on total counts. 
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0348. In another embodiment of Signal Artifacts Replace 
ment, the processor runs a “Cone of Possibility Replacement 
Method.” It is noted that this method can be performed in the 
sensor and/or in the receiver. The Cone of Possibility Detec 
tion Method utilizes physiological information along with 
glucose signal values in order define a "cone' of physiologi 
cally feasible glucose signal values within a human. Particu 
larly, physiological information depends upon the physi 
ological parameters obtained from continuous studies in the 
literature as well as our own observations. A first physiologi 
cal parameter uses a maximal Sustained rate of change of 
glucose in humans (e.g., about 4 to 5 mg/dl/min) and a maxi 
mum Sustained acceleration of that rate of change (e.g., about 
0.1 to 0.2 mg/min/min). A second physiological parameter 
uses the knowledge that rate of change of glucose is lowest at 
the maxima and minima, which are the area of greatest risk in 
patient treatment, such as described with reference to Cone of 
Possibility Detection, above. A third physiological parameter 
uses the fact that the best solution for the shape of the curve at 
any point along the curve over a certain time period (e.g., 
about 20-25 minutes) is a straight line. It is noted that the 
maximum rate of change can be narrowed in Some instances. 
Therefore, additional physiological data can be used to 
modify the limits imposed upon the Cone of Possibility 
Replacement Method for sensor glucose values. For example, 
the maximum per minute rate change can be lower when the 
Subject is lying down or sleeping; on the other hand, the 
maximum per minute rate change can be higher when the 
Subject is exercising, for example. 
(0349 The Cone of Possibility Replacement Method uti 
lizes physiological information along with blood glucose data 
in order to improve the estimation of blood glucose values 
within a human in an embodiment of Signal Artifacts 
Replacement. The Cone of Possibility Replacement Method 
can be performed on raw data in the sensor, on raw data in the 
receiver, or on Smoothed data (e.g., data that has been 
replaced/estimated in the sensor or receiver by one of the 
methods described above) in the receiver. 
0350. In a first implementation of the Cone of Possibility 
Replacement Method, a centerline of the cone can be pro 
jected from a number of previous, optionally smoothed, 
incremental data points (e.g., previous four, 5-minute data 
points). Each predicted cone centerline point (e.g., 5 minute 
point) increases by the slope (S) (e.g., for the regression in 
counts/minute) multiplied by the data point increment (e.g., 5 
minutes). Counts/mg/dL is estimated from glucose and sen 
Sor range calculation over the data set. 
0351. In this first implementation of the Cone of Possibil 

ity Replacement Method, positive and negative cone limits 
are simple linear functions. Periodically (e.g., every 5 min 
utes), each sensor data point (optionally smoothed) is com 
pared to the cone limits projected from the last four points. If 
the sensor value observed is within the cone limits, the sensor 
value is retained and used to generate the cone for the next 
data point increment (e.g., 5-minute point). If the sensor value 
observed falls outside the high or low cone limit, the value is 
replaced by the cone limit value, and that value is used to 
project the next data point increment (e.g., 5 minute point, 
high point, or low point). For example, if the difference 
between two adjacent 5-minute points exceeds 20 mg/dL, 
then cone limits are capped at 20 mg/dL increments per 5 
minutes, with the positive limit of the cone being generated by 
the addition of 0.5*A*t to mid cone value, where A is 0.1 
mg/dL/min/min and t is 5 minute increments (A is converted 
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to counts/min/min for the calculation), and the negative limit 
of the cone being generated by the addition of -0.5*A*t to 
mid cone value. This implementation provides a high degree 
of accuracy and is minimally sensitive to non-physiological 
rapid changes. 
0352. The following Table 1 illustrates one example 
implementation of the Cone of Possibility Replacement 
Method, wherein the maximum sustained value observed for 
S is about +/-4 mg/dL/min and the maximum value observed 
for A is about +/-0.1 mg/dL/min: 

TABLE 1 

Mid line 
Time (mg/dL) Positive Cone Limit Negative Cone Limit 

O 100 1OO 100 
S 100 - S*S 100 - S - S - 12.S* A 100 - S - S - 

12.5 A 
10 100 - 10 * S 100 - 10 * S - SO * A 100 - 10 * S 

50* A 
1S 100 - 15 * S 100 - 15 * S - 112.S* A 100 - 15 * S 

112.5: A 
2O 100 - 20 * S 100 - 20 * S - 200* A 100 - 20 * S 

200* A 
2S 100 - 25 * S 100 - 25 * S - 312.S* A 100 - 25 * S 

312.5: A 

0353. The cone widens for each 5-minute increment for 
which a sensor value fails to fall inside the cone up to 30 
minutes, such as can be seen in the table above. At 30 minutes, 
a cone has likely widened enough to capture an observed 
sensor value, which is used, and the cone collapses back to a 
5-minute increment width. If no sensor values are captured 
within 30 minutes, the cone generation routine starts over 
using the next four observed points. In some implementations 
special rules can be applied, for example in a case where the 
change in counts in one 5-minute interval exceeds an esti 
mated 30-mg/dL amount. In this case, the next acceptable 
point can be more than 20 to 30 minutes later. It is noted that 
an implementation of this algorithm includes utilizing the 
cone of possibility to predict glucose levels and alert patients 
to present or upcoming dangerous blood glucose levels. 
0354. In another alternative embodiment of cone widen 
ing, the cone can widen in set multiples (e.g., 20 mg/dL) of 
equivalent amounts for each additional time interval (e.g., 5 
minutes), which rapidly widens the cone to accept data. 
0355. It is noted that the numerical parameters represent 
only one example implementation of the Cone of Possibility 
Replacement Method. The concepts can be applied to any 
numerical parameters as desired for various glucose sensor 
applications. 
0356. In another implementation of the Cone of Possibil 
ity Replacement Method, sensor calibration data is optimized 
using the Clarke Error Grid, the Consensus Grid, or an alter 
native error assessment that assigns risk levels based on the 
accuracy of matched data pairs. In an example using the 
Clarke Error Grid, because the 10 regions of the Clarke Error 
Grid are not all symmetric around theY=X perfect regression, 
fits to the grid can be improved by using a multi-line regres 
sion to the data. 
0357 Accordingly the pivot point method for the counts 
Vs. glucose regression fit can be used to optimize sensor 
calibration data to the Clarke Error Grid, Consensus Grid, or 
other clinical acceptability standard. First, the glucose range 
is divided according to meter values (e.g., at 200 mg/dL). Two 
linear fitting lines are used, which cross at the pivot point. The 
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coordinates of the pivot point in counts and glucose value, 
plus the slope and intercept of the two lines are variable 
parameters. Some of pivot point coordinates (e.g., 4 out of 6) 
and slope or intercept of each line can be reset with each 
iteration, while the chosen coordinates define the remainder. 
The data are then re-plotted on the Clarke Error Grid, and 
changes in point placement and percentages in each region of 
the grid are evaluated. To optimize the fit of a data set to a 
Clark Error Grid, the regression of counts vs. reference glu 
cose can be adjusted Such that the maximum number of points 
are in the A+B Zones without reducing the A+B percentage, 
and the number of points are optimized Such that the highest 
percentage are in the A Zone and lowest percentage are in the 
D, E and C Zones. In general, the points should be distributed 
as evenly as possible around the Y=X line. In some embodi 
ments, three distinct lines optimized for clinical acceptability 
can represent the regression line. In some embodiments, an 
additional useful criterion can be used to compute the root 
mean squared percentage bias for the data set. Better fits are 
characterized by reduction in the total root mean squared 
percentage bias. In an alternative implementation of the pivot 
point methods, a predetermined pivot (e.g., 10 degree) of the 
regression line can be applied when the estimated blood is 
above or below a set threshold (e.g., 150 mg/dL), wherein the 
pivot and threshold are determined from a retrospective 
analysis of the performance of a conversion function and its 
performance at a range of glucose concentrations. 
0358. In another embodiment of Signal Artifacts Replace 
ment, reference changes in electrode potential can be used to 
estimate glucose sensor data during positive detection of sig 
nal artifacts from an electrochemical glucose sensor, the 
method hereinafter referred to as reference drift replacement. 
In this embodiment, the electrochemical glucose sensor com 
prises working, counter, and reference electrodes. Such as 
described with reference to FIGS. 1, 2 and 10 above. This 
method exploits the function of the reference electrode as it 
drifts to compensate for counter electrode limitations during 
oxygen deficits, pH changes, and/or temperature changes 
such as described in more detail above with reference to 
FIGS. 10A, 10B, and 10C. 
0359. Such as described within more detail with reference 

to FIG. 10A a potentiostat is generally designed so that a 
regulated potential difference between the reference elec 
trode 102 and working electrode 100 is maintained as a con 
stant. The potentiostat allows the counter electrode voltage to 
float within a certain Voltage range (e.g., from between close 
to the +1.2V observed for the working electrode to as low as 
battery ground or 0.0V). The counter electrode voltage mea 
Surement will reside within this Voltage range dependent on 
the magnitude and sign of current being measured at the 
working electrode and the electroactive species type and con 
centration available in the electrolyte adjacent to the counter 
electrode 104. This species will be electrochemically 
recruited (e.g., reduced/accepting electrons) to equal the cur 
rent of opposite sign (e.g., oxidized/donating electrons) 
occurring at the working electrode 100. It has been discovered 
that the reduction of dissolved oxygen or hydrogen peroxide 
from oxygen converted in the enzyme layer are the primary 
species reacting at the counter electrode to provide this elec 
tronic current balance in this embodiment. If there are inad 
equate reducible species (e.g., oxygen) available for the 
counter electrode, or if other non-glucose reaction rate limit 
ing phenomena occur (e.g., temperature or pH), the counter 
electrode can be driven in its electrochemical search for elec 
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trons all the way to ground or 0.0V. However, regardless of the 
Voltage in the counter electrode, the working and counter 
electrode currents must still maintain Substantially equivalent 
currents. Therefore, the reference electrode 102 will drift 
upward creating new oxidizing and reducing potentials that 
maintain equal currents at the working and counter elec 
trodes. 
0360. Because of the function of the reference electrode 
102, including the drift that occurs during periods of signal 
artifacts (e.g., ischemia), the reference electrode can be moni 
tored to determine the severity of the signal artifacts on the 
data stream. Particularly, a substantially direct relationship 
between the reference electrode drift and signal artifacts has 
been discovered. Using the information contained within the 
CV curve (FIGS. 10B and/or 10C), the measured glucose 
signal (Isis) can be automatically scaled accordingly to 
replace these undesired transient effects on the data stream. It 
is noted that the circuit described with reference to FIG. 10A 
can be used to determine the CV curve on a regularly sched 
uled basis or as needed. To this end, the desired reference 
Voltage and applied potential are made variable, and the ref 
erence Voltage can be changed at a defined rate while mea 
Suring the signal strength from the working electrode, which 
allows for generation of a CV curve while a sensor is in vivo. 
0361. In alternative implementations of the reference drift 
replacement method, a variety of algorithms can therefore be 
implemented that replaces the signal artifacts based on the 
changes measured in the reference electrode. Linear algo 
rithms, and the like, are suitable for interpreting the direct 
relationship between reference electrode drift and the non 
glucose rate limiting signal noise Such that appropriate con 
version to signal noise compensation can be derived. 
0362. In other embodiments of Signal Artifacts Replace 
ment, prediction algorithms, also referred to as projection 
algorithms, can be used to replace glucose data signals for 
data which does not exist because 1) it has been discarded, 2) 
it is missing due to signal transmission errors and the like, or 
3) it represents a time period (e.g., future) for which a data 
stream has not yet been obtained based on historic and/or 
present data. Prediction/projection algorithms include any of 
the above described Signal Artifacts Replacement algo 
rithms, and differ only in the fact that they are implemented to 
replace time points/periods during which no data is available 
(e.g., for the above-described reasons), rather than including 
that existing data, within the algorithmic computation. 
0363. In some embodiments, signal replacement/estima 
tion algorithms are used to predict where the glucose signal 
should be, and if the actual data stream varies beyond a certain 
threshold of that projected value, then signal artifacts are 
detected. In alternative embodiments, other data processing 
can be applied alone, or in combination with the above 
described methods, to replace data signals during system 
noise and/or signal artifacts. 

Selective Application of Signal Replacement Algorithms 

0364 FIG. 15 is a flow chart that illustrates a process of 
selectively applying signal estimation in embodiments. 
0365 At block 152, a sensor data receiving module, also 
referred to as the sensor data module, receives sensor data 
(e.g., a data stream), including one or more time-spaced sen 
sor data points, such as described in more detail with refer 
ence to block 82 in FIG. 8. 
0366. At block 154, a signal artifacts detection module, 
also referred to as the signal artifacts detector 154, is pro 
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grammed to detect transient non-glucose related signal arti 
facts in the data stream that have a higher amplitude than 
system noise, Such as described in more detail with reference 
to block 84 in FIG.8. However, the signal artifacts detector of 
this embodiment can additionally detect a severity of signal 
artifacts. In some embodiments, the signal artifacts detector 
has one or more predetermined thresholds for the severity of 
the signal artifacts (e.g., low, medium, and high). In some 
embodiments, the signal artifacts detector numerically repre 
sents the severity of signal artifacts based on a calculation for 
example, which representation can be used to apply to the 
signal estimation algorithm factors, such as described in more 
detail with reference to block 156. 
0367. In one exemplary embodiment, the signal artifacts 
detection module evaluates the amplitude and/or frequency of 
the transient non-glucose related signal artifacts, which 
amplitude and/or frequency can be used to define the severity 
in terms of a threshold (e.g., high or low) or a numeric rep 
resentation (e.g., a value from 1 to 10). In another exemplary 
embodiment, the signal artifacts detection module evaluates a 
duration of the transient non-glucose related signal artifacts, 
Such that as the duration increases, a severity can be defined in 
terms of a threshold (e.g., short or long) or a numeric repre 
sentation (e.g., 10, 20, 30, 40, 50, or 60 minutes). In another 
exemplary embodiment, the signal artifacts detection module 
evaluates the frequency content from a Fourier Transformand 
defines severity in terms of a threshold (e.g., above or below 
30 cycles per hour) or a numeric representation (e.g., 50 
cycles per hour). All of the signal artifacts detection methods 
described herein can be implemented to include determining 
a severity of the signal artifacts, threshold, and/or numerical 
representations. 
0368. At block 156, the signal artifacts replacement mod 

ule, also referred to as the signal estimation module, selec 
tively applies one of a plurality of signal estimation algorithm 
factors in response to the severity of said signal artifacts. 
0369. In one embodiment, signal artifacts replacement is 
normally turned off, except during detected signal artifacts. In 
another embodiment, a first signal estimation algorithm (e.g., 
linear regression, FIR filter etc.) is turned on all the time, and 
a second signal estimation algorithm optimized for signal 
artifacts (e.g., IIR filter, Cone of Possibility Replacement 
Method, etc.) is turned on only during positive detection of 
signal artifacts. 
0370. In another embodiment, the signal replacement 
module comprises programming to selectively Switch on and 
off a plurality of distinct signal estimation algorithms based 
on the severity of the detected signal artifacts. For example, 
the severity of the signal artifacts can be defined as high and 
low. In such an example, a first filter (e.g., trimmed regres 
sion, linear regression, FIR, Reference Electrode Method, 
etc.) can be applied during low signal artifacts and a second 
filter (e.g., IIR, Cone of Possibility Method, etc.) can be 
applied during high signal artifacts. It is noted that all of the 
above signal replacement algorithms can be selectively 
applied in this manner based on the severity of the detected 
signal artifacts. 
0371 FIG. 16 is a graph that illustrates an embodiment 
wherein the signal replacement module comprises program 
ming to selectively switch on and off a signal artifacts 
replacement algorithm responsive to detection of signal arti 
facts. The X-axis represents time in minutes; the first y-axis 
160 represents sensor data output in counts. A raw data signal 
161, which is illustrated as a dotted line, shows a data stream 
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wherein some system noise can be detected; however signal 
artifacts 162 can be particularly seen in a portion thereof. The 
second y-axis 164 represents counter-electrode Voltage in 
counts; counter electrode voltage data 165 is illustrated as a 
Solid line. It is noted that a counter Voltage drop to approxi 
mately Zero in this example, which is one of numerous meth 
ods provided for detecting signal artifacts, detects signal arti 
facts 162. Accordingly, when the system detects the signal 
artifacts 162, an IIR-filter is selectively switched on in order 
to replace the signal artifact with an IIR-estimated glucose 
signal 166, which is illustrated as a heavy solid line. The IIR 
filter is Switched off upon detection of negligible signal arti 
facts (e.g., counter electrode Voltage increasing from about 
Zero in this embodiment). 
0372 FIG. 17 is a graph that illustrates an embodiment 
wherein the signal artifacts replacement module comprises 
programming to selectively apply different signal artifacts 
replacement algorithms responsive to detection of signal arti 
facts. The X-axis represents time in minutes; the first y-axis 
170 represents sensor data output in counts. A raw data signal 
171, which is illustrated as a dotted line, shows a data stream 
wherein some system noise can be detected; however signal 
artifacts 172 can be particularly seen in a portion thereof. The 
second y-axis 174 represents counter-electrode Voltage in 
counts; counter electrode voltage data 175 is illustrated as a 
Solid line. It is noted that a counter Voltage drop to approxi 
mately Zero in this example, which is one of numerous meth 
ods provided for detecting signal artifacts, detects signal arti 
facts 172. 

0373). In this embodiment, an FIR filter is applied to the 
data stream during detection of negligible or no signal arti 
facts (e.g., during no noise to system noise in the data stream). 
Accordingly, normal signal noise (e.g., system noise) can be 
filtered to replace the data stream with an FIR-filtered data 
signal 176, which is illustrated by a slightly heavy solid line. 
However, upon positive detection of signal artifacts (e.g., 
detected by approximately Zero counter electrode Voltage in 
this embodiment), the FIR filter is switched off and an IIR 
filter is switched on in order to replace the signal artifacts with 
an IIR-filtered glucose signal 178, which is illustrated as a 
heavy solid line. The IIR filter is subsequently switched off 
and the FIR filter is switched back on upon detection of 
negligible signal artifacts (e.g., counter electrode Voltage 
increasing from about Zero in this embodiment). 
0374. In another embodiment, the signal replacement 
module comprises programming to selectively apply differ 
ent parameters to a single signal artifacts replacement algo 
rithm (e.g., IIR, Cone of Possibility Replacement Method, 
etc.). As an example, the parameters of an algorithm can be 
Switched according to signal artifacts detection; in Such an 
example, an IIR filter with a 30-minute cycle length can be 
used during times of no noise or system noise and a 60-minute 
cycle length can be used during signal artifacts. As another 
example, the severity of the signal artifacts can be defined as 
short and long; in Such an example, an IIR filter with a 
30-minute cycle length can be used during the short signal 
artifacts and a 60-minute cycle length can be used during long 
signal artifacts. As yet another example, the severity of the 
signal artifacts can be defined by a numerical representation; 
in Such an example, the numerical representation can be used 
to calculate the parameters of the signal replacement algo 
rithm (e.g., IIR, Cone of Possibility Replacement Method, 
and Reference Drift Method). 
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0375 FIG. 18 is a flow chart that illustrates dynamic and 
intelligent estimation algorithm selection process 296 in an 
alternative embodiment. 

0376. At block 298, the dynamic and intelligent estima 
tion algorithm selection process 296 obtains sensor data, 
which can be raw, Smoothed, and/or otherwise processed. In 
Some embodiments, data matching can use data from a raw 
data stream received from an analyte sensor, Such as 
described at block 53. In some embodiments, data matching 
can use calibrated data. 

0377. At block 300, the dynamic and intelligent estima 
tion algorithm selection process 296 includes selecting one or 
more algorithms from a plurality of algorithms that best fits 
the measured analyte values. In some embodiments, the esti 
mative algorithm can be selected based on physiological 
parameters; for example, in an embodiment wherein the ana 
lyte sensor is a glucose sensor, a first order regression can be 
selected when the rate of change of the glucose concentration 
is high, indicating correlation with a straight line, while a 
second order regression can be selected when the rate of 
change of the glucose concentration is low, indicating corre 
lation with a curved line. In some embodiments, a first order 
regression can be selected when the reference glucose data is 
within a certain threshold (for example, 100 to 200 mg/dL), 
indicating correlation with a straight line, while a second 
order regression can be selected when the reference glucose 
data is outside of a certain threshold (for example, 100 to 200 
mg/dL), indicating correlation with a curved line because the 
likelihood of the glucose concentration turning around (for 
example, having a curvature) is greatest at high and low 
values. 

0378 Generally, algorithms that estimate analyte values 
from measured analyte values include any algorithm that fits 
the measured analyte values to a pattern, and/or extrapolates 
estimated values for another time period (for example, for a 
future time period or for a time period during which data 
needs to be replaced). In some embodiments, a polynomial 
regression (for example, first order, second order, third order, 
etc.) can be used to fit measured analyte values to a pattern, 
and then extrapolated. In some embodiments, autoregressive 
algorithms (for example, IIR filter) can be used to fit mea 
Sured analyte values to a pattern, and then extrapolated. In 
Some embodiments, measured analyte values can be filtered 
by frequency before projection (for example, by converting 
the analyte values with a Fourier transform, filtering out high 
frequency noise, and converting the frequency data back to 
time values by using an inverse Fourier transform); this data 
can then be projected forward (extrapolated) along lower 
frequencies. In some embodiments, measured analyte values 
can be represented with a Wavelet transform (for example 
filtering out specific noise depending on wavelet function), 
and then extrapolate forward. In some alternative embodi 
ments, computational intelligence (for example, neural net 
work-based mapping, fuZZy logic based pattern matching, 
genetic-algorithms based pattern matching, and the like) can 
be used to fit measured analyte values to a pattern, and/or 
extrapolate forward. In yet other alternative embodiments, 
time-series forecasting is employed using methods such as 
moving average (single or double), exponential Smoothing 
(single, double, or triple), time series decomposition, growth 
curves, Box-Jenkins, and the like. The plurality of algorithms 
of the preferred embodiments can utilize any one or more of 
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the above-described algorithms, or equivalents, in order to 
intelligently select estimative algorithms and thereby esti 
mate analyte values. 
0379. In some embodiments, estimative algorithms fur 
ther include parameters that consider external influences, 
Such as insulin therapy, carbohydrate consumption, and the 
like. In one such example, these additional parameters can be 
user input via the user interface 47 or transmitted from an 
external device, such as an insulin pump, remote device, or 
other computer system. By including Such external influences 
in additional to historical trend data (measured analyte val 
ues), analyte concentration changes can be better anticipated. 
0380 At block 302, the selected one or more algorithms 
are evaluated based on Statistical, clinical, or physiological 
parameters. In some embodiments, running each algorithm 
on the data stream tests each of the one or more algorithms, 
and the algorithmic result with the best correlation to the 
measured analyte values is selected. In some embodiments, 
the pluralities of algorithms are each compared for best cor 
relation with physiological parameters (for example, within 
known or expected rates of change, acceleration, concentra 
tion, etc). In some embodiments, the pluralities of algorithms 
are each compared for best fit within a clinical error grid (for 
example, within 'A' region of Clarke Error Grid). Although 
first and second order algorithms are exemplified herein, any 
two or more algorithms such as described in more detail 
below could be programmed and selectively used based on a 
variety of conditions, including physiological, clinical, and/ 
or statistical parameters. 
0381 At block 304, the algorithm(s) selected from the 
evaluation step is employed to estimate analyte values for a 
time period. Accordingly, analyte values are more dynami 
cally and intelligently estimated to accommodate the 
dynamic nature of physiological data. Additional processes, 
for example applying physiological boundaries, evaluation of 
the estimation algorithms after employing the algorithms, 
evaluating a variation of estimated analyte values, measuring 
and comparing analyte values, and the like (e.g., Such as 
described in co-pending U.S. Published Patent Application 
2005-0203360 to Brauker et al.) can be applied to the 
dynamic and intelligent estimative algorithms described 
herein 

0382 FIG. 19 is a graph that illustrates dynamic and intel 
ligent estimation algorithm selection applied to a data stream 
in one embodiment showing first order estimation, second 
order estimation, and the measured glucose values for the 
time period, wherein the second order estimation shows a 
better correlation to the measured glucose data than the first 
order estimation. The X-axis represents time in minutes. The 
y-axis represents glucose concentration in mg/dL. 
0383. In the data of FIG. 19, measured (calibrated) sensor 
glucose data 306 was obtained up to time t-0. At t=0, a first 
order regression 308 was performed on the measured data 306 
to estimate the upcoming 15-minute time period. A second 
order regression 310 was also performed on the data to esti 
mate the upcoming 15-minute time period. The intelligent 
estimation of the preferred embodiments, such as described in 
more detail below, chose the second order regression 310 as 
the preferred algorithm for estimation based on programmed 
conditions (at t=0). The graph of FIG. 19 further shows the 
measured glucose values 312 from t=0 to t-15 to illustrate 
that second order regression 310 does in fact more accurately 
correlate with the measured glucose data 312 than first order 
regression 308 from t=0 to t—15. 
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0384. In the example of FIG. 19, the dynamic and intelli 
gent estimation algorithm selection determined that the sec 
ond order regression 310 was the preferred algorithm for 
estimation at t=0 based on conditions. A first condition was 
based on a set threshold that considers second order regres 
sion a better fit when measured glucose values are above 200 
mg/dL and trending upwardly. A second condition verifies 
that the curvature of the second order regression line appro 
priately shows a deceleration above 200 mg/dL. Although 
two specific examples of conditions are described herein, 
dynamic and intelligent estimation can have as many or as 
few conditions programmed therein as can be imagined or 
contrived. Some additional examples of conditions for select 
ing from a plurality of algorithms are listed above, however 
the scope of this aspect of dynamic and intelligent estimation 
includes any conditional Statements that can be programmed 
and applied to any algorithms that can be implemented for 
estimation. 

0385 FIG.20 is a flow chart that illustrates the process 330 
of dynamic and intelligent estimation and evaluation of ana 
lyte values in one embodiment, wherein the estimation algo 
rithms are continuously, periodically, or intermittently evalu 
ated based on statistical, clinical, or physiological parameters 
to maintain accuracy of estimation. 
0386. At block 332, the dynamic and intelligent estima 
tion and evaluation process 130 obtains sensor data, which 
can be raw, Smoothed, calibrated and/or otherwise processed. 
0387. At block 334, the dynamic and intelligent estima 
tion and evaluation process 330 estimates one or more analyte 
values using one or more estimation algorithms. In some 
embodiments, this analyte value estimation uses conven 
tional projection using first or second order regression, for 
example. In some embodiments, dynamically and intelli 
gently selecting of one or more algorithms from a plurality of 
algorithms, dynamically and intelligently estimating analyte 
values within physiological boundaries, evaluating a varia 
tion of estimated analyte values, measuring and comparing 
analyte values, and the like (e.g., such as described in U.S. 
Publication No. US-2005-0203360-A1) can be applied to the 
dynamic and intelligent estimation and evaluation process 
described herein. 

0388. The estimative algorithms described elsewhere 
herein consider mathematical equations, for example, which 
may or may not be sufficient to accurately estimate analyte 
values in some circumstances due to the dynamic nature of 
mammalian behavior. For example, in a circumstance where 
a patient’s glucose concentration is trending upwardly at a 
constant rate of change (for example, 120 mg/dL at 2 mg/dL/ 
min), an expected physiological pattern would likely estimate 
a continued increase at Substantially the same rate of change 
over the upcoming approximately 40 minutes, which would 
fall within physiological boundaries. However, if a person 
with diabetes were to engage inheavy aerobic exercise, which 
may not be known by the estimative algorithm, a slowing of 
the upward trend, and possibly a change to a downward trend 
can possibly result, leading to inaccuracies in the estimated 
analyte values. Numerous Such circumstances can occur in 
the lifestyle of a person with diabetes. However, although 
analyte values can sometimes be estimated under “normal” 
circumstances, other circumstances exist that are not “nor 
mal' or “expected” and can result in estimative algorithms 
that produce apparently erroneous results, for example, if 
they are based solely on mathematical calculations and/or 
physiological patterns. Accordingly, evaluation of the estima 
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tive algorithms can be performed to ensure the accuracy or 
quantify a measure of confidence in the estimative algo 
rithms. 

0389. At block 336, the dynamic and intelligent estima 
tion and evaluation process 330 evaluates the estimationalgo 
rithms employed at block 334 to evaluate a “goodness” of the 
estimated analyte values. The evaluation process performs an 
evaluation of the measured analyte data with the correspond 
ing estimated analyte data (e.g., by performing the algorithm 
on the data stream and comparing the measured with the 
corresponding analyte data for a time period). In some 
embodiments, evaluation can be performed continually or 
continuously so that the dynamic and intelligent algorithms 
are continuously adapting to the changing physiological ana 
lyte data. In some embodiments, the evaluation can be per 
formed periodically so that the dynamic and intelligent algo 
rithms are periodically and systematically adapting to the 
changing physiological analyte data. In some embodiments, 
evaluation can be performed intermittently, for example when 
an estimative algorithm is initiated or when other Such trig 
gers occur, so that the dynamic and intelligent algorithms can 
be evaluated when new or updated data or algorithms are 
being processed. 
0390 This evaluation process 330 uses any known evalu 
ation method, for example based on statistical, clinical, or 
physiological standards. One example of statistical evalua 
tion is provided below with reference to FIG. 21; however 
other methods are also possible. In some embodiments, the 
evaluation process 330 determines a correlation coefficient of 
regression. In some embodiments wherein the sensor is a 
glucose sensor, the evaluation process 330 determines if the 
selected estimative algorithm shows that analyte values fall 
with the “A” and “B” regions of the Clarke Error Grid. Other 
parameters or methods for evaluation are considered within 
the scope of the preferred embodiments. In some embodi 
ments, the evaluation process 330 includes performing a cur 
Vature formula to determine fiducial information about the 
curvature, which results in an evaluation of the amount of 
noise on the signal. 
0391. In some embodiments, the evaluation process 330 
calculates physiological boundaries to evaluate whether the 
estimated analyte values fall within known physiological 
constraints. In this embodiment, the estimative algorithm(s) 
are evaluated to ensure that they do not allow estimated ana 
lyte values to fall outside of physiological boundaries, some 
examples of which are described in more detail elsewhere 
herein, and in co-pending U.S. Published Patent Application 
2005-0203360 to Brauker et al., for example. In some alter 
native embodiments, clinical or statistical parameters can be 
used in a similar manner to bound estimated analyte values. 
0392. If the result of the evaluation is satisfactory (for 
example, 10% average deviation, correlation coefficient 
above 0.79, all estimated analyte values within A or B region 
of the Clarke Error Grid, all estimated analyte values within 
physiological boundaries, and the like), the processing con 
tinues to the next step, using the selected estimative algo 
rithm. However, if the result of the evaluation is unsatisfac 
tory, the process can start the algorithm selection process 
again, optionally considering additional information, or the 
processor can determine that estimation is not appropriate for 
a certain time period. In one alternative embodiment, a signal 
noise measurement can be evaluated, and if the signal to noise 
ratio is unacceptable, the processor can modify its estimative 
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algorithm or other action that can help compensate for signal 
noise (e.g., signal artifacts, such as described elsewhere 
herein). 
0393 FIG.21 is a graph that illustrates an evaluation of the 
selected estimative algorithm in one embodiment, wherein a 
correlation is measured to determine a deviation of the mea 
Sured glucose data with the selected estimative algorithm, if 
any. The X-axis represents time in minutes. The y-axis repre 
sents glucose concentration in mg/dL. Measured glucose val 
ues 340 are shown for about 90 minutes up to t—0. At t=0, the 
selected algorithm is performed on 40 minutes of the mea 
sured glucose values 340 up to t—0, which is represented by a 
regression line 342 in this embodiment. A data association 
function is used to determine a goodness of fit of the estima 
tive algorithm on the measured glucose data 340; namely, the 
estimative algorithm is performed retrospectively on the mea 
sured glucose data 340, and is hereinafter referred to as ret 
rospectively estimated glucose data 342 (e.g., estimation 
prior to t-0), after which a correlation (or deviation) with the 
measured glucose data is determined. In this example, the 
goodness of fit shows a mean absolute relative difference 
(MARD) of 3.3% between the measured glucose data 340 and 
the retrospectively estimated glucose data 342. While not 
wishing to be bound to theory, it is believed that this correla 
tion of the measured glucose data 340 to the retrospectively 
estimated glucose data 342 can be indicative of the correla 
tion of future estimated glucose data to the measured glucose 
data for that estimated time period. 
0394 Reference is now made to FIG. 22, which is a flow 
chart that illustrates the process 450 of analyzing a variation 
ofestimated future analyte value possibilities in one embodi 
ment. This embodiment takes into consideration that analyte 
values are subject to a variety of external influences, which 
can cause the measured analyte values to alter from the esti 
mated analyte values as the time period that was estimated 
passes. External influences include, but are not limited to, 
exercise, sickness, consumption of food and alcohol, injec 
tions of insulin, other medications, and the like. For a person 
with diabetes, for example, even when estimation does not 
accurately predict the upcoming measured analyte values, the 
estimated analyte values can be valuable to a patient in treat 
ment and in fact can even alter the estimated path by encour 
aging proactive patient behavior that can cause the patient to 
avoid the estimated clinical risk. In other words, the deviation 
of measured analyte values from their corresponding esti 
mated analyte values may not be an "error in the estimative 
algorithm, and is in fact one of the benefits of the continuous 
analyte sensor of the preferred embodiments, namely encour 
aging patient behavior modification and thereby improving 
patient health through minimizing clinically risky analyte 
values. Proactive behavior modification (for example, thera 
pies such as insulin injections, carbohydrate consumption, 
exercise, and the like) can cause the patient's measured glu 
cose to change from the estimated path, and analyzing a 
variation that can be associated with the estimated analyte 
values can encompass many of these changes. Therefore, in 
addition to estimated analyte values, a variation can be cal 
culated or estimated based on statistical, clinical, and/or 
physiological parameters that provides a range of values in 
which the estimated analyte values can fall. 
0395. At block 452, the variation of possible estimated 
analyte values analysis process 450 obtains sensor data, 
which can be raw, smoothed, calibrated and/or otherwise 
processed. 
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0396 At block 454, the variation of possible estimated 
analyte values analysis process 450 estimates one or more 
analyte values using one or more estimation algorithms. In 
Some embodiments, this analyte values estimation uses con 
ventional projection using first or second order regression, for 
example. In some embodiments, dynamically and intelli 
gently selecting of one or more algorithms from a plurality of 
algorithms, dynamically and intelligently estimating analyte 
values within physiological boundaries, dynamic and intelli 
gent estimation and evaluation of estimated analyte values, 
measuring and comparing analyte values (e.g., Such as 
described in U.S. Publication No. US-2005-0203360-A1), 
and the like can be applied to the dynamic and intelligent 
estimation and evaluation process described herein. 
0397. At block 456, the variation of possible estimated 
analyte values evaluation process 450 analyzes a variation of 
the estimated analyte data. Particularly, a statistical, clinical, 
and/or physiological variation of estimated analyte values can 
be calculated when applying the estimative algorithms and/or 
can be calculated at regular intervals to dynamically change 
as the measured analyte values are obtained. In general, 
analysis of trends and their variation allows the estimation of 
the preferred embodiments to dynamically and intelligently 
anticipate upcoming conditions, by considering internal and 
external influences that can affect analyte concentration. 
0398. In some embodiments, physiological boundaries for 
analytes in mammals can be used to set the boundaries of 
variation. For example, known physiological boundaries of 
glucose in humans are discussed in detail with reference to 
U.S. Publication No. US-2005-0203360-A1, however any 
physiological parameters for any measured analyte can be 
implemented here to provide this variation of physiologically 
feasible analyte values. 
0399. In some embodiments, statistical variation can be 
used to determine a variation of possible analyte values. Sta 
tistical variation can be any known divergence or change from 
a point, line, or set of databased on statistical information. 
Statistical information includes patterns or data analysis 
resulting from experiments, published or unpublished, for 
example. In some embodiments, statistical information can 
include normal patterns that have been measured statistically 
in studies of analyte concentrations in mammals, for 
example. In some embodiments, statistical information can 
include errors observed and measured Statistically in studies 
of analyte concentrations in mammals, for example. In some 
embodiments, statistical information can include predeter 
mined statistical standards, for example, deviation less than 
or equal to 5% on the analyte value. In some embodiments, 
statistical variation can be a measured or otherwise known 
signal noise level. 
0400. In some embodiments, a variation is determined 
based on the fact that the conventional blood glucose meters 
are known to have up to a +/-20% error in glucose values 
(namely, on average in the hands of a patient). For example, 
gross errors in glucose readings are known to occur due to 
patient error in self-administration of the blood glucose test. 
In one such example, if the user has traces of Sugar on his/her 
finger while obtaining a blood sample for a glucose concen 
tration test, then the measured glucose value will likely be 
much higher than the measured glucose value in the blood. 
Additionally, it is known that self-monitored blood glucose 
tests (for example, test strips) are occasionally subject to 
manufacturing error. In view of this statistical information, in 
an embodiment wherein a continuous glucose sensor relies 
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upon a conventional blood glucose meter for calibration, this 
+/-20% error should be considered because of the potential 
for translated effect on the calibrated sensor analyte data. 
Accordingly, this exemplary embodiment would provide for 
a +/-20% variation of estimated glucose values based on the 
above-described statistical information. 

04.01. In some embodiments, a variation of estimated ana 
lyte values can be analyzed based on individual physiological 
patterns. Physiological patterns are affected by a combination 
of at least biological mechanisms, physiological boundaries, 
and external influences such as exercise, sickness, consump 
tion of food and alcohol, injections of insulin, other medica 
tions, and the like. Advantageously, pattern recognition can 
be used with continuous analyte sensors to characterize an 
individual's physiology; for example the metabolism of a 
person with diabetes can be individually characterized, which 
has been difficult to quantify with conventional glucose sens 
ing mechanisms due to the unique nature of an individual’s 
metabolism. Additionally, this information can be advanta 
geously linked with external influences (for example, patient 
behavior) to better understand the nature of individual human 
physiology, which can be helpful in controlling the basal rate 
in a person with diabetes, for example. 
0402. While not wishing to be bound to theory, it is 
believed that monitoring of individual historical physiologi 
cal analyte data can be used to recognize patterns that can be 
used to estimate analyte values, or ranges of values, in a 
mammal. For example, measured analyte data for a patient 
can show certain peaks of glucose levels during a specific 
time of day, “normal AM and PM eating behaviors (for 
example, that follow a pattern), weekday versus weekend 
glucose patterns, individual maximum rate of change, and the 
like, that can be quantified using patient-dependent pattern 
recognition algorithms, for example. Pattern recognition 
algorithms that can be used in this embodiment include, but 
are not limited to, stochastic nonlinear time-series analysis, 
exponential (non-linear) autoregressive model, process feed 
back nonlinear autoregressive (PFNAR) model, neural net 
works, and the like. 
0403. Accordingly, statistically calculated patterns can 
provide information useful in analyzing a variation of esti 
mated analyte values for a patient that includes consideration 
of the patient's normal physiological patterns. Pattern recog 
nition enables the algorithmic analysis of analyte data to be 
customized to a user, which is useful when analyte informa 
tion is variable with each individual user, such as has been 
seen in glucose in humans, for example. 
0404 In some embodiments, a variation of estimated ana 
lyte values is on clinical risk analysis. Estimated analyte 
values can have higher clinical risk in certain ranges of ana 
lyte values, for example analyte values that are in a clinically 
risky Zone or analyte values that are changing at a clinically 
risky rate of change. When a measured analyte value or an 
estimated analyte value shows existing or approaching clini 
cal risk, it can be important to analyze the variation of esti 
mated analyte values in view of the clinical risk to the patient. 
For example, in an effort to aid a person with diabetes in 
avoiding clinically risky hyper- or hypoglycemia, a variation 
can be weighted toward the clinically risk Zone, which can be 
used to emphasize the pending danger to the patient, doctor, 
or care taker, for example. As another example, the variation 
of measured or estimated analyte values can be based on 
values that fall within the 'A' and/or “B” regions of an error 
grid Analysis Method. 
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0405. In case of variation analysis based on clinical risk, 
the estimated analyte values are weighted in view of pending 
clinical risk. For example, ifestimated glucose values show a 
trend toward hypoglycemia at a certain rate of change, a 
variation of possible trends toward hypoglycemia are 
weighted to show how quickly the glucose concentration 
could reach 40 mg/dL, for example. As another example, if 
estimated glucose values show a trend toward hyperglycemia 
at a certain acceleration, a variation of possible trends toward 
hyperglycemia are weighted to show how quickly the glucose 
concentration could reach 200 mg/dL, for example. 
0406. In some embodiments, when a variation of the esti 
mated analyte values shows higher clinical risk as a possible 
path within that variation analysis as compared to the esti 
mated analyte path, the estimated analyte values can be 
adjusted to show the analyte values with the most clinical risk 
to a patient. While not wishing to be bound by theory, adjust 
ing the estimated analyte values for the highest variation of 
clinical risk exploits the belief that by showing the patient the 
“worst case scenario, the patient is more likely to address the 
clinical risk and make timely behavioral and therapeutic 
modifications and/or decisions that will slow or reverse the 
approaching clinical risk. 
0407. At block 458, the variation of possible estimated 
analyte values evaluation process 150 provides output based 
on the variation analysis. In some embodiments, the result of 
this variation analysis provides a “Zone' of possible values, 
which can be displayed to the user, considered in data analy 
sis, and/or used in evaluating of performance of the estima 
tion, for example. 
0408 FIG. 23 is a graph that illustrates variation analysis 
of estimated glucose values in one embodiment, wherein a 
variation of the estimated glucose values is analyzed and 
determined based on known physiological parameters. The 
X-axis represents time in minutes. The y-axis represents glu 
cose concentration in mg/dL. In this embodiment, the known 
maximum rate of change and acceleration of glucose in 
humans are used to provide the variation about the estimated 
glucose path. 
04.09. The measured glucose values 460 are shown for 
about 90 minutes up to t—0. At t=0, intelligent and dynamic 
estimation of the preferred embodiments is performed to 
obtain estimated glucose values 462. A variation of estimated 
glucose values is then determined based on physiological 
parameters, including an upper limit 464 and a lower limit 
466 of variation defined by known physiological parameters, 
including rate of change and acceleration of glucose concen 
tration in humans. 

0410 FIG. 24 is a graph that illustrates variation of esti 
mated analyte values in another embodiment, wherein the 
variation is based on statistical parameters. The X-axis repre 
sents time in minutes and the y-axis represents glucose con 
centration in mg/dL. The measured glucose values 470 are 
shown for about 160 minutes up to t—0. At t=0, intelligent and 
dynamic estimation of the preferred embodiments is 
employed to obtain estimated glucose values 472. A variation 
is defined by upper and lower limits 474 that were determined 
using 95% confidence intervals. Bremer, T.; Gough, D. A. “Is 
blood glucose predictable from previous values? A solicita 
tion for data. Diabetes 1999, 48, 445-451, which is incorpo 
rated by reference herein in its entirety, teaches a method of 
determining a confidence interval in one embodiment. 
0411 Although some embodiments have been described 
for a glucose sensor, any measured analyte pattern, data 
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analysis resulting from an experiment, or otherwise known 
statistical information, whether official or unofficial, pub 
lished or unpublished, proven or anecdotal, and the like, can 
be used to provide the statistical variation described herein. 
0412 FIG.25 is a flow chart that illustrates the process 480 
of estimating, measuring, and comparing analyte values in 
one embodiment. 

0413 At block 482, the estimating, measuring, and com 
paring analyte values process 480 obtains sensor data, which 
can be raw, Smoothed, calibrated and/or otherwise processed. 
0414. At block 484, the estimating, measuring, and com 
paring analyte values process 480 estimates one or more 
analyte values for a time period. In some embodiments, this 
analyte values estimation uses conventional projection using 
first or second order regression, for example. In some 
embodiments, dynamically and intelligently selecting of one 
or more algorithms from a plurality of algorithms, dynami 
cally and intelligently estimating analyte values within physi 
ological boundaries), dynamic and intelligent estimation and 
evaluation of estimated analyte values, variation analysis 
(e.g., such as described in co-pending U.S. Published Patent 
Application 2005-0203360 to Brauker et al.), and the like can 
be applied to the process described herein. 
0415. At block 486, the estimating, measuring, and com 
paring analyte values process 480 obtains sensor data for the 
time period for which the estimated analyte values were cal 
culated at block 484. In some embodiments, the measured 
analyte data can be raw, Smoothed, calibrated, and/or other 
wise processed. 
0416. At block 488, the estimating, measuring, and com 
paring analyte values process 480 compares the estimated 
analyte data to the measured analyte data for that estimated 
time period. In general, it can be useful to compare the esti 
mated analyte data to the measured analyte data for that 
estimated time period after estimation of analyte values. This 
comparison can be performed continuously, namely, at regu 
lar intervals as data streams are processed into measured 
analyte values. Alternatively, this comparison can be per 
formed based on events, such as during estimation of mea 
Sured analyte values, selection of a estimative algorithm, 
evaluation of estimative algorithms, variation analysis of esti 
mated analyte values, calibration and transformation of sen 
sor analyte data, and the like. 
0417. One embodiment is shown in FIG. 26, wherein 
MARD is used to determine a correlation (or deviation), if 
any, between the estimated and measured data sets. In other 
embodiments, other methods, such as linear regression, non 
linear mapping/regression, rank (for example, non-paramet 
ric) correlation, least mean square fit, mean absolute devia 
tion (MAD), and the like, can be used to compare the 
estimated analyte data to the measured analyte data to deter 
mine a correlation (or deviation), if any. 
0418. In one embodiment, wherein estimation is used in 
outlier detection and/or in matching data pairs for a continu 
ous glucose sensor (see FIGS. 5 and 6), the estimated glucose 
data can be plotted against reference glucose data on a clinical 
error grid (for example, Clarke Error Grid or rate grid) and 
then compared to the measured glucose data for that esti 
mated time period plotted against the same reference analyte 
data on the same clinical error grid. In alternative embodi 
ments, other clinical error analysis methods can be used. Such 
as Consensus Error Grid, rate of change calculation, consen 
SuS grid, and standard clinical acceptance tests, for example. 
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The deviation can be quantified by percent deviation, or can 
be classified as pass/fail, for example. 
0419. In some embodiments, the results of the comparison 
provide a quantitative deviation value, which can be used to 
provide a statistical variation; for example, if the '% deviation 
is calculated as 8%, then the statistical variation Such as 
described with reference to FIG. 22 can be updated with a 
+7-8% variation. In some alternative embodiments, the 
results of the comparison can be used to turn on/off the 
estimative algorithms, estimative output, and the like. In gen 
eral, the comparison produces a confidence interval (for 
example, +/-8% of estimated values) which can be used in 
data analysis, output of data to a user, and the like. 
0420. A resulting deviation from this comparison between 
estimated and corresponding measured analyte values may or 
may not imply error in the estimative algorithms. While not 
wishing to be bound by theory, it is believed that the deviation 
between estimated and corresponding measured analyte val 
ues is due, at least in part, to behavioral changes by a patient, 
who observes estimated analyte values and determines to 
change the present trend of analyte values by behavioral 
and/or therapeutic changes (for example, medication, carbo 
hydrate consumption, exercise, rest, and the like). Accord 
ingly, the deviation can also be used to illustrate positive 
changes resulting from the educational aspect of providing 
estimated analyte values to the user, for example. 
0421 FIG. 26 is a graph that illustrates comparison of 
estimated analyte values in one embodiment, wherein previ 
ously estimated analyte values are compared to time corre 
sponding measured analyte values to determine a correlation 
(or deviation), if any. The X-axis represents time in minutes. 
The y-axis represents glucose concentration in mg/dL. The 
measured glucose values 492 are shown for about 105 min 
utes up to t—15. The estimated analyte values 494, which were 
estimated at t=0 for 15 minutes, are shown superimposed over 
the measured analyte values 492. Using a 3-point MARD for 
t–0 to t—15, the estimated analyte values 494 can be compared 
with the measured analyte values 492 to determine a 0.55% 
average deviation. 
0422 FIG. 27 provides a flow chart 520 that illustrates the 
evaluation of reference and/or sensor data for statistical, clini 
cal, and/or physiological acceptability in one embodiment. 
Although some acceptability tests are disclosed herein, any 
known statistical, clinical, physiological standards and meth 
odologies can be applied to evaluate the acceptability of ref 
erence and sensor analyte data. 
0423. One cause for discrepancies in reference and sensor 
data is a sensitivity drift that can occur over time, when a 
sensor is inserted into a host and cellular invasion of the 
sensor begins to block transport of the analyte to the sensor, 
for example. Therefore, it can be advantageous to validate the 
acceptability of converted sensor data against reference ana 
lyte data, to determine ifa drift of sensitivity has occurred and 
whether the calibration should be updated. 
0424. In one embodiment, the reference analyte data is 
evaluated with respect to Substantially time corresponding 
converted sensor data to determine the acceptability of the 
matched pair. For example, clinical acceptability considers a 
deviation between time corresponding analyte measurements 
(for example, data from a glucose sensor and data from a 
reference glucose monitor) and the risk (for example, to the 
decision making of a person with diabetes) associated with 
that deviation based on the glucose value indicated by the 
sensor and/or reference data. Evaluating the clinical accept 



US 2012/0215086 A1 

ability of reference and sensor analyte data, and controlling 
the user interface dependent thereon, can minimize clinical 
risk. Preferably, the receiver evaluates clinical acceptability 
each time reference data is obtained. 

0425. After initial calibration, such as is described in more 
detail with reference to FIG. 5, the sensor data receiving 
module receives Substantially continuous sensor data (e.g., a 
data stream) via a receiver and converts that data into esti 
mated analyte values. As used herein, the term “substantially 
continuous is a broad term and is used in its ordinary sense, 
without limitation, to refer to a data stream of individual 
measurements taken at time intervals (e.g., time-spaced) 
ranging from fractions of a second up to, e.g., 1, 2, or 5 
minutes or more. As sensor data is continuously converted, it 
can be occasionally recalibrated in response to changes in 
sensor sensitivity (drift), for example. Initial calibration and 
re-calibration of the sensor require a reference analyte value. 
Accordingly, the receiver can receive reference analyte data 
at any time for appropriate processing. 
0426. At block 522, the reference data receiving module, 
also referred to as the reference input module, receives refer 
ence analyte data from a reference analyte monitor. In one 
embodiment, the reference data comprises one analyte value 
obtained from a reference monitor. In some alternative 
embodiments however, the reference data includes a set of 
analyte values entered by a user into the interface and aver 
aged by known methods, such as are described elsewhere 
herein. In some alternative embodiments, the reference data 
comprises a plurality of analyte values obtained from another 
continuous analyte sensor. 
0427. The reference data can be pre-screened according to 
environmental and physiological issues, such as time of day, 
oxygen concentration, postural effects, and patient-entered 
environmental data. In one exemplary embodiment, wherein 
the sensor comprises an implantable glucose sensor, an oxy 
gen sensor within the glucose sensor is used to determine if 
Sufficient oxygen is being provided to Successfully complete 
the necessary enzyme and electrochemical reactions for accu 
rate glucose sensing. In another exemplary embodiment, the 
patient is prompted to enter data into the user interface. Such 
as meal times and/or amount of exercise, which can be used to 
determine likelihood of acceptable reference data. In yet 
another exemplary embodiment, the reference data is 
matched with time-corresponding sensor data, which is then 
evaluated on a modified clinical error grid to determine its 
clinical acceptability. 
0428. Some evaluation data, such as described in the para 
graph above, can be used to evaluate an optimum time for 
reference analyte measurement. Correspondingly, the user 
interface can then prompt the user to provide a reference data 
point for calibration within a given time period. Conse 
quently, because the receiver proactively prompts the user 
during optimum calibration times, the likelihood of error due 
to environmental and physiological limitations can decrease 
and consistency and acceptability of the calibration can 
increase. 

0429. At block524, the evaluation module, also referred to 
as acceptability module, evaluates newly received reference 
data. In one embodiment, the evaluation module evaluates the 
clinical acceptability of newly received reference data and 
time corresponding converted sensor data (new matched data 
pair). In one embodiment, a clinical acceptability evaluation 
module 524 matches the reference data with a substantially 
time corresponding converted sensor value, and determines 
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the Clarke Error Grid coordinates. In this embodiment, 
matched pairs that fall within the A and B regions of the 
Clarke Error Grid are considered clinically acceptable, while 
matched pairs that fall within the C, D, and E regions of the 
Clarke Error Grid are not considered clinically acceptable. 
0430 A variety of other known methods of evaluating 
clinical acceptability can be utilized. In one alternative 
embodiment, the Consensus Grid is used to evaluate the clini 
cal acceptability of reference and sensor data. In another 
alternative embodiment, a mean absolute difference calcula 
tion can be used to evaluate the clinical acceptability of the 
reference data. In another alternative embodiment, the clini 
cal acceptability can be evaluated using any relevant clinical 
acceptability test, such as a known grid (e.g., Clarke Error or 
Consensus), and additional parameters, such as time of day 
and/or the increase or decreasing trend of the analyte concen 
tration. In another alternative embodiment, a rate of change 
calculation can be used to evaluate clinical acceptability. In 
yet another alternative embodiment, wherein the received 
reference data is in Substantially real time, the conversion 
function could be used to predict an estimated glucose value 
at a time corresponding to the time stamp of the reference 
analyte value (this can be required due to a time lag of the 
sensor data Such as described elsewhere herein). Accordingly, 
a threshold can be set for the predicted estimated glucose 
value and the reference analyte value disparity, if any. In some 
alternative embodiments, the reference data is evaluated for 
physiological and/or statistical acceptability as described in 
more detail elsewhere herein. 

0431. At decision block 526, results of the evaluation are 
assessed. If acceptability is determined, then processing con 
tinues to block 528 to re-calculate the conversion function 
using the new matched data pair in the calibration set. 
0432. At block 528, the conversion function module re 
creates the conversion function using the new matched data 
pair associated with the newly received reference data. In one 
embodiment, the conversion function module adds the newly 
received reference data (e.g., including the matched sensor 
data) into the calibration set, and recalculates the conversion 
function accordingly. In alternative embodiments, the conver 
sion function module displaces the oldest, and/or least con 
cordant matched data pair from the calibration set, and recal 
culates the conversion function accordingly. 
0433. At block 530, the sensor data transformation mod 
ule uses the new conversion function (from block 528) to 
continually (or intermittently) convert sensor data into esti 
mated analyte values, also referred to as calibrated data, or 
converted sensor data, Such as is described in more detail 
above. 
0434. At block 532, an output module provides output to 
the user via the user interface. The output is representative of 
the estimated analyte value, which is determined by convert 
ing the sensor data into a meaningful analyte value. User 
output can be in the form of a numeric estimated analyte 
value, an indication of directional trend of analyte concentra 
tion, and/or a graphical representation of the estimated ana 
lyte data over a period of time, for example. Other represen 
tations of the estimated analyte values are also possible, for 
example audio and tactile. 
0435. If, however, acceptability is determined at decision 
block 526 as negative (unacceptable), then the processing 
progresses to block 534 to adjust the calibration set. In one 
embodiment of a calibration set adjustment, the conversion 
function module removes one or more oldest matched data 
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pair(s) and recalculates the conversion function accordingly. 
In an alternative embodiment, the conversion function mod 
ule removes the least concordant matched data pair from the 
calibration set, and recalculates the conversion function 
accordingly. 
0436. At block 536, the conversion function module re 
creates the conversion function using the adjusted calibration 
set. While not wishing to be bound by theory, it is believed 
that removing the least concordant and/or oldest matched 
data pair(s) from the calibration set can reduce or eliminate 
the effects of sensor sensitivity drift over time, adjusting the 
conversion function to better represent the current sensitivity 
of the sensor. 
0437. At block 524, the evaluation module re-evaluates 
the acceptability of newly received reference data with time 
corresponding converted sensor data that has been converted 
using the new conversion function (block 536). The flow 
continues to decision block 538 to assess the results of the 
evaluation, such as described with reference to decision block 
526, above. If acceptability is determined, then processing 
continues to block 530 to convert sensor data using the new 
conversion function and continuously display calibrated sen 
Sor data on the user interface. 
0438 If, however, acceptability is determined at decision 
block526 as negative, then the processing loops back to block 
534 to adjust the calibration set once again. This process can 
continue until the calibration set is no longer sufficient for 
calibration, for example, when the calibration set includes 
only one or no matched data pairs with which to create a 
conversion function. In this situation, the system can return to 
the initial calibration or start-up mode, which is described in 
more detail with reference to FIGS. 16 and 19, for example. 
Alternatively, the process can continue until inappropriate 
matched data pairs have been Sufficiently purged and accept 
ability is positively determined. 
0439. In alternative embodiments, the acceptability is 
determined by a quality evaluation, for example, calibration 
quality can be evaluated by determining the statistical asso 
ciation of data that forms the calibration set, which deter 
mines the confidence associated with the conversion function 
used in calibration and conversion of raw sensor data into 
estimated analyte values. See, e.g., U.S. Publication No. 
US-2005-0O27463-A1. 

0440 Alternatively, each matched data pair can be evalu 
ated based on clinical or statistical acceptability Such as 
described above; however, when a matched data pair does not 
pass the evaluation criteria, the system can be configured to 
ask for another matched data pair from the user. In this way, a 
secondary check can be used to determine whether the erroris 
more likely due to the reference glucose value or to the sensor 
value. If the second reference glucose value substantially 
correlates to the first reference glucose value, it can be pre 
Sumed that the reference glucose value is more accurate and 
the sensor values are errant. Some reasons for errancy of the 
sensor values include a shift in the baseline of the signal or 
noise on the signal due to low oxygen, for example. In Such 
cases, the system can be configured to re-initiate calibration 
using the secondary reference glucose value. If, however, the 
reference glucose values do not Substantially correlate, it can 
be presumed that the sensor glucose values are more accurate 
and the reference glucose values eliminated from the algo 
rithm. 

0441 FIG. 28 is a flow chart 550 that illustrates the evalu 
ation of calibrated sensor data for aberrant values in one 
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embodiment. Although sensor data are typically accurate and 
reliable, it can be advantageous to perform a self-diagnostic 
check of the calibrated sensor data prior to displaying the 
analyte data on the user interface. 
0442. One reason for anomalies in calibrated sensor data 
includes transient events, such as local ischemia at the 
implant site, which can temporarily cause erroneous readings 
caused by insufficient oxygen to react with the analyte. 
Accordingly, the flow chart 550 illustrates one self-diagnostic 
check that can be used to catch erroneous data before display 
ing it to the user. 
0443) At block 552, a sensor data receiving module, also 
referred to as the sensor data module, receives new sensor 
data from the sensor. 

0444. At block 554, the sensor data transformation mod 
ule continuously (or intermittently) converts new sensor data 
into estimated analyte values, also referred to as calibrated 
data. 

0445. At block 556, a self-diagnostic module compares 
the new calibrated sensor data with previous calibrated sensor 
data, for example, the most recent calibrated sensor data 
value. In comparing the new and previous sensor data, a 
variety of parameters can be evaluated. In one embodiment, 
the rate of change and/or acceleration (or deceleration) of 
change of various analytes, which have known physiological 
limits within the body, and sensor data can be evaluated 
accordingly. For example, a limit can be set to determine if the 
new sensor data is within a physiologically feasible range, 
indicated by a rate of change from the previous data that is 
within known physiological (and/or statistical) limits. Simi 
larly, any algorithm that predicts a future value of an analyte 
can be used to predict and then compare an actual value to a 
time corresponding predicted value to determine if the actual 
value falls within a statistically and/or clinically acceptable 
range based on the predictive algorithm, for example. In 
certain embodiments, identifying a disparity between pre 
dicted and measured analyte data can be used to identify a 
shift in signal baseline responsive to an evaluated difference 
between the predicted data and time-corresponding measured 
data. In some alternative embodiments, a shift in signal base 
line and/or sensitivity can be determined by monitoring a 
change in the conversion function; namely, when a conver 
sion function is re-calculated using the equation y=mX+b, a 
change in the values of m (sensitivity) or b (baseline) above a 
pre-selected “normal’ threshold, can be used to trigger a 
fail-safe or further diagnostic evaluation. 
0446. Although the above-described self-diagnostics are 
generally employed with calibrated sensor data, Some alter 
native embodiments are contemplated that check for aber 
rancy of consecutive sensor values prior to sensor calibration, 
for example, on the raw data stream and/or after filtering of 
the raw data stream. In certain embodiments, an intermittent 
or continuous signal-to-noise measurement can be evaluated 
to determine aberrancy of sensor data responsive to a signal 
to-noise ratio above a set threshold. In certain embodiments, 
signal residuals (e.g., by comparing raw and filtered data) can 
be intermittently or continuously analyzed for noise above a 
set threshold. In certain embodiments, pattern recognition 
can be used to identify noise associated with physiological 
conditions, such as low oxygen or other known signal aber 
rancies. Accordingly, in these embodiments, the system can 
be configured, in response to aberrancies in the data stream, to 
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trigger signal estimation, adaptively filter the data stream 
according to the aberrancy, and the like, as described in more 
detail herein. 

0447. In another embodiment, reference analyte values are 
processed to determine a level of confidence, wherein refer 
ence analyte values are compared to their time-corresponding 
calibrated sensor values and evaluated for clinical or statisti 
cal accuracy. In yet another alternative embodiment, new and 
previous reference analyte data are compared in place of or in 
addition to sensor data. In general, there exist known patterns 
and limitations of analyte values that can be used to diagnose 
certain anomalies in raw or calibrated sensor and/or reference 
analyte data. 
0448. At decision block 558, the system determines 
whether the comparison returned aberrant values. In one 
embodiment, the slope (rate of change) between the new and 
previous sensor data is evaluated, wherein values greater than 
+/-10, 15, 20, 25, or 30% or more change and/or +/-2, 3, 4, 5, 
6 or more mg/dL/min, more preferably +/-4 mg/dL/min, rate 
of change are considered aberrant. In certain embodiments, 
other known physiological parameters can be used to deter 
mine aberrant values. However, a variety of comparisons and 
limitations can be set. 

0449. At block 560, if the values are not found to be 
aberrant, the sensor data transformation module continuously 
(or intermittently) converts received new sensor data into 
estimated analyte values, also referred to as calibrated data. 
0450. At block 562, if the values are found to be aberrant, 
the system goes into a suspended mode, also referred to as 
fail-safe mode in some embodiments, which is described in 
more detail below with reference to FIG. 29. In general, 
Suspended mode Suspends display of calibrated sensor data 
and/or insertion of matched data pairs into the calibration set. 
Preferably, the system remains in suspended mode until 
received sensor data is not found to be aberrant. In certain 
embodiments, a time limit or threshold for Suspension is set, 
after which system and/or user interaction can be required, for 
example, requesting additional reference analyte data, 
replacement of the electronics unit, and/or reset. 
0451. In some alternative embodiments, in response to a 
positive determination of aberrant value(s), the system can be 
configured to estimate one or more glucose values for the time 
period during which aberrant values exist. Signal estimation 
generally refers to filtering, data Smoothing, augmenting, 
projecting, and/or other methods for estimating glucose val 
ues based on historical data, for example. In one implemen 
tation of signal estimation, physiologically feasible values are 
calculated based on the most recent glucose data, and the 
aberrant values are replaced with the closest physiologically 
feasible glucose values. See also U.S. Publication No. 
US-2005-0O27463-A1. 

0452 FIG. 29 provides a flow chart 580 that illustrates a 
self-diagnostic of sensor data in one embodiment. Although 
reference analyte values can useful for checking and calibrat 
ing sensor data, Self-diagnostic capabilities of the sensor pro 
vide for a fail-safe for displaying sensor data with confidence 
and enable minimal user interaction (for example, requiring 
reference analyte values only as needed). 
0453 At block 582, a sensor data receiving module, also 
referred to as the sensor data module, receives new sensor 
data from the sensor. 
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0454. At block 584, the sensor data transformation mod 
ule continuously (or intermittently) converts received new 
sensor data into estimated analyte values, also referred to as 
calibrated data. 
0455. At block 586, a self-diagnostics module, also 
referred to as a fail-safe module, performs one or more cal 
culations to determine the accuracy, reliability, and/or clinical 
acceptability of the sensor data. Some examples of the self 
diagnostics module are described above, with reference block 
556. The self-diagnostics module can be further configured to 
run periodically (e.g., intermittently or in response to a trig 
ger), for example, on raw data, filtered data, calibrated data, 
predicted data, and the like. 
0456. In certain embodiments, the self-diagnostics mod 
ule evaluates an amount of time since sensor insertion into the 
host, wherein a threshold is set for the sensor's usable life, 
after which time period the sensor is considered to be unreli 
able. In certain embodiments, the self-diagnostics module 
counts the number of times a failure or reset is required (for 
example, how many times the system is forced into Suspended 
or start-up mode), wherein a count threshold is set for a 
predetermined time period, above which the system is con 
sidered to be unreliable. In certain embodiments, the self 
diagnostics module compares newly received calibrated sen 
sor data with previously calibrated sensor data for aberrant 
values, such as is described in more detail elsewhere herein. 
In certain embodiments, the self-diagnostics module evalu 
ates clinical acceptability, such as is described in more detail 
with reference to FIG. 28, above. In certain embodiments, 
diagnostics, such as are described in U.S. Publication No. 
US-2005-0161346-A1 and U.S. Publication No. US-2005 
0143635-A1, can be incorporated into the systems of pre 
ferred embodiments for system diagnosis, for example, for 
identifying interfering species on the sensor signal and for 
identifying drifts in baseline and sensitivity of the sensor 
signal. 
0457. At block 588, a mode determination module, which 
can be a part of the sensor evaluation module 524, determines 
in which mode the sensor should be set (or remain). In some 
embodiments, the system is programmed with three modes: 
1) start-up mode; 2) normal mode; and 3) Suspended mode. 
Although three modes are described herein, the preferred 
embodiments are limited to the number or types of modes 
with which the system can be programmed. In some embodi 
ments, the system is defined as “in-cal' (in calibration) in 
normal mode; otherwise, the system is defined as “out-of-cal 
(out of calibration) in start-up and Suspended mode. The 
terms as used herein are meant to describe the functionality 
and are not limiting in their definitions. 
0458 Preferably, a start-up mode is provided, wherein the 
start-up mode is set when the system determines that it can no 
longer remain in Suspended or normal mode (for example, 
due to problems detected by the self-diagnostics module, 
such as described in more detail above) and/or wherein the 
system is notified that a new sensor has been inserted. Upon 
initialization of start-up mode, the system ensures that any old 
matched data pairs and/or calibration information is purged. 
In start-up mode, the system initializes the calibration set, 
such as described in more detail with reference to U.S. Pub 
lication No. 2006-0036142-A1. Once the calibration set has 
been initialized, sensor data is ready for conversion and the 
system is set to normal mode. 
0459 Preferably, a normal mode is provided, wherein the 
normal mode is set when the system is accurately and reliably 
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converting sensor data, for example, wherein clinical accept 
ability is positively determined, aberrant values are nega 
tively determined, and/or the self-diagnostics modules con 
firms reliability of data. In normal mode, the system 
continuously (or intermittently) converts (calibrates) sensor 
data. Additionally, reference analyte values received by the 
system are matched with sensor data points and added to the 
calibration set. 

0460. In certain embodiments, the calibration set is lim 
ited to a predetermined number of matched data pairs, after 
which the systems purges old or less desirable matched data 
pairs when a new matched data pair is added to the calibration 
set. Less desirable matched data pairs can be determined by 
inclusion criteria, which include one or more criteria that 
define a set of matched data pairs that form a Substantially 
optimal calibration set. 
0461 One inclusion criterion comprises ensuring the time 
stamp of the matched data pairs (that make up the calibration 
set) span at least a preselected time period (e.g., three hours). 
Another inclusion criterion comprises ensuring that the time 
stamps of the matched data pairs are not more than a prese 
lected age (e.g., one week old). Another inclusion criterion 
ensures that the matched pairs of the calibration set have a 
substantially evenly distributed amount of high and low raw 
sensor data points, estimated sensor analyte values, and/or 
reference analyte values. Another criterion comprises ensur 
ing all raw sensor data, estimated sensor analyte values, and/ 
or reference analyte values are within a predetermined range 
(e.g., 40 mg/dL to 400 mg/dL for glucose values). Another 
criterion comprises evaluating the rate of change of the ana 
lyte concentration (e.g., from sensor data) during the time 
stamp of the matched pair(s). For example, sensor and refer 
ence data obtained during the time when the analyte concen 
tration is undergoing a slow rate of change can be less Sus 
ceptible to inaccuracies caused by time lag and other 
physiological and non-physiological effects. Another crite 
rion comprises evaluating the congruence of respective sen 
Sorand reference data in each matched data pair; the matched 
pairs with the most congruence can be chosen. Another cri 
terion comprises evaluating physiological changes (e.g., low 
oxygen due to a user's posture, position, or motion that can 
cause pressure on the sensor and effect the function of a 
Subcutaneously implantable analyte sensor, or other effects) 
to ascertain a likelihood of error in the sensor value. Evalua 
tion of calibration set criteria can comprise evaluating one, 
some, or all of the above described inclusion criteria. It is 
contemplated that additional embodiments can comprise 
additional inclusion criteria not explicitly described herein. 
0462. Unfortunately, Some circumstances can exist 
wherein a system in normal mode can be changed to start-up 
or Suspended mode. In general, the system is programmed to 
change to Suspended mode when a failure of clinical accept 
ability, aberrant value check and/or other self-diagnostic 
evaluation is determined. Such as described in more detail 
above, and wherein the system requires further processing to 
determine whether a system re-start is required (e.g., start-up 
mode). In general, the system will change to start-up mode 
when the system is unable to resolve itself in suspended mode 
and/or when the system detects a new sensor has been 
inserted (e.g., via system trigger or user input). 
0463 Preferably, a suspended mode is provided wherein 
the Suspended mode is set when a failure of clinical accept 
ability, aberrant value check, and/or other self-diagnostic 
evaluation determines unreliability of sensor data. In certain 
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embodiments, the system enters Suspended mode when a 
predetermined time period passes without receiving a refer 
ence analyte value. In Suspended mode, the calibration set is 
not updated with new matched data pairs, and sensor data can 
optionally be converted, but not displayed on the user inter 
face. The system can be changed to normal mode upon reso 
lution of a problem (positive evaluation of sensor reliability 
from the self-diagnostics module, for example). The system 
can be changed to start-up mode when the system is unable to 
resolve itself in suspended mode and/or when the system 
detects a new sensor has been inserted (via system trigger or 
user input). 
0464. The systems of preferred embodiments, including a 
transcutaneous analyte sensor, mounting unit, electronics 
unit, applicator, and receiver for inserting the sensor, and 
measuring, processing, and displaying sensor data, provide 
improved convenience and accuracy because of their 
designed stability within the host's tissue with minimum 
invasive trauma, while providing a discreet and reliable data 
processing and display, thereby increasing overall host com 
fort, confidence, safety, and convenience. Namely, the geo 
metric configuration, sizing, and material of the sensor of the 
preferred embodiments enable the manufacture and use of an 
atraumatic device for continuous measurement of analytes, in 
contrast to conventional continuous glucose sensors available 
to persons with diabetes, for example. Additionally, the sen 
sor systems of preferred embodiments provide a comfortable 
and reliable system for inserting a sensor and measuring an 
analyte level for up to 7 days or more without surgery. The 
sensor Systems of the preferred embodiments are designed for 
host comfort, with chemical and mechanical stability that 
provides measurement accuracy. Furthermore, the mounting 
unit is designed with a miniaturized and reusable electronics 
unit that maintains a low profile during use. The usable life of 
the sensor can be extended by incorporation of a bioactive 
agent into the sensor that provides local release of an anti 
inflammatory, for example, in order to slow the Subcutaneous 
foreign body response to the sensor. 
0465. After the usable life of the sensor (for example, due 
to a predetermined expiration, potential infection, or level of 
inflammation), the host can remove the sensor and mounting 
from the skin, and dispose of the sensor and mounting unit 
(preferably saving the electronics unit for reuse). Another 
sensor system can be inserted with the reusable electronics 
unit and thus provide continuous sensor output for long peri 
ods of time. 

0466 FIG.30 is a flow chart 600 that illustrates the process 
of detecting and processing signal artifacts in some embodi 
mentS. 

0467. At block 602, a sensor data receiving module, also 
referred to as the sensor data module, or processor module, 
receives sensor data (e.g., a data stream), including one or 
more time-spaced sensor data points. In some embodiments, 
the data stream is stored in the sensor for additional process 
ing; in some alternative embodiments, the sensor periodically 
transmits the data stream to the receiver, which can be in 
wired or wireless communication with the sensor. In some 
embodiments, raw and/or filtered data is stored in the sensor 
and/or transmitted and stored in the receiver, as described in 
more detail elsewhere herein. 

0468. At block 604, a signal artifacts detection module, 
also referred to as the signal artifacts detector, or signal reli 
ability module, is programmed to detect transient non-glu 
cose related signal artifacts in the data stream. In some 
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embodiments, the signal artifacts detector can comprise an 
oxygen detector, a pH detector, a temperature detector, and/or 
a pressure/stress detector, for example, the signal artifacts 
detector 29 in FIG. 2. In some embodiments, the signal arti 
facts detector is located within the processor 22 (FIG. 2) and 
utilizes existing components of the glucose sensor to detect 
signal artifacts, for example by pulsed amperometric detec 
tion, counter electrode monitoring, reference electrode moni 
toring, and frequency content monitoring, which are 
described elsewhere herein. In yet other embodiments, the 
data can be sent from the sensor to the receiver which com 
prises programming in the processor 42 (FIG. 4) that per 
forms algorithms to detect signal artifacts, for example Such 
as described with reference to “Cone of Possibility Detec 
tion' method and/or by comparing raw data vs. filtered data, 
both of which are described in more detail elsewhere herein. 

0469. In some exemplary embodiments, the processor 
module in either the sensor electronics and/or the receiver 
electronics evaluates an intermittent or continuous signal-to 
noise measurement to determine aberrancy of sensor data 
responsive to a signal-to-noise ratio above a set threshold. In 
Some exemplary embodiments, signal residuals (e.g., by 
comparing raw and filtered data) are intermittently or con 
tinuously analyzed for noise above a set threshold. In some 
exemplary embodiments, pattern recognition can be used to 
identify noise associated with physiological conditions. Such 
as low oxygen, or other known signal aberrancies. Accord 
ingly, in these embodiments, the system can be configured, in 
response to aberrancies in the data stream, to trigger signal 
estimation, adaptively filter the data stream according to the 
aberrancy, and the like, as described in more detail elsewhere 
herein. 

0470. In some embodiments, one or more signal residuals 
are obtained by comparing received data with filtered data, 
whereby a signal artifact can be determined. In some embodi 
ments, a signal artifact eventis determined to have occurred if 
the residual is greater than a threshold. In some exemplary 
embodiments, another signal artifact event is determined to 
have occurred if the residual is greater than a second thresh 
old. In some exemplary embodiments, a signal artifact event 
is determined to have occurred if the residual is greater thana 
threshold for a period of time or amount of data. In some 
exemplary embodiments, a signal artifact event is determined 
to have occurred if a predetermined number of signal residu 
als above a predetermined threshold occur within a predeter 
mined time period (or amount of data). In some exemplary 
embodiments, an average of a plurality of residuals is evalu 
ated over a period of time or amount of data to determine 
whether a signal artifact has occurred. The use of residuals for 
noise detection can be preferred in circumstances where data 
gaps (non-continuous) data exists. 
0471. In some exemplary embodiments, a differential, 
also referred to as a derivative of the residual, is determined 
by comparing a first residual (e.g., at a first time point) and a 
second residual (e.g., at a second time point), wherein a signal 
artifact event is determined to have occurred when the differ 
ential is above a predetermined threshold. In some exemplary 
embodiments, a signal artifact event is determined to have 
occurred if the differential is greater than a threshold for a 
period of time or amount of data. In some exemplary embodi 
ments, an average of a plurality of differentials is calculated 
over a period of time or amount of data to determine whether 
a signal artifact has occurred. 
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0472. Numerous embodiments for detecting signal arti 
facts are described in more detail in the section entitled, 
“Signal Artifacts Detection, all of which are encompassed by 
the signal artifacts detection at block 604. 
0473 At block 606, the processor module is configured to 
process the sensor databased at least in part on whether the 
signal artifact event has occurred. 
0474. In some embodiments, the sensor data is filtered in 
the receiver processor to generate filtered data if the signal 
artifact event is determined to have occurred; filtering can be 
performed either on the raw data, or can be performed to 
further filter received filtered data, or both. 
0475. In some embodiments, signal artifacts detection and 
processing is utilized in outlier detection, such as described in 
more detail elsewhere herein, wherein a disagreement 
between time corresponding reference data and sensor data 
can be analyzed, e.g., noise analysis data (e.g., signal artifacts 
detection and signal processing) can be used to determine 
which value is likely more reliable (e.g., whether the sensor 
data and/or reference data can be used for processing). In 
Some exemplary embodiments wherein the processor module 
receives reference data from a reference analyte monitor, a 
reliability of the received data is determined based on signal 
artifacts detection (e.g., if a signal artifact event is determined 
to have occurred.) In some exemplary embodiments, a reli 
ability of the sensor data is determined based on signal arti 
facts detection (e.g., if the signal artifact event is determined 
to have not occurred.) The term “reliability,” as used herein, is 
a broad term and is used in its ordinary sense, including, 
without limitation, a level of confidence in the data (e.g., 
sensor or reference data), for example, a positive or negative 
reliance on the data (e.g., for calibration, display, and the like) 
and/or a rating (e.g., of at least 60%, 70%, 80%,90% or 100% 
confidence thereon.) 
0476. In some embodiments wherein a matching data pair 

is formed by matching reference data to Substantially time 
corresponding sensor data (e.g., for calibration and/or outlier 
detection) described in more detail elsewhere herein, match 
ing of a data pair can be configured to occur based on signal 
artifacts detection (e.g., only if a signal artifact event is deter 
mined to have not occurred.) In some embodiments wherein 
the reference data is included in a calibration factor for use in 
calibration of the glucose sensor as described in more detail 
elsewhere herein, the reference data can be configured to be 
included based on signal artifacts detection (e.g., only if the 
signal artifact event is determined to have not occurred.) In 
general, results of noise analysis (e.g., signal artifact detec 
tion and/or signal processing) can be used to determine when 
to use or eliminate a matched pair for use in calibration (e.g., 
calibration set). 
0477. In some embodiments, a user is prompted for a 
reference glucose value based on signal artifacts detection 
(e.g., only if a signal artifact event is determined to have not 
occurred.) While not wishing to be bound by theory, it is 
believed certain more preferable times for calibration (e.g., 
not during noise episodes) can be detected and processed by 
prompting the user for calibration during those times. 
0478. In some embodiments, results of noise analysis 
(e.g., signal artifact detection and/or signal processing) can be 
used to determine how to process the sensor data. For 
example, different levels of signal processing and display 
(e.g., raw data, integrated data, filtered data utilizing a first 
filter, filtered data utilizing a second filter, which may be 
“more aggressive' than the first filter by filtering over a larger 
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time period, and the like.) Accordingly, the different levels of 
signal processing and display can be selectively chosen 
responsive to a reliability measurement, a positive or negative 
determination of signal artifact, and/or signal artifacts above 
first and second predetermined thresholds. 
0479. In some embodiments, results of noise analysis 
(e.g., signal artifact detection and/or signal processing) can be 
used to determine when to utilize and/or display different 
representations of the sensor data (e.g., raw vs. filtered data), 
when to turn filters on and/or off (e.g., processing and/or 
display of certain Smoothing algorithms), and/or when to 
further process the sensor data (e.g., filtering and/or display 
ing). In some embodiments, the display of the sensor data is 
dependent upon the determination of signal artifact(s). For 
example, when a certain predetermined threshold of signal 
artifacts have been detected (e.g., noisy sensor data), the 
system is configured to modify or turn off a particular display 
of the sensor data (e.g., display filtered data, display pro 
cessed data, disable display of sensor data, display range of 
possible data values, display indication of direction of glu 
cose trend data, replace sensor data with predicted/estimated 
sensor data, and/or display confidence interval representative 
ofa level of confidence in the sensor data.) In some exemplary 
embodiments, a graphical representation of filtered sensor 
data is displayed if the signal artifact event is determined to 
have occurred. Alternatively, when a certain predetermined 
threshold of signal artifacts has not been detected (e.g., mini 
mal, insignificant, or no noise in the data signal), the system 
is configured to modify or turn on a particular display of the 
sensor data (e.g., display unfiltered (e.g., raw or integrated) 
data, a single data value, an indication of direction of glucose 
trend data, predicted glucose data for a future time period 
and/or a confidence interval representative of a level of con 
fidence in the sensor data.) 
0480. In some embodiments wherein a residual (or differ 
ential) is determined as described in more detail elsewhere 
herein, the residual (or differential) is used to modify the 
filtered data during signal artifact event(s). In one such exem 
plary embodiment, the residual is measured and then added 
back into the filtered signal. While not wishing to be bound by 
theory, it is believed that some Smoothing algorithms may 
result in some loss of dynamic behavior representative of the 
glucose concentration, which disadvantage may be reduced 
or eliminated by the adding of the residual back into the 
filtered signal in Some circumstances. 
0481. In some embodiments, the sensor data can be modi 
fied to compensate for a time lag, for example by predicting or 
estimating an actual glucose concentration for a time period 
considering a time lag associated with diffusion of the glu 
cose through the membrane, digital signal processing, and/or 
algorithmically induced time lag, for example. 
0482 FIG. 31 is a graph that illustrates a raw data stream 
from a glucose sensor for approximately 24 hours with a 
filtered version of the same data stream Superimposed on the 
same graph. Additionally, this graph illustrates a noise epi 
sode, the beginning and end of which was detected by a noise 
detection algorithm of the preferred embodiments, and dur 
ing which a particular filter was applied to the data. The X-axis 
represents time in minutes; the y-axis represents the raw and 
filtered data values in counts. In this example, the raw data 
stream was obtained in 5 minute intervals from a transcuta 
neous glucose sensor Such as described in more detail above, 
with reference to FIG. 1B and in U.S. Publication No. 
US-2006-002O1087-A1. 
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0483. In section 608 of the data, which encompasses an 
approximately 14 hour period up to time=2:22, the filtered 
data was obtained by applying a 3-point moving average 
window to the raw data. During that period, the noise detec 
tion algorithm was applied to detect a noise episode. In this 
example, the algorithm included the following: calculating a 
residual signal by subtracting the filtered data from the raw 
data (e.g., for each 5-minute point); calculating a differential 
by subtracting the residual for each 5-minute point from its 
previous 5-minute residual; determining if each differential 
exceeds a threshold of 5000 counts (and declaring a noisy 
point if so); and determining whether 6 out of 12 points in the 
past 1 hour exceed that threshold (and declaring a noise 
episode if so). Accordingly, a noise episode was declared at 
time 2:22 and a more aggressive filter was applied as 
described with reference to section 610. 

0484. In section 610 of the data, also referred to as a noise 
episode, which encompasses an approximately 5/2 hour 
period up to time–7:57, the filtered data was obtained by 
applying a 7-point moving average window to the raw data. 
The 7-point moving average window was in this example was 
an effective filter in Smoothing out the noise in the data signal 
as can be seen on the graph. During that period, an algorithm 
was applied to detect when the noise episode had ended. In 
this example, the algorithm included the following: calculat 
ing a residual signal by Subtracting the filtered data (using the 
3-point moving average filter described above) from the raw 
data (e.g., for each 5-minute point); calculating a differential 
of the residual by subtracting the residual for each 5-minute 
point from its previous 5-minute residual; determining if each 
differential exceeds a threshold of 5000 counts (and declaring 
a noisy pointifso); and determining whether less than 2 noisy 
points had occurred in the past hour (and declaring the noise 
episode over if so). Accordingly, the noise episode was 
declared as over at time-7:57 and the less aggressive filter 
(e.g., 3-point moving average) was again applied with the 
noise detection algorithm as described with reference to sec 
tion 608, above. 
0485. In section 612 of the data, which encompasses more 
than 4 hours of data, the filtered data was obtained by apply 
ing a 3-point moving average window to the raw data. During 
that period, the noise detection algorithm (described above) 
did not detect a noise episode. Accordingly, raw or minimally 
filtered data could be displayed to the patient during this time 
period. 
0486 It was shown that the above-described example pro 
vided Smoother glucose information during noise episodes, 
by applying a more aggressive filter to Smooth out the noise. 
It is believed that when displayed, the smoother data will 
avoid presenting potentially misleading or inaccurate infor 
mation to the user. Additionally, it was shown in the above 
described example that during non-noisy periods (when noise 
episodes are not detected), raw or less aggressively filtered 
data can be displayed to the user in order to provide more 
accurate data with minimal or no associated filter-induced 
time lag in the data. Furthermore, it is believed that proper 
detection of noise episodes aids in determining proper times 
for calibration, ensuring more accurate calibration than may 
otherwise be possible. 
0487. In the above-described example, the criteria for the 
onset & offset of noise episodes were different; for example, 
the onset criteria included 6 out of 12 points in the past 1 hour 
exceeding a threshold, while the offset criteria included less 
than 2 noisy points in the past 1 hour. In this example, these 
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different criteria were found to create smoother transitions in 
the data between the raw and filtered data and avoided false 
detections of noise episodes. 
0488 FIG. 32 is a flowchart 700 that illustrates a method 
for processing data from a glucose sensor in certain embodi 
ments. In general, prior art systems display either real-time 
sensor data (e.g., prospectively calibrated/analyzed) or his 
torical sensor data (e.g., retrospectively calibrated/analyzed). 
Regarding real-time sensor data display, the sensor data is 
typically prospectively processed (e.g., calibrated, Smoothed, 
etc) in Substantially real-time by a predetermined algorithm, 
wherein the real-time prospectively processed data are dis 
played periodically or Substantially continuously based on 
that prospective analysis. Regarding historical sensor data 
display, the sensor data is typically retrospectively processed 
(e.g., calibrated, Smoothed, etc) after collection of an entire 
sensor data set, wherein the historical retrospectively pro 
cessed data are displayed based on the retrospective analysis. 
0489. In contrast to the prior art, the preferred embodi 
ments describe systems and methods for periodically or Sub 
stantially continuously post-processing (e.g., updating) the 
Substantially real-time graphical representation of glucose 
data (e.g., trend graph representative of glucose concentration 
over a previous number of minutes or hours) with processed 
data, wherein the data has been processed responsive to detec 
tion of signal artifacts. 
0490 At block 702, a sensor data receiving module, also 
referred to as the sensor data module, or processor module, 
receives sensor data (e.g., a data stream), including one or 
more time-spaced sensor data points. In some embodiments, 
the data stream is stored in the sensor for additional process 
ing; in some alternative embodiments, the sensor periodically 
transmits the data stream to the receiver, which can be in 
wired or wireless communication with the sensor. In some 
embodiments, raw and/or filtered data is stored in the sensor 
and/or transmitted and stored in the receiver, as described in 
more detail elsewhere herein. 
0491. At block 704, a signal artifacts detection module, 
also referred to as the signal artifacts detector, or signal reli 
ability module, optionally detects transient non-glucose 
related signal artifacts in the data stream, Such as described in 
more detail above with reference to block 604. 
0492. At block 706, the processor module is configured to 
optionally process the sensor data based at least in part on 
whether the signal artifact event has occurred, such as 
described in more detail with reference to block 606 above. 

0493 At block 708, an output module, also referred to as 
the processor module, provides output to the user via the user 
interface. The output is representative of the estimated glu 
cose value, which is determined by converting the sensor data 
into a meaningful glucose value Such as described in more 
detail elsewhere herein. User output can be in the form of a 
numeric estimated glucose value, an indication of directional 
trend of glucose concentration, and/or a graphical represen 
tation of the estimated glucose data over a period of time, for 
example. Other representations of the estimated glucose val 
ues are also possible, for example audio and tactile. In some 
embodiments, the output module displays both a “real-time' 
glucose value (e.g., a number representative of the most 
recently measure glucose concentration) and a graphical rep 
resentation of the post-processed sensor data, which is 
described in more detail, below. 
0494. In one embodiment, such as shown in FIG. 3A, the 
estimated glucose value is represented by a numeric value. In 
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other exemplary embodiments, such as shown in FIGS. 3B to 
3D, the user interface graphically represents the estimated 
glucose data trend over predetermined a time period (e.g., 
one, three, and nine hours, respectively). In alternative 
embodiments, other time periods can be represented. In some 
embodiments, the measured analyte value is represented by a 
numeric value. In alternative embodiments, other time peri 
ods can be represented. In alternative embodiments, pictures, 
animation, charts, graphs, ranges of values, and numeric data 
can be selectively displayed. 
0495. At block 710, the processor module is configured to 
periodically or Substantially continuously post-process (e.g., 
update) the displayed graphical representation of the data 
corresponding to the time period according to the received 
data. For example, the glucose trend information (e.g., for the 
previous 1-, 3-, or 9-hour trend graphs shown in FIGS. 3B to 
3D) can be updated to better represent actual glucose values 
during signal artifacts. In some embodiments, the processor 
module post-processes segments of data (e.g., 1-, 3-, or 
9-hour trend graph data) every few seconds, minutes, hours, 
days, or anywhere in between, and/or when requested by a 
user (e.g., in responsive to a button-activation Such as a 
request for display of a 3-hour trend graph screen). 
0496. In general, post-processing includes the processing 
performed by the processor module (e.g., within the hand 
held receiver unit) on “recent sensor data (e.g., data that is 
inclusive of time points within the past few minutes to few 
hours) after its initial display of the sensor data and prior to 
what is generally termed “retrospective analysis” in the art 
(e.g., analysis that is typically accomplished retrospectively 
at one time, in contrast to intermittently, periodically, or con 
tinuously, on an entire data set, such as for display of sensor 
data for physician analysis). Post-processing can include pro 
gramming performed to recalibrate the sensor data (e.g., to 
better match to reference values), fill in data gaps (e.g., data 
eliminated due to noise or other problems), smooth out (filter) 
sensor data, compensate for a time lag in the sensor data, and 
the like, which is described in more detail, below. Preferably, 
the post-processed data is displayed on a personal hand-held 
unit (e.g., such as on the 1-, 3-, and 9-hour trend graphs of the 
receiver of FIGS. 3A to 3D) in “real time” (e.g., inclusive of 
recent data within the past few minutes or hours) and can be 
updated (post-processed) automatically (e.g., periodically, 
intermittently, or continuously) or selectively (e.g., respon 
sive to a request) when new or additional information is 
available (e.g., new reference data, new sensor data, etc). In 
Some alternative embodiments, post-processing can be trig 
gered dependent upon the duration of a noise episode; for 
example, data associated with noise events extending past 
about 30 minutes can be processed and/or displayed differ 
ently than data during the initial 30 minutes of a noise epi 
sode. 
0497. In one exemplary embodiment, the processor mod 
ule filters the data stream to recalculate data for a previous 
time period and periodically or Substantially continuously 
displays a graphical representation of the recalculated data 
for that time period (e.g., trend graph). 
0498. In another exemplary embodiment, the processor 
module adjusts the data for a time lag (e.g., removes a time lag 
induced by real-time filtering) from data for a previous time 
period and displays a graphical representation of the time lag 
adjusted data for that time period (e.g., trend graph). 
0499. In another exemplary embodiment, the processor 
module algorithmically smoothes one or more sensor data 
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points over a moving window (e.g., including time points 
before and after the one or more sensor data points) for data 
for a previous time period and displays a graphical represen 
tation of the updated, Smoothed data for that time period (e.g., 
trend graph). 
0500 Although a few examples of post-processing are 
described herein, one skilled in the art appreciates a variety of 
data processing that can be applied to these systems and 
methods, including any of the processing steps described in 
more detail elsewhere herein. 

0501 Methods and devices that are suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in U.S. Pat. No. 4,994,167; U.S. Pat. No. 4,757,022: 
U.S. Pat. No. 6,001,067; U.S. Pat. No. 6,741,877; U.S. Pat. 
No. 6,702,857; U.S. Pat. No. 6,558,321; U.S. Pat. No. 6,931, 
327; and U.S. Pat. No. 6,862,465. 
0502 Methods and devices that are suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in U.S. Publication No. US-2005-0176136-A1; 
U.S. Publication No. US-2005-0251083-A1; U.S. Publica 
tion No. US-2005-0143635-A1; U.S. Publication No. 
S-2005-0181012-A1; U.S. Publication No. US-2005 
177036-A1; U.S. Publication No. US-2005-0124873-A1; 
.S. Publication No. US-2005-0051440-A1; U.S. Publica 
on No. US-2005-0115832-A1; U.S. Publication No. 
S-2005-0245799-A1; U.S. Publication No. US-2005 
245795-A1; U.S. Publication No. US-2005-0242479-A1; 
.S. Publication No. US-2005-0182451-A1; U.S. Publica 
on No. US-2005-0056552-A1; U.S. Publication No. 
S-2005-0192557-A1; U.S. Publication No. US-2005 
154271-A1; U.S. Publication No. US-2004-0199059-A1; 
.S. Publication No. US-2005-0054909-A1; U.S. Publica 
on No. US-2005-01 12169-A1; U.S. Publication No. 
S-2005-0051427-A1; U.S. Publication No. US-2003 
032874-A1; U.S. Publication No. US-2005-0103625-A1; 
.S. Publication No. US-2005-0203360-A1; U.S. Publica 
on No. US-2005-0090607-A1; U.S. Publication No. 
S-2005-0187720-A1; U.S. Publication No. US-2005 
161346-A1; U.S. Publication No. US-2006-0015020-A1; 
.S. Publication No. US-2005-0043598-A1; U.S. Publica 
on No. US-2003-0217966-A1; U.S. Publication No. 
S-2005-0033132-A1; U.S. Publication No. US-2005 
031689-A1; U.S. Publication No. US-2004-0045879-A1; 
.S. Publication No. US-2004-0186362-A1; U.S. Publica 
on No. US-2005-0027463-A1; U.S. Publication No. 
S-2005-0027181-A1; U.S. Publication No. US-2005 
027180-A1; U.S. Publication No. US-2006-002O187-A1; 
.S. Publication No. US-2006-0036142-A1; U.S. Publica 
on No. US-2006-0020192-A1; U.S. Publication No. 
S-2006-0036143-A1; U.S. Publication No. US-2006 
036140-A1; U.S. Publication No. US-2006-0019327-A1; 
.S. Publication No. US-2006-0020186-A1; U.S. Publica 
on No. US-2006-0020189-A1; U.S. Publication No. 
S-2006-0036139-A1; U.S. Publication No. US-2006 
020191-A1; U.S. Publication No. US-2006-002O188-A1; 
.S. Publication No. US-2006-0036141-A1; U.S. Publica 
on No. US-2006-0020190-A1; U.S. Publication No. 
S-2006-0036145-A1; U.S. Publication No. US-2006 
036144-A1; U.S. Publication No. US-2006-0016700-A1; 
.S. Publication No. US-2006-0142651-A1; U.S. Publica 
on No. US-2006-0086624-A1; U.S. Publication No. 
S-2006-0068208-A1; U.S. Publication No. US-2006 
040402-A1; U.S. Publication No. US-2006-0036142-A1; 
.S. Publication No. US-2006-0036141-A1; U.S. Publica 
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tion No. US-2006-0036143-A1; U.S. Publication No. 
US-2006-0036140-A1; U.S. Publication No. US-2006 
0036139-A1; U.S. Publication No. US-2006-0142651-A1: 
U.S. Publication No. US-2006-0036145-A1; and U.S. Publi 
cation No. US-2006-0036144-A1. 
0503 Methods and devices that are suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in U.S. application Ser. No. 09/447.227 filed Nov. 
22, 1999 and entitled “DEVICE AND METHOD FOR 
DETERMINING ANALYTE LEVELS”; U.S. application 
Ser. No. 1 1/335,879 filed Jan. 18, 2006 and entitled “CEL 
LULOSIC-BASED INTERFERENCE DOMAIN FOR AN 
ANALYTE SENSOR: U.S. application Ser. No. 1 1/334,876 
filed Jan. 18, 2006 and entitled “TRANSCUTANEOUS 
ANALYTE SENSOR: U.S. application Ser. No. 1 1/333,837 
filed Jan. 17, 2006 and entitled “LOW OXYGEN IN VIVO 
ANALYTE SENSOR. 
0504 All references cited herein, including but not limited 
to published and unpublished applications, patents, and lit 
erature references, are incorporated herein by reference in 
their entirety and are hereby made a part of this specification. 
To the extent publications and patents or patent applications 
incorporated by reference contradict the disclosure contained 
in the specification, the specification is intended to Supersede 
and/or take precedence over any such contradictory material. 
0505. The term “comprising as used herein is synony 
mous with “including.” “containing,” or “characterized by.” 
and is inclusive or open-ended and does not exclude addi 
tional, unrecited elements or method steps. 
0506 All numbers expressing quantities of ingredients, 
reaction conditions, and so forth used in the specification are 
to be understood as being modified in all instances by the term 
"about. Accordingly, unless indicated to the contrary, the 
numerical parameters set forth herein are approximations that 
may vary depending upon the desired properties sought to be 
obtained. At the very least, and not as an attempt to limit the 
application of the doctrine of equivalents to the scope of any 
claims in any application claiming priority to the present 
application, each numerical parameter should be construed in 
light of the number of significant digits and ordinary rounding 
approaches. 
0507. The above description discloses several methods 
and materials of the present invention. This invention is Sus 
ceptible to modifications in the methods and materials, as 
well as alterations in the fabrication methods and equipment. 
Such modifications will become apparent to those skilled in 
the art from a consideration of this disclosure or practice of 
the invention disclosed herein. Consequently, it is not 
intended that this invention be limited to the specific embodi 
ments disclosed herein, but that it coverall modifications and 
alternatives coming within the true scope and spirit of the 
invention. 

What is claimed is: 
1. A method for processing data from a glucose sensor, the 

method comprising: 
receiving sensor data corresponding to a time period from 

the glucose sensor, the sensor data representative of 
glucose values of a host for the time period; 

processing and displaying a graphical representation of the 
sensor data on a hand-held unit; and 

post-processing and re-displaying a graphical representa 
tion of the sensor data corresponding to the time period 
on the handheld unit, whereby the post-processed and 
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re-displayed graphical representation more closely rep 
resents the actual glucose values of the host for the time 
period. 

2. The method of claim 1, wherein post-processing is con 
ducted responsive to a request. 

3. The method of claim 1, wherein post-processing is con 
ducted automatically. 

4. The method of claim 1, further comprising determining 
whether a signal artifact event has occurred, wherein the 
post-processing is based at least in part upon whether the 
signal artifact event has occurred. 

5. The method of claim 4, wherein a signal artifact event is 
determined to have occurred if a residual associated with the 
sensor data exceeds a threshold value. 

6. The method of claim 1, wherein the displaying com 
prises displaying calibrated sensor data, and wherein the post 
processing comprises re-calibrating the sensor data corre 
sponding to the time period, and wherein the re-displaying 
comprises displaying a graphical representation of the recal 
culated sensor data corresponding to the time period. 

7. The method of claim 1, wherein post-processing com 
prises filtering the data to recalculate data corresponding to 
the time period. 

8. The method of claim 1, wherein the post-processing 
comprises recalculating the sensor data corresponding to the 
time period, wherein a time lag induced by real-time filtering 
is Substantially removed from the sensor data corresponding 
to the time period. 

9. The method of claim 1, wherein post-processing the data 
comprises algorithmically smoothing the sensor data over a 
moving window, wherein the moving window comprises time 
points before and after each sensor data point is obtained. 

10. A system configured to process data from an analyte 
sensor, the system comprising: 

a data receiving module configured to receive sensor data 
corresponding to a time period from the analyte sensor, 
the sensor data representative of glucose values of a host 
for the time period; 

an output module configured to display a substantially 
real-time numerical value corresponding to a most 
recently received sensor data point and a graphical rep 
resentation of sensor data corresponding to the time 
period; and 
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a processor module configured to post-process the sensor 
data corresponding to the time period, wherein the out 
put module is configured to re-display a graphical rep 
resentation of the post-processed sensor data corre 
sponding to the time period, whereby the graphical 
representation of the post-processed sensor data more 
closely represents the actual glucose values of the host 
for the time period. 

11. The system of claim 10, wherein processor module is 
configured to post-process the displayed data responsive to a 
request. 

12. The system of claim 10, wherein processor module is 
configured to post-process Substantially automatically. 

13. The system of claim 10, wherein the processor module 
is configured to determine whether a signal artifact event has 
occurred, wherein the post-processing is based at least in part 
upon whether the signal artifact event has occurred. 

14. The system of claim 13, wherein the processor module 
is configured determining whether a signal artifact has 
occurred by comparing the received data with filtered data to 
obtain at least one residual, wherein a signal artifact event is 
determined to have occurred if the residual is exceeds a 
threshold value. 

15. The system of claim 10, wherein the processor module 
is configured to post-process the sensor data by filtering and 
recalculate the data corresponding to the time period, 
whereby the output module displays the graphical represen 
tation of the recalculated data corresponding to the time 
period. 

16. The system of claim 10, wherein the processor module 
is configured to post-process the sensor data by recalculating 
the sensor data corresponding to the time period, wherein a 
time lag induced by real-time filtering is substantially 
removed from the sensor data corresponding to the time 
period, and wherein the output module is further configured 
to display a graphical representation of the recalculated data 
corresponding to the time period. 

17. The system of claim 10, wherein processor module is 
configured to post-process the sensor data by algorithmically 
Smoothing a plurality of sensor data points of the sensor data 
over a moving window, wherein the moving window com 
prises time points before and after each Smoothed data point 
was obtained. 


