0 R 0O O O I

0O 00/77594 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A 00O O

(10) International Publication Number

21 December 2000 (21.12.2000) PCT WO 00/ 77594 A2

(51) International Patent Classification’: GO6F (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,

(21) International Application Number: PCT/US00/16113 DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
D, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC,LK, LR, LS,

(22) International Filing Date: 12 June 2000 (12.06.2000) LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,

(25) Filing Language: English TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,

(30) Priority Data:

09/329,769 10 June 1999 (10.06.1999) US
(71) Applicant: EC-ENABLER LTD. [US/US]; 300 East 51st

Street, #11A, New York, NY 10022 (US).

(72) Inventor: HUGHES, Marvin, E.; Apt. 5L, 27 Claremont
Avenue, Mt. Vernon, NY 10550 (US).

(74) Agents: MCKENNEY, Charles, E. et al.; Pennie & Ed-
monds LLP, 1155 Avenue of the Americas, New York, NY
10036 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, [E,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, B, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR TRANSFERRING INFORMATION

ANALYSTS

STANDARDS

103
REPOSITORY

METHODS

REPOSITORY
(GUI FACILITIES)

DEVELOPERS

STANDARD
PROCESS

106 REPOSHORY

(57) Abstract: A method and system for application-to-application data exchange which provides data conversion from the format
of a source application to the format of a target application upon receipt of data by the target application. To achieve compatibility
among applications exchanging data, the preferred system uses a standard set of terms and process names for building metadata
packets that inform both applications as to their respective data representation. A metadata packet includes a standard name and
application specific data format, as well as an optional associated process name. Source metadata provided in connection with
source application-specific data enables the conversion of the source format to the format compatible with the target. This method

eliminates data conversion at the source application.

N

10

WO 00/77594 PCT/US00/16113

METHOD AND SYSTEM FOR TRANSFERRING INFORMATION

INVENTOR: MARVIN E. HUGHES

FIELD OF THE INVENTION

This invention relates to transferring data from one computer application to

another, including applications using different data formats.

BACKGROUND OF THE INVENTION

Electronic exchange of information is rapidly growing in significance for both
businesses and individuals. Although communications infrastructure is available for
transporting eiectronic messages, due to incompatible data formats of many
applications, there are significant obstacles to exchanging electronic data
dynamically, flexibly and easily. Paper-based transactions still persist even though
they are slow and cumbersome, because paper documents are easily understood
and available to most people engaged in commerce of any sort. This is not the case
with computer data, because computer applications employing different data formats

cannot interpret incompatible data.

To unify data formats employed by computer applications, the electronic data
interchange (EDI) standard has been developed. This standard, however, has not
been widely accepted because it does not effectively facilitate electronic
transactions. The EDI standard enforces a specific data format and requires each
participant to an electronic transaction to output its data in the format consistent with
the standard. To conform to the standard, user’s typically need to modify their
applications and databases, which are inordinate tasks. To complicate the matter

-1-
SUBSTITUTE SHEET (RULE 26)

10

WO 00/77594 PCT/US00/16113

further, when the standard changes it is frequently necessary to alter user
applications and convert their databases again to accommodate new features.
Thus, the currently available standard is so cumbersome and expensive to
implement and use that it does not meet the needs of a broad community of users

that require electronic exchange of information.

Also, due to the great expense associated with modifying the existing
standard, it is unduly rigid and does not dynamically adapt to the constantly
changing commercial environment. Because the standard dictates the types of
transactions that can be implemented through electronic data transfers, it severely

limits business practices.

Accordingly, there is a need for a system and method of exchanging
information among diverse applications that is based on a standard which is readily
adaptable to changing commercial environments. Also, there is a need for a system
that does not require complex, time consuming and error-prone modifications of the
existing applications and databases in order to facilitate information exchange.
Furthermore, there is a need for a standard and associated methods and system
that can be readily adapted by a broad community of users who desire to exchange

information.

SUMMARY OF THE INVENTION

The preferred embodiment of this invention provides a novel method and

apparatus for readily and effectively exchanging electronic information between

-

SUBSTITUTE SHEET (RULE 26)

10

15

WO 00/77594 PCT/US00/16113

heterogenous applications. The preferred embodiment employs a new standard
providing consistent names for data elements (e.g., data structure entries, fields of
records, etc.) and associated processes. The standard enables users to define data
relationships and specify data manipulation protocols so as to facilitate information
exchange without changing existing computer applications, even if they use different
data formats. In addition, the preferred embodiment minimizes the need for
extensive “setup” time and arrangements before initiating electronic data exchanges
among heterogeneous applications. Furthermore, the process-oriented standard of
the preferred embodiment is well-suited for implementation using object technology

and metadata management of open system architectures.

More specifically, the system and method of the preferred embodiment
employ repositories of standard terms and standard process names. The standard
terms (also referred to as “standard names”) define data elements that are
commonly transmitted by applications and the process names define processes
commonly used in connection with such data elements, e.g., functions that validate
data. For each data element that can be transmitted by an application, the preferred
system builds a metadata packet entry that defines the data element such that it is
readily “understood” and interpreted by other applications employing a different data
format. A collection of such metadata packet entries forms a metadata packet that
defines a data structure, a record, or another collection of related data. In the
discussion below, all such collections of application’s related data may be referred to

as data structure.

-3-

SUBSTITUTE SHEET (RULE 26)

n

10

WO 00/77594 PCT/US00/16113

Metadata packet entries include standard names coupled with application-
specific data format definitions. If a given data element defined by a metadata entry
is associated with a function (e.g., with a validation procedure), a metadata packet
entry may also include such standard function names. The names (also referred to
as “terms”) in a metadata packet are readily understood by another application
having access to the same standard repositories, and because application-specific
data formats are defined as part of each metadata packet, incoming data can be

readily converted to the format consistent with a recipient (target) application.

The process of building metadata packets is incomparably easier than
modifying applications, as customarily done in the prior art, because the existing
data structures of the application do not need to change. After metadata packets
have been defined and stored for each communicating application, the applications

can transfer data without regard for specific data formats used by the recipients.

To transmit information, the source application (i.e., the application that
transmits data) sends both actual data elements formatted in accordance with the
source - application format and the corresponding one or more metadata packets.
(As noted, a metadata packet represents, for example, a data structure or a record).
At the target end (e.g., at the system supporting the target application that receives
data), the received source data can be readily converted for input to the target
application because the source and target metadata packets use the same standard
terms and their respective data formats are defined by metadata. In the preferred

embodiment, the conversion of the data transmitted by the source application to the

4-

SUBSTITUTE SHEET (RULE 26)

wh

10

WO 00/775%4 PCT/US00/16113

format compatible with the target application is target-data-structure driven. That is,
target metadata is retrieved and matched with the corresponding source data
structure defined by the source metadata. In the event that certain data elements
required by the target application are not included in the source data structure
defined by the source metadata packet, a default value is supplied during the data
conversion. Thus, the resultant converted data is compatible with the target

application.

Accordingly, to communicate information, a source application does not
perform any data conversion and does not even need to “know” what data format is
compatible with the target application. Advantageously, the data structures in the
source and target systems remain unchanged, while the metadata provides effective

communication among applications.

It is apparent that the method and system of the preferred embodiment
provides a dramatic improvement over current practices. The preferred standard
uses only standard names and does not impose specific data formats. Due to its
simplicity, the standard can dynamically change so as to stay current and consistent
with business practices. Users can readily adapt to the changes in the standard by
building new metadata packets and without changing their applications software.
Another one of many advantages of the preferred method and system is that
different applications that use incompatible data representations can communicate
without converting data to another representation regardless of specific

representations compatible with intended recipients. This mode of communication is

-5-

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

possible because the transmitted data is converted at the target end of the data

transfer based on the transmitted one or more metadata packets.

It should also be noted that the method and system of the preferred

embodiment is not limited to supporting information exchange by remotely located

n

source and target applications, wherein the corresponding source and target
systems communicate over a network. It can, for example, be employed within the
same system and within the same application. Also, as understood by a person
skilled in the art, the preferred method and system are not limited to commercial

10 transactions and can be employed in a vast variety of applications without any

limitation to a specific area.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates establishing and maintaining repositories of standard terms

15 and process names.

FIG. 2 illustrates the construction of metadata packets.

FIG. 3 illustrates the construction of metadata packets in further detail.

FIG. 4A and 4B illustrate an example of the metadata packet entries

construction process.

-6-

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

FIGS. 5A and 5B illustrate the configuration of software components

facilitating exchange of information of the preferred embodiment.

FIG. 6A-D illustrate the operation of the loader and agent manger.

(W]

FIG. 7A-C illustrates the functions performed by the process engine during

data conversion.

FIGS. 8 and 9 provide examples of how metadata packets are constructed.
10
FIGS. 10 and 11 illustrate an example of a data transfer in accordance with

the preferred embodiment.

FIG. 12 illustrates the manner in which object technology can be used to
15 establish a convention for ordering relationships between transaction types and

trading events.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The preferred embodiment employs repositories of standard terms (or names)
20 and standard process names that enable applications having incompatible names
and data formats to communicate with each other without converting their data
structures to a different format. FIG. 1 illustrates a preferred way of constructing and
maintaining these repositories of standard information. Standards analysts (see

101) are individuals who study various sources of relevant information and define

-7-

SUBSTITUTE SHEET (RULE 26)

10

WO 00/77594 PCT/US00/16113

and enhance the standard. They are preferably provided with a graphical user
interface (GUI) 110 for entering and maintaining the lexicon of the standard. The
terms and process names approved by the analysts are then stored in the term and
process repositories, illustrated at 103 and 108, respectively. Updated repositories
of standard terms and process names are periodically distributed to all the

participants that use the preferred method of data exchange.

The standard terms stored in repository 103 reflect frequently used data
elements and the process names stored in repository 108 identify the processes
commonly used in connection with these data elements. For example, such
processes may be used for data validation and manipulation. In deciding which
terms to include in the standard, the analysts consider paper and electronic
documents commonly used in commerce and other uses of data transfers, event
logs, file specifications and other relevant sources. Software developers 106 may
identify standard processes and supply their names for inclusion into the process
name repository 108 by standards analysts 101. The repositories of standard terms
103 and process names 108 are preferably not linked and, therefore, provide
independent collections of reference data. The names selected for the terms and
process names of the standard preferably resemble natural language terms

reflecting their intended use.

FIG. 2 illustrates how application-specific data structures are represented as
metadata packets comprising standard terms and process names coupled with

application-specific data formats. The metadata building process is implemented on

-8-

SUBSTITUTE SHEET (RULE 26)

N

10

15

WO 00/77594 PCT/US00/16113

a computer system, e.g., a personal computer, as a separate program or a collection

of programs as understood by a person skilled in the art. To facilitate data
exchange among heterogenous applications, each application intending to
communicate with other applications should undergo the process of building
metadata packets. Notably, the metadata building process does not translate data
structures of the applications to a different format; only the names of data elements

should be translated to the terms of the standard.

A specific user application is illustrated as 201. Data structures of an
application are described, for example, using conventional record/file layouts,
database table definitions or using other techniques known in the art. In FIG. 2,
application data specification 200 describes the data structures of the application
201. The metadata building process is supported by a graphical user interface
(GUI) 210 that facilitates correlating application-specific data elements with the

standard terms and process names.

Application data specification 200, which for example can be derived from
data names, specific data formats (e.g., lengths) and the overall data structure
configuration (e.g., file organization), is entered by a user with an aid of GUI 210,

and then stored as application description 204. Thereafter, standard terms and

process names from the repositories 103 and 108 are matched with the application-

specific definitions so as to construct metadata packets. Interface 210 facilitates the

assignment of standard terms and process names to the data elements of the

application. As a result, the system supporting this process generates one or more

-O-

SUBSTITUTE SHEET (RULE 26)

(4}

10

15

WO 00/77594 PCT/US00/16113

metadata packets comprising standard terms correlated to application-specific data

formats and selected standard process names. The resultant metadata packets are

stored as illustrated at 205.

FIG. 3 illustrates the process of building metadata packets discussed in
connection with FIG. 2 in further detail. At 305 of FIG. 3, application definition
module (ADM) presents graphical templates to a user building metadata packets
who, first, enters application data specification 200, for example, using a keyboard.
At 310, the ADM builds definitions of application-specific data structures on the basis
of the user-supplied data and stores them as application description 204. The
definitions stored as application description 204 include names of data elements,
specifications of data formats (e.g., lengths of fields and the associated offsets),
corresponding process names, and may also include other information that defines

application data structures as known in the art.

Then, at 320, metadata building module (MBM) displays a template with the
previously entered definitions of the application description as well as another
template with standard terms and process names stored in the repositories 103 and
108. Preferably, the application description is organized by transaction type of the
defined data structures. For example, the transaction type of a data structure can
be “Purchase Order” as illustrated in the exempiary data structure 820 of FIG. 8.
The standard repositories 103 and 108 aiso preferably identify transaction types that
the standard names may relate to. Accordingly, the metadata building system

preferably displays standard terms and process names that generally relate to the

-10-

SUBSTITUTE SHEET (RULE 26)

10

15

WO 00/77594 PCT/US00/16113

transaction type of the currently-displayed description of the application-specific data

structure.

The user then assigns selected terms and process names from the standard
repositories to the application-specific definitions using graphical prompts as known
in the art. As a result, the standard terms and process names represent the lexicon
in the particular application. At 330, for each application-specific term in the
application definition, the metadata building module constructs an entry of a
metadata packet comprising application-specific data specification joined with the
corresponding standard terms and optional process names. The metadata packet
entries corresponding to data elements of each application-specific data structure
are then combined into a metadata packet. The packets are then stored as

illustrated at 205.

As noted, the terminology of the standard is preferably selected so that the
standard names resemble natural fanguage thereby simplifying the process of
matching application-specific and standard terms. As apparent from the above
discussion, the standard terms (names) are selected based on the lexicon, without
considering application-specific data formats. That is, only the terms used by the
application are matched to the standard terms, but application-specific data formats
do not need to be converted to another “standard” format. Also, it should be noted
that the process of matching application-specific terms to standard terms so as to
build metadata packets is not concerned with data structures employed by any

intended recipient of information (target application). As understood by a person

-11-

SUBSTITUTE SHEET (RULE 26)

10

WO 00/77594 PCT/US00/16113

skilled in the art, the constructed metadata packets can also be employed for
computer applications unrelated to electronic data transfer. The metadata
discussed herein can, for example, be used for initiating and monitoring remote
processing tasks, performing data display and retrieval functions that are currently
performed by browsers, as well as for a variety of other applications as understood

by a person skilled in the art.

FIGS. 4A and 4B provide an example of the metadata building process
discussed above in connection with FIGS. 2 and 3. At 400, at least some of the
application-specific data definitions that define data elements are displayed to the
user. An example of such definitions is provided at 405. The definition of this
example includes a company name “Co. Name,” having application-specific data
format defined as 70 and 10 and “Part No.” formatted in this application as 15 and 5.
Note that “Co. Name” and “Part No.” are application-specific names and “70, 10" and
“15, 5" are application-specific data formats. Next, at 410, the metadata building
system selects a list of standard terms based on the transaction type of the
application-specific data structure. In this example, these terms are “Company

Name” and “Part Number”, see 420.

At 425, the user selects the terms from the repository of standard terms as,
for example, illustrated as 430. At 435, the user graphically relates the selected
standard terms to the corresponding terms in the application definition (see 440).
Then, at 445 (FIG. 4B), each selected standard term is used as a part of the

corresponding metadata packet entry. The metadata packet entry for the data

-12-

SUBSTITUTE SHEET (RULE 26)

N

10

WO 00/77594 PCT/US00/16113

element relating to “Company Name” is illustrated as 450 with the standard term
itself shown at 451. At 455, the standard term data is coupled with the application-
specific data definition. That is, data format 452 has been stored in the packet entry
450 so that at this point the metadata packet entry 450 contains a standard term
correlated to application-specific data format. Next, at 465 the user optionally
selects relevant process names from the repository of standard process names
which are presented as a list of process names (see 470). These process names '
will be invoked by a process engine, described in detail below, of the target
application. Although this option is available, it is not necessary to include any
process names in any metadata packet element. The optional assignment of
process names completes the assembly of this exemplary metadata packet entry.

In this example, at 475, the system adds user-selected process names to the packet
entry 450 (see 453 and 454). The completed metadata packet entry remote process
450 is then included in the appropriate metadata packet which can be retrieved at
any time for inclusion in an electronic data transfer or for any other purpose as

understood by a person skilled in the art.

FIGS. 5A and 5B illustrate preferred software configuration supporting data
transfer between a source and a target applications. FIG. 5A illustrates the source
side and FIG. 5B illustrates the target side of the transfer. In this illustration, each
side is a computer system executing the source and target applications respectively.
These applications can use incompatible data formats. (As noted, the same

methodology can be used for applications that reside on the same system).

-13-

SUBSTITUTE SHEET (RULE 26)

(4}

WO 00/77594 PCT/US00/16113

Both systems include software components of the preferred embodiment
supporting the preferred transfer, receipt and interpretation of data. In this
discussion it is assumed that metadata packets have already been built for both
applications. Software components illustrated in FIGS. 5A and 5B supporting data
transfer and interpretation can be combined into the same process or can be
different programs depending on the specifics of a particular implementation as
understood by a person skilled in the art. Also, as understood by a person skilled in
the art, multiple copies of at least some of the components illustrated in FIGS. 5A
and 5B can be employed. Preferably, the software installed at both ends of the

transfer include source and target functionality.

In FIG. 5A metadata packets 505 and data structure(s) 510 of the source
application are accessed by loader 521 and agent manager 522 illustrated as block
520, to facilitate the packetizing of information to be forwarded via a communications
network to the target application. The agent manager software, 522, assures that
the correct data has been assembled for the selected function of data transfer. The
function refers to the intended use of the data by the target application. For
example, the function can be file transfer and the associated data translation, data
display, or interaction with a remote process. The agent manager identifies and
retrieves the appropriate metadata packets that are needed to describe the data
being transmitted for the desired function. The metadata is then stored as shown at
427. The loader 521 records the address information of the target application and
retrieves the appropriate data structure(s) of the application 510 for transmission to

the target application. In addition, if only a subset of the application data should be

-14-

SUBSTITUTE SHEET (RULE 26)

(o1

10

15

WO 00/77594 PCT/US00/16113

transmitted, the loader invokes process engine 500 to isolate the desired subset.
The process engine 500 identifies the desired subset using the processing as
discussed in connection Fig. 5B depicting the target side. The loader may also
invoke third party utility functions 523 to process the data before it is transmitted.
The data to be transmitted is stored as illustrated at 525. The loader 521 then
combines the metadata packets 427 assembled by the agent manager 522 with the
data 525 provided by the application and initiates the communications session.
Data encryption and decryption utilities and network routing requests, as known in
the art, are also included in the functions supported by the loader 521. One or more
files containing metadata packet(s) and the corresponding source data are then
transmitted to the target system executing the target application using
communication interface 530. The function of the data transmission is also included
in the transmitted data. For example, the function can be identified as DT-file

transfer and data translation; DP-data display; RP-interaction with a remote process.

The preferred software components executing at the target system are
illustrated in connection with FIG. 5B. As noted, software components supporting
the preferred data transfer and receipt are preferably included in a single package.
Thus, although these software components are shown under different reference
numbers in FIG. 5B, they are preferably a different copy of the software which

support both the transfer and receipt capabilities.

At the target system, the source data and metadata packets are received at

communication interface 535. See FIG. 5B. The received data and metadata, as

-15-

SUBSTITUTE SHEET (RULE 26)

15

WO 00/77594 PCT/US00/16113

illustrated at 537 and 540, respectively, are disassembled and stored for further
processing by the loader 546. In the capacity of a recipient, the loader 546 and

agent manager 547 collectively illustrated as 545 perform additional functions

discussed below.

The agent manager of the target system validates the existence of a function
supported by the target application for which the data transfer was received. It
should be noted that different applications use the received data in different ways.
An application may read the received data as a file, or display the data, or use it to
interact with a remote process (e.g., to supply parameter/task list to a remote
process), or use it for another purpose as known in the art. As noted, this intended
use of the data is referred to as the function of the transmitted data. The loader 546
preferably maintains a function queue where it enters the function of incoming data
and its storage location. The agent manager retrieves metadata packets (see 550)
of the target application that correspond to the received packets on the basis of the
transaction type of the transmitted data, and invokes the appropriate portion of the

process engine, illustrated as 560, to perform data conversion for the indicated

function.

The source data, originating at 510, is converted in accordance with the
target metadata specification 550 to the target application data 555. The data
conversion process at the target system employs an output-driven mapping process.
That is, first the terms in the target application are selected and then matched with

the terms employed by the source as discussed in more detail below.

-16-

SUBSTITUTE SHEET (RULE 26)

(o]}

10

15

20

WO 00/77594 PCT/US00/16113

FIGS. 6A-D and 7A-C illustrate the processes performed by the loader, agent
manager, and process engine at the receiving end. It should be noted that, as
understood by a person skilled in the art, these modules can be implemented as
three separate programs, or may be combined into a single program or partitioned in
any other way known in the art. Also, as noted, multiple copies of these
components can be employed. A person skilled in the art will choose an appropriate

configuration for a given implementation.

The processing illustrated in FIG. 6A begins at 600 wherein the target data
communications facility (e.g., 535) receives metadata packets and source data
structures (see 605, see also, 537 and 540). Upon arrival at the target system, the
received metadata packets and associated data structures of the source application
are examined by the loader 546 so as to determine that the information has been
properly received. Thus, flow of control is transferred to 610 where proper receipt of
the data transmission is validated (see 610). If an error is detected, an appropriate
message identifying the error is returned to the sender (see 615). The loader
module also performs decryption, if necessary, as well as any additional tasks that
are needed to properly receive the transmitted data, as known in the art. Each
metadata packet received from the source application is then stored in the received
metadata directory of the target system (see 620 and 625). The received source
data structures are stored in the received data directory at the target system (see
630 and 635 of FIG. 6B). The loader also determines the function of the transmitted
data (e.g., file transfer and data translation, display, interaction with a remote

process). As noted, the target computer may have various applications that receive

17-

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 00/77594 PCT/US00/16113

data transmitted from external sources. After the loader has determined the function
of the received data, this function and the identification of the storage for the
received data are entered in the function queue. When the requested function has
been identified and added to the queue the loader invokes the agent manager (see
547). As understood by a person skilled in the art, the system may maintain several

queues between the loader and agent manager.

Referring to FIG. 6C, the agent manager reads function queue at 660 and
retrieves validation criteria for the received data based on its function. The agent
manager then retrieves received information from the data directly in accordance
with the specification provided in the queue and, at 665, validates that the received
information meets the requirements needed to assure proper deployment of
resources for further processing. If invalid data has been detected, the source
application is informed accordingly by a return message (see 666 - 668). This
validation of the received data and metadata is preferably performed upon the
receipt of data because the data conversion process can be performed at a later
time, not necessarily upon receipt. Thus, if an error is detected, the source has to

be notified while it retains information about the particular data transfer.

After the received data has been validated, the agent manager invokes the
capabilities of the process engine in accordance with the function of the received
data (see 680 and 685) and initiates a session monitor process (see 690) to record

statistics and log exceptional activity during the operation of the engine. The

-18-

SUBSTITUTE SHEET (RULE 26)

n

10

15

20

WO 00/77594 PCT/US00/16113

execution of the agent manager is then returned to block 660 where it continues to

handle new data.

The operation of the process engine for each received metadata packet and
the associated application-specific data is illustrated in FIGS. 7A-C. The process
engine 600 loads a source metadata packet (see 700), the corresponding target
metadata packet (see 705) and the corresponding transmitted source application-
specific data (see 710). The corresponding source and target metadata packets are
selected based on the source packet transaction type. Then, the process engine

performs data conversion by mapping from the target data structure to the received

source data structure.

A metadata packet includes one or more entries specifying data elements
and optionally, it may also include one or more group level definitions. The group
level definitions are file headers and other information of general nature. If they are
used, group level definitions appear in the beginning of the packet. Each of the
definitions corresponds to one or more entries representing data elements that
appear thereafter. The entries representing data elements belonging to a group
level definition can be ascertained from the group level definition. It should also be
noted that a metadata packet preferably (but not necessarily) includes a transaction

type of the packet.

In the discussion below, the processing of the process engine is illustrated

assuming that the packets include one or more group level definitions. This

-19-

SUBSTITUTE SHEET (RULE 26)

wh

15

WO 00/77594 PCT/US00/16113

processing technique can be modified by a person skilled in the art for other

conventions used in packet construction.

At 720 the process engine determines if a given group level definition entry in
the target packet exists in the transmitted source metadata. If the definition does
not exist, at 725, the default data is provided as target data for the data elements of
this group level definition. If the given group level definition entry has been found,
the packet entries corresponding to the group level definition are identified and the
source data elements (if they exist) are converted based on the metadata. If at 730,
a target metadata packet entry does not exist in the source packet, defauit mapping
(735) is performed. That is, default data is provided for the missing data element
corresponding to the missing metadata entry. Otherwise, the target packet entry
and the corresponding source packet entry are used for mapping the source data
element to the target data (see 740). Thatis, the source data is converted to the
target data representation. As a part of the mapping process, the process engine
may execute one or more processes specified by metadata as illustrated at 738. In
the event of default mapping as discussed above, the default processing functions

may also be applied.

More specifically, at 745 the process engine checks if additional metadata
packet entries of the target packet belong to the group level definition that is
currently being processed. In other words, at 745 it is checked if additional target
data elements that have not been processed belong to this group level definition. If

so, flow returns to 730 and the next data element corresponding to the next target

-20-

SUBSTITUTE SHEET (RULE 26)

n

10

WO 00/77594 PCT/US00/16113

metadata entry is processed. Otherwise, the system checks at 750 whether
additional group level definitions exist and, if so, flow returns to 720 to process the
data elements corresponding to the next group Ievel definition entry. Otherwise, the

conversion process terminates.

It should be noted that if metadata does not employ group level definition, the
metadata entries can be processed sequentially so as to create data elements for
input to the target application. In this case, as discussed before, the process is
driven by the target metadata so that the target entries are created either by defaulit
mapping if the corresponding source elements do not exist or by data conversion
from the source data element to the target data element based on the corresponding

metadata packet entries.

Because the metadata entries of the target application are considered first,
this procedure assures integrity of results, i.e., that all the necessary elements of the
target data are specified when the data is provided to the target application. The
target-driven execution as discussed herein assures that the preferred method is

applicable to a wide range of applications.

FIGS. 8 through 11 provide an example of the operation of the preferred
embodiment described generally from a user perspective. User 800 in FIG. 8
wishes to transmit a purchase order represented consistently with a purchase order
file specification of his/her source application. Therefore, to use the preferred

system and method the user needs to build metadata packets for this purpose.

-21-

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

These packets then would support a multitude of subsequent purchase order
transmissions. To build appropriate packets, first, user 800 enters into his/her
system application-specific data structures preferably using the graphical user
interface (see 210) as discussed above. In this example, the purchase order file
5 specification (i.e., the purchase order data structure) of the source application of the

user 800 is illustrated at 820. In this example, data structure 820 includes several
fields of data identified by “Field Name” (e.g., “Comp. Name”), and each field is
encoded using the source-application-specified format defined as"Offset” and
‘Length”. As discussed above; the entry of the application data structure is

10 preferably supported by visual and textual prompts. Although this example shows a
specific data structure formatted in a specific way as understood by a person skilled
in the art, the preferred system and method is not limited to any specific data

representation or any specific use of data (e.g., transaction types).

15 Next, the user assigns standard terms, illustrated as 825, from the repository
103 to the application-specific definitions 820. Preferably, this is done by the system
displaying a list of standard terms and a user associates them with the names used
in the application preferably with a pointing device. It should be noted that the terms
and process names of the preferred standard do not include synonyms so that each

20 term uniquely identifies the corresponding data type, even though synonyms may
exist in a data structure of a given application. As discussed above, the displayed
standard terms are preferable selected based on the transaction type of the

application-specific data structure, which in this example is a purchase order.

-22.

SUBSTITUTE SHEET (RULE 26)

10

15

WO 00/77594 PCT/US00/16113

To facilitate the terms assignment process, a list of terms commonly found in
user environments may be dispiayed to a user in connection with each standard
term. As noted, to assure unambiguous interpretation during the data conversion
process, the standard has only one name for each supported data element. For
example, “Company Name” (see 825) is the name adapted by the standard. The
corresponding data elements used by applications may have different names. For
example, in the applications iliustrated in connection with FIGS. 8 and 9, “Comp.
Name” (see 820) and“Co. Name” (see 915) have the same meaning as “Company
Name.” The names employed by the applications (see, e.g., 820 and 915) may
appear in a synonym list provided in connection with a given standard term, e.g.,
“Company Name”. This list is used as a tool facilitating the correlation of the
standard and application-specific names, but, as noted, the standard itself does not

have synonyms.

During the process of matching standard and application-specific terms, the
user may also assign process names from the standard repository 108 to selected
metadata packet entries. An example of such standard process names is illustrated
as 828. The resultant metadata entries of this example are illustrated as 830. They
form a metadata packet for the purchase order transaction type. The packet entries
include standard data names, application-specific data formats and optionally
selected standard process names. Thus, application-specific data structure 820 has
been represented in the metadata such that it can be readily understood by other

applications having access to the standard repositories 103 and 108.

-23-

SUBSTITUTE SHEET (RULE 26)

10

15

WO 00/77594 PCT/US00/16113

As part of data transfer, the generated metadata packet 830 is then passed to
the system network facility generally illustrated on this drawing as 840 by the agent
manager and loader as discussed above. The application-specific data of the
source application is illustrated in this example as 835 and it is also passed to the
network facility by the loader as discussed above. Also, a user of the source
application may choose to forward a subset of the output information to the target
application. As noted previously, the subset may be produced by invoking the
process engine to generate the subset using the steps typically performed in
connection with the target application. Also as noted previously, the present method
and system can be used for processing data within one system, and not only for the
purpose of exchanging data between systems. In this example, the purchase order
transaction type associated with the data structure at issue in FIG. 8 belongs to the
class ORDER, which includes a pair of transaction types: purchase order and order

entry (see FIG. 12 and the associated discussion).

The recipient of the purchase order also has built its metadata packet that
specifies the data accepted by an order entry application. As illustrated in FIG. 9,
user 910 defined application-specific data structure shown at 915 using the
procedure discussed above. The standard terms and process names used for order
entry are illustrated at 920 and 923. In this example, using the procedure discussed

above, the target system built metadata packet 925.

FIG. 10 illustrates metadata packets for the source (purchase order) 830 and

the target (order entry) 925. As apparent from this illustration, the commonality of

-24-

SUBSTITUTE SHEET (RULE 26)

10

WO 00/77594 PCT/US00/16113

terms, not formats, facilitates successful data conversion. Thus, using the output-
driven method (i.e., the method where target metadata is considered first), as
discussed above, the process engine converts the received purchase order data
structure in the format of the source application into the structure compatible with the
order entry input of the target application. As a result, incompatible data was
transmitted, received and used by the target application without any translation

performed by the source system.

As summarized in FIG. 11, the source (sender) application 1100 and the
target (receiver) application 1110 were enabled to consummate an electronic
delivery of data without disturbing their respective native environments. Thus, the
preferred methods and system facilitates conducting a trading event using a
standard language 1115 and performing the requisite data validation and
manipulation processes, see, e.g., 1120 and 1130. The process engine has
converted the source data structure into the data representation required by the
target application. Metadata received by the target application can be interpreted so
as to facilitate file translation (see 1145), deliver information to a web site (see
1150), initiate and direct remote processing operations (see 1155) or perform any

other functions conceived by application developers.

It should be noted that purely lexical qualities of the preferred standard
simplify the exchange and proper interpretation of data. Other than consistency of
vocabulary, there are no other requirements with respect to transmitted data so that,

for example, format, structure, context, and manipulation remain the properties of

-25-

SUBSTITUTE SHEET (RULE 26)

10

WO 00/77594 PCT/US00/16113

application environments. That is, data representation of the application
environment is not effected. Thus, in the preferred embodiment, it is possible to

readily envelope, transport and transform information between diverse applications.

FIG. 12 provides an example of how object technology can facilitate the
implementation of the preferred embodiment. Electronic transactions have structural
elements that can be defined in object-oriented terms. An example of such an

object definition is as follows:

Transaction Events ----> Object Class

-Standard Order

Transaction Type ----> Object

Purchase Order/Order Entry ----> Object Property

- Buyer/Seller ----> Object Property
- Sender/Receiver ----> Object Property
- Source/Target ----> Object Property
- National Language ----> Object Property
Transaction Process ----> Object Method
-26-

SUBSTITUTE SHEET (RULE 26)

()

10

15

WO 00/77594 PCT/US00/16113

A transaction set describes transaction types that are used to conduct a
specific event between trading partners. Inthe example provided above, the
purchase order issued by the system of FIG. 8 and the order entry data generated
by the system of FIG. 9 are complementary components of the transaction set,
Standard Order. As discussed above, the properties associated with transaction
types provide a consistent definition of the trading relationship across a variety of
trading events. Functions and operations performed on transaction types
correspond to the application of methods to objects. Data elements (fields,
character strings, bit maps, etc.) within transaction types are processed by the

process engine and/or by external methods invoked by it.

As understood by a person skilled in the art, the terminology of this
specification should be interpreted broadly. For example, the term “data structure”
should not be construed as a data structure of a specific language or system
because it generally relates to any collection of items of information (e.g., data
elements). Similarly, “metadata” generally relates to any data describing other data
as understood from the previous discussion. It is also understood that a metadata
packet broadly defines a collection of information (e.g., a data structure) and each
entry in the packet describes an item of information in such a collection. The data
formats of various application data structures and the like should also be construed
broadly as any data representations as understood by a person skilled in the art.
Other terminology employed herein (for example, applications, process, system,
transaction type, communication, function, etc.) should also be interpreted broadly

as understood by a person skilled in the art.

-27-

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

The present invention is not to be limited in scope by the specific
embodiments described herein. indeed, modifications of the invention in addition to
those described herein will become apparent to those skilled in the art from the
foregoing description and accompanying figures. Doubtless, numerous other

5 embodiments can be conceived that would not depart from the teaching of the

present invention, whose scope is defined by the following claims.

-28-

SUBSTITUTE SHEET (RULE 26)

W

10

WO 00/77594 PCT/US00/16113

CLAIMS:

1. A method of providing data from a source computer application to a

target computer application comprising:

receiving source data having a representation consistent with the

source application at a target system;

receiving a source metadata packet corresponding to the source data
at the target system, wherein the metadata packet includes at least one entry
comprising a standard name corresponding to at least one name used by the source
application and a definition of a related data representation used by the source
application;

retrieving a target metadata packet; and

converting the source data to a representation compatible with the

target application based on the source and the target metadata packets.

2. The method of claim 1 wherein the step of converting comprises
examining an entry in the target metadata packet before the corresponding entry in

the source metadata packet is examined.

3. The method of claim 1 further comprising using default data if there is

no source metadata packet entry that corresponds to the target metadata packet

entry.

-29-

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 00/77594 PCT/US00/16113

4, The method of claim 1 wherein the source metadata packet further

comprises at least one process name selected from a repository of standard process

names.

5. The method of claim 4 wherein the step of converting further

comprises executing a process corresponding to the process name.

6. A method of building a metadata packet for a computer application
comprising:
storing application definition comprising application-specific names and

application-specific data formats;

matching the application-specific names in the definition to standard

names; and

storing one or more metadata packet entries each of which comprises
a name selected from the standard names and one of the application-specific data

formats.

7. The method of claim 6 further comprising storing at least one standard

process name as part of at least some of the metadata packet entries.

8. The method of claim 6 wherein the step of matching comprises using a

graphical user interface.

-30-

SUBSTITUTE SHEET (RULE 26)

W

10

15

20

WO 00/77594 PCT/US00/16113

9. The method of claim 6 further comprising displaying suggested names

that may correspond to one of the standard names.

10. A method of converting source data, provided by a source application,
for input to a target application comprising:
retrieving a target metadata packet comprising at least one standard

name;

identifying a source metadata packet, comprising at least one standard
name, corresponding to the target metadata packet;

converting the source data defined by the source metadata packet to a
target representation defined by the target metadata packet so as to obtain input

data; and
if an entry in the metadata target packet does not exist in the source

metadata packet, providing default data as a part of the input data.

11. The method of claim 10 further comprising executing at least one

process identified by a standard process name in the source metadata packet.

12. The method of claim 10 wherein the source and target applications are

executing on different computers communicating over a network.

13. The method of claim 10 wherein the source and target applications are

executing on the same computer.

-31-

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

14. Computer memory storing a metadata packet useful for data
conversion at a target end of data transmission, comprising:
standard data name stored as part of the packet in the memory;

representation of an application-specific data format stored as part of

5 the packet in the memory; and

at least one standard process name stored as part of the packet in the

memory.

15. The memory of claim 14 wherein the packet comprises a plurality of

10 entries.

16. The memory of claim 15 wherein at least some of the entries represent

data elements.

15 17. The memory of claim 16 wherein at least some of the entries represent

group level definitions.

18. A method of receiving and interpreting source data for a target
application comprising:
20 receiving source data from a source application;
receiving source metadata relating to the source data;
receiving a function of the source data transmission;,

retrieving a target metadata in accordance with the function of the

source data transmission; and

-32-

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

converting the source data to a target data based on the source and

the target metadata.

19. The method of claim 18 wherein the function is file transfer.

20. The method of claim 19 wherein a file formatted in accordance with the

target application is generated as a result of the step of converting.

21. The method of claim 18 wherein the function is a display of the

10 received data.

22. The method of claim 18 further comprising receiving the source data
over the Internet at a remote computer and displaying the target data at the remote
computer.

15

23. The method of claim 18 wherein the function is controlling or initiating a

remote process.

24. The method of claim 18 wherein the step of converting includes

20 generating a visual representation of the received source data consistent with the

target application.

-33-

SUBSTITUTE SHEET (RULE 26)

W

10

15

WO 00/77594 PCT/US00/16113

25. The method of claim 23 wherein the step of converting includes
generating parameters/task list for input to the target application and wherein the

target application is a remote process.

26. A system for providing data from a source computer application to a

target computer application comprising:

means for receiving source data having a representation consistent
with the source application at a target system;

means for receiving a source metadata packet corresponding to the
source data at the target system, wherein the metadata packet includes at least one
entry comprising a standard name corresponding to at least one name used by the
source application and a definition of a related data representation used by the
source application;

means for retrieving a target metadata packet; and

means for converting the source data to a representation compatible

with the target application based on the source and the target metadata packets.

27. The system of claim 26 wherein the means for converting comprises
means for examining an entry in the target metadata packet before the

corresponding entry in the source metadata packet is examined.

28. The system of claim 25 further comprising means for using default data

if there is no source metadata packet entry that corresponds to the target metadata

packet entry.

-34-

SUBSTITUTE SHEET (RULE 26)

10

15

WO 00/77594 PCT/US00/16113

29. The system of claim 25 wherein the source metadata packet further

comprises at least one process name selected from a repository of standard process

names.

30. The system of claim 29 wherein the means for converting further

comprises means for executing a process corresponding to the process name.

31. A system of building a metadata packet for a computer application

comprising:

means for storing application definition comprising application-specific
names and application-specific data formats;

means for matching the application-specific names in the definition to
standard names; and

memory for storing one or more metadata packet entries each of which
comprises a name selected from the standard names and one of the application-

specific data formats.

32. The system of claim 31 further comprising memory for storing at least

one standard process name as part of at least some of the metadata packet entries.

33. The system of claim 31 wherein the means for matching includes a

graphical user interface.

-35-

SUBSTITUTE SHEET (RULE 26)

n

10

15

20

WO 00/77594 PCT/US00/16113

34. The system of claim 31 further comprising means for displaying

suggested names that may correspond to one of the standard names.

35. A system for converting source data, provided by a source application,

for input to a target application comprising:

means for retrieving a target metadata packet comprising at least one

standard name;

means for identifying a source metadata packet, comprising at least

one standard name, corresponding to the target metadata packet; and

means for converting the source data defined by the source metadata
packet to a target representation defined by the target metadata packet so as to
obtain input data, wherein if an entry in the metadata target packet does not exist in
the source metadata packet, the means for converting provides default data as a

part of the input data.

36. The system of claim 35 further comprising means for executing at least

one process identified by a standard process name in the source metadata packet.

37. The system of claim 35 wherein the source and target applications are

executing on different computers communicating over a network.

38. The system of claim 35 wherein the source and target applications are

executing on the same computer.

-36-

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

39. A system for receiving and interpreting source data for a target
application comprising:
means for receiving source data from a source application;
means for receiving source metadata relating to the source data;
5 means for receiving a function of the source data transmission;
means for retrieving a target metadata in accordance with the function
of the source data transmission; and
means for converting the source data to a target data based on the

source and the target metadata.

10
40. The system of claim 39 wherein the function is file transfer.
41. The system of claim 39 wherein the function is a display of the
received data.
15

42. The system of claim 39 wherein the function is controlling or initiating a

remote process.

43. The system of claim 39 further comprising means for receiving the
20 source data and metadata over the Internet at a remote computer for display at the

remote computer.

-37-

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

1/19

801

¢ol

1 "0l

N\ S¥ydolIn i - - ———— .
A¥OLISOd3Y 901 +
SS300¥d A
1dD)
/ VNS L0} $3553004d
N QUVANVLS
J\ ALSNONI
(SALov4 n9)
SAOHLIN
AOLSOdTY |
\(I/ 0Ll \
AMOLISOd3Y
SWY3L
QUVONVLS (110)
||||||||| SWY3L
SISATYNY
Y SQUVONYLS QRONVIS
~ o1 | 201

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

2/19

801

¥0¢

G0Z
S13INIVd NOILJI¥9S3d
VIVOVIAN | NOLLYOINddY
col R
(SINWN)
SWY3L ,
o QUVANYLS NOILONYLSNOD
S3SS3004d | AMOLISOd3Y - VIVAVLIN ONV
QUVANYIS NOILdI¥OS3A NOILYINddY
aousod b Y JOVANIINI
01z ya ¥3SN WIIHAVY9
102 NOLLYOddY NOILYOI4103dS
|||||||| Viva
NOILYOINddY
D =

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

3/19

—

200 | APPLICATION ||| APPLICATION
DATA
SPECIFICATION

305
N (Gul)
APPLICATION
DEFINITION
MODULE
204
310 !
APPLICATION APPLICATION
DEFINITION DESCRIPTION
325 I
~~\ STANDARD
- ! PROCESS
NS (GUI) STANDARD
METADATA | TERMS
BULDING [~
MODULE)
5 108
Y
)
330 103
N METADATA
PACKET
—

SUBSTITUTE SHEET (RULE 26)

WO 00/77594 PCT/US00/16113

4/19

Y

APPLICATION

DEFINITION PART NO., 15,5

DISPLAY (CO. NAME, 70, 10

410
Y
DISELSATY J&? Vs COMPANY NAME
TRANSACTION TYPE PART NUMBER

405

420

[425
SELECT TERM COMPANY NAME
FROM REPOSITORY PART NUMBER
LIST

7 430

!

TERM FROM PART NO.
APP. DEF.

SELECT
CORRESPONDING CO. NAME

10 FIG. 4B

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

7 440

WO 00/77594

5/19

FROM FIG.4A

|

!

PCT/US00/16113

MOVE SELECTED
REPOSITORY TERM — e
TO METADATA a\ 1
OUTPUT AREA q
V 445 1 0
MOVE APP.
DEFINITION DATA —| COMPANY 2010
TO METADATA NAME .
OUTPUT AREA 7 L L 1
455 451 452 450
465
Y
PROCESS 0
SELECT PROCESSES e
FROM PROCESS PROCESS 02
REPOSITORY
470
451 452 453 44
Y
M I
OVE SELECTED _ | COMPANY PROCESS | PROCESS
PROCESSES TO NAME 20,10 ” o0
METADATA PACKET } K
475 450

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

6/19

XA
N4 SAILMILN ¥3dO13IA30

|- 4JOVNVA INJOV e

LiY

s \ 43avol ¢
\ v , ,
025
XA
G0S VLVavLIN
304N0S

00S

}

S13Xavd
VIVAVIIN

VG Ol4

304N0S

13S8NnS ¥0
vivad

ANIONI
SS3004d

vivd

NOLLYOMddV

Y

SS300V
LINYIINI

4318NISSY
WNOJ

L
EEN

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

VGOl
HOYA

7/19

85 "Il

SS320v
1INY3INI

dI1EN3SSY
WNOD

SNV VIVOVLIN
324N0S

Y

1358nS 0
V1vQ

LEG

_

ANIONT
SS3004d

viva

NOLLVOIddV

8vG
SAILILN ¥3d0T3A3A » L
YIOVNVA INIOVe —

001 * N~ /4g

096

GGG

A ﬁ//

946

44

VIVAVLIN 0S¢
1394vL

SUBSTITUTE SHEET (RULE 26)

WO 00/77594

!

8/19

PCT/US00/16113

600
DATA
COMMUNICATIONS
FACILITY
Y
SOURCE
DATA
METADATA STRUCTURE |_~> 605
PACKET
N/
- J
610y
VALIDATE FAIL RETURN TO
RECEIPT SENDER
)
620
N LOAD SOURCE METADATA
METADATA TO RECEIVED
RECEIVED DIRECTORY
DIRECTORY
TO FIG.6B 625

FIG. 6A

SUBSTITUTE SHEET (RULE 26)

Ness

WO 00/77594
9/19

FROM FIG.6A

630

Y LOAD SOURCE
DATA STRUCTURE

PCT/US00/16113

O)

RECEIVED
DATA

TO RECEIVED
DATA DIRECTORY

640 '
~
LOAD FUNCTION
IDENTIFICATION
TO AGENT
T0 FIG.C
FIG. 6B

SUBSTITUTE SHEET (RULE 26)

DIRECTORY

635

N———

WO 00/77594 PCT/US00/16113

10/19
FROM FIG.6B
660
N READ
FUNCTION
QUEUE
665 '
~
VALIDATE
DIRECTORY
CONTENTS 667
’\ 668
666 Y) __ 3
N QUERY PROCESS | CONSTRUCT !
LOG FOR _ﬁ' RETURN | DATA
RETURN | MESSAGE | _COMMUNICATIONS
MSG. o B
T0 FIG.D

SUBSTITUTE SHEET (RULE 26)

WO 00/77594

11/19

CONTINUED
FROM FIG.6C
685
[
680 o J_ .
TN INVOKE AGENT | EEQUTE |

I
(PROCESS |- —— pROCESS I ~1 LOG/STATUS |

ENGINE) |

FIG. 6D

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

690
/

\

F'_——'/—_"W

PROCESS

PCT/US00/16113

WO 00/77594

12/19

(NOILINI43a
1394v1)
1nv43a
A8 dvi

—

GlL

ON

8,914 01

sia

0LL

G0L

00L

Y

S
_
_
L

JINLONYULS V1V
304n0S @vO1

A

13X3vd
VIVAVL3N
1394vL avO1l

|

13X0vd
VIVAVLIN
304n0S avOT

NOILINI43Q

1331 dNoYd
1394v1 S300

.
_

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

13/19

4/ 9l1

JLI4 01

| T3ATT dNOY NI |
— 1 SINIWIT3 VIva

——

40 ON3

Alddv

1304N0S NI 1SIX3 !

A
S
~ ;
ON
A
_
oWl oL |
o] 3ownos am [
S3A
Ge!
| 1nvaaa N
A8 Vi N _
_
4

VL Ol4 WOY4

ININIT3 viva
1394Vl S30d

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

14/19

VLIl 40
0¢L 0L

JL9l1

JIVNINY3L

__1Viva 1ndNI
| 40 AN3

847014 WOY4 J3NNIINOD

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

vivad

15/19

894 NE I,
ceg ISYHONN = WROD VIVA | ——=
\ [
088 —~ 08 008
JONVY | 9 8g ALLLNVND N
— 0l 8y HIGNNN 1¥vd . ¥ISN ON3
JONVY | ¢ Iy 3014d LINN |~
— 0z 1Z |[NOILINDSIA 19NA0Yd Gl8 —~
— 0z | INVN ANVANOD QYVANVIS—NON'9
SS3008d | HIONI1|13S340 JAVN 0134 ALINVND'G
3014d LINQP
NIGNNN E&.D
HOYV3S NOILINOS3A 19Na0Y¥d'Z
xv%wu INYN ANVNOD' 1)
978 onvy | 3OVAIEINI SWEL NOWNOD
0Z8
f $3SSI008d TUVANVLS
9 85 "ALD-
0l 8% # 14vd-
L 5 ‘d'N
0z 1z *0530-
0z | VN dWOOT=——__ |
TEERRE S TG E NOILYDI4ID3dS 3114 ¥3QH0 3SYHOUNd

43040 3SVYHIUNd

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

16/19

5C6——~ 016
XXQON | Gl 19 3014d LINN N
JONVY | 8 8 ALLINVND ¥3SN ON3
- 8 9/ HIANNN 13Vd |~ -
ALIONVA | 0 IS [NOILdI¥OSIA 19na0Yd 0Z6
— e | 1 JNVN ANVANOD A
SS3004d | HIONT1|13S440 E T IEE 04 INNS | T
ALINVD
4IANNN E&.ﬂ
HOUV3S NOILAI¥OS3A 1ONA0Y¥d'T
XXQOW INYN ANVANOD' L
76 u%_«m JOVA43INI SIWE3L NOWNOD

fm—m

S3SS3004d QUVANVLS

g | 8 Hd LINN-

8 | 9 'NYND

GL | 19 ON 14vd"

¢ | l& | "0S30 "Q0¥d-

g | | N 00—
AIONTV[135330 | 3WN Q13

NOLLVIIJID3dS 34 AYINI H3QH0

AYINT 43040

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/775%94

17/19

GOl

NIISAS AYIN3 ¥3Q¥0
0¢col N
G0l vIva
AMIN3
vivad 43040
430Y0
ISVHOUNd / e O
LN ~
N—
INIONT SS3004d
0¢8 ,~ G(6 ~
JONVY 9 8G ALIINVNO JONVY 8 ¥8 JOIlMd LINN
—]! 8Y 438NNN 1¥vd - 8 9L ALIINVND
JONVY L (8% 301d4d 1INN XXAOW Gl 19 J3GNNN 1Yvd
— 0¢ {¢ | NOILdI¥IS3Ia 1INA0yd ALIQNVA | OF 1€ | NOILdIMOS3A 12Nd0¥d
— 0¢ | JNYN ANVdWOO — 0¢ | JAYN ANVAWOD

43040 3SvHOENd

INIddVA 1394v1-01-304N0S

AYINI H30H0

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

18/19

O oo/

W 0511 V1S Gvil LVISNYAL
GGl1 _ .
096 ——
viva (S)INIONI SS3004d ~ VIV(
_ R -]
I - []
ALUNVNO'S | G ‘64 ! IMINNN ! | 39NVy | 0L ‘9L 2014d LINN'S
HIANNN LAVd'Y | 01 ‘69| | | "9 ‘o8 ALIINVND ¥

uo_mn:_z:.mm.s_ _
NOLLJINDS3Q 1ONA0YAZ | 02 ‘L¥ | |
_

-~ XXQON | Gl ‘I

0£tl 7 | 05 ‘9%

ANVN ANVANOD'L | OF “L |

0t

G

dIENNN 18vd'E
NOILdI¥IS3d 10Nnd0Yd'C
JAVN ANVANOD'|

_ 1 0¢ ‘I
||ir||!LIq L
S3SS3004d QYVANVIS

(UVANVLS—NON9 10d LINN'F NOILdI¥3S3a¢
AIINVND'G HIANNN L4vd'E JAVN ANVdNOD'|

JOVAUIINI SWYIL QUVANVIS

'd'Ny ALINVNO'E "ON 14vd'C JNVN "0D'|

‘dd LNNY "0S30°E WNN 1¥Vd'¢ JNVN "dNOD'|

E[NEN

—~ o~

00L1 0LLl

43N

SUBSTITUTE SHEET (RULE 26)

PCT/US00/16113

WO 00/77594

19/19

SNOILONNA

S3dAL
NOLLOVSNWAL

SIN3A
NOILOVSNVYL

- ¢l Il

—= E AVISNVIL | —— E AVISNVYL :SQOHLIN

AYINT :
43Q¥0 l/\mom | | -S193rd0

4300 A/.\oom _ -S3SSV10

NOILINIJ30 Q3IN3I¥O 133180

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

