A RESISTIVE TOUCH SCREEN APPARATUS, A METHOD AND A COMPUTER PROGRAM

Abstract: An apparatus including: a first resistive screen extending in a first direction and a second direction; a second resistive screen extending in the first direction and the second direction and separated from the first resistive screen; a first reference resistor; a voltage source configured to apply a voltage across a series combination of the first reference resistor and the first resistive screen; and a voltage detector configured to measure a first voltage across the reference resistor.
TITLE
A resistive touch screen apparatus, a method and a computer program

FIELD OF THE INVENTION

Embodiments of the present invention relate to resistive touch screens. In particular, they relate to resistive touch screens for detecting dual touches.

BACKGROUND TO THE INVENTION

Touch screen apparatus that comprise two continuous resistive screens membranes such as N-wire resistive touch screens (as opposed to matrix resistive touch screens) are currently capable of locating a single touch but are not capable of locating two touches that occur at the same time.

BRIEF DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

According to various, but not necessarily all, embodiments of the invention there is provided an apparatus comprising: a first resistive screen extending in a first direction and a second direction; a second resistive screen extending in the first direction and the second direction and separated from the first resistive screen; a first reference resistor; a voltage source configured to apply a voltage across a series combination of the first reference resistor and the first resistive screen; and a voltage detector configured to measure a first voltage across the reference resistor,

In use, the first voltage increases when a user touches the first resistive screen at two distinct locations creating two distinct electrical connections between the first resistive screen and the second resistive screen.

The apparatus is capable of not only locating a single touch but also capable of locating two touches that occur at the same time. This enables a user to provide input via gestures e.g. by tracing two points of contact simultaneously over the first resistive screen.
According to various, but not necessarily all, embodiments of the invention there is provided a method comprising: applying a voltage across a series combination of a first reference resistor and a first resistive screen; and measuring a first voltage across the reference resistor, wherein the first voltage increases when a user touches the first resistive screen at two distinct locations creating two distinct electrical connections between the first resistive screen and a second underlying resistive screen.

According to various, but not necessarily all, embodiments of the invention there is provided a computer program comprising instructions which when used by a controller enables the controller to: control the application of a voltage across a series combination of a first reference resistor and a first resistive screen; and detect a change in a first voltage measured across the reference resistor.

According to various, but not necessarily all, embodiments of the invention there is provided an apparatus comprising: a first resistive screen; a second resistive screen separated from the first resistive screen; first resistor means; means for applying a voltage across a series combination of the first resistor means and the first resistive screen; and means for measuring a first voltage across the reference resistor means.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of various examples of embodiments of the present invention reference will now be made by way of example only to the accompanying drawings in which:

Fig. 1 schematically illustrates a resistive touch screen apparatus;
Fig 2A schematically illustrates a configuration of an example of a two phase resistive touch screen apparatus when it is in a first phase;
Fig 2B schematically illustrates a configuration of an example of a two phase resistive touch screen apparatus when it is in a second phase
Fig 3A schematically illustrates an example of one possible controller for the resistive touch screen apparatus;
Fig 3B schematically illustrates a delivery mechanism for a computer program;
3

Fig 4A schematically illustrates an electrical configuration of an example of a touch sensitive apparatus in the first phase when there is no touch;

Fig 4B schematically illustrates an electrical configuration of an example of a touch sensitive apparatus in the second phase when there is no touch;

Fig 5A schematically illustrates an electrical configuration of an example of a touch sensitive apparatus in the first phase when there is a single touch;

Fig 5B schematically illustrates an electrical configuration of an example of a touch sensitive apparatus in the second phase when there is a single touch;

Fig 6A schematically illustrates an electrical configuration of an example of a touch sensitive apparatus in the first phase when there are dual touches;

Fig 6B schematically illustrates an electrical configuration of an example of a touch sensitive apparatus in the second phase when there are dual touches;

Fig 7 schematically illustrates a process for determining a position of a single touch and for estimating the positions of dual touches;

Fig 8A graphically illustrates an assumed linear relationship between the deviation Δx and a first voltage across a reference resistor;

Fig 8B graphically illustrates an assumed linear relationship between the deviation Δy and a first voltage across a reference resistor;

Fig 9A schematically illustrates an example of disambiguation of possible locations for the dual touches in the first phase;

Fig 9B schematically illustrates an example of disambiguation of possible locations for the dual touches in the second phase;

Fig 10 schematically illustrates a process for calculating a centre location;

Fig 11 schematically illustrates an example of a pre-calibration process used to enable calculation of displacements from the centre location;

Figs 12A and 12B schematically illustrate processes for calculating displacements from the centre location;

Fig 13 schematically illustrates a process that locates dual touches when the first touch momentarily precedes the second touch.

Fig 14A schematically illustrates a control mechanism configured to interconnect the first resistive screen and the second resistive screen;

Fig 14B schematically illustrates a control mechanism configured to interconnect the first resistive screen and the second resistive screen.

Fig 15A, schematically illustrates a module comprising a resistive touch screen apparatus; and
Fig. 15B schematically illustrates an electronic device comprising a resistive touch screen apparatus.

DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

The Figs schematically illustrates an apparatus comprising: a first resistive screen extending in a first direction and a second resistive screen extending in the first direction and the second direction and separated from the first resistive screen; a first reference resistor; a voltage source configured to apply a voltage across a series combination of the first reference resistor and the first resistive screen; and a voltage detector configured to measure a first voltage across the reference resistor.

In use, the first voltage may increase when a user touches the first resistive screen at two distinct locations creating two distinct electrical connections between the first resistive screen and the second resistive screen.

Fig. 1 schematically illustrates a resistive touch screen apparatus. In this example, the touch screen apparatus is configured as a so-called 4-wire resistive touch screen apparatus.

The resistive touch screen apparatus comprises: a first resistive screen; a second resistive screen; a first reference resistor; a voltage source; a first voltage detector; a second voltage detector; and a third voltage detector.

The first resistive screen is substantially planar when untouched and extends over a first area in a first direction and a second area in the first direction, which is orthogonal to the first direction. The second resistive screen is substantially planar and also extends over a second area in the first direction and the second area. The second area underlies the first area and the first resistive screen and the second resistive screen are separated by a gap. When a user touches the first resistive screen, the first resistive screen flexes and contacts the second resistive screen. The opposing sides of the first resistive screen and the second resistive screen are coated with an electrically conductive (and resistive)
material which form a temporary electrical interconnection where they meet. The coating on the opposing sides of the first resistive screen 10 and the second resistive screen 20 may be uniform and continuous without patterning. The continuity and uniformity enables linear voltage gradients to be developed across the opposing sides of the first resistive screen 10 and the second resistive screen 20. The first resistive screen 10 has a first extremity 12 in the first x-direction 11 and a second extremity 14 in the first x-direction 11 to which the conductive material is connected.

The second resistive screen 20 has a first extremity 22 in the second y-direction 13 and a second extremity 24 in the second y-direction 13 to which the conductive material is connected. In the configuration illustrated, which corresponds to a first phase described with reference to Figs 2A and 2B, a voltage source 17 is configured to apply a voltage V to the second extremity 14 of the first resistive screen 10. A first reference resistor 30 having a value R1 is connected between ground 15 and a node 34. The node 34 is connected to the first extremity 12 of the first resistive screen 10. The node 34 is also connected to ground 25 via a first voltage detector 32. The first voltage detector 32 has a very high input impedance and therefore draws negligible electric current. The first voltage detector 32 therefore measures the first voltage V1 developed across the first reference resistor 30. The voltage source 17 therefore applies a voltage V across a series combination of the first reference resistor 30 and the first resistive screen 10.

The second voltage detector 40 is connected between the second extremity 24 of the second resistive screen 20 and ground 15. The second voltage detector 40 measures a second voltage V2. The second voltage detector 40 has a very high input impedance and therefore draws negligible electric current. The third voltage detector 50 is connected between the first extremity 22 of the second resistive screen 20 and ground 15. The third voltage detector 50 measures a
third voltage V3. The third voltage detector 50 has a very high input impedance and therefore draws negligible electric current.

The size R1 of first reference resistor 30 is small in comparison to the resistance Rx of the first resistive screen 10 in the first x-direction 11. The first reference resistor 30 may have a magnitude at least one order of magnitude less than the resistance of the first resistive screen 10 in the first x-direction 11 i.e. R1<Rx.

The configuration illustrated in Fig 1 is suitable for resolving the location of a user's touch to the first resistive screen 10 in the first x-direction 11 but needs to be reconfigured for resolving the location of the user's touch to the first resistive screen 10 in the second y-direction 13. Fig 4A illustrates a configuration of the touch sensitive apparatus 2 that allows the configuration of the apparatus 2 to be rapidly changed between the configuration illustrated in Fig 4A which resolves in a first phase the location of a user's touch to the first resistive screen 10 in the first x-direction 11 and the configuration illustrated in Fig 4B which resolves in a second phase the location of a user's touch to the first resistive screen 10 in the second y-direction 13.

A series of switches S1-S7 controlled by a controller 4 are used to change the configuration of the apparatus. The positions of the switches are toggled by the controller 4. The first voltage detector 32 measures a voltage V1 across the reference resistor 30. The same references resistor 30 is used, in this exemplary implementation for both the first phase and the second phase.

In a first phase of a measurement event, the switches have the positions illustrated in Fig 4A. The configuration illustrated in Fig 4A corresponds to the configuration illustrated in and described with reference to Fig 1.

The voltage source 17 is connected via a switch S1 and switch S4 to the second extremity 14 of the first resistive screen 10. The reference resistor 30 is connected via a switch S8 and switch S6 to the first extremity 12 of the first resistive screen 10. The voltage source 17 is configured to apply a voltage V across a series combination of the first reference resistor 30 and the first resistive screen 10.
The second voltage detector 40 is connected via a switch S2 and switch S3 to the second extremity 24 of the second resistive screen 20. The third voltage detector 50 is connected via a switch S5 and a switch S7 to the first extremity of the second resistive screen 20.

In a second phase of a measurement event, the switches have the positions illustrated in Fig 4B.

The voltage source 17 is connected via the switch S1 and the switch S3 to the second extremity 24 of the second resistive screen 20. The reference resistor 30 is connected via a switch S8 and switch S5 to the first extremity 22 of the second resistive screen 10. The voltage source 17 therefore applies a voltage across a series combination of the reference resistor 30 and the second resistive screen 20.

The second voltage detector 40 is connected via a switch S2 and switch S4 to the second extremity of the first resistive screen 10. The third voltage detector 50 is connected via a switch S7 and a switch S6 to the first extremity of the first resistive screen 10.

The controller 4, which may be part of the resistive touch screen apparatus 2, produces switch control signals SC which control the positions of the switches. In a first phase, the switches are set as illustrated in Fig 2A and in a second phase the switches are set as illustrated in Fig 2B. The controller 4 produces a voltage control signal VC which controls when the voltage source 15 provides the voltage V.

The controller 4 receives the voltage V1 measured by the first voltage detector 30, the voltage V2 measured by the second voltage detector 40 and the voltage V3 measured by the third voltage detector 50.

The size of first reference resistor R1 is small in comparison to the resistance Rx of the first resistive screen 10 and a resistance Ry of the second resistive screen 20. The first reference resistor 30 may have a magnitude at least one order of magnitude less than the lower of the resistance of the first resistive screen 10 and the resistance of the second resistive screen 10 i.e. $R_1 < Rx$ and $R_1 < Ry$.
Although a common reference resistor 30 has been used for the first phase (Fig 2A) and the second phase (Fig 2B), in other implementations a first reference resistor may be used for the first phase and a second different reference resistor may be used for the second phase.

Implementation of controller 4 can be in hardware alone (a circuit, a processor...), have certain aspects in software including firmware alone or can be a combination of hardware and software (including firmware).

The controller 4 may be implemented using instructions that enable hardware functionality, for example, by using executable computer program instructions in a general-purpose or special-purpose processor 6 that may be stored on a computer readable storage medium 8, 5 (disk, memory etc) to be executed by such a processor 6.

Referring to Fig 3A which illustrates one of many possible implementations of the controller 4, a processor 6 is configured to read from and write to the memory 8. The processor 6 may also comprise an output interface via which data and/or commands are output by the processor 6 and an input interface via which data and/or commands are input to the processor 6.

The memory 8 stores a computer program 3 comprising computer program instructions that control the operation of the apparatus 2 when loaded into the processor 6. The computer program instructions 3 provide the logic and routines that enables the apparatus to perform the methods illustrated in the Figs. The processor 6 by reading the memory 8 is able to load and execute the computer program 3.

The computer program may arrive at the apparatus 2 via any suitable delivery mechanism 5 as schematically illustrated in Fig 3B. The delivery mechanism 5 may be, for example, a computer-readable storage medium, a computer program product, a memory device, a record medium such as a CD-ROM or DVD, an article of manufacture that tangibly embodies the computer program 3. The delivery mechanism may be a signal configured to reliably transfer the computer program 3. The apparatus 2 may propagate or transmit the computer program 3 as a computer data signal.
Although the memory 8 is illustrated as a single component it may be implemented as one or more separate components some or all of which may be integrated/removable and/or may provide permanent/semi-permanent/dynamic/cached storage.

References to 'computer-readable storage medium', 'computer program product', 'tangibly embodied computer program' etc. or a 'controller', 'computer', 'processor' etc. should be understood to encompass not only computers having different architectures such as single/multi-processor architectures and sequential (Von Neumann)/parallel architectures but also specialized circuits such as field-programmable gate arrays (FPGA), application specific circuits (ASIC), signal processing devices and other devices. References to computer program, instructions, code etc. should be understood to encompass software for a programmable processor or firmware such as, for example, the programmable content of a hardware device whether instructions for a processor, or configuration settings for a fixed-function device, gate array or programmable logic device etc.

In Figs 4A-6B, the reference 'A' is used to denote the first phase and the reference 'B' is used to denote the second phase. The numeral 4 in the Fig reference is used to designate when there is no touch by a user, the numeral 5 in the Fig reference is used to designate when there is a single touch by a user of the first resistive panel 10, and the numeral 5 in the Fig reference is used to designate when there are two touches by a user of the first resistive panel 10.

In the following description, the following naming convention will be used. As the first phase resolves the first x-direction 11, the voltages measured in the first phase will be referenced by _x. As the second phase resolves the second y-direction 13, the voltages measured in the second phase will be referenced by _y.

Fig 4A schematically illustrates the configuration of the apparatus 2 when there is no touch and the controller 4 is in the first phase. A voltage V_x is applied by the voltage source 17. The current flow through the reference resistor 30 is at a minimum l_min_x and the first voltage across the reference resistor 30 is at a minimum V_1_min_x where:
\[l_{\text{min}_x} = \frac{V_{\text{1_min}_x}}{R_1} \]
&
\[l_{\text{min}_x} = \frac{(V_x - V_{\text{1_min}_x})}{R_x} \];

resolving gives:
\[R_x = \frac{(V_x - V_{\text{1_min}_x}) \cdot R_1}{V_{\text{1_min}_x}} \]

Therefore the controller 4 can calculate the resistance \(R_x \), where \(R_x \) is the resistance of a full dimension \(X \) of the first resistive screen 10 in the first x-direction 11.

Fig 4B schematically illustrates the configuration of the apparatus 2 when there is no touch and the controller 4 is in the second phase. A voltage \(V_y \) is applied by the voltage source 17. The current flow through the reference resistor 30 is at a minimum \(l_{\text{min}_y} \) and the first voltage across the reference resistor 30 is at a minimum \(V_{\text{1_min}_y} \) where:

\[l_{\text{min}_y} = \frac{V_{\text{1_min}_y}}{R_1} \]
&
\[l_{\text{min}_y} = \frac{(V_y - V_{\text{1_min}_y})}{R_y} \];

resolving gives:
\[R_y = \frac{(V_y - V_{\text{1_min}_y}) \cdot R_1}{V_{\text{1_min}_y}} \]

Therefore the controller 4 can calculate the resistance \(R_y \), where \(R_y \) is the resistance of a full dimension \(Y \) of the second resistive screen 20 in the second y-direction 13.

Fig 5A schematically illustrates the configuration of the apparatus 2 when there is a single touch and the controller 4 is in the first phase. A first electrical connection 60 is made between the first resistive screen 10 and the second resistive screen 20.

The high input impedances of the second voltage detector 40 and the third voltage detector 50 prevent current flow in the second resistive screen 20. A linear circuit is formed with no current loops in the second resistive screen 20. As there is only one current path between the contact point \((x_1, y_1)\) and the measurement points 22, 24...
there is a linear relationship between the measured voltages V_2, V_3 and the x-position of the contact point.

$$V_{2,x} = V_{3,x} = (V_x - V_{1,x}) \times \frac{x_1}{X} = \frac{l_x R_x}{1_x}$$

Therefore the controller 4 can calculate x_1 as a proportion of X, the dimension of the first resistive screen 10 in the x-direction.

Fig 5B schematically illustrates the configuration of the apparatus 2 when there is a single touch and the controller 4 is in the second phase.

$$V_{2,y} = V_{3,y} = (V_y - V_{1,y}) \times \frac{y_1}{Y} = \frac{l_{min_y} R_y}{1_y}$$

Therefore the controller 4 can calculate y_1 as a proportion of Y, the dimension of the second resistive screen 20 in the y-direction.

Fig 6A schematically illustrates the configuration of the apparatus 2 when there are two touches and the controller 4 is in the first phase. Fig 6B schematically illustrates the configuration of the apparatus 2 when there are two touches and the controller 4 is in the second phase. In addition to the first electrical connection 60 between the first resistive screen 10 and the second resistive screen 20, an additional second electrical connection 62 is made between the first resistive screen 10 and the second resistive screen 20.

Although the high input impedances of the second voltage detector 40 and the third voltage detector 50 prevent current flow into them, current loops may be formed within the first resistive screen 10 and the second resistive screen 20. As there are more than one current path between the respective contact points (x_1, y_1) (x_2, y_2) and the measurement points of the voltages V_2 and V_3, there is a complex non-linear relationship between the measured voltages V_2, V_3 and positions of the contact points.
It is not a simple matter to determine quantitatively the locations of the contact points \((x_1, y_1)\) and \((x_2, y_2)\). There is no simple conversion possible of voltage measured to distance.

It should, however, be noted that the second touch introduces resistances in parallel to the resistive screen across which voltage is applied which will necessarily reduce the impedance of the resistive screen resulting in a higher current. The first voltage \(V_1\) would therefore be expected to be larger when there are two touches compared with when there is a single touch.

Fig 7 schematically illustrates a process 70 that may be performed by the controller 4 to determine a position \((x_1, y_1)\) for one touch and to estimate the positions \((x_1, y_1)\) and \((x_2, y_2)\) for two touches.

At block 72 it is determined whether the second voltage \(V_2\) (or the third voltage \(V_3\)) is greater than a predetermined threshold value \(T_2\).

If the second voltage \(V_2\) (or third voltage \(V_3\)) is less than the threshold value there is no touch detected. After a delay \(T\) introduced at block 73, the process 70 restarts.

If the second voltage \(V_2\) (or third voltage \(V_3\)) is greater than the threshold value there is one or more touches detected. The process moves to block 74.

At block 74 it is determined whether the first voltage \(V_1\) is greater than a predetermined threshold value \(T_1\).

If the first voltage \(V_1\) is less than the threshold value \(T_1\) there is a single touch detected. The process moves to block 76 representing the first block of a one-touch mode of operation in which the controller calculates the position \((x_1, y_1)\) of the single touch.

If the first voltage \(V_1\) is greater than the threshold value \(T_1\) there is a dual touch detected. The process moves to block 84 representing the first block of a two-touch
mode of operation in which the controller 4 calculates estimates of the positions \((x_1, y_1)\) \((x_2, y_2)\) of the two touches.

Single Touch Mode

At block 76, the controller 4 can calculate \(x_1\) as a proportion of \(X\), the dimension of the first resistive screen 10 in the x-direction 11.

The controller 4 may, for example, use the following relationship:

\[
x_1/X = \frac{V_2 \cdot X}{l_{x,Rx}} = V_2 \cdot \frac{R_1}{V_{1_{min,x,Rx}}}
\]

In this relationship, \(x_1\) is proportional to the voltage \(V_2\) (or \(V_3\) which is the same value as \(V_2\)) and inversely proportional to the voltage developed across the first resistive screen 10.

The value of \(R_1\) is known and fixed. The values of \(V_2\) and \(V_1\) are measured. The value of \(R_{x}\) is previously calculated in the manner described with reference to Fig 4A.

At block 78, the controller changes phase and then at block 80 the controller 4 calculates \(y_1\) as a proportion of \(Y\), the dimension of the second resistive screen 20 in the y-direction 13.

The controller 4 may, for example, use the following relationship:

\[
y_1/Y = \frac{V_2 \cdot Y}{l_{min,y,Ry}} = V_2 \cdot \frac{R_1}{V_{1_{min,y,Ry}}}
\]

In this relationship, \(y_1\) is proportional to the voltage \(V_2\) (or \(V_3\) which is the same value as \(V_2\)) and inversely proportional to the voltage developed across the second resistive screen 20.

The value of \(R_1\) is known and fixed. The values of \(V_2\) and \(V_1\) are measured. The value of \(R_y\) is previously calculated in the manner described with reference to Fig 4B.

The phase of the controller is then changed back at block 82 and the process 70 restarts.
Dual Touch Mode

At block 84 the controller 4 calculates a centre location \((x_c)\) in the x-direction which represents a location midway between the two locations in the x-direction \(x_1, x_2\) at which the first resistive screen 10 is being simultaneously touched.

Referring to Fig 10, the controller 4 first calculates the centre location \(x_c\) by averaging the second voltage and the third voltage at block 841 and then converting the average to a distance at block 842.

Block 42 may for example perform the following calculation:

\[
\frac{x_c}{X} = \psi \frac{(V_2_x + V_3_x) - V_1_x}{V_d_x}/V_d_x
\]

where \(V_d_x = V-V_1_x\) and \(l_x = Rx. V_1_x/R1\)

In this relationship, \(x_c\) is proportional to the average of \(V_2\) and \(V_3\) and inversely proportional to the voltage developed across the first resistive screen 10.

Next, at block 86 the controller 4 calculates a displacement \(\Delta x\) from the centre location \((x_c)\) in the x-direction which represents a magnitude of the displacement of the two touch locations in the x-direction \((x_1, x_2)\) from the centre location \(x_c\).

Referring to Fig 12A, the controller 4 at block 86 uses the measured first voltage \(V_1\) to look-up \(\Delta x\) from a look-up table. Values in the look-up table can be pre-programmed, updated on the fly during use or, for example, as described with reference to Fig 11 below.

The value of \(\Delta x\) for different values of \(V_1\) may be calculated according to the relationship:

\[
\Delta x/X = (V_1_x-V_1_min_x)/(V_1_max_x-V_1_min_x)
\]
In this relationship, Δx is proportional to the first voltage V_{1_x} (or more precisely the increase in V_{1_x} from its minimum value $V_{1_{min_x}}$) and inversely proportional to the range of the first voltage V_{1_x}.

This relationship is graphically illustrated in Fig 8A which illustrates the assumed linear relationship between the deviation Δx and the first voltage V_{1_x}.

Next at block 88 the controller changes to the second phase.

Then at block 90 the controller 4 calculates a centre location (y_c) in the y-direction which represents a location midway between the two locations in the y-direction y_1, y_2 at which the first resistive screen 10 is being simultaneously touched.

Referring to Fig 10, the controller 4 first calculates the centre location y_c by averaging the second voltage and the third voltage at block 841 and then converting the average to a distance at block 842.

Block 42 may for example perform the following calculation:

$$y_c / X = (V_2 (V_{2_y} + V_{3_y}) - V_{1_y}) / V_{d_y}$$

where $V_{d_y} = V - V_{1_y} = R_y (V_{1_y} / R_1$

In this relationship, y_c is proportional to the average of V_2 and V_3 and inversely proportional to the voltage developed across the second resistive screen 20.

Next, at block 92 the controller 4 calculates a displacement Δy from the centre location (y_c) in the y-direction which represents a magnitude of the displacement of the two touch locations in the y-direction (y_1, y_2) from the centre location y_c.

Referring to Fig 12B, the controller 4 at block 92 uses the measured first voltage V_{1} to look-up Δy from a look-up table.

The value of Δy for different values of V_{1} may be calculated according to the relationship:
\[\Delta y/Y = \frac{(V1_y - V1_{min_y})}{(V1_{max_y} - V1_{min_y})} \]

In this relationship, \(\Delta y \) is proportional to the first voltage \(V1_y \) (or more precisely the increase in \(V1_y \) from its minimum value \(V1_{min_y} \)) and inversely proportional to the range of the first voltage \(V1_y \).

This relationship is graphically illustrated in Fig 8B which illustrates the assumed linear relationship between the deviation \(\Delta y \) and the first voltage \(V1_y \).

Fig 11 schematically illustrates a method for calibrating the controller 4 so that it can calculate \(\Delta x \) and \(\Delta y \).

The calibration process involves the determination of: \(V1_{min_x} \), \(V1_{max_x} \), \(V1_{min_y} \) and \(V1_{max_y} \). One example of such a calibration process is illustrated in Fig 11.

At block 121, no touch is detected. This may be achieved in a manner similar to block 72 in Fig 7.

The controller 4 is in the first phase and at block 122 the voltage \(V1 \) is stored as \(V1_{min_x} \) i.e. the minimum value of \(V1 \) for the first phase.

The controller 4 then changes the phase at block 123 to the second phase.

The controller 4 is then in the second phase and at block 124 the voltage \(V1 \) is stored as \(V1_{min_y} \) i.e. the minimum value of \(V1 \) for the second phase.

The controller 4 then changes the phase at block 125 to the first phase.

Then at block 126 the first resistive screen 10 and the second resistive screen are interconnected in the region of the first extremity 12 of the first resistive screen 10 and in the region of the second extremity 14 of the first resistive screen 20.

This form of interconnection maximizes the current through the first resistive screen 10 and the first voltage developed across the reference resistor 30.
The interconnection may be achieved manually by touching the first resistive screen 10 at its extreme edges in the first x-direction 11. Alternatively, the controller 4 may electronically control the interconnection of the first resistive screen 10 and the second resistive screen 20.

One example of a suitable control mechanism 160 configured to interconnect the first resistive screen 10 and the second resistive screen 20 is illustrated in Fig 14A. A first switch 164 such as a field effect transistor (FET) is used to open and close a current path between the first extremity 12 of the first resistive screen 10 and an extremity of the second resistive screen in the x-direction. The controller 4 provides a control signal 165 to switch the FET 164 on. A second switch 162 such as a field effect transistor (FET) is used to open and close a current path between the second extremity 14 of the first resistive screen 10 and an extremity of the second resistive screen in the x-direction. The controller 4 provides a control signal 163 to switch the FET 162 on.

While the first resistive screen 10 and the second resistive screen are interconnected in the region of the first extremity 12 of the first resistive screen 10 and in the region of the second extremity 14 of the first resistive screen 10, the first voltage V1 is stored at block 127 as V1_max_x i.e. the maximum value of V1 in the first phase.

The controller 4 then changes the phase at block 128 to the second phase.

Then at block 129 the first resistive screen 10 and the second resistive screen are interconnected in the region of the first extremity 22 of the second resistive screen 20 and in the region of the second extremity 24 of the second resistive screen 20. This form of interconnection maximizes the current through the second resistive screen 20 and the first voltage developed across the reference resistor 30.

The interconnection may be achieved manually by touching the first resistive screen 10 at its extreme edges in the second y-direction 13. Alternatively, the controller 4 may electronically control the interconnection of the first resistive screen 10 and the second resistive screen 20.
One example of a suitable control mechanism 170 configured to interconnect the first resistive screen 10 and the second resistive screen 20 is illustrated in Fig 14B. A first switch 174 such as a field effect transistor (FET) is used to open and close a current path between the first extremity 22 of the second resistive screen 20 and an extremity of the first resistive screen in the y-direction. The controller 4 provides a control signal 175 to switch the FET 164 on. A second switch 172 such as a field effect transistor (FET) is used to open and close a current path between the second extremity 24 of the second resistive screen 20 and an extremity of the first resistive screen 10 in the y-direction. The controller 4 provides a control signal 173 to switch the FET 172 on.

While the first resistive screen 10 and the second resistive screen are interconnected in the region of the first extremity 22 of the second resistive screen 20 and in the region of the second extremity 24 of the second resistive screen 20, the first voltage \(V_1 \) is stored at block 130 as \(V_{1_{\text{max}_y}} \) i.e. the maximum value of \(V_1 \) in the second phase.

At block 131 the controller 4 uses the relationships:

\[
\Delta x/X = \frac{(V_1_x - V_{1_{\text{min}_x}})}{(V_{1_{\text{max}_x}} - V_{1_{\text{min}_x}})}
\]

\[
\Delta y/Y = \frac{(V_1_y - V_{1_{\text{min}_y}})}{(V_{1_{\text{max}_y}} - V_{1_{\text{min}_y}})}
\]

To generate values in a look-up table for \(\Delta x \) used in block 86 and to generate values in a look-up table for \(\Delta y \) used in block 92.

In these relationships, \(\Delta x \) is proportional to the first voltage \(V_{1_x} \) (or more precisely the increase in \(V_{1_x} \) from its minimum value \(V_{1_{\text{min}_x}} \)) and inversely proportional to the range of the first voltage \(V_{1_x} \) and \(\Delta y \) is proportional to the first voltage \(V_{1_y} \) (or more precisely the increase in \(V_{1_y} \) from its minimum value \(V_{1_{\text{min}_y}} \)) and inversely proportional to the range of the first voltage \(V_{1_y} \).

Finally at block 132, the controller returns to the first phase.
Returning to the description of Fig 7, the controller 4 having determined $x_c, y_c, \Delta x, \Delta y$ needs to disambiguate between possible locations for the two touches. Disambiguation 111 for the first phase is schematically illustrated in Fig 9A. Disambiguation 112 for the second phase is schematically illustrated in Fig 9B.

In the first phase, as illustrated in Fig 9A, the voltage at the second extremity 14 of the first resistive screen 10 $V(x=X)$ is greater than the voltage at the first extremity 12 of the first resistive screen 10 $V(x=0)$. The locations of the two touches can be determined from the relationship between voltage V_2 at the second extremity 24 of the second resistive screen 20 and the voltage V_3 at the first extremity 22 of the second resistive screen 20.

In the first phase, when $V_2>V_3$:
one touch location is: $(x_c+\Delta x, y_c+\Delta y)$ in the first quadrant 113
another touch location is: $(x_c-\Delta x, y_c-\Delta y)$ in the third quadrant 115

In the first phase, when $V_2<V_3$:
one touch location is: $(x_c+\Delta x, y_c-\Delta y)$ in the fourth quadrant 116
another touch location is: $(x_c-\Delta x, y_c+\Delta y)$ in the second quadrant 114

In the second phase, as illustrated in Fig 9B, the voltage at the second extremity 24 of the second resistive screen 20 $V(y=Y)$ is greater than the voltage at the first extremity 22 of the second resistive screen 20 $V(y=0)$. The locations of the two touches can be determined from the relationship between the voltage V_2 at the second extremity 14 of the first resistive screen 10 and the voltage V_3 at the first extremity 12 of the first resistive screen 10.

In the second phase, when $V_2>V_3$:
One touch location is: $(x_c+\Delta x, y_c+\Delta y)$ in the first quadrant 113
Another touch location is: $(x_c-\Delta x, y_c-\Delta y)$ in the third quadrant 115

In the second phase, when $V_3>V_2$:
One touch location is: $(x_c+\Delta x, y_c-\Delta y)$ in the fourth quadrant 116
Another touch location is: $(x_c-\Delta x, y_c+\Delta y)$ in the second quadrant 114.
It will therefore be appreciated that irrespective of phase, if \(V_2 > V_3 \) the touch locations are \((x_c + \Delta x, y_c + \Delta y) \) & \((x_c - \Delta x, y_c - \Delta y) \) else the touch locations are \((x_c + \Delta x, y_c - \Delta y) \) & \((x_c - \Delta x, y_c + \Delta y) \).

The controller 4 in block 94 is therefore able to disambiguate the locations of the touches by comparing the second voltage \(V_2 \) and the third voltage \(V_3 \).

The process illustrated in Fig 13 is similar to the process 70 illustrated in Fig 7. However, the process illustrated in Fig 13 illustrates an additional process for locating two touches when the first touch momentarily precedes the second touch.

The first touch causes the controller to enter the one-touch mode and it processes blocks 72, 74, 76, 78 and 80 as described previously with reference to Fig 7.

Then at block 152 the controller 4 resets a timer \(t \) at \(t=0 \).

The second touch causes the controller 4 to processes blocks 72, 74, 84 as described previously with reference to Fig 7. Then at block 142 it compares the current value of the timer \(t \) with a threshold value.

If the value of the timer is less than the threshold because the second touch quickly follows the first touch it is assumed that the first touch and the second touch are a dual touch unintentionally separated in time. The process then moves to block 144.

If the value of the timer is greater than the threshold, then it is assumed that a dual touch distinct from the first touch has occurred. The controller 4 then proceeds as described previously with reference to Fig 7 and processes blocks 86, 88, 90, 92 and 94 to determine the locations of the dual touch.

At block 144, the controller changes phase and then calculates a centre location \((y_c) \) in the y-direction. This process is similar to that at block 90.

The controller then at block 148 calculates the location \((x_2, y_2) \) of the second touch from the centre location \((x_c, y_c) \) and the location \((x_1, y_1) \) of the first touch. The location \((x_2, y_2) \) of the second touch is a 180 degree rotation of the location \((x_1, y_1) \)
of the first touch about the centre location \((x_c, y_c)\) e.g. \(x_2 = 2 \cdot x_c - x_1, y_2 = 2 \cdot y_c - y_1\)

There is therefore a process 140 comprising blocks 86, 88, 90, 92 and 94 which is suitable for determining the locations of two touches while they are simultaneously active.

There is also a process comprising blocks 144, 146, 148 which is suitable for determining the locations of two touches where the second touch quickly follows the other.

It is of course possible for two touches to be such that the second touch quickly follows the first and also such that the two touches are then simultaneously active. In this situation, it is possible to determine the two locations of the two touches using blocks 76, 80, 148 and also using block 94 and then to compare the two results. If there is divergence, then the controller may initiate a recalibration process. The recalibration process may, for example, perform the method of Fig 11.

Where components are described as 'connected' or 'coupled' or 'interconnected', depending upon context, this may mean that the components are operationally coupled and any number or combination of intervening elements can exist (including no intervening elements).

Different implementations of the apparatus 2 are schematically illustrated in Figs 15A and 15B.

In Fig 15A, the apparatus 2 is part of a module 180. As used here 'module' refers to a unit or apparatus that excludes certain parts/components that would be added by an end manufacturer or a user.

In the module 180 the controller 4 may be provided as an integral part of the resistive touch screen apparatus 2 (as illustrated) or it may be provided, at end manufacture, by enabling an additional component to perform that function. This may, for example, be achieved by programming a general purpose processor.
In Fig 15B, the apparatus 2 is part of an electronic device 182. As used here 'device' refers to a unit or apparatus that includes certain parts/components that are added by an end manufacturer or a user. In the illustrated example, the device 182 comprises a resistive touch screen apparatus 2 and at least an additionally user input or output mechanism. In the illustrated example, an additional user input mechanism 184 is provided by a microphone and/or a key or keys and/or an accelerometer etc. In the illustrated example, an additional user output mechanism 186 is provided by a loudspeaker etc. The device 182 may also comprise other 'additional components' 188 such as controllers, memory, processors, chip sets etc.

In the device 182 the controller 4 may be provided as an integral part of the resistive touch screen apparatus 2 (as illustrated) or it may be provided by an 'additional component', for example, by programming a general purpose processor of the device 182.

The device 182 may be a portable or mobile device.

The electronic device 182 may be a personal electronic device which is used mostly or entirely by one person as opposed to a device that is shared between many persons.

The electronic device may, for example, be hand-portable, for example, sized so that it can be carried in the palm of the hand, hand-bag or jacket pocket.

The electronic device 182 may operate as a computer and/or a radio communications device and/or a media player.

The blocks illustrated in the Figs may represent steps in a method and/or sections of code in the computer program. The illustration of a particular order to the blocks does not necessarily imply that there is a required or preferred order for the blocks and the order and arrangement of the block may be varied. Furthermore, it may be possible for some steps to be omitted.

Although embodiments of the present invention have been described in the preceding paragraphs with reference to various examples, it should be appreciated
that modifications to the examples given can be made without departing from the scope of the invention as claimed.

The first resistor R_1 can be external or integrated with the controller 4.

Features described in the preceding description may be used in combinations other than the combinations explicitly described.

Although functions have been described with reference to certain features, those functions may be performable by other features whether described or not.

Although features have been described with reference to certain embodiments, those features may also be present in other embodiments whether described or not.

Whilst endeavoring in the foregoing specification to draw attention to those features of the invention believed to be of particular importance it should be understood that the Applicant claims protection in respect of any patentable feature or combination of features hereinbefore referred to and/or shown in the drawings whether or not particular emphasis has been placed thereon.

I/we claim:
CLAIMS

1. An apparatus comprising:
 a first resistive screen extending in a first direction and a second direction;
 a second resistive screen extending in the first direction and the second direction and
 separated from the first resistive screen;
 a first reference resistor;
 a voltage source configured to apply a voltage across a series combination of the first
 reference resistor and the first resistive screen; and
 a voltage detector configured to measure a first voltage across the reference
 resistor.

2. An apparatus as claimed in claim 1, wherein the size of first reference resistor is
 small in comparison to the resistance of the first resistive screen.

3. An apparatus as claimed in claim 1 or 2, wherein the first reference resistor has a
 magnitude at least one order of magnitude less than the resistance of the first
 resistive screen.

4. An apparatus as claimed in any preceding further comprising a controller
 configured to have at least a one touch mode of operation for determining a location
 at which the first resistive screen is being touched bringing it into contact with the
 second resistive screen at one location and to have at least a two touch mode of
 operation for determining two locations at which the first resistive screen is being
 simultaneously touched bringing it into contact with the second resistive screen at
 two locations, wherein the mode of the controller is dependent upon the first voltage
 measured by the voltage detector.

5. An apparatus as claimed in claim 4, wherein the controller is configured to enter
 the two touch mode of operation when the first voltage measured by the voltage
 detector increases in magnitude.

6. An apparatus as claimed in claim 4 or 5, wherein the controller is configured when
 in the two touch mode of operation to calculate a centre location representing a
location midway between the two locations at which the first resistive screen is being simultaneously touched.

7. An apparatus as claimed in claim 4, 5 or 6 wherein the voltage source is configured to apply the voltage across the first resistive screen in the first direction and the apparatus further comprises a voltage detector configured to measure a second voltage at a first extremity, in the second direction, of the second resistive screen; and a voltage detector configured to measure a third voltage at a second extremity, in the second direction, of the second resistive screen, wherein the controller is configured when in the two touch mode of operation to calculate the centre location representing a location midway between the two locations by averaging the second voltage and the third voltage.

8. An apparatus as claimed in any one of claims 4 to 7, wherein the controller is configured when in the two touch mode of operation to calculate a displacement from the centre location using the first voltage.

9. An apparatus as claimed in any one of claims 4 to 8, wherein the controller is configured when in the two touch mode of operation to calculate a displacement from the centre location using a linear relationship between the deviation and the first voltage.

10. An apparatus as claimed in claim 9, wherein the linear relationship uses a predetermined maximum value of the first voltage and a predetermined minimum value of the first voltage, to determine a range of the first voltage.

11. An apparatus as claimed in claim 9, wherein the maximum voltage is determined by electrically connecting the first screen and the second screen at the extremities, in the first direction, of the first resistive screen.

12. An apparatus as claimed in any one of claims 4 to 11, wherein the controller is configured to disambiguate the location of the two touches by comparing the relative magnitudes of the second voltage and the third voltage.
13. An apparatus as claimed in any one of claims 4 to 12, wherein the controller is configured to switch between a first phase and a second phase, wherein in the first phase:
the voltage source is configured to apply a voltage across a series combination of the first reference resistor and the first resistive screen;
the first voltage detector is configured to measure a first voltage across the first reference resistor;
a second voltage detector is configured to measure a second voltage at a first extremity of the second resistive screen and
a third voltage detector is configured to measure a third voltage at a second extremity of the second resistive screen, and wherein in the second phase:
the voltage source is configured to apply a voltage across a series combination of a second reference resistor and the second resistive screen;
the first voltage detector is configured to measure a first voltage across the second reference resistor;
the second voltage detector is configured to measure a second voltage at a first extremity of the first resistive screen; and
the third voltage detector configured to measure a third voltage at a second extremity of the first resistive screen in the first dimension.

14. An apparatus as claimed in any one of claims 4 to 13, wherein the controller is configured so that if it enters the two touch mode of operation within a predetermined threshold time of calculating a first touch location in the one touch mode of operation, it determines a second touch location using the first touch location and the centre location.

15. An apparatus as claimed in any preceding claim, wherein the controller is configured to compare a touch location determined as a second touch of two sequential touches with a touch location determined as a second touch of two simultaneous touches and configured to enable calibration of the apparatus in dependence upon the outcome of the comparison.

16. A method comprising:
applying a voltage across a series combination of a first reference resistor and a first resistive screen; and measuring a first voltage across the reference resistor, wherein the first voltage increases when a user touches the first resistive screen at two distinct locations creating two distinct electrical connections between the first resistive screen and a second underlying resistive screen.

17. A method as claimed in claim 16, comprising using the measured first voltage to determine whether one or two touch locations are calculated.

18. A method as claimed in claim 16 or 17, comprising calculating a centre location representing a location midway between two locations at which the first resistive screen is simultaneously touched.

19. A method as claimed in claim 16, 17 or 18, comprising:
applying the voltage across the first resistive screen in a first direction;
measuring a second voltage at a first extremity, in the second direction, of the second resistive screen;
measuring a third voltage at a second extremity, in the second direction, of the second resistive screen; and
calculating the centre location by averaging the second voltage and the third voltage.

20. A method as claimed in any one of claims 16 to 19 comprising: calculating a displacement from the centre location using the first voltage.

21. A method as claimed in claim 20, wherein the displacement is based upon a linear relationship between the deviation and the first voltage.

22. A method as claimed in claim 21, wherein the linear relationship uses a predetermined maximum value of the first voltage and a predetermined minimum value of the first voltage, to determine a range of the first voltage.

23. A method as claimed in claim 22, wherein the maximum voltage is predetermined by electrically connecting the first screen and the second screen at the extremities of the first resistive screen.
24. A method as claimed in any one of claims 16 to 23 comprising: disambiguating the location of the two touches by comparing the relative magnitudes of the second voltage and the third voltage.

25. A method as claimed in any one of claims 16 to 24 comprising: entering the two touch mode of operation with a predetermined threshold time of calculating a first touch location in the one touch mode of operation, it determines a second touch location using the first touch location and the centre location.

26. A computer program comprising instructions which when used by a controller enables the controller to perform the method of any one of claims 16 to 25.

27. A computer program comprising instructions which when used by a controller enables the controller to:
 control the application of a voltage across a series combination of a first reference resistor and a first resistive screen; and
 detect a change in a first voltage measured across the reference resistor.

28. A computer program as claimed in claim 27 comprising instructions which when used by a controller enables the controller to: calculate a centre location representing a location midway between two locations at which the first resistive screen is simultaneously touched.

29. A computer program as claimed in claim 27 or 28 comprising instructions which when used by a controller enables the controller to: calculate a displacement from the centre location using the first voltage.

30. A computer program as claimed in claim 27 or 28 comprising instructions which when used by a controller enables the controller to: disambiguating the location of two touches by comparing relative magnitudes of the measured voltages.

31. An apparatus comprising:
 a first resistive screen;
 a second resistive screen separated from the first resistive screen;
first resistor means;
means for applying a voltage across a series combination of the first resistor means
and the first resistive screen; and
means for measuring a first voltage across the reference resistor means.
CALC x_c

1. AVERAGE V2, V3
2. CONVERT TO DISTANCE

CALC Δx

1. NO TOUCH DETECTED
2. $V1 = V1_{\text{min}_x}$
3. CHANGE PHASE
4. $V1 = V1_{\text{min}_y}$
5. CHANGE PHASE
6. CONNECT X EXTREMITIES OF X SCREEN TO Y SCREEN
7. $V1 = V1_{\text{max}_x}$
8. CHANGE PHASE
9. CONNECT Y EXTREMITIES OF Y SCREEN TO X SCREEN
10. $V1 = V1_{\text{max}_y}$
11. GENERATE LOOK-UP TABLES
12. CHANGE PHASE

CALIBRATION

13. LOOK-UP Δx USING V1
14. LOOK-UP Δy USING V1
INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2010/051678

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ, COMPDX, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Jon Loviscach, "Two-finger input with a standard touch screen". UIST 2207, October 7-10 2007, Newport, Rhode Island, USA, whole document</td>
<td>1-6, 8-12, 14-18, 20-31</td>
</tr>
<tr>
<td>X</td>
<td>US 4897511 A (ITAYA ET AL), 30 January 1990 (30.01.1990), claims 1-4, abstract</td>
<td>1, 27, 31</td>
</tr>
<tr>
<td>A</td>
<td>US 20090085888 Al (HO), 2 April 2009 (02.04.2009), whole document</td>
<td>1-31</td>
</tr>
<tr>
<td>A</td>
<td>US 20090073131 Al (YEH), 19 March 2009 (19.03.2009), whole document</td>
<td>1-31</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 'A' document defining the general state of the art which is not considered to be of particular relevance
 'E' earlier application or patent but published on or after the international filing date
 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 'O' document referring to an oral disclosure, use, exhibition or other means
 'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'&' document member of the same patent family

Date of the actual completion of the international search
27 August 2010

Date of mailing of the international search report
31-08-2010

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Sofia Sjogren / JA A
Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 2009)
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p,χ</td>
<td>US 20090109191 A (FELDER ET AL), 30 April 2009 (30.04.2009), whole document</td>
<td>1,16,27,31</td>
</tr>
</tbody>
</table>
International patent classification (IPC)

G06F 3/045 (2006.01)

Download your patent documents at www.prv.se

The cited patent documents can be downloaded:
- From "Cited documents" found under our online services at www.prv.se (English version)
- From "Anförda dokument" found under "e-tjanster" at www.prv.se (Swedish version)

Use the application number as username. The password is SFILLVZCMl.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application Number</th>
<th>Date</th>
<th>Country</th>
<th>Application Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>4897511</td>
<td>30/01/1990</td>
<td>JP</td>
<td>63314633 A</td>
<td>22/12/1988</td>
</tr>
<tr>
<td>US</td>
<td>20090085888 A1</td>
<td>02/04/2009</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20090073131 A1</td>
<td>19/03/2009</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP</td>
<td>0476099 A</td>
<td>12/08/1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WO</td>
<td>9115006 A</td>
<td>03/10/1991</td>
</tr>
<tr>
<td>US</td>
<td>20090322701 A1</td>
<td>31/12/2009</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>20090109191 A1</td>
<td>30/04/2009</td>
<td>NONE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>