Title: METHOD AND DEVICE FOR TWISTING OF TWO ENDS OF THREAD

Abstract: The invention relates to a method and a device for twisting at least two ends of thread in order to mutually connect the at least two threads, which method comprises the steps of: providing at least two ends of thread running substantially mutually parallel and in the same direction; holding the threads fixedly at a first position at a distance from the ends of thread; rotating the ends of thread on a rotation axis running substantially parallel to the ends of thread; and reducing the distance between the first position and the ends of thread in order to create a thread twist.
Published: — with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
METHOD AND DEVICE FOR TWISTING OF TWO ENDS OF THREAD

The invention relates to a method for twisting at least two ends of thread in order to mutually connect the at least two threads.

In the processing of, among other things, waste paper, cardboard waste etc., it is usual to press the waste into bales which can then be readily transported to for instance a paper factory, an incinerator etc. This waste may for instance consist of plastic, paper or grass.

Such bales are pressed in a bale pressing machine. The waste is tipped for this purpose into a channel, whereafter a ram displaceable in the channel compacts the waste tipped into the channel. The compacted material is subsequently carried to a tying station. It is usual at the moment to tie up the bales with steel thread. In order to mutually connect the ends of a binding thread these ends are twisted together. This possible as a result of the properties of steel thread.

In view of the changing requirements in respect of the delivery of bales to for instance incinerators, there is a resulting desire for bales to be supplied without steel thread. This is because after incineration steel thread is left behind in the ash and must then be processed separately, or the steel has an adverse effect on such bundled material for the fodder industry. The drawback of the present bale-pressing machines is that they are only suitable for steel thread. Threads of other material cannot be applied in such machines.

In order to obviate this drawback the invention provides a method for twisting at least two ends of thread, wherein threads in a wide diversity of materials can be used. This method according to the invention comprises the steps of:
- providing at least two ends of thread running substantially mutually parallel and in the same direction;
- holding the threads fixedly at a first position at a distance from the ends of thread;
- rotating the ends of thread on a rotation axis running substantially parallel to the ends of thread; and
- reducing the distance between the first position and the ends of thread in order to create a thread twist.

By carrying the ends of thread in the direction of the first position the tension in the ends of thread is limited at the position of the twist. It hereby becomes possible to also use materials other than just steel.

According to a preferred embodiment of the method according to the invention the carrying of the ends of thread in the direction of the first position takes place during rotation of the ends of thread. The creation of the twist can hereby be controlled.

In another preferred embodiment of the method according to the invention the providing of the at least two ends of thread comprises the steps of:
- providing at least two threads running mutually parallel;
- holding the at least two threads fixedly at two positions at a distance from each other;
- severing the at least two threads between the two positions such that at each of the two positions at a distance from each other there are provided at least two ends of thread for twisting.

Particularly in the case of bale-pressing machines it is advantageous to twist two pairs of ends of thread at the same moment. Thus the closing twist can for instance be made for a first bale, while the starting twist for a subsequent bale can simultaneously be made.

Very highly recommended is a method wherein the threads are plastic threads. These plastic threads can be of a clean-burning plastic, such as for instance polyethylene. This means that when the waste is burnt in a waste incinerator the plastic threads can also be incinerated and
there remains no residual waste.

The invention further comprises a device for performing the method according to the invention. This device comprises:

- first feed means for feeding a first thread;
- second feed means for feeding a second thread;
- rotation means for rotating the first and second thread together around a rotation axis running parallel to the threads;
- cutting means for severing both the first and the second thread; and
- holding means for fixedly holding the first and the second thread on either side and at a distance from the cutting means.

The rotation means, cutting means and holding means are preferably arranged in a displaceable frame. This enables a simple replacement of components during repair or modification of existing machines.

The frame is preferably tiltable away from and to the first and second threads. The frame can further be displaceable in longitudinal direction of the threads. The forming of the twist can thus be controlled.

These and other features of the invention are further elucidated with reference to the annexed drawings.

Figures 1-6 show in perspective view a device according to the invention at different stages during performing of the method according to the invention.

Figures 7a and 7b show in perspective view two fingers with which the threads can be gripped and rotated.

Figure 1 shows a bale-pressing machine 1 which comprises a device according to the invention and performs the method according to the invention.

This bale-pressing machine has a pressing channel 2 in which a displaceable ram 3 is arranged. Waste is tipped into this pressing channel 2 and subsequently compacted by means of displaceable ram 3 to form a bale 4. Four first threads are fed under pressing channel 2. From above and in opposite direction are fed four second threads 6. Each first
thread 5 is connected by means of a twist 7 to a second thread 6.

In figure 2 the ram 3 is displaced further so that the first and second threads 5, 6 lie on the top, front and bottom side of bale 4. In this position four needles 8 are carried downward to grasp the first threads 5 and to carry them upward on the rear side of bale 4.

In figure 3 the needles 8 have returned to their upper position. The first thread 5 now runs via the head 9 of needle 8 so that at least a part of first thread 5 and second thread 6 run mutually parallel. A frame 10 is then tilted against these parallel parts. A number of rotatable upper fingers 12 and lower fingers 13 are arranged on this frame 10. These upper and lower fingers 12 and 13 are then rotated to bring together the parallel parts 11 of threads 5 and 6. These are then clamped fixedly between frame 10 and fingers 12 and 13.

Referring to figure 5, a knife part 14 now comes into operation which severs the parallel parts 11. For each first and second thread 5, 6 there thus results two pairs of ends 15, 16 which are clamped respectively under an upper finger 12 and a lower finger 13. These fingers are then rotated through a number of revolutions so that the beginning of a twist is formed.

While fingers 12 and 13 continue to rotate, frame 10 is lowered in vertical direction by means of a cylinder 17 (see figure 6). Needles 8 are herein displaced through a distance equalling twice the displacement of frame 10. The distance between fingers 12 and 13 and the location where the threads are held, on the one side by bale 4 and on the other by needle head 9, is thus reduced. The forming of the twist is hereby controlled. A second twist 18 is thus created in the thread arranged around bale 4. First thread 5 and second thread 6 are further connected to each other again by means of a twist 7. Needles 8 are subsequently carried slightly further downward, whereafter needle heads 9 can rotate and can thereby release the thread 5 again. The above stated cycle then takes place again.
Figures 7a and 7b show respectively upper finger 12 and lower finger 13. Upper finger 12 and lower finger 13 are of different design in the shown preferred embodiment. It has been found from tests that with this specific device this design of upper and lower fingers 12, 13 gives a good result. The parallel parts 11 of threads 5 and 6 are gripped in the recesses 19, 20 of the finger. A part of the threads is then pulled under the finger, whereby they become fixed thereunder.

The above described method is particularly suitable for plastic threads. On the one hand it prevents the twist of plastic threads from untwisting and on the other it prevents the twist breaking off the threads. These advantages are achieved mainly because the distance between the position where the threads are held and the ends of thread is reduced.
CLAIMS

1. Method for twisting at least two ends of thread in order to mutually connect the at least two threads, which method comprises the steps of:
 - providing at least two ends of thread running substantially mutually parallel and in the same direction;
 - holding the threads fixedly at a first position at a distance from the ends of thread;
 - rotating the ends of thread on a rotation axis running substantially parallel to the ends of thread; and
 - reducing the distance between the first position and the ends of thread in order to create a thread twist.

2. Method as claimed in claim 1, wherein the reducing of the distance between the first position and the ends of thread takes place during rotation of the ends of thread.

3. Method as claimed in claim 1 or 2, wherein providing of the at least two ends of thread comprises the steps of:
 - providing at least two threads running mutually parallel;
 - holding the at least two threads fixedly at two positions at a distance from each other;
 - severing the at least two threads between the two positions such that at each of the two positions at a distance from each other there are provided at least two ends of thread for twisting.

4. Method as claimed in any of the foregoing claims, wherein the threads are plastic threads.

5. Device for performing the method as claimed in any of the foregoing claims 1-4, which device comprises:
 - first feed means for feeding a first thread;
 - second feed means for feeding a second thread;
 - rotation means for rotating the first and second
thread together around a rotation axis running parallel to the threads;
- cutting means for severing both the first and the second thread; and
- holding means for fixedly holding the first and the second thread on either side and at a distance from the cutting means.

6. Device as claimed in claim 5, wherein the rotation means, cutting means and holding means are arranged in a displaceable frame.

7. Device as claimed in claim 6, wherein the frame is tiltable away from and to the first and second threads.

8. Device as claimed in claim 6 or 7, wherein the frame is displaceable in longitudinal direction of the threads.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B65B13/28

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B65B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 199 475 B1 (SCHWELLING HERMANN) 13 March 2001 (2001-03-13) column 2, line 35 - column 4, line 3; figures</td>
<td>1,2,5-8</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>X</td>
<td>US 4 167 902 A (BISTER EUGEN ET AL) 18 September 1979 (1979-09-18) column 4, line 5 - column 5, line 23; figures</td>
<td>1,2,5,6</td>
</tr>
<tr>
<td>X</td>
<td>US 6 032 575 A (JOHNSON GERALD L) 7 March 2000 (2000-03-07) column 4, line 9 - column 6, line 67; figures</td>
<td>1-3,5</td>
</tr>
</tbody>
</table>
<pre><code> | ---/--- |
</code></pre>

X Further documents are listed in the continuation of box C. X Patent family members are listed in annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Date of the actual completion of the international search: 1 July 2002

Date of mailing of the international search report: 08/07/2002

Name and mailing address of the ISA

European Patent Office, P. B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Jagusiak, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 3 898 924 A (MEAD STANLEY L ET AL) 12 August 1975 (1975-08-12) column 7, line 50 - column 10, line 5; figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 0 808 771 A (PAALS PACKPRESSEN FABRIK GMBH) 26 November 1997 (1997-11-26)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 3 667 377 A (PERSSON BENGT AKE) 6 June 1972 (1972-06-06)</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0939032 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11278423 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1597636 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7803185 A, B,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 441518 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7803335 A</td>
</tr>
<tr>
<td>US 6032575 A</td>
<td>07-03-2000</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3898924 A</td>
<td>12-08-1975</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3667377 A</td>
<td>06-06-1972</td>
<td>DE 2111894 A1</td>
</tr>
<tr>
<td>US 4732180 A</td>
<td>22-03-1988</td>
<td>NONE</td>
</tr>
</tbody>
</table>