This invention relates to cord-holding devices for use in conjunction with electric flat-irons, and has for its principal object the provision of a novel character and also the provision of a novel combination cord-holding and current-supplying device.

Another object of the invention is to provide a cord-holding device adapted for attachment to an ironing board, or table, and constructed so as to afford maximum convenience to the user.

A further object of the invention is to provide a device of this character which is adapted to remain attached to the ironing board, and which is adjustable to a position in close proximity to the ironing board when not in use, so that the board and the attached cord-supporting device may be readily stored away during periods of non-use.

Still another object of the invention is to provide a device of this character comprising a support member adapted to be secured to an ironing board, and a cord-supporting mast supported by said member so as to be movable between an upright operative position and an inoperative position close to the ironing board, the said mast having a clasp at its free end adapted to hold the cord from a cordless flat-iron and also adapted to clamp the edge of the ironing board when the mast is in its inoperative position.

A further object of the invention is to provide a novel combined current-supplying and cord-supporting device which enables the use of the ordinary flat-iron cord and which prevents any side pull from being exerted on the electrical connector elements.

Other objects and features of the invention will be apparent hereinafter.

In the drawing:

Figure 1 is a side elevational view of the device attached to an ironing board, showing the device in its operative position;

Figure 2 is a detail sectional view taken along line 2—2 of Figure 1;

Figure 3 is a perspective view of the device and the associated ironing board, showing the device in its inoperative condition; and

Figure 4 is a fragmentary perspective view of the clasp on the free end of the cord-supporting mast.

Referring to the drawing, there is shown an ironing board 1 to which the device of the present invention is attached. This device comprises a support member 2 having clamping means for attachment to the ironing board. The clamping means conveniently comprises a turned portion 3 of the support member adapted to engage one side of the ironing board, as shown clearly in Fig. 3, and an adjustable clamping screw 4, threadedly carried, by a bracket 5 secured to the support member at 6.

A current-supply receptacle 7 is mounted on the support member 2 and is adapted to receive the connector plug 8 of the conductor cord 9 of an electric flat-iron 10. A current-supply conductor 11 is connected to the receptacle 1 and carries a connector plug 12 at its free end for connection to a current-supply source.

A cord-supporting mast, designated generally by reference character 13, is supported by the support member 2 so as to be movable between the operative position of Fig. 1 and the inoperative position of Fig. 3. The mast comprises relatively rigid sections 14 and 15 and an intermediate bendable section 16 in the form of a stiff helical spring. As illustrated, the end portions of this spring receive and retain the associated end portions of the adjacent sections 14 and 15.

The supported end of section 14 is pivotally mounted on the support member 2 for movement between the operative and inoperative positions as above mentioned. When in its operative position, as shown in Fig. 1, the cord-supporting mast is retained in such position by a pair of spaced projections or detents 17 and 18 provided on the support member 2, the lower portion of the mast being seated between the said detents. By virtue of its specific mounting, however, the mast is movable from its retained position to the inoperative position of Fig. 3.

Referring to the mounting for the mast, as illustrated in Figs. 1 and 2, the supported end of section 14 is enlarged as at 19 so as to engage the support member 2 over a substantial area. A pin 20 extends through aligned apertures in the support member 2 and the portion 19, and serves as a supporting pivot. Cooperatively associated with the pin 20 is a concave washer or cap 21 which bears against the portion 19. A spring 22 and a collar 23 are arranged on the pin 20 as shown in Fig. 2 so that the lower portion of the mast is resiliently held in engagement with the support member 2. By means of this arrangement the mast is movable laterally from its plane of pivotal movement sufficiently to permit its movement from the operative position notwithstanding the presence of the detents 17 and 18.

At its free end the cord-supporting mast carries a clasp 24 which is adapted to serve two purposes as will be presently seen. It will be noted that this clasp is generally of U shape and comprises arms 25 which are spaced apart a predetermined distance such that they may grasp the edge portion of the ironing board when the mast is in its inoperative position, as shown in Fig. 3. Furthermore, each of the arms 25 is generally of hairpin shape to receive the flat-iron cord 9 when
the mast is in its operative position, as shown in Fig. 1. One side of each of the arms 25 is provided with recesses 26 so as to hold the cord 9 more securely. The clasp 24 is preferably formed from a piece of stiff wire or the like bent to the figureation or shape illustrated, the ends of the wire being secured to a member 27 which is attached to the ends of rod 15.

In using the device of the invention, it is attached to an ironing board substantially in the position shown and remains so attached at all times unless the user wishes to remove it for some reason. During periods of non-use the mast is placed in the inoperative position shown in Fig. 3 with the clasp grasping the edge of the ironing board so that the mast is held in close proximity to the board. The conductor cord 11 may be wound about the end of the board and the plug 12 may be inserted in the receptacle 7 as shown in Fig. 3. In this inoperative condition the device may be stored away with the ironing board in any convenient space large enough to permit storage of the board alone. During periods of use the ironing board is set up in the usual manner and the mast is moved to its operative position as shown in Fig. 1. The plug 12 is connected to a convenient source of current-supply. The flat-iron cord 9 is then arranged as shown in Fig. 1, with the plug 12 inserted in the receptacle 7, and with the cord inserted within the arms 25 of the clasp 24 so that the cord is seated in one of the recesses 26 of each arm and is held therein by the resilience of the said arms. During the ironing operation the cord-supporting device is at the far side of the ironing board from the user and does not interfere with the ironing operation. As the flat-iron is moved away from the cord-supporting device, the spring section 16 of the mast bends, as illustrated by the dot and dash representation in Fig. 1, to permit movement of the flat-iron the full length of the ironing board. As the flat-iron is moved in the opposite direction the mast returns to its upright position.

It will be seen that the device provided by the invention has numerous advantages, including those hereinafore mentioned. It eliminates interference of the flat-iron cord with the ironing operation and at the same time permits freedom of movement of the flat-iron. Furthermore the flat-iron cord is not permitted to fall loosely along the side of the board, thus eliminating the possibility of the flat-iron being moved off of the board due to the cord catching on some object. It will be noted also that the device is of simple construction and may be manufactured and sold at a low price.

It is also evident that with a fair length of cord 11 the ironing board can be placed at the most suitable position in the room without in any way affecting the disposition of cord 9 which is always in the best possible location with reference to the user and the iron. Furthermore, the provision of the receptacle 7 and the current-supply conductor 11 enables the use of the cord-supporting mast 13 with no greater length of the cord 9 than is customarily provided on a flat-iron. Further still, the device prevents the exertion of mechanical pull on the connector elements, thus maintaining good electrical contact at all times during the ironing operation. It will be understood of course that the invention is not limited to the specific structure illustrated for the purpose of disclosure but is capable of various modifications within the scope of the appended claims.

I claim:

1. A cord-supporting device for use in conjunction with a flat-iron, comprising a support member adapted to be secured to an ironing board or table, a cord-supporting mast supported by said member so as to be moveable between an upright operative position and an inoperative position close to the ironing board, and a resilient clasp on said mast adapted to hold the conductor cord of a flat-iron and also adapted to clasp the edge of the ironing board when the mast is in its inoperative position, said clasp being U-shaped to grip the edge of the ironing board and each arm of the U being bent back on itself so as to be capable of receiving and gripping said conductor cord.

2. A device according to claim 1, wherein said clasp comprises a single piece of stiff wire bent to the form specified.

3. A cord-supporting device for use in conjunction with a flat-iron, comprising a support member adapted to be secured to an ironing board or table, a cord-supporting mast supported by said member so as to be moveable between an upright operative position and an inoperative position close to the ironing board, and a resilient clasp on said mast adapted to hold the conductor cord of a flat-iron and also adapted to clasp the edge of the ironing board when the mast is in its inoperative position, said clasp as a whole being in the form of a U of a size to grip the edge of the ironing board, and each arm of the U being in the form of a narrower U to receive and grip said conductor cord when the mast is in its operative position, each of the U-shaped arms having recesses to hold the conductor cord more securely.

4. A device according to claim 3, wherein said clasp comprises a single piece of stiff wire bent to form the clasp as specified and having its ends secured to the end of said mast.

5. A cord-supporting device for use in conjunction with a flat-iron, comprising a support member adapted to be secured to an ironing board or table, a cord-supporting mast supported by said member so as to be moveable between an upright operative position and an inoperative position close to the ironing board, and a resilient U-shaped clasp on said mast adapted to clasp the edge of the ironing board when the mast is in its inoperative position, each arm of the U-shaped clasp including means for receiving and gripping said conductor cord when the mast is in its operative position.

JOSEPH W. MYERS.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,513,258</td>
<td>Manzi</td>
<td>Oct. 28, 1924</td>
</tr>
<tr>
<td>1,523,885</td>
<td>Murphy</td>
<td>Jan. 20, 1925</td>
</tr>
<tr>
<td>1,530,529</td>
<td>Weber</td>
<td>Mar. 24, 1925</td>
</tr>
<tr>
<td>1,999,089</td>
<td>Dowden</td>
<td>Apr. 23, 1935</td>
</tr>
<tr>
<td>2,135,188</td>
<td>Lieberman</td>
<td>July 26, 1938</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>454,835</td>
<td>Great Britain</td>
<td>Oct. 8, 1936</td>
</tr>
</tbody>
</table>