Abstract:

Polymer Articles, and Methods and Dies for Making the Same

Title:

Polymer Articles, and Methods and Dies for Making the Same

DESIGNATED STATES (UNLESS OTHERWISE INDICATED, FOR EVERY KIND OF NATIONAL PROTECTION AVAILABLE):

DESIGNATED STATES (UNLESS OTHERWISE INDICATED, FOR EVERY KIND OF REGIONAL PROTECTION AVAILABLE):

Published:

with international search report (Art. 21(3))
POLYMER ARTICLES, AND METHODS AND DIES FOR MAKING THE SAME

Field of the Invention
The present application discloses, inter alia, polymer articles. Also, the present application discloses methods for making the polymer articles. In addition, the present application discloses dies.

Background
Efforts have been made to produce high-performance polymer fibers. For the category of thermotropic and lyotropic liquid-crystalline polymers, as an example, publications are available where reasonable success is being reported by directly spinning from the thermotropic melt or lyotropic solution and applying relatively high wind-up/extrusion speed (draw down) ratios that induce elongational flow fields causing the polymer molecules to orient in the direction of flow. For examples, see e.g. Muramatsu et al. in *Macromolecules* 19, 2850 (1986); and Wissbrun et al. in *J. Polym. Sci. Pt. B-Polym. Phys.* 20, 1835 (1982). Producing high-performance films and foils and other objects of these materials, however, has been less successful in one or more aspects. For examples, see e.g. Calundann et al. in Proceedings of the Robert A. Welch Conference on Chemical Research, XXVI. Synthetic Polymers, 280 (1982); *US patent* 4,332,759; *US patent* 4,384,016; Ide et al. in *J. Macromol. Sci.-Phys.* B23, 497 (1985); and Lusignea in *Polym. Eng. Sci.* 39, 2326 (1999).

Summary
In an embodiment, provided is a foil for use in, e.g., packaging. In an embodiment, the foil comprises a first layer and, adhered thereto, a second layer. In an embodiment, the second layer is a thin layer yet providing good barrier properties.

In an embodiment, provided is a foil comprising a first layer and, adhered to the first layer, a second layer, wherein
(i) the first layer is a cellulosic layer or a polymeric layer, and
(ii) the second layer is a liquid crystalline polymeric material, the second layer having a thickness of less than 15 micron.

In an embodiment, provided is a foil comprising a first layer and, adhered to the first layer, a second layer, wherein
(i) the first layer is a paper layer, and
(ii) the second layer is a liquid crystalline polymeric material, the second layer having a thickness of less than 15 micron.

In an embodiment, provided is a foil comprising a first layer and, adhered to the first layer, a second layer, wherein
(i) the first layer is a polymeric layer, and
(ii) the second layer is a liquid crystalline polymeric material, the second layer having a thickness of less than 15 micron.

Brief Description of the Drawings
Figures 1 A-D represent an embodiment of a spinneret part of a die.
Figures 2 A-C represent an embodiment of a second part of a die.
Figure 3 represents an embodiment of a die.
Figures 4 A-D represent an embodiment of a spinneret part of a die.
Figures 5 A-C represent an embodiment of a second part of a die.
Figure 6 represents an embodiment of a die.
Figure 7 represents an embodiment of a die.
Figure 8 represents an embodiment of a die.
Figure 9 represents an embodiment of a film.
Figures 10 A-B represent an embodiment of a die.

Detailed Description
DIES
In an embodiment, provided are dies having a first section for orienting material being pressed through the die, for instance a spinneret section, and a second section for shaping the oriented material into a desired form. A benefit of such a die is that a reasonable degree of orientation of the material may already be obtained in the shaped part leaving the second section. This, in turn, may limit or avoid having to significantly change the shape of the material leaving the second section to achieve the desired orientation of the material.

In an embodiment, the surface area for shaping the oriented material into a desired form is limited. This may assist, for instance, in better filling of the second section with the material.
arriving from the first section, which may for instance assist in decreasing or avoiding the void content in the shaped material leaving the second part.

In an embodiment, provided is a die comprising a spinneret part having a plurality of orifices. The orifices having an inlet and an outlet. In an embodiment, the spinneret part assists in orienting the material (e.g. polymer material) passing through the die. The die further comprises a second part having an opening for receiving fibers from the orifice outlets, the opening having an outlet facing away from the orifice outlets. In an embodiment, the second part assists in joining the plurality of fibers into a desired shape, e.g. into a film, a tube, or a bar. In an embodiment, the opening of the second part is in the shape of a slit. In an embodiment, the opening of the second part is circular, e.g. in the shape of a ring. A benefit of using a spinneret part before a second shaping part is that the spinneret part can assist in orienting the material (e.g. polymer material), thereby providing enhanced properties to the article leaving the second part. In an embodiment, the surface area of the outlet of the opening complies with the following formula:

\[SA < N \times D^2 \]

wherein

- \(SA \) represents the surface area of the outlet of the opening;
- \(N \) represents the number of orifice outlets of the spinneret part; and
- \(D \) represents the diameter of the orifice outlets of the spinneret part.

A benefit of \(SA \) being smaller than \(N \times D^2 \) is that the outlet of the opening is better filled with the material being pressed through the opening. This, in turn, may assist in, e.g., preventing void formation in the material being extruded through the outlet of the opening. This may be especially beneficial in situations where, for instance, substantial die swell from the spinneret part is almost absent or, because it would result in disorientation, would be undesirable (i.e., where die swell does not substantially assist in better filling of the opening). In an embodiment, \(SA \) is less than \(N \times D^2 \), for instance less than 0.9 \(N \times D^2 \) or less than 0.8 \(N \times D^2 \). In an embodiment, \(SA \) is about \(N \times (\pi/4) \times D^2 \). In an embodiment, \(SA \) is greater than 0.6 \(N \times D^2 \), for instance greater than 0.7 \(N \times D^2 \) or greater than 0.75 \(N \times D^2 \).
In an embodiment where the outlet of the second part is in the shape of a slit, the surface area \(SA\) is the length of the slit \(L\) times the width of the slit outlet \(WO\). In an embodiment, \(L\) is about equal to the effective length (EL) of the slit, i.e. the length of the slit that is designed to receive material from the spinneret part. In an embodiment, the effective length of the slit is equal to the distance (measured in a direction parallel to the slit and perpendicular to the width \(WO\)) between two orifice outlets that are spaced apart furthest.

In an embodiment for making polymer films, provided is a die comprising a spinneret part having a plurality of orifices, the orifices having an inlet and an outlet; a second part having an opening for receiving fibers from the orifice outlets, the opening having an outlet facing away from the orifice outlets; wherein the die complies with the following formula:

\[
EL \times WO < N \times D^2
\]

wherein

- \(N\) represents the number of orifice outlets of the spinneret part;
- \(D\) represents the diameter of the orifice outlets of the spinneret part;
- \(WO\) represents the width of the opening; and
- \(EL\) represents the length of the opening designed to receive material from the spinneret part.

A benefit of \(EL \times WO\) being smaller than \(N \times D^2\) is that the section of the outlet of the opening receiving fibers from the spinneret part is better filled with the material being pressed through the opening. This, in turn, may assist in, e.g., preventing void formation in the material being extruded through the outlet of the opening. This may be beneficial, e.g., in situations where, for instance, substantial die swell from the spinneret part is almost absent or, because it would result in disorientation, would be undesirable (i.e., where die swell does not substantially assist in better filling of the opening).

In an embodiment, \(EL \times WO\) is less than \(N \times D^2\), for instance less than \(0.9 \times N \times D^2\) or less than \(0.8 \times N \times D^2\). In an embodiment, \(EL \times WO\) is about \(N \times (\pi/4) \times D^2\). In an embodiment, \(EL \times WO\) is greater than \(0.6 \times N \times D^2\), for instance greater than \(0.7 \times N \times D^2\) or greater than \(0.75 \times N \times D^2\).
In an embodiment, the orifice outlets in the spinneret part are arranged such that when lines are drawn from the center of each orifice inlet, through the center of the corresponding orifice outlet, to the inlet of the second part, then such lines do not cross each other. Arranging the die in such a manner may assist in preventing the fibers to become entangled before being assembled into the desired shape.

In an embodiment, the orifices are provided in a curved part of the spinneret part. In an embodiment, the curved part has the shape of half a cylinder. In an embodiment, the curved part has the shape of half a sphere. In an embodiment, the orifices are arranged in staggered arrays. A curved spinneret part with staggered arrays may assist in arranging the orifices such that the fibers when being formed in the eventually desired shape (e.g. a film) have all had substantially similar deformation history. Also, the curved spinneret part with staggered arrays may assist in providing a relatively large fiber density in the second part.

In an embodiment, the spinneret part has at least 100 orifices, for instance at least 500 orifices, at least 1000 orifices, at least 2500 orifices, at least 5000 orifices, or at least 10000 orifices. In an embodiment, the number of orifices is less than 100000, e.g. less than 50000, less than 25000, less than 10000, less than 5000, less than 2500, or less than 1250.

In an embodiment, the orifice inlet has a greater surface area than the corresponding orifice outlet. Such a configuration may assist in orienting the material, e.g. polymer material, being pressed through the orifices. In an embodiment, the diameter of the orifice inlet is at least 5 times the diameter of the corresponding orifice outlet, e.g. at least 8 times, at least 12 times, or at least 16 times the diameter of the corresponding orifice outlet. In an embodiment, the diameter of the orifice inlet is less than 50 times the diameter of the orifice outlet. In an embodiment, the channel between the orifice inlet and the orifice outlet is cone-shaped.

In an embodiment, the orifice inlet has a surface area that is about the same as the surface area of the corresponding orifice outlet. In an embodiment, the channel between the orifice inlet and the corresponding orifice outlet is straight.

In an embodiment, the orifice outlets have a diameter of less than 5mm, e.g. less than 500 micrometers, less than 250 micrometers, less than 100 micrometers, less than 50 micrometers,
less than 25 micrometers, or less than 15 micrometers. In an embodiment, the orifice outlets have a diameter of at least 1 micrometer, e.g. at least 3 micrometers, at least 10 micrometers or at least 20 micrometers.

In an embodiment, the second part has an opening outlet in the shape of a slit. In an embodiment, the slit has a length L of at least 1 cm, e.g. at least 2 cm, at least 10 cm, at least 50 cm, at least 100 cm, at least 250 cm, at least 500 cm, or at least 1000 cm. In an embodiment, the slit has a length of less than 10000 cm, e.g. less than 5000 cm, less than 1000 cm, less than 200 cm, less than 100 cm, less than 50 cm, less than 20 cm, less than 15 cm, less than 10 cm, or less than 6 cm. In an embodiment, the slit has an effective length EL of at least 1 cm, e.g. at least 2 cm, at least 10 cm, at least 50 cm, at least 100 cm, at least 250 cm, at least 500 cm, or at least 1000 cm. In an embodiment, the slit has an effective length of less than 10000 cm, e.g. less than 5000 cm, less than 1000 cm, less than 200 cm, less than 100 cm, less than 50 cm, less than 20 cm, less than 15 cm, less than 10 cm, or less than 6 cm. In an embodiment, the second part has an opening outlet that has a circular shape. In an embodiment, the second part has an opening outlet that has a ring shape.

An example of a die having a spinneret part and a second part is provided in Figures 1-3. Figure 1A is a perspective view of a spinneret part 100 having a circular base 110 and a curved part 120 in the form of half a cylinder. The curved part 120 comprises a plurality of orifices 130. The orifices 130 are arranged over curved part 120 in staggered arrays. The orifices have an inlet 140 (see also Fig 1D) for receiving material during use (e.g. molten or dissolved polymers) and opposite orifice outlets 150 (see Fig 1D). Only the inlets are visible in Figure 1A. Figure 1B is a top view of the same spinneret part 100. Figure 1C is a sectional view of spinneret part 100 across the line A-A depicted in Figure 1B. Figure 1D is a sectional view of spinneret part 100 across the dotted line B-B in Figure 1B. Orifices 130 have orifice inlets 140 and corresponding orifice outlets 150, and channels 160 between the orifice inlets and orifice outlets. In this example, as evident from Figure 1D, the channels are cone-shaped. An example of a second part that may be combined with the spinneret part of Figure 1 is shown in Figures 2A-C. Figure 2A is a perspective view of a second part 200, having a circular solid part 210 and an opening in the form of a slit 220. The slit has an inlet 230 and an outlet 240. In the example of this figure, the inlet is wider than the outlet. Referring to Figures 2B and C, the outlet has a width WO, a length L, and the inlet has a width WI.
Dimensions in Figures 1-2 are in millimeters. The length indicated by the double-arrowed line in Fig 1C is 10mm. It is noted that Figures 1-2 are only illustrative and the dies can, for instance, be scaled up to greater dimensions (e.g. more orifices, a greater spinneret length, a greater slit length, etc.). In the example of Figures 1-2, 130 orifices are shown having an outlet diameter of 0.1mm, so N x D² = 1.3 mm². Furthermore, the slit outlet has a length of 17mm and a width of 0.06mm, so a surface area of 1.02 mm² (which is about (π/4) x 1.3 mm²).

Figure 3 represent the die 300 obtained when combining the spinneret part 100 of Figure 1 and the second part 200 of Figure 2. It is noted that the figure is merely schematic, for instance the number of orifice rows visible in Figure 3 docs not correspond to the number of rows in Figure 1.

The orifices 130 of the spinneret part 100 of Fig 1 are arranged such that straight lines from the center of each orifice inlet 140, through the center of the corresponding orifice outlet 150, do not cross each other before the slit inlet 230 of the second part 200 of Fig 2.

Another example of a die is provided in Figures 4-6. Figure 4A is a perspective view of a spinneret part 400 having a circular base 410 and a curved part 420 in the form of half a cylinder. The curved part 420 comprises a plurality of orifices 430 (Fig 4B). The orifices 430 are arranged over curved part 420 in staggered arrays. The orifices have an inlet 440 (see Fig 4C) for receiving material during use (e.g. molten or dissolved polymers) and opposite orifice outlets 450 (see Fig 4C). Figure 4B is a top view of the same spinneret part 400 of Fig 4A. Figure 4C is a sectional view of spinneret part 400 across the dotted line A-A depicted in Figure 4B. Figure 4D is a sectional view of spinneret part 400 across the dotted line B-B in Figure 4B. Referring to Fig 4C, orifices 430 have orifice inlets 440 and corresponding orifice outlets 450, and channels 460 between the orifice inlets and orifice outlets. In this example, as evident from Figure 4C, the channels are straight.

As evident from Figure 4, a difference with the spinneret part of Figure 1 is that the channels 460 are straight rather than cone-shaped. Also, the curved section of the spinneret part 400 is hollow whereas, except for the orifices themselves, the curved section of spinneret part 100 is solid. As a result, the distance between the orifice outlets and the outlet of the opening of the second part is generally larger for spinneret type 400 than for spinneret type 100. A benefit of
spinneret part 400 is, e.g., that it is generally easier to make than spinneret part 100. A benefit
of spinneret part 100 is, e.g., that the risk of orientation loss in the fibers when traveling from
the orifice outlet to the opening outlet of the second part is somewhat lower. This may
become apparent when material of relatively low viscosity is pressed through the dies, i.e.
material with relatively fast relaxation times.

An example of a second part that may be combined with the spinneret part of Figure 4 is
shown in Figure 5. Figure 5 is a perspective view of a second part 500, having a circular
solid part 510 and an opening 520, having an outlet 540. Referring to Figures 5B-C, the
outlet has a width WO and a length L.

Dimensions in Figures 4-5 are in millimeters. It is noted that Figures 4-5 are only illustrative
and the dies can, for instance, be scaled up to greater dimensions (e.g. more orifices, a greater
spinneret length, a greater slit length, etc.). In the example of Figures 4-5, 130 orifices are
shown having an outlet diameter of 0.1mm, so \(N \times D^2 = 1.3 \text{mm}^2 \). Furthermore, the slit outlet
has a length of 17mm and a width of 0.06mm, so a surface area of 1.02mm² (which is about
\(\pi/4 \times 1.3 \text{mm}^2 \)).

Figure 6 represent the die 600 obtained when combining the spinneret part 400 of Figure 4
and the second part 500 of Figure 5. It is noted that the figure is merely schematic and that,
for instance, the number of orifice rows in Figure 6 does not correspond to the number of
rows in Figure 4.

The orifices 430 of the spinneret part 400 of Fig 4 are arranged such that straight lines from
the center of each orifice inlet 440, through the center of the corresponding orifice outlet 450,
do not cross each other before the opening 520 of the second part 500 of Fig 5.

Another example of a die 1000 is provided in Figures 10A-B. The die has a spinneret part
1010 and a second part 1020. The orifices of the spinneret part are not shown in this Figure.
In an embodiment, the orifices are in a similar arrangement as in Figure 4. The second part
has an outlet 1030 in the shape of a slit. In addition, the die has a semi-circular cylindrical
space 1040, having a slit-shaped inlet 1050. A benefit of this configuration is that it allows
reasonably identical inflow and reasonably constant deformation history for the material that
will enter the spinneret holes of the spinneret part 1010. In an embodiment, the slit 1030 has
a length of 120mm and a width of 0.07mm, and the spinneret part 1010 has 990 orifices with
inlets and outlets both of 0.1 mm in diameter (arranged in a substantially similar way as the
orifices of the spinneret part in Figure 4, but over a length of 120mm instead of 7mm).

5 PROCESSES
Also provided are processes for making articles, e.g. polymer articles, for instance polymer
films, laminates, tubes, or bars. In an embodiment, the processes employ dies as described
above.

10 In an embodiment, provided is a process comprising
- Pressing a polymer, in melt or in solution, through a spinneret to form a plurality of polymer
fibers leaving the spinneret,

the spinneret having a plurality of orifices, the orifices having an inlet for receiving the
polymer melt or polymer solution and an outlet to dispatch the polymer melt or polymer
solution as a fiber; and

- Guiding the polymer fibers, while still in the melt or solution, through an opening to form a
polymer film (or e.g. tube, bar, laminate) leaving the outlet of said opening, wherein the
surface area of the outlet of the opening complies with the following formula:

\[SA < N \times D^2 \]

wherein

SA represents the surface area of the outlet of the opening;
N represents the number of orifice outlets of the spinneret; and
D represents the diameter of the orifice outlets of the spinneret.

In an embodiment, provided is a process comprising:

30 - Pressing a polymer, in melt or in solution, through a spinneret to form a plurality of polymer
fibers leaving the spinneret,
the spinneret having a plurality of orifices, the orifices having an inlet for receiving the polymer melt or polymer solution and an outlet to dispatch the polymer melt or polymer solution as a fiber; and

- Guiding the polymer fibers, while still in the melt or solution, through an opening to form a polymer film (or e.g. tube, bar, laminate) leaving the outlet of said opening, wherein the width W and thickness T of the film at the outlet of said opening comply with the following formula:

$$W \times T < N \times D^2$$

wherein

- N represents the number of orifice outlets of the spinneret; and
- D represents the diameter of the orifice outlets of the spinneret.

In an embodiment, the material is a polymer material. In an embodiment, the polymer is a thermoplastic. In an embodiment, the polymer is a polyolefin, for instance polyethylene or polypropylene. In an embodiment, the polymer is a fluoropolymer, e.g. a tetrafluoroethylene polymer, for instance a co-polymer of tetrafluoroethylene with a perfluoroalkyl vinyl ether (e.g. perfluoropropyl vinyl ether) or hexafluoroethylene. In an embodiment, the polymer is a liquid-crystalline polymer. In an embodiment, the polymer is a lyotropic liquid-crystalline polymer. In an embodiment, the polymer is a thermotropic liquid-crystalline polymer. In an embodiment, the polymer is a polyaramid, e.g. poly(p-phenylene terephthalamid). In an embodiment, the polymer is a polyester, e.g. a co-polyester, for instance a poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphtoic acid) copolymer. In an embodiment, the polymer is a polyimidazopyridinylene (dihydroxy) phenylene}, e.g. poly([2,6-diimidazoi
e[4,5-6:4',5'-e] pyridinylene-1,4(2,5-dihydroxy)phenylene]). In an embodiment, the polymer is a poly(/'-phenylene benzobisoxazo k). In an embodiment, the polymer is a biodegradable polymer. In an embodiment, the polymer is cellulose or a cellulose derivative. Commercial examples of some of the above-mentioned polymers are, for instance, those available under the tradenames Kevlar™, Twaron™, Vectra™, M5™, and Zylon™. In an embodiment, the material is a polymer blend. In an embodiment, the material comprises, besides one or more polymer grades, one or more additives, adhesives, dyes, antioxidants, monomers, plasticizers, and the like.
In an embodiment, the polymer is in the melt when pressed through the die. In an embodiment, the polymer is in solution when pressed through the die. In an embodiment, the solution is a gel.

In an embodiment, one polymer grade is pressed through the spinneret. In an embodiment, more than one polymer grade is pressed through the spinneret, for instance two polymer grades or three polymer grades, or four polymer grades. In an embodiment, one section of orifices in the spinneret receives one polymer grade, and another section of orifices in the spinneret receives another polymer grade. In an embodiment more than one polymer grade is pressed through the spinneret and separately through different parts of the spinneret one or more additives, adhesives, dyes, antioxidants, monomers, plasticizers and the like. For an example, see Figures 7 and 8. These Figures largely correspond to, respectively. Figures 3 and 6, except that the dies comprise a part 700 separating orifice inlets. In this manner, a polymer grade (e.g. Grade 1: Figs 7-8) can be controllably interspersed in another polymer grade (e.g. Grade 2; Figs 7-8), for instance as strains. For instance, as depicted in Figure 9, polymer films 900 can be made having a majority of a polymer Grade 2 and a minority of strains of a polymer Grade 1. In an embodiment, the polymer grades are of a similar class. A benefit of polymer grades of similar class may be better adherence between the grades and substantially homogenous mechanical properties of the film. In an embodiment, the melting temperature of one of the grades (e.g. the grade that is present in a minor part) is lower than the melting temperature of another grade (e.g. the grade that is present in a major part). A benefit of this embodiment may be in laminating the films. For instance, laminating may be effected by heating the temperature of the films above the melting temperature of the minor polymer part but below the temperature of the major polymer part. The melting minor polymer part may then assist in gluing the films together.

In an embodiment the articles are co-extruded with a material to form a coating on the polymer articles. In an embodiment, the coating is a material that can serve as a glue when laminating polymer films.

In an embodiment, the polymer article is quenched shortly after leaving the die (e.g. by cooling, removal of solvent, or both). A benefit of quenching shortly after leaving the die, for instance in the manufacture of films, is that the width of the film leaving the die is
substantially maintained. In an embodiment, the polymer article is quenched by guiding the article in a liquid, e.g. an aqueous liquid, for instance water. In an embodiment, the polymer article is quenched by exposing it to a cold gas, e.g. cold nitrogen gas. In an embodiment, the polymer article is quenched within 10cm after leaving the die, e.g. within 5cm, within 3cm, within 1mm, or even within 0.5cm. In an embodiment, the die is in contact with the quenching zone, e.g. the liquid. In an embodiment, the polymer articles is quenched more than 0.1mm after leaving the die, e.g. more than 0.5mm or more than 1mm after leaving the die.

The polymer articles may be post-treated, e.g. annealed, further stretched, cross-linked etc. In an embodiment, the articles are heat-treated (e.g. in the range of 200-280°C, for instance 260°C) while under tensile stress e.g. at a stress in the range of 1-50 MPa, e.g. 1-10 MPa, 3 MPa, 5-40 MPa, 10-30 MPa, or 15-25 MPa).

APPLICATIONS

In an embodiment, polymer films are provided, e.g. polymer films obtained with the dies described herein and/or the processes described herein. In an embodiment, the films have a width of at least 1em, e.g. at least 2 cm, at least 10cm, at least 50cm, at least 100cm, at least 250cm, at least 500cm, or at least 1000cm. In an embodiment, the width is less than 10000cm, e.g. less than 5000cm, less than 1000cm, less than 200cm, less than 100cm, less than 50cm, less than 20cm, less than 15cm, less than 10cm, less than 8cm, or less than 6cm.

In an embodiment, the films have a tensile modulus of at least 50GPa. In an embodiment the tensile modulus is at least 25%, e.g. at least 35%, at least 45%, at least 55%, or at least 70% of the theoretically maximum modulus. In an embodiment, the tensile modulus is less than 200GPa, e.g. less than 150GPa, less than 100GPa, or less than 75GPa. In an embodiment, the tensile modulus is less than 95% of the theoretically maximum modulus, e.g. less than 90%, less than 85%, less than 80%, less than 65%, or less than 50% of the theoretically maximum modulus.

In an embodiment, the polymer films have a loss modulus (E”), as determined with dynamical mechanical thermal analysis at a temperature of 25°C and a frequency of 1 Hz, of at least 0.75 GPa, e.g. at least 1 GPa, at least 1.5 GPa, at least 2 GPa, at least 2.5 GPa, or at least 2.7 GPa. In an embodiment, the loss modulus is less than 8 GPa, e.g. less than 5 GPa, less than 4 GPa, or less than 3 GPa. In an embodiment, the polymer films have a storage modulus (E’), as determined with dynamical mechanical thermal analysis at a temperature of
25°C and a frequency of 1 Hz, of at least 20 GPa, e.g. at least 30 GPa, at least 40 GPa, at least 50 GPa, or at least 60 GPa. In an embodiment, the storage modulus is less than 100 GPa, e.g. less than 85 GPa or less than 70 GPa.

In an embodiment, the polymer films have a specific loss modulus, i.e. the loss modulus (25°C, 1 Hz) divided by the density of the film material (at 25°C), of at least 75 km, e.g. at least 100 km, at least 125 km, at least 150 km, at least 175 km, or at least 200 km. In an embodiment, the specific loss modulus is less than 600 km, e.g. less than 450 km or less than 300 km. In an embodiment, the polymer films have a specific storage modulus, i.e. the storage modulus (25°C, 1 Hz) divided by the density of the film material (at 25°C), of at least 1000 km, e.g. at least 2000 km, at least 3000 km, at least 4000 km, or at least 4250 km. In an embodiment, the polymer films have a specific storage modulus of less than 10 000 km, e.g. less than 7500 km or less than 5000 km.

A combination of good damping (a sufficiently high loss modulus) and good stiffness (a sufficiently high storage modulus), especially on a weight basis, are of interest, for instance, in high performance damping applications (especially when light weight is important). Such as data storage systems, aerospace applications, sporting articles such as tennis rackets, hockey sticks, or any other electrical, acoustical, optical, mechanical or any other object, devise or matter that may be effected by internal or external vibrations in an undesired manner. The favorable damping properties of these tapes could also be of interest as high-damping layers in composites, for example as layers between unidirectional carbon fiber-reinforced composite plies that make up a laminate.

In an embodiment, the films have a thickness of less than 150 micrometer, e.g. less than 100 micrometer, less than 50 micrometer, less than 25 micrometer, less than 10 micrometer, or even less than 5 micrometer. In an embodiment, the films have a thickness of at least 1 micrometer, e.g. at least 2 micrometer, at least 3 micrometer, or at least 4 micrometer.

In an embodiment, the films are laminated. In an embodiment, the laminate consists of 3 layers (e.g. in a 0/60/1 20 configuration), of 4 layers (e.g. in a 0/45/90/135 configuration), or more than 4 layers. In an embodiment, the laminate comprises less than 20 layers, e.g. less than 15 layers, less than 10 layers, or less than 7 layers.
In an embodiment, the laminate has a tensile modulus of at least 5 GPa in at least 2 perpendicular directions in the plane of the laminate, e.g. at least 8 GPa, at least 10 GPa, or at least 12 GPa. In an embodiment, the laminate has a tensile modulus in all directions in the plane of the laminate of at least 5 GPa, e.g. at least 8 GPa, at least 10 GPa, or at least 12 GPa, or at least 15 GPa. In an embodiment, the laminate has a substantially isotropic tensile modulus in the plane of the laminate.

In an embodiment, the films are laminated using a glue on the surface of the films. In an embodiment, the laminate comprises, relative to the total weight of the laminate, less than 25wt% glue (e.g., epoxies or relatively low melting components), e.g. less than 15wt% glue, less than 10 wt% glue, less than 7 wt% glue, less than 4 wt% glue, or even less than 1 wt% glue. In an embodiment, no glue is used. In an embodiment, the laminate consists essentially of a single polymer grade. A benefit of using limited (or no) amounts of glue is that such glue may have a negative effect on one or more mechanical properties (for instance tensile modulus). In an embodiment, lamination is achieved by stacking tapes and subjecting the stack to elevated temperature and/or elevated pressure. In an embodiment, the films are laminated using relatively low melting components present in the films (e.g., by heating the films to above the temperature of a low melting component but below the melting temperature of a high melting component).

In an embodiment, the polymer articles (e.g. the polymer films, or the polymer laminates) are used in the manufacture of sails. Other applications are, for instance, tubes, pipes, panels, protective sheets, aerospace and automotive applications, sporting articles (e.g. tennis rackets, hockey sticks, running shoes), helmets, protective gear, furniture, containers, tows, fly wheels, high-damping layers in composites (e.g. as a layer between composite plies, e.g. unidirectional carbon fiber-reinforced composite plies, that make up a laminate). In an embodiment, the polymer articles are used in security features. For instance, the films may feature a directional haze. For instance, upon increasing the distance between a film and the text behind it, the latter may remain well-defined along the orientation direction of the foil, while perpendicular to it the image may become blurred.

In an embodiment, the polymer articles are used in packaging, e.g. in a packaging foil, for food packaging or beverage packaging. In an embodiment, a packaging foil is provided comprising a first layer and adhered thereto a second layer of the polymer film (either as a
single film or as a laminate comprising a plurality of the polymer films). In an embodiment, the first layer is a paper layer (e.g. a cardboard layer) or a polymer layer (e.g., a polyolefin layer, e.g. a polyethylene layer or a polypropylene layer, e.g. a biaxially oriented polypropylene layer). The second layer may serve a barrier against penetration of, e.g., moisture or gases (e.g. oxygen), even when the film is thin (e.g. less than 15 micron, less than 10 micron, or in the range of 1-5 micron). In an embodiment, the polymer film of the second layer is a liquid crystalline polymer film, e.g. a thermotropic liquid crystalline polymer film, e.g. a poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphtoic acid) copolymer. The polymer film may be adiured directly to the first layer or with the assistance of an adhesive. Examples of adhesives include polyesters (e.g., polyethylene terephthalate), polyolefins (e.g. polypropylene), and polyurethanes. In an embodiment, ethylene acrylic acid copolymer is used as adhesive. The adhesive may be applied in any suitable manner, e.g. applied as a dispersion or through co-extrusion.

In an embodiment, the packaging foil comprises a third layer on the second layer (on the side of the second layer that faces away from the first layer). The third layer may for instance be a layer that provides smoothness, and/or assists in maintaining integrity to the foil when it is shaped into a package (e.g. a beverage container or a snack bag). In an embodiment, the third layer is a polyester (e.g., polyethylene terephthalate), a polyolefin (e.g. polypropylene or polyethylene), or a polyurethane. In an embodiment, ethylene acrylic acid copolymer is used as the third layer. In an embodiment, in an embodiment when an adhesive is used, the material used as the third layer is the same as the material used as the adhesive.

Further embodiments:

1. A process comprising:

- Pressing a polymer, in melt or in solution, through a spinneret to form a plurality of polymer fibers leaving the spinneret,

 the spinneret having a plurality of orifices, the orifices having an inlet for receiving the polymer melt or polymer solution and an outlet to dispatch the polymer melt or polymer solution as a fiber; and
Guiding the polymer fibers, while still in the melt or solution, through an opening to form a polymer film (or other object, e.g. tube or bar) leaving the outlet of said opening, wherein the surface area of the outlet of the opening complies with the following formula:

\[SA < N \times D^2 \]

wherein
- \(SA \) represents the surface area of the outlet of the opening;
- \(N \) represents the number of orifice outlets of the spinneret; and
- \(D \) represents the diameter of the orifice outlets of the spinneret.

2. The process according to embodiment 1, wherein \(SA < 0.9 \times N \times D^2 \).

3. The process according to any one of embodiments 1-2, wherein \(SA > 0.6 \times N \times D^2 \).

4. The process according to embodiment 1, wherein \(SA \) is about \((\pi/4) \times N \times D^2\).

5. The process according to any one of embodiments 1-4, further comprising quenching said film after leaving said opening.

6. The process according to embodiment 5, wherein said quenching is effected by guiding the film through a liquid.

7. The process according to any one of embodiments 5-6, wherein said quenching takes place within 5cm of said outlet of said opening.

8. The process according to any one of embodiments 5-6, wherein said quenching takes place within 2cm of said outlet of said opening.

9. The process according to any one of embodiments 5-6, wherein said quenching takes place within 1cm of said outlet of said opening.

10. The process according to any one of embodiments 5-6, wherein said quenching takes place within 0.5cm of said outlet of said opening.
11. The process according to any one of embodiments 1-10, wherein said polymer is in the melt during said pressing.

12. The process according to any one of embodiments 1-10, wherein said polymer is in solution during said pressing.

13. The process according to embodiment 12, wherein the polymer solution is a gel.

14. The process according to any one of embodiments 1-13, wherein said polymer is a polyolefin.

15. The process according to any one of embodiments 1-13, wherein said polymer is a liquid-crystalline polymer.

16. The process according to any one of embodiments 1-11, wherein said polymer is a thermotropic liquid-crystalline polymer.

17. The process according to any one of embodiments 1-10 and 12, wherein said polymer is a lyotropic liquid-crystalline polymer.

18. The process according to any one of embodiments 1-17, wherein said plurality of polymer fibers do not cross each other when traveling from said orifice outlets to said outlet of said opening.

19. The process according to any one of embodiments 1-18, wherein for each of said plurality of polymer fibers the distance from its orifice outlet to its destination in said opening is about the same.

20. The process according to any one of embodiments 1-19, the diameter of the orifice outlets being less than 200 micrometers.

21. The process according to any one of embodiments 1-19, the distance between any of the orifice outlets and the nearest point of the opening outlet being less than 5 cm.
22. The process according to any one of embodiments 1-21, wherein the outlet of said opening is a slit.

23. The process according to embodiment 22, the outlet of said slit having a length of at least 2cm.

24. The process according to embodiment 22, the outlet of said slit having a length of at least 5cm.

25. The process according to embodiment 22, the outlet of said slit having a length of at least 8cm.

26. The process according to any one of embodiments 22-25, the outlet of said slit having a length of less than 100cm.

27. The process according to any one of embodiments 22-25, the outlet of said slit having a length of less than 20cm.

28. The process according to any one of embodiments 22-25, the outlet of said slit having a length of less than 12cm.

29. The process according to any one of embodiments 1-28, wherein further comprising co-extruding the polymer film with a coating material.

30. The process according to embodiment 29, wherein said coating material can function as a glue when laminating the films.

31. The process according to any one of embodiments 1-30, wherein a single polymer grade is fed to the spinneret.

32. The process according to any one of embodiments 1-30, wherein more than one single polymer grade is fed to the spinneret.
33. The process according to embodiment 32, wherein a majority of orifices in the spinneret receive a first polymer grade, and the minority of orifices in the spinneret receive a second polymer grade.

34. The process according to embodiment 33, wherein more than 90% of the orifices receive the first polymer grade.

35. The process according to embodiment 33, wherein more than 95% of the orifices receive the first polymer grade.

36. The process according to any one of embodiments 33-35, wherein the first polymer grade and the second polymer grade have melting temperatures that differ at least 10°C.

37. The process according to any one of embodiments 33-36, wherein the first polymer grade and the second polymer grade have melting temperatures that differ at most 50°C.

38. The process according to any one of embodiments 33-37, wherein the first polymer grade and the second polymer grade are of the same polymer family.

39. The process according to any one of embodiments 33-38, wherein the first polymer grade and the second polymer grade are both polyolefin polymers or both liquid-crystalline polymers.

40. A film obtainable with the process according to any one of embodiments 1-39.

41. A film obtainable with the process according to any one of embodiments 1-40, wherein the outlet of said opening is a slit and the film has a width that is at least 70% of the length of said slit.

42. The film of embodiment 41, wherein said width is at least 90% of the length of said slit.

43. A process comprising:
- Pressing a polymer, in melt or in solution, through a spinneret to form a plurality of polymer fibers leaving the spinneret, the spinneret having a plurality of orifices, the orifices having an inlet for receiving the polymer melt or polymer solution and an outlet to dispatch the polymer melt or polymer solution as a fiber; and

- Guiding the polymer fibers, while still in the melt or solution, through an opening to form a polymer film leaving the outlet of said opening, wherein the width W and thickness T of the film at the outlet of said opening comply with the following formula:

$$W \times T < N \times D^2$$

wherein

N represents the number of orifice outlets of the spinneret; and

D represents the diameter of the orifice outlets of the spinneret.

44. The process according to embodiment 43, wherein $W \times T < 0.9 \times N \times D^2$.

45. The process according to any one of embodiments 43-44, wherein $W \times T > 0.6 \times N \times D^2$.

46. The process according to embodiment 43, wherein $W \times T$ is about $(\pi/4) \times N \times D^2$.

47. The process according to any one of embodiments 43-46, further comprising quenching said film after leaving said opening.

48. The process according to embodiment 47, wherein said quenching is effected by guiding the film through a liquid.

49. The process according to any one of embodiments 47-48, wherein said quenching takes place within 5cm of said outlet of said opening.

50. The process according to any one of embodiments 47-48, wherein said quenching takes place within 2cm of said outlet of said opening.
51. The process according to any one of embodiments 47-48, wherein said quenching takes place within 1cm of said outlet of said opening.

52. The process according to any one of embodiments 47-48, wherein said quenching takes place within 0.5cm of said outlet of said opening.

53. The process according to any one of embodiments 43-52, wherein said polymer is in the melt during said pressing.

54. The process according to any one of embodiments 43-52, wherein said polymer is in solution during said pressing.

55. The process according to embodiment 54, wherein the polymer solution is a gel.

56. The process according to any one of embodiments 43-55, wherein said polymer is a polyolefin.

57. The process according to any one of embodiments 43-55, wherein said polymer is a liquid-crystalline polymer.

58. The process according to any one of embodiments 43-53, wherein said polymer is a thermotrop liquid-crystalline polymer.

59. The process according to any one of embodiments 43-52 and 54, wherein said polymer is a lyotropic liquid-crystalline polymer.

60. The process according to any one of embodiments 43-59, wherein said plurality of polymer fibers do not cross each other when traveling from said orifice outlets to said outlet of said opening.

61. The process according to any one of embodiments 43-60, wherein for each of said plurality of polymer fibers the distance from its orifice outlet to its destination in said opening is about the same.
62. The process according to any one of embodiments 43-61, the diameter of the orifice outlets being less than 200 micrometers.

63. The process according to any one of embodiments 43-61, the distance between any of the orifice outlets and the nearest point of the opening outlet being less than 5cm.

64. The process according to any one of embodiments 43-63, wherein the outlet of said opening is a slit.

65. The process according to embodiment 64, the outlet of said slit having a length of at least 2cm.

66. The process according to embodiment 64, the outlet of said slit having a length of at least 5cm.

67. The process according to embodiment 64, the outlet of said slit having a length of at least 8cm.

68. The process according to any one of embodiments 64-67, the outlet of said slit having a length of less than 100cm.

69. The process according to any one of embodiments 64-67, the outlet of said slit having a length of less than 20cm.

70. The process according to any one of embodiments 64-67, the outlet of said slit having a length of less than 12cm.

71. The process according to any one of embodiments 43-70, wherein further comprising co-extruding the polymer film with a coating material.

72. The process according to embodiment 71, wherein said coating material can function as a glue when laminating the films.
73. The process according to any one of embodiments 43-72, wherein a single polymer grade is fed to the spinneret.

74. The process according to any one of embodiments 43-72, wherein more than one single polymer grade is fed to the spinneret.

75. The process according to embodiment 74, wherein a majority of orifices in the spinneret receive a first polymer grade, and the minority of orifices in the spinneret receive a second polymer grade.

76. The process according to embodiment 75, wherein more than 90% of the orifices receive the first polymer grade.

77. The process according to embodiment 75, wherein more than 95% of the orifices receive the first polymer grade.

78. The process according to any one of embodiments 75-77, wherein the first polymer grade and the second polymer grade have melting temperatures that differ at least 10°C.

79. The process according to any one of embodiments 75-78, wherein the first polymer grade and the second polymer grade have melting temperatures that differ at most 50°C.

80. The process according to any one of embodiments 75-79, wherein the first polymer grade and the second polymer grade are of the same polymer family.

81. The process according to any one of embodiments 75-80, wherein the first polymer grade and the second polymer grade are both polyolefin polymers or both liquid-crystalline polymers.

82. A film obtainable with the process according to any one of embodiments 43-81.

83. A film obtainable with the process according to any one of embodiments 43-82, wherein the outlet of said opening is a slit and the film has a width that is at least 70% of the length of said slit.
84. The film of embodiment 83, wherein said width is at least 90% of the length of said slit.

85. A process comprising:

- Pressing more than one polymer grade, each in melt or in solution, through a spinneret to form a plurality of polymer fibers leaving the spinneret, the spinneret having a plurality of orifices, the orifices having an inlet for receiving the polymer melt or polymer solution and an outlet to dispatch the polymer melt or polymer solution as a fiber; and

- Guiding the polymer fibers, while still in the melt or solution, through an opening to form a polymer film (or other object, e.g. tube or bar) leaving the outlet of said opening, wherein a first polymer grade is pressed through the majority of the orifices of the spinneret, and a second polymer grade is pressed through one or more of the remaining orifices.

86. The process of embodiment 85, wherein said second polymer grade is pressed through all of the remaining orifices.

87. The process of embodiment 85, wherein a third polymer grade is pressed through one or more of the remaining orifices.

88. The process of embodiment 85-87, wherein all said polymer grades belong to the same class of polymers.

89. The process of embodiments 85-87, wherein all said polymer grades are polylolcfins.

90. The process of embodiments 85-87, wherein all said polymer grades are thermotropic liquid-crystalline polymers.

91. The process of embodiments 85-87, wherein all said polymer grades are lyotropic liquid-crystalline polymers.
92. The process of embodiments 85-91, wherein 2 of the polymer grades have a melting temperature difference of at least 10°C.

93. The process of embodiments 85-92, wherein 2 of the polymer grades have a melting temperature difference of at most 10°C.

94. The process of embodiments 85-93, wherein one of the polymer grades is fed to at least 90% of the orifices.

95. The process of embodiments 85-93, wherein one of the polymer grades is fed to at least 95% of the orifices.

96. The process of embodiments 85-93, wherein one of the polymer grades is fed to at least 98% of the orifices.

97. A film obtained with the process of embodiment 93.

98. A film of liquid-crystalline polymer, the film having:

 a width of at least 5cm; and
 a tensile modulus that is 25% or more of the maximum theoretical modulus.

99. The film of embodiment 98, wherein the width is at least 8cm.

100. The film of embodiment 98 or 99, wherein the width is less than 50cm.

101. A film of liquid-crystalline polymer, the film having:

 a width of at least 5cm; and
 a tensile modulus of at least 50 GPa.

102. The film of embodiment 101, wherein the width is at least 8cm.

103. The film of embodiment 101 or 102, wherein the width is less than 50cm.
104. A laminate of films of liquid-crystalline polymer, the laminate having a modulus of at least 10 GPa in at least 2 perpendicular directions in the plane of the laminate.

105. A laminate of films of liquid-crystalline polymer, the laminate having a modulus of at least 10 GPa in all directions in the plane of the laminate.

106. The laminate according to any one of embodiments 104-105, said laminate comprising at least 3 layers of film.

107. The laminate according to any one of embodiments 104-105, said laminate comprising at least 4 layers of film.

108. The film according to any one of embodiments 98-103 or the laminate according to any one of embodiments 104-107, the polymer being a thermotropic liquid-crystalline polymer.

109. The film or laminate according to embodiment 108, the polymer being a copolyester.

110. The film according to any one of embodiments 98-103 or the laminate according to any one of embodiments 104-107, the polymer being a lyotropic liquid-crystalline polymer.

111. A sail comprising the film or laminate according to any one of embodiments 98-110.

112. A security feature comprising the film according to any one of embodiments 98-103 or 108-110.

113. A die, comprising:

- a spinneret part having a plurality of orifices, the orifices having an inlet and an outlet;
- a second part having an opening for receiving fibers from the orifice outlets, the opening having an outlet facing away from the orifice outlets;

wherein the surface area of the outlet of the opening complies with the following formula:

\[S_A < N \times D^2 \]
wherein
 SA represents the surface area of the outlet of the opening;
 N represents the number of orifice outlets of the spinneret part; and
 D represents the diameter of the orifice outlets of the spinneret part.

114. The die according to embodiment 113, wherein \(SA < 0.9 \times N \times D^2 \).

115. The die according to any one of embodiments 113-114, wherein \(SA > 0.6 \times N \times D^2 \).

116. The die according to embodiment 113, wherein \(SA \) is about \((\pi/4) \times N \times D^2\).

117. The die according to any one of embodiments 113-116, wherein the spinneret part is curved.

118. The die according to any one of embodiments 113-117, wherein the orifices have inlets that have a greater surface area than their corresponding orifice outlet.

119. The die according to embodiment 118, wherein the channel between the orifice inlets and their corresponding orifice outlet is cone-shaped.

120. The die according to any one of embodiments 113-119, wherein the orifices have an inlet that has about the same surface area as the outlet.

121. The die according to any one of embodiments 113-120, wherein the outlet of said orifices have a diameter in the range of 50-250 micrometers.

122. The die according to any one of embodiments 113-121, wherein said outlet of said opening is a slit.

123. The die according to any one of embodiments 113-122, wherein the part comprising said orifices and the part comprising said opening are releasably connected.
124. The die according to any one of embodiments 113-122, wherein the part comprising said orifices and the part comprising said opening are unreleasably connected.

125. A die, comprising:

a spinneret part having a plurality of orifices, the orifices having an inlet and an outlet;
a second part having an opening for receiving fibers from the orifice outlets, the opening having an outlet facing away from the orifice outlets;

wherein the die complies with the following formula:

\[EL \times WO < N \times D^2 \]

wherein

- \(N \) represents the number of orifice outlets of the spinneret part;
- \(D \) represents the diameter of the orifice outlets of the spinneret part;
- \(WO \) represents the width of the opening; and
- \(EL \) represents the length of the opening designed to receive material from the spinneret part.

126. The die according to embodiment 125, wherein \(EL \times WO < 0.9 \times N \times D^2 \).

127. The die according to any one of embodiments 125-127, wherein \(EL \times WO > 0.6 \times N \times D^2 \).

128. The die according to embodiment 125, wherein \(EL \times WO \) is about \((\pi/4) \times N \times D^2\).

129. The die according to any one of embodiments 125-128, wherein the spinneret part is curved.

130. The die according to any one of embodiments 125-129, wherein the orifices have inlets that have a greater surface area than their corresponding orifice outlet.
131. The die according to embodiment 130, wherein the channel between the orifice inlets and their corresponding orifice outlet is cone-shaped.

132. The die according to any one of embodiments 125-129, wherein the orifices have an inlet that has about the same surface area as the outlet.

133. The die according to any one of embodiments 125-132, wherein the outlet of said orifices have a diameter in the range of 50-250 micrometers.

134. The die according to any one of embodiments 125-133, wherein said outlet of said opening is a slit.

135. The die according to any one of embodiments 125-134, wherein the part comprising said orifices and the part comprising said opening are releasably connected.

136. The die according to any one of embodiments 125-134, wherein the part comprising said orifices and the part comprising said opening are unreleasably connected.

137. A die, comprising:

- a spinneret part having a plurality of orifices, the orifices having an inlet and an outlet;
- a second part having an opening for receiving fibers from the orifice outlets, the opening having an opening inlet facing the orifice outlets and an opening outlet facing away from the orifice outlets;
- the orifices being arranged such that straight lines from the center of each orifice inlet, through the center of the corresponding orifice outlet, to the opening inlet, do not cross each other.

138. A die, comprising spinneret part having a plurality of orifices, the orifices having an inlet and an outlet;
- a second part having an opening for receiving fibers from the orifice outlets, the opening having an opening inlet facing the orifice outlets and an opening outlet facing away from the orifice outlets;
the spinneret part and second part being constructed and arranged such that fibers coming from the spinneret part do not touch before reaching the second part.

139. The die of embodiment 138, wherein the fibers touch along a substantially straight line.

140. The die according to any one of embodiments 113-139, wherein the orifices are arranged in staggered arrays.

141. A polymer film having a width of at least 2 cm, a loss modulus greater than 0.75 GPa, and a storage modulus greater than 20 GPa.

142. The film of embodiment 141, wherein the loss modulus is greater than 2 GPa.

143. A polymer film having a width of at least 2 cm, a specific loss modulus greater than 75 km, and a specific storage modulus greater than 1000 km.

144. The film of embodiment 143, wherein the specific loss modulus is greater than 150 km.

145. The film according to any one of embodiments 143-144, wherein the specific storage modulus is greater than 3000 km.

146. The polymer film according to any one of embodiments 141-145, wherein the film consists essentially of a single polymer grade.

147. The polymer film according to any one of embodiments 141-145, wherein the film consists essentially of a blend of two or more polymer grades.

148. A foil comprising a first layer and, adhered to the first layer, a second layer, wherein (i) the first layer is a cellulose layer or a polymeric layer, and (ii) the second layer is a liquid crystalline polymeric material, the second layer having a thickness of less than 15 micron.
149. A foil comprising a first layer and, adhered to the first layer, a second layer, wherein
(i) the first layer is a paper layer, and
(ii) the second layer is a liquid crystalline polymeric material, the second layer having a
thickness of less than 15 micron.

150. A foil comprising a first layer and, adhered to the first layer, a second layer, wherein
(i) the first layer is a polymeric layer, and
(ii) the second layer is a liquid crystalline polymeric material, the second layer having a
thickness of less than 15 micron.

151. The foil according to any one of embodiments 148-150, the second layer having a
thickness of less than 10 micron.

152. The foil according to any one of embodiments 148-150, the second layer having a
thickness of less than 5 micron.

153. The foil according to any one of embodiments 148-152, the second layer having a
thickness of at least 1 micron.

154. The foil according to any one of embodiments 148-153, wherein the liquid crystalline
polymeric material is a poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphtoic acid).

155. The foil according to any one of embodiments 148-154, wherein the second layer is
adhered to the first layer with an adhesive.

156. The foil according to embodiment 155, wherein the adhesive is ethylene acrylic acid
copolymer.

157. The foil according to any one of embodiments 148-156, further comprising a third layer,
the second layer being in between the first layer and the third layer.

158. The foil according to embodiment 157, wherein the third layer is a polyolefin.
159. The foil according to embodiment 158, wherein the third layer is ethylene acrylic acid copolymer.

160. The foil according to any one of embodiments 148-159, wherein the liquid crystalline polymeric material is poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphthoic acid) copolymer.

161. The foil according to any one of embodiments 148-160, wherein the second layer is a single polymer film.

162. The foil according to any one of embodiments 148-160, wherein the second layer is a laminate of polymer films.

163. The foil according to any one of embodiments 148-162, wherein the second layer is substantially isotropic.

164. A food package comprising the foil according to any one of embodiments 148-163.

165. A beverage package comprising the foil according to any one of embodiments 148-163.

Examples

The following examples are given as particular embodiments of the invention and to demonstrate the practice and advantages thereof. It is understood that the examples are given by way of illustration and are not intended to limit the specification or the claims that follow in any manner.

Mechanical properties: tensile modulus (also referred to below as E-modulus), strength (or stress) at break, and elongation at break were measured under the following testing conditions: gauge length for the samples below comprising poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphthoic acid) copolymer was in the range of 50mm-100mm, crosshead speed was 10% of the gauge length/min (e.g. for a 50mm sample, the crosshead speed was 5mm/min), and at room temperature. For the samples below comprising polyethylene, gauge length was 50mm, crosshead speed 5mm/min, and at room temperature.
Transmission measurements (water vapor resp. oxygen) were conducted with a Mocon machine (Permatran-W Model 3/33) according to the ISO norms.

The polymer "Vectra™ A950" referred to in below examples is a poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphtoic acid) copolymer from Ticona, Germany. It is believed to consist of about 25-27 mole percent of 6-oxy-2-naphthoyl moieties and 73-75 mole percent of p-oxybenzoyl moieties. It is a thermotropic liquid-crystalline polymer with a melting temperature of about 280°C, and a density "p" (at 25°C) of about 1.4 g/cm³. Before use, it was dried overnight at 80°C under vacuum.

The single screw extruder referred to in below examples is the Teach-Line E20T SCD15 single screw extruder from Dr. Collin GmbH, Ebersberg, Germany.

The twin screw extruder referred to in below examples is the Teach-Line twin-screw-extruder 2K25T from Dr. Collin GmbH, Ebersberg, Germany.

Example 1
The material used was Vectra™ A950. Tapes were produced by continuous extrusion at 300 °C, using a single screw extruder, equipped with a home-made die similar to the die of Fig 10 (with the slit having a length of 120mm and a width of 0.07mm, and the spinneret part having 990 orifices with inlets and outlets both of 0.1mm in diameter (arranged in a substantially similar way as the orifices of the spinneret part in Figure 4, but over a length of 120mm instead of 17mm)). Various extrusion speeds were used, in the range of 10-60 rpm. The tapes were collected on a winder (from DACA Instruments, Santa Barbara, USA).

Various winder forces were used, up to a winder speed of 250m/min. Tapes were produced albeit inhomogeneous, e.g. contained cavities and/or varied substantially in thickness over their width.

Example 2
The experiment of example 1 was repeated, but now with a reduced slit width outlet of 0.07 mm (and the range within which the winder speed was varied was less, i.e. max. winder speed was below 125m/min). Transparent tapes were produced of good quality, including tapes having a tensile modulus in the drawing direction of 59 GPa.
Example 3
Tape produced by Example 2 was placed slightly above a page of typewritten text, once with the drawing direction of the tape being perpendicular to the sentences on the page, and once with the drawing direction of the tape being parallel to the sentences on the page. When the drawing direction was parallel to the sentences, the sentences could readily be read. When perpendicular, the text was distorted.

Example 4
Tape of Example 2 was wound under tension around a steel bar. Thickness of the eventual layer wound around the bar was about 1mm. The bar with tape was exposed for 3 hours to 250°C under nitrogen atmosphere. The steel bar was then separated from the wound tape. The wound tape formed a hollow tube.

Example 5
Tape of Example 2 was stacked in a quasi-isotropic tape lay-up (0/45/-45/90). The stack was then exposed to 250°C for three hours at a pressure of 0.5 MPa in a vacuum mold, resulting in a plate with a thickness of 1.7mm. The plate had a semi-transparent appearance.

Example 6
Tape of Example 2 (thickness 0.007 mm, E-Modulus = 50 GPa) was stacked into a quasi-isotropic complex. This was done by stacking 4 pieces of tape on top of each other at the following angles: 0 / 45 /-45 / 90. The stack of tapes was then transferred into a vacuum mold and exposed to 250 °C for 1 hour at a pressure of 0.5 MPa. The resulting sheet had substantially isotropic mechanical properties in the sheet plane, which are listed in the following Table 1.

Table 1

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>13.7 GPa</td>
</tr>
<tr>
<td>Strength at break</td>
<td>0.2 GPa</td>
</tr>
<tr>
<td>Thickness of tape</td>
<td>25 μm</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>2.2 %</td>
</tr>
</tbody>
</table>
Example 7

Vectra™ A950 was fed into a single-screw extruder with a diameter of 20mm and operated at a temperature of 320°C and at 80rpm. The extruder was connected to a same die as in Example 1. The temperature of the die was set to 290°C.

The extruded tape was quenched at a distance of 2 mm from the die by a metallic box which had internal water cooling. A support film, made of polypropylene, was guided over that box to prevent attaching of the extruded Vectra™ film. The Vectra™ tape on the support film was then guided over a set of speed controlling rollers and wound up on a roll. The take up speed was set to 1m/s.

When the system reached its steady state, the pressure at the end of the extruder barrel was about 60 bars. The Vectra™ tape had a width of 120 mm and a thickness of 0.005 mm. The mechanical properties of the tape are listed in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus, parallel to extrusion direction</td>
<td>71.4 GPa</td>
</tr>
<tr>
<td>Strength at break, parallel to extrusion direction</td>
<td>1 GPa</td>
</tr>
<tr>
<td>E-modulus, perpendicular to extrusion direction</td>
<td>1 GPa</td>
</tr>
<tr>
<td>Strength at break, perpendicular to extrusion direction</td>
<td>0.015 GPa</td>
</tr>
<tr>
<td>Thickness of tape</td>
<td>5 µm</td>
</tr>
<tr>
<td>Width of tape</td>
<td>120 mm</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>1.48%</td>
</tr>
</tbody>
</table>

Example 8

90 %wt. of Vectra™ A950 was mixed with 10%wt. polybutylene terephthaiate ("PBT") (Ultradur B 4520, BASF, Germany) using a twin-screw extruder, with a melt pump attached to it to better control the filling of the extruder. The equipment was operated at a temperature of 300 °C. The end of the meltpump was provided with a nozzle from which the polymer strand was cooled in a water bath and then granulated with a rotating knife.

Subsequently the granulated material was dried and then fed into a single-screw extruder with a diameter of 20mm and operated at a temperature of 320°C and operated at 70rpm. The
extruder was connected to a same die as in Example 1. The temperature of the die was set to 285°C. The speed of the take-up rolls was 0.3 m/s.

When the system reached its steady state, the pressure at the end of the extruder barrel was about 50 bars. The Vectra™/PBT-tape had a width of 120 mm and a thickness of 0.014 mm. The mechanical properties of the tape are listed in Table 3.

Table 3

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus, parallel to extrusion direction</td>
<td>43 GPa</td>
</tr>
<tr>
<td>Strength at break, parallel to extrusion direction</td>
<td>0.6 GPa</td>
</tr>
<tr>
<td>E-modulus, perpendicular to extrusion direction</td>
<td>1 GPa</td>
</tr>
<tr>
<td>Strength at break, perpendicular to extrusion direction</td>
<td>0.015 GPa</td>
</tr>
<tr>
<td>Thickness of tape</td>
<td>14 μm</td>
</tr>
<tr>
<td>Width of tape</td>
<td>120 mm</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>1.6 %</td>
</tr>
</tbody>
</table>

Complexes of several layers of the tapes were obtained by pressing them at 250 °C for 15 minutes at a pressure of 1.5 MPa. The temperature of 250°C was above the melting point of the PBT (220 °C) but below the melting point of the Vectra™ (280 °C).

Example 9

Vectra™ film obtained in example 7 was exposed to 200 °C in a nitrogen atmosphere at a tension of 20 MPa for 15 hours. Mechanical properties of the thus treated film are listed below in Table 4. E.g., the E-modulus increased by 21% compared to the film before treatment.

Table 4

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus, parallel to extrusion direction</td>
<td>86.9 GPa</td>
</tr>
<tr>
<td>Strength at break, parallel to extrusion direction</td>
<td>1.1 GPa</td>
</tr>
<tr>
<td>Thickness of tape</td>
<td>5 μm</td>
</tr>
<tr>
<td>Width of tape</td>
<td>120 mm</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>1.5 %</td>
</tr>
</tbody>
</table>
Example 10

Veetra™ film obtained in example 7 was exposed to 230°C in a nitrogen atmosphere at a tension of 10 MPa for 15 hours. Mechanical properties of the thus treated film are listed in the Table 5 below. E.g., the stress at break increased by 25% and the elongation at break increased by 33% compared to the film before treatment.

Table 5

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus, parallel to extrusion direction</td>
<td>67.4 GPa</td>
</tr>
<tr>
<td>Strength at break, parallel to extrusion direction</td>
<td>1.3 GPa</td>
</tr>
<tr>
<td>Thickness of tape</td>
<td>5 μm</td>
</tr>
<tr>
<td>Width of tape</td>
<td>120 mm</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Example 11:

A mixture consisting of 15% wt. UHMW PE having a weight-average molecular weight of 8.7×10^6 g/mol (DSM, The Netherlands, Stamyian® UH 610) and 85% wt. of a paraffin wax having a average molecular weight of 1860 g/mol (Sasol GmbH, Germany, Sa.solwax 6403) was prepared by mixing the components in the appropriate amounts in a tumbler at room temperature for one hour. Subsequently, the mixture was transferred to a twin-screw-extruder. Directly connected to the extruder was a melt pump (from Dr. Collin GMBH, Germany, 1.2cm³/U). The melt pump head was connected to a die as in Fig 6 (having the spinneret part of Figure 4 and the slit part of Figure 5 (including the same dimensions as in Figs 4-5)). The equipment was operated at a temperature of 200°C, the twin-screw-extruder was running at 160 rpm and the melt-pump operated at 20 rpm. The extruded film was rolled up at a speed of 0.6 m/s and had a width of 14 mm and a thickness of 0.012 mm. The mechanical properties of the tape are listed in Table 6. The tape displayed a double yield point in the stress-strain curve (therefore, two E-modulus values are indicated in the Table).
Example 12
Tape of example 11 was immersed in decalin (decahydronaphthalene) for 10 minutes at 80°C to dissolve the paraffin component of the tape. The tape was constrained in the extrusion direction during the treatment. The thickness of the tape reduced to 0.004 mm. Its mechanical properties are listed in Table 7. The tape displayed a double yield point in the stress-strain curve (therefore, two E-modulus values are indicated in the Table).

Table 6

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus 1</td>
<td>2.4 Gpa</td>
</tr>
<tr>
<td>E-modulus 2</td>
<td>2.2 GPa</td>
</tr>
<tr>
<td>Stress at break</td>
<td>103.5 MPa</td>
</tr>
<tr>
<td>Strain at break</td>
<td>8 %</td>
</tr>
</tbody>
</table>

Example 13
Example 11 was repeated, except the die part was changed to a die as depicted in Figure 3 (having the spinneret part of Figure 1 and the slit part of Figure 2 (including the same dimensions as in Figs 1-2)). The extruded film was rolled up at a speed of 0.6 m/s and had a width of 15 mm and a thickness of 0.018 mm. The mechanical properties of the tape are listed in Table 8. The tape displayed a double yield point in the stress-strain curve (therefore, two E-modulus values are indicated in the Table).

Table 7

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus 1</td>
<td>10 GPa</td>
</tr>
<tr>
<td>E-modulus 2</td>
<td>9.6 GPa</td>
</tr>
<tr>
<td>Stress at break</td>
<td>384.9 MPa</td>
</tr>
<tr>
<td>Strain at break</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Table 8

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus 1</td>
<td>1.7 Gpa</td>
</tr>
<tr>
<td>E-modulus 2</td>
<td>1.8 Gpa</td>
</tr>
<tr>
<td>Stress at break</td>
<td>93 MPa</td>
</tr>
<tr>
<td>Strain at break</td>
<td>8 %</td>
</tr>
</tbody>
</table>
Comparative Example A
Example 1 was repeated, except the die consisted only of the slit part which is displayed in figure 2. The extruded film was rolled up at a speed of 0.6 m/s and had a width of 15 mm and a thickness of 0.023 mm. The mechanical properties of the tape are listed in Table 9. The tape displayed a double yield point in the stress-strain curve, (therefore, two E-modulus values are indicated in the Table).

Table 9

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus</td>
<td>1.5 GPa</td>
</tr>
<tr>
<td>E-modulus 2</td>
<td>2.4 GPa</td>
</tr>
<tr>
<td>Stress at break</td>
<td>85 MPa</td>
</tr>
<tr>
<td>Strain at break</td>
<td>8 %</td>
</tr>
</tbody>
</table>

Comparative Example B
The tape of comparative example A was immersed in decaline (dcahydronaphthalene) for 10 minutes at 80 °C to dissolve the paraffin component of the tape. The tape was constrained in the extrusion direction during the treatment. The thickness of the tape reduced to 0.0068 mm. Its mechanical properties are listed in Table 10. The tape displayed a double yield point in the stress-strain curve, (therefore, two E-modulus values are indicated in the Table).

Table 10

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E-modulus 1</td>
<td>5.42 GPa</td>
</tr>
<tr>
<td>E-modulus 2</td>
<td>6.46 GPa</td>
</tr>
<tr>
<td>Stress at break</td>
<td>353.4 MPa</td>
</tr>
<tr>
<td>Strain at break</td>
<td>13 %</td>
</tr>
</tbody>
</table>

Example 14
A quantity of 5g of the lyotropic polymer poly(p-phenylene terephthalamide) was dissolved in 15ml 98% sulfuric acid at 80°C. Dissolution was carried out over 6hrs using a glass-walled, stainless steel double-helix mixer under argon atmosphere. The poly(p-phenylene terephthalamide) was obtained from E.I. du Pont de Nemours and had an inherent viscosity of 7.8 di/g.
The solution was extruded at 90°C with the SPINLINE tool from DACA Instruments, Santa Barbara, USA (a laboratory-scale, piston-driven extrusion apparatus), equipped with a die as in Fig 6 (having the spinneret part of Figure 4 and the slit part of Figure 5 (including the same dimensions as in Figs 4-5)). Extrusion speed was 25 mm/min, corresponding to a throughput of 11 g/min. The extrudate was drawn manually with tweezers into a water coagulation bath (estimated drawing speed: about 20 m/min). The air gap between the outlet of the die and the water was about 1 mm. A light-yellow tape with a width of 12 mm was obtained. The tape was clearly birefringent under polarized light.

Example 15

Vectra™ tape of Example 7 was tested in a Dynamical mechanical thermal analysis (DMTA, Mettler DMA861e, Greifensee, Switzerland) instrument. Isothermal scans of tapes in the extrusion direction were measured at 1, 10 and 100 Hz in the temperature range from -80 to 140 °C in one degree steps.

The tested sample had a width of 3 mm and a length of 8 mm. The sample was pre-tensioned with a load of 1 N and as maximum values for the excitation a load of 0.25 N and for the amplitude 4 µm were chosen. The storage modulus E’, loss modulus E” and the loss factor tan(δ) = (E”/E’) were recorded as a function of temperature at three frequencies: 1, 10, and 100 Hz. See Table 11.
Table 1: $\varepsilon', \varepsilon''$ and $\tan(\delta)$ at selected temperatures

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Frequency [Hz]</th>
<th>ε' [GPa]</th>
<th>ε'/ρ [km]</th>
<th>ε'' [GPa]</th>
<th>ε''/ρ [km]</th>
<th>$\tan(\delta)$ [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-80</td>
<td>1</td>
<td>85.62</td>
<td>6228</td>
<td>1.01</td>
<td>73</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>86.57</td>
<td>6297</td>
<td>0.55</td>
<td>40</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>86.83</td>
<td>6316</td>
<td>0.182</td>
<td>13</td>
<td>0.002</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>68.36</td>
<td>4972</td>
<td>2.63</td>
<td>191</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>71.52</td>
<td>5202</td>
<td>2.09</td>
<td>152</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>74.8</td>
<td>5441</td>
<td>1.26</td>
<td>92</td>
<td>0.017</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>60.12</td>
<td>4373</td>
<td>2.79</td>
<td>203</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>64.1</td>
<td>4662</td>
<td>2.83</td>
<td>206</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>67.67</td>
<td>4922</td>
<td>2.4</td>
<td>175</td>
<td>0.036</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>44.63</td>
<td>3246</td>
<td>1.8</td>
<td>131</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>46.9</td>
<td>3411</td>
<td>1.95</td>
<td>142</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>49.76</td>
<td>3619</td>
<td>2.6</td>
<td>189</td>
<td>0.052</td>
</tr>
<tr>
<td>120</td>
<td>1</td>
<td>35.41</td>
<td>2576</td>
<td>1.17</td>
<td>85</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>36.7</td>
<td>2669</td>
<td>1.03</td>
<td>75</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>37.89</td>
<td>2756</td>
<td>1.06</td>
<td>77</td>
<td>0.028</td>
</tr>
</tbody>
</table>

The tape combines a low density with good damping (ε'') and stiffness (ε').

Example 16

A virgin foil was produced according to example 1 in our patent application: The material employed was Vectra A 950 which was dried for 10 hours before use. The tapes were produced by continuous extrusion at 300 °C using a single screw extruder with a home-made die similar to the die of Fig. 10. The extrusion speed was 30 rpm and the take up speed was 0.3 m/s. The winder is a home-made construction. The tape had a thickness of 11 µm. The produced tape was homogeneous and had no apparent variation in thickness.

For the following measurements two measurements were conducted per sample.

Water vapor transmission rate at 38 °C and 90% relative humidity:

transmission rate = $3.7 \, \text{g·mm/m²·day}$

(0.33 and 0.34 g/m²·day, both: $t = 11 \, \mu$m)
Oxygen transmission at 23 °C and 0 % relative humidity (ASTM F-1937):
Virgin foil: transmission rate = 15.5 cm3/µm/m2-day
(1.39 and 1.37 cm3/m2-day, both: t = 11 µm)

Example 17
An isotropic foil was produced as follows: The material employed was Vectra A 950 which was dried for 10 hours before use. The film was produced with the use of a hot press (Carver, USA) at 300 °C. PTFE film was used as separating foil and the procedure involved 2 minutes of heating up and melting of the pellets and then 3 min pressing at minimum pressure. Subsequently the film was transferred to a water cooled cold press and rapidly cooled to room temperature. This process yielded a homogeneous isotropic film with a thickness in the range of 80 to 105 µm.

For the following measurements two measurements were conducted per sample.

Water vapor transmission rate at 38 °C and 90 % relative humidity:
Isotropic Vectra foil: transmission rate = 6.6 g·iim/m2-day
(0.071 g/m2-day, t = 88 µm and 0.069 g/m2-day, t = 103 µm)

Example 18
Vectra foil: Produced according to example 1: The material employed was Vectra A 950 which was dried for 10 hours before use. The tapes were produced by continuous extrusion at 300 °C using a single screw extruder with a home-made die similar to the die of Fig. 10. The extrusion speed was 30 rpm and the take up speed was 0.3 m/s. The winder is a home-made construction. The tape had a thickness of 11 µm.

Paper: standard printer paper with a weight of 80 g/m2 (Steinbeckis, Germany).
The laminate had the following stacking order: Vectra foil/ adhesive/ paper:
The stack was produced with the use of a hot press (Carver, USA) at 180°C. The procedure involved 5 min pressing at 300 kPa. Subsequently the film was transferred to a water cooled cold press and rapidly cooled to room temperature.
Adhesive: Supplied from Flenkel, made for gluing polyesters (e.g. Mylar).

Water vapor transmission rate at 38 °C and 90% relative humidity:

- 0.4 and 0.5 g/m²·day

Example 19

Vectra foil: Produced according to example 1: The material employed was Vectra A 950 which was dried for 10 hours before use. The tapes were produced by continuous extrusion at 300 °C using a single screw extruder with a home-made die similar to the die of Fig. 10. The extrusion speed was 30 rpm and the take up speed was 0.8 m/s. The winder is a home-made construction. The tape had a thickness of 4 μm.

The produced tape was homogeneous and had no apparent variation in thickness.

PEx foil: The material employed was a modified PE with 2.9 w/w% maleic anhydride, 17 w/w% ethyl acetate and a melt index of 70 which was dried for 10 hours before use. The film was produced with the use of a hot press (Carver, USA) at 160°C. PTFE film was used as separating foil and the procedure involved 2 minutes of heating up and melting of the pellets and then 3 min pressing at minimum pressure. Subsequently the film was transferred to a water cooled cold press and rapidly cooled to room temperature. This process yielded a homogeneous isotropic film with a thickness in the range of 100 to 130 μm.

The laminate had the following stacking order: PEx / Vectra foil / PEx:

The individual foils were dried for 10 hours before use. The stack was produced with the use of a hot press (Carver, USA) at 180 °C. PTFE film was used as separating foil and the procedure involved 3 min pressing at absolutely minimum pressure. Subsequently the film was transferred to a water cooled cold press and rapidly cooled to room temperature.

The thickness of the complete laminate was about 250 μm.

Test results:
<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (Mm)</th>
<th>RH (%)</th>
<th>OTR (cc/m²/day)</th>
<th>Permeation (ccmm/(m²day))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminate Example 19</td>
<td>4</td>
<td>0</td>
<td>2.504</td>
<td>0.010</td>
</tr>
<tr>
<td>Laminate Example 19</td>
<td>4</td>
<td>85</td>
<td>2.262</td>
<td>0.009</td>
</tr>
<tr>
<td>Laminate Example 19</td>
<td>4</td>
<td>0</td>
<td>2.414</td>
<td>0.010</td>
</tr>
<tr>
<td>Laminate Example 19</td>
<td>4</td>
<td>85</td>
<td>2.151</td>
<td>0.009</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A foil comprising a first layer and, adhered to the first layer, a second layer, wherein
 (i) the first layer is a cellulosic layer or a polymeric layer, and
 (ii) the second layer is a liquid crystalline polymeric material, the second layer having a thickness of less than 15 micron.

2. A foil comprising a first layer and, adhered to the first layer, a second layer, wherein
 (i) the first layer is a paper layer, and
 (ii) the second layer is a liquid crystalline polymeric material, the second layer having a thickness of less than 15 micron.

3. A foil comprising a first layer and, adhered to the first layer, a second layer, wherein
 (i) the first layer is a polymeric layer, and
 (ii) the second layer is a liquid crystalline polymeric material, the second layer having a thickness of less than 15 micron.

4. The foil according to any one of claims 1-3, the second layer having a thickness of less than 10 micron.

5. The foil according to any one of claims 1-3, the second layer having a thickness of less than 5 micron.

6. The foil according to any one of claims 1-5, the second layer having a thickness of at least 1 micron.

7. The foil according to any one of claims 1-6, wherein the liquid crystalline polymeric material is poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphtoic acid).

8. The foil according to any one of claims 1-7, wherein the second layer is adhered to the first layer with an adhesive.
9. The foil according to claim 8, wherein the adhesive is ethylene acryclic acid copolymer.

10. The foil according to any one of claims 1-9, further comprising a third layer, the second layer being in between the first layer and the third layer.

11. The foil according to claim 10, wherein the third layer is a polyolefin.

12. The foil according to claim 11, wherein the third layer is ethylene acrylic acid copolymer.

13. The foil according to any one of claims 1-12, wherein the liquid crystalline polymeric material is a poly(p-hydroxybenzoic acid-co-2-hydroxy-6-naphtoic acid) copolymer.

14. The foil according to any one of claims 1-13, wherein the second layer is a single polymer film.

15. The foil according to any one of claims 1-13, wherein the second layer is a laminate of polymer films.

16. The foil according to any one of claims 1-15, wherein the second layer is substantially isotropic.

17. A food package comprising the foil according to any one of claims 1-16.

18. A beverage package comprising the foil according to any one of claims 1-16.
Figure 5
Figure 8

Figure 9
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. B32B27/10 B32B27/32 B32B27/36 B32B7/12
ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
B32B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 059 162 A2 (TETRA LAVAL HOLDINGS & FINANCE [CH]) 13 December 2000 (2000-12-13) abstract paragraphs [0001], [0002], [0015], [0034], [0035], [0036], [00370058], [0060], [0064]; claims; figure 1</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 2004/058092 AI (SAMEULS MICHAEL ROBERT [US] ET AL) 25 March 2004 (2004-03-25) abstract paragraphs [0030], [0031], [0072], [0076]-[0123], [0138], [0140] - [0147], [0151]; example 1</td>
<td>1-18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L documents with which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

S document member of the same patent family

Date of the actual completion of the international search
15 April 2013

Date of mailing of the international search report
25/04/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV RIJSWIJK
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3018

Authorized officer
Mazet, Jean-Francois

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
ET AL) 18 March 2004 (2004-03-18)
claims
paragraphs [0109], [0112] | 1-18 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 60034175 T2</td>
<td>12-07-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1059162 A2</td>
<td>13-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2281318 T3</td>
<td>01-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001030432 A</td>
<td>06-02-2001</td>
</tr>
<tr>
<td>US 2004058092 AI</td>
<td>25-03-2004</td>
<td>AU 2003251867 AI</td>
<td>02-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2491910 AI</td>
<td>22-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1668667 A</td>
<td>14-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1521793 AI</td>
<td>13-04-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4758100 B2</td>
<td>24-08-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006511632 A</td>
<td>06-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004058092 AI</td>
<td>25-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2004007590 AI</td>
<td>22-01-2004</td>
</tr>
<tr>
<td>US 2004052987 AI</td>
<td>18-03-2004</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>