
(12) STANDARD PATENT (11) Application No. AU 2016211251 B2
(19) AUSTRALIAN PATENT OFFICE

(56) Related Art
US 7356079 B2
Anonymous, "TComPrediction.cpp in tags/HM-16.2+SCM-3.0/source/ 
Lib/TLibCommon - JCT-VC HEVC", 15 November 2014, URL: https:// 
hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.2%2BSCM-3.0/source/Lib/  
TLibCommon/TComPrediction.cpp (21 May 19)
Anonymous, "#560 (Intra transform skipping semantic issue with high bit-depth) 
- JCT-VC HEVC", 2 July 2012, URL: https://hevc.hhi.fraunhofer.de/trac/hevc/ 
ticket/560, (Retrieved on 21 May 2019)

(54) Title
Coding escape pixels for palette mode coding

(51) International Patent Classification(s)
H04N 19/61 (2014.01) H04N 19/126 (2014.01)
G06F9/30 (2006.01) H04N 19/593 (2014.01)

(21) Application No: 2016211251 (22) Date of Filing: 2016.01.29

(87) WIPO No: WO16/123492

(30) Priority Data

(31) Number (32) Date (33) Country
15/009,609 2016.01.28 US
62/110,519 2015.01.31 US

(43) Publication Date: 2016.08.04
(44) Accepted Journal Date: 2019.09.26

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Zou, Feng;Seregin, Vadim;Karczewicz, Marta;Pu, Wei;Joshi, Rajan Laxman

(74) Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

https://hevc.hhi.fraunhofer.de/trac/hevc/


(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property 

Organization 
International Bureau

(43) International Publication Date 
4 August 2016 (04.08.2016) WIPO I PCT

lllllllllllllllllllllllllllllllllllllllllll^

(10) International Publication Number
WO 2016/123492 Al

(51) International Patent Classification:
H04N19/61 (2014.01) H04N19/593 (2014.01)
G06F 9/30 (2006.01) H04N19/126 (2014.01)

(21) International Application Number:
PCT/US2016/015672

(22) International Filing Date:
29 January 2016 (29.01.2016)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/110,519 31 January 2015 (31.01.2015) US
15/009,609 28 January 2016 (28.01.2016) US

(71) Applicant: QUAUCOMM INCORPORATED [US/US];
Attn: International IP Administration, 5775 Morehouse 
Drive, San Diego, California 92121-1714 (US).

(72) Inventors: ZOU, Feng; 5775 Morehouse Drive, San 
Diego, California 92121-1714 (US). SEREGIN, Vadim; 
5775 Morehouse Drive, San Diego, California 92121-1714 
(US). KARCZEWICZ, Marta; 5775 Morehouse Drive, 
San Diego, California 92121-1714 (US). PU, Wei; 5565 
Wellesley Avenue, Apartment 5, Pittsburgh, Pennsylvania 
15206 (US). JOSHI, Rajan Uaxman; 5775 Morehouse 
Drive, San Diego, California 92121-1714 (US).

(74) Agent: DAWUEY, Brian R.; Shumaker & Sieffert, P.A., 
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125 
(US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available): AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available): ARIPO (BW, GH, 
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: CODING ESCAPE PIXELS FOR PALETTE MODE CODING

DERIVE QUANTIZATION 
PARAMETER (QP)

-200

DERIVE QP RATIO AND 
QP REMAINDER

DERIVE RIGHT SHIFT 
PARAMETER VALUE

I

DERIVE OFFSET 
PARAMETER VALUE

-202

-204

'206

(57) Abstract: In one example, a device for decoding video data includes a 
memory configured to store video data and a video decoder configured to de­
termine that a value for a right shift parameter for an escape-mode coded 
pixel of a palette-mode coded block of the video data is less than zero, based 
on the value for the right shift parameter being less than zero, set a value for a 
left shift parameter to a positive value having an absolute value equal to an 
absolute value of the right shift parameter, and inverse quantize the es­
cape-mode coded pixel using the value of the left shift parameter.

, 208
RIGHT SHIFT 

PARAMETER<=0?

NO YES

CALCULATE DE-QUANTIZED , 
VALUE FROM QUANTIZED 

VALUE USING RIGHT SHIFT 
PARAMETER VALUE AND 
OFFSET PARAM. VALUE

'210 CALCULATE LEFT SHIFT 
PARAMETER VALUE = 

ABS(RIGHT SHIFT 
PARAMTER VALUE)

-212

CALCULATE DE-QUANTIZED 
VALUE FROM QUANTIZED 
VALUE USING LEFT SHIFT 

PARAMETER VALUE

-214

-216
ROUND DE-QUANTIZED VALUE

FIG. 6



WO 2016/123492 PCT/US2016/0156721

CODING ESCAPE PIXELS FOR PALETTE MODE CODING

[0001] This application claims the benefit of U.S. Provisional Application No. 

62/110,519, filed January 31, 2015, which is hereby incorporated by reference in its 

entirety.

TECHNICAL FIELD

[0002] This disclosure relates to video coding, and more particularly, to coding video 

data using palette mode.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices, 

including digital televisions, digital direct broadcast systems, wireless broadcast 

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet 

computers, e-book readers, digital cameras, digital recording devices, digital media 

players, video gaming devices, video game consoles, cellular or satellite radio 

telephones, so-called “smart phones,” video teleconferencing devices, video streaming 

devices, and the like. Digital video devices implement video coding techniques, such as 

those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T 

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T H.265, also referred to 

as High Efficiency Video Coding (HEVC), and extensions of such standards. The video 

devices may transmit, receive, encode, decode, and/or store digital video information 

more efficiently by implementing such video coding techniques.

[0004] Video coding techniques include spatial (intra-picture) prediction and/or 

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video 

sequences. For block-based video coding, a video slice (e.g., a video picture or a 

portion of a video picture) may be partitioned into video blocks, which may also be 

referred to as coding tree units (CTUs), coding units (CUs) and/or coding nodes. Video 

blocks in an intra-coded (I) slice of a picture are encoded using spatial prediction with 

respect to reference samples in neighboring blocks in the same picture. Video blocks in 

an inter-coded (P or B) slice of a picture may use spatial prediction with respect to 

reference samples in neighboring blocks in the same picture or temporal prediction with



2
20

16
21

12
51

 07 No
v 

20
18

respect to reference samples in other reference pictures. Pictures may be referred to as 

frames, and reference pictures may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be 

coded. Residual data represents pixel differences between the original block to be 

coded and the predictive block. An inter-coded block is encoded according to a motion 

vector that points to a block of reference samples forming the predictive block, and the 

residual data indicating the difference between the coded block and the predictive block. 

An intra-coded block is encoded according to an intra-coding mode and the residual 

data. For further compression, the residual data may be transformed from the pixel 

domain to a transform domain, resulting in residual transform coefficients, which then 

may be quantized. The quantized transform coefficients, initially arranged in a two­

dimensional array, may be scanned in order to produce a one-dimensional vector of 

transform coefficients, and entropy coding may be applied to achieve even more 

compression.

SUMMARY

[0006] In general, this disclosure describes techniques related to quantizing values for 

escape-mode coded pixels of palette-mode coded blocks of video data. In particular, in 

some instances, conventional escape-mode coding techniques resulted in certain 

situations in which a binary value was to be right-shifted by a negative value. A bitwise 

shift operation by a negative value is generally an undefined operation, which may 

cause an error. The techniques of this disclosure may be used to correct such errors 

when they occur. In particular, the techniques of this disclosure may be used to change 

the shift value from negative to positive, and to perform a bitwise left shift operation, 

instead of a bitwise right shift operation.

[0007] One aspect of an embodiment of the disclosure provides a method of decoding 

video data, the method comprising: obtaining, by a video decoder, an escape-mode 

coded pixel of a palette-mode coded block of video data, the palette-mode coded block 

comprising palette index values mapping pixel values for the palette-mode coded block 

to respective entries of a color palette, the escape-mode coded pixel corresponding to a 

pixel value that is not in the color palette; and inverse quantizing, by the video decoder, 

the escape-mode coded pixel using a value of a left shift parameter, wherein inverse 

quantizing comprises calculating a value for the escape-mode coded pixel 

(deQuantEspValue) according to a formula comprising:
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wherein EspValue represents a coded quantized escape value coded for the 

escape-mode coded pixel, invQuantScale represents an array of inverse quantization 

scale values, qPrem represents a quantization parameter remainder value, 

invQuantLeftShift represents the value of the left shift parameter, and « represents the 

bitwise left shift operator.

[0008] Another aspect of an embodiment of the disclosure provides a device for 

decoding video data, the device comprising: a memory configured to store video data; 

and a video decoder configured to: obtain an escape-mode coded pixel of a palette-mode 

coded block of the video data, the palette-mode coded block comprising palette index 

values mapping pixel values for the palette-mode coded block to respective entries of a 

color palette, the escape-mode coded pixel corresponding to a pixel value that is not in 

the color palette; and inverse quantize the escape-mode coded pixel using the value of a 

left shift parameter, wherein to inverse quantize the escape-mode coded pixel, the video 

decoder is configured to calculate a value for the escape-mode coded pixel 

(deQuantEspValue) according to a formula comprising:

deQuantEspValue=EspValue*invQuantScale[qPrem]«invQuantLeftShift,  

wherein EspValue represents a coded quantized escape value coded for the 

escape-mode coded pixel, invQuantScale represents an array of inverse quantization 

scale values, qPrem represents a quantization parameter remainder value, 

invQuantLeftShift represents the value of the left shift parameter, and « represents the 

bitwise left shift operator.

[0009] Another aspect of an embodiment of the disclosure provides a device for 

decoding video data, the device comprising: means for obtaining an escape-mode coded 

pixel of a palette-mode coded block of video data, the palette-mode coded block 

comprising palette index values mapping pixel values for the palette-mode coded block 

to respective entries of a color palette, the escape-mode coded pixel corresponding to a 

pixel value that is not in the color palette; and means for inverse quantizing the escape­

mode coded pixel using the value of the left shift parameter, wherein the means for 

inverse quantizing comprises means for calculating a value for the escape-mode coded 

pixel (deQuantEspValue) according to a formula comprising:

deQuantEspValue=EspValue*invQuantScale[qPrem]«invQuantLeftShift,  

wherein EspValue represents a coded quantized escape value coded for the
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escape-mode coded pixel, invQuantScale represents an array of inverse quantization 

scale values, qPrem represents a quantization parameter remainder value, 

invQuantLeftShift represents the value of the left shift parameter, and « represents the 

bitwise left shift operator.

[0010] Another aspect of an embodiment of the disclosure provides a non-transitory 

computer-readable storage medium having stored thereon instructions that, when 

executed, cause a processor of a device for decoding video data to: obtain an escape­

mode coded pixel of a palette-mode coded block of the video data, the palette-mode 

coded block comprising palette index values mapping pixel values for the palette-mode 

coded block to respective entries of a color palette, the escape-mode coded pixel 

corresponding to a pixel value that is not in the color palette; and inverse quantize the 

escape-mode coded pixel using the value of the left shift parameter, wherein the 

instructions that cause the processor to inverse quantize comprise instructions that cause 

the processor to calculate a value for the escape-mode coded pixel (deQuantEspValue) 

according to a formula comprising:

deQuantEspValue=EspValue*invQuantScale[qPrem]«invQuantLeftShift,  

wherein EspValue represents a coded quantized escape value coded for the 

escape-mode coded pixel, invQuantScale represents an array of inverse quantization 

scale values, qPrem represents a quantization parameter remainder value, 

invQuantLeftShift represents the value of the left shift parameter, and « represents the 

bitwise left shift operator.

[0011] In another aspect, a method of encoding video data includes determining that a 

value for a left shift parameter for an escape-mode coded pixel of a palette-mode coded 

block of video data is less than zero, based on the value for the left shift parameter being 

less than zero, setting a value for a right shift parameter to a positive value having an 

absolute value equal to an absolute value of the left shift parameter, and quantizing the 

escape-mode coded pixel using the value of the left shift parameter.

[0012] The details of one or more aspects are set forth in the accompanying drawings 

and the description below. Other features, objects, and advantages will be apparent 

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS
[0013] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system that may utilize techniques of this disclosure for coding escape pixels in palette­

mode coded blocks.
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[0014] FIG. 2 is a block diagram illustrating an example of a video encoder that may 

implement techniques for encoding escape pixels in palette-mode coded blocks in 

accordance with the techniques of this disclosure.

[0015] FIG. 3 is a block diagram illustrating an example of a video decoder that may 

implement techniques for decoding escape pixels in palette-mode coded blocks in 

accordance with the techniques of this disclosure.

[0016] FIG. 4 is a flowchart illustrating an example method for encoding a block of 

video data in accordance with the techniques of this disclosure.

[0017] FIG. 5 is a flowchart illustrating an example method for decoding a block of 

video data in accordance with the techniques of this disclosure.

[0018] FIG. 6 is a flowchart illustrating an example technique by which a palette 

decoding unit may dequantize a quantized escape pixel value of a palette-mode encoded 

block of video data, in accordance with the techniques of this disclosure.

DETAILED DESCRIPTION

[0019] In general, this application describes techniques for supporting coding of video 

content, especially screen content with palette mode coding. More particularly, these 

techniques relate to escape pixel coding for palette mode coding (also referred to as 

“palette coding”).

[0020] In traditional video coding, images are assumed to be continuous-tone and 

spatially smooth. Based on these assumptions, various tools have been developed, such 

as block-based transform, filtering, etc., and such tools have shown good performance 

for natural content videos. In applications like remote desktop, collaborative work and 

wireless display, however, computer generated screen content (e.g., such as text or 

computer graphics) may be the dominant content to be compressed. This type of 

content tends to have discrete-tone, and feature sharp lines and high-contrast object 

boundaries. The assumption of continuous-tone and smoothness may no longer apply 

for screen content, and thus traditional video coding techniques may not be efficient 

ways to compress video data including screen content.

[0021] Based on the characteristics of screen content video, palette coding was 

introduced to improve screen content coding (SCC) efficiency, and was firstly proposed 

in Guo et al., “Palette Mode for Screen Content Coding,” JCT-VC of ITU-T SG 13 WP 

3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting, JCTVC-M0323, Incheon, KR. 18 - 
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26 April 2013. Specifically, palette coding introduces a lookup table, i.e., color palette, 

to compress repetitive pixel values based on the fact that in SCC, colors within one 

coding unit (CU) usually concentrate on a few peak values. Given a palette for a 

specific CU, pixels within the CU are mapped to the palette index. In the second stage, 

an effective copy from left run length method is proposed to effectively compress the 

index block’s repetitive pattern. Later, in Guo et al., “Non-RCE3: Modified Palette 

Mode for Screen Content Coding,” JCT-VC of ITU-T SG 16 WP 3 and ISO/IEC JTC 

1/SC 29/WG 11, JCTVC-N0249, 14th Meeting, Vienna, AT, 25 July - 2 Aug. 2013, the 

palette index coding mode was generalized to both copy from left and copy from above 

with run length coding. Note that no transformation process is invoked for palette 

coding to avoid blurring sharp edges which has huge negative impact on visual quality 

of screen contents.

[0022] A palette is a data structure that stores {index, pixel value} pairs. A video 

encoder may determine a palette, e.g., based on a histogram of pixel values in a current 

CU. For example, peak values in the histogram may be added into the palette, while 

low frequency pixel values need not be included in the palette. Palette size may be 

restricted to be in the range of 0 to max_palette size equal to 31.

[0023] For SCC, CU blocks within one slice may share many dominant colors. 

Therefore, it is possible to predict a current block’s palette using previous palette mode 

CUs’ palettes (in CU decoding order) as reference. Specifically, a 0-1 binary vector 

may be signaled to indicate whether the pixel values in the reference palette is reused by 

the current palette or not. As an example, in Tables 1 and 2 below, it is assumed that 

the reference palette has 6 items. A vector (1, 0, 1, 1, 1, 1) is signaled with the current 

palette which indicates that vO, v2, v3, v4, and v5 are re-used in the current palette 

while vl is not re-used. If the current palette contains colors which are not predictable 

from a reference palette, the number of unpredicted colors is coded and then these pixel 

values (e.g., luma or chroma values) are directly signaled. For example, in Tables 1 and 

2, uO and ul are directly signaled into the bitstream.

Table 1—Reference Palette

Index Pixel Value

0 Vo

1 Vi

2 v2
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3 v3
4 v4
5 v5

Table 2—Current Palette

Prediction Flag Index Pixel Value

1 0 Vo
0
1 1 v2
1 2 v3
1 3 v4

4 v5
5 Uo
6 Ui

[0024] For the block coded with the palette mode, the palette can be predicted from the 

palette entries of the previously palette coded blocks, can be explicitly signaled as a new 

entries or the palette of the previously coded block can be completely reused. The latter 

case is called palette sharing and a flag palette share flag is signaled to indicate that the 

entire palette of the previous block is reused without modification as is. Examples of a 

reference palette and a current palette are shown in Tables 1 and 2 above. In particular, 

Table 1 illustrates an example reference palette, and Table 2 illustrates an example 

current palette that can be predicted from the reference palette of Table 1.

[0025] In the current SCM3.0 reference software, the two primary aspects of palette 

coding from a normative perspective are the coding of the palette and coding of the 

palette index for each sample in the block being coded in the palette mode. The coding 

of palette indices is performed using two primary modes, 'index' mode and 'copy above' 

mode. This is signaled by coding a palette mode flag. The 'index' mode is also used to 

indicate escape samples, i.e., samples that do not belong to the palette. In the current 

design, a 'copy above' mode is not possible for the first row of the palette block. In 

addition, a 'copy above' mode may not follow another 'copy above' mode. In these 

cases, an 'index' mode is inferred.
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[0026] Specifically, for palette mode, pixels in the CU are encoded in a 

horizontal/vertical snake scan order as follows:

1. “Index” mode: In this mode, one palette index is first signaled. If the index is 

equal to the size of the palette, this indicates that the sample is an escape sample. 

In this case, the sample value or quantized samples value for each component 

(e.g., luma and chroma) is signaled. For example, if the palette size is 4, for 

non-escape samples, the palette indices are in the range [0, 3], In this case, an 

index value of 4 signifies an escape sample. If the index indicates a non-escape 

sample, run-length is signaled, which specifies the number of subsequent 

samples in scanning order that share the same index, by a non-negative value n-1 

indicating the run length, which means that the following n pixels including the 

current one have the same pixel index as the first signaled one.

2. “Copy from Above” run mode (CA): In this mode, only a non-negative run 

length value m-1 is transmitted to indicate that for the following m pixels 

including the current one, palette indexes are the same as their neighbors directly 

above, respectively. Note that this mode is different from “Index” mode, in the 

sense that the palette indices could be different within the Copy from Above run 

mode.

[0027] In the current design, the palette mode is signalled at a CU level, but it may be 

possible to signal it at a PU level. A flag, palette esc val_present flag, is also signalled 

to indicate the presence of escape samples in a current block.

[0028] In the palette mode, the pixel scanning in the block can be of two types: vertical 

traverse or horizontal traverse (snake like) scanning. The scanning pattern used in the 

block is derived according to the flag palette transpose flag signaled per block unit. 

[0029] During palette index coding, the palette index adjustment process can be applied. 

Starting from the second pixel in the block, it consists of checking the palette mode of 

the previously coded pixel. First, the palette size is reduced by 1, and if the left mode is 

equal to the Run mode, then the palette index to be coded is reduced by 1 if the index is 

greater than the left palette index, or if the left mode is Copy mode, then the palette 

index to be coded is reduced by 1 if the index is greater than the above palette index. 

The description is provided from the encoding side, and the corresponding process can 

be performed in the reverse order at decoder side as well.

[0030] In SCM-3.0, the following syntax optimizations were adopted:
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• If palette size is 0, all escapes pixels are derived and no escape present flag, 

palette mode, palette index, palette run, and palette transpose flag are signaled, 

and the escape present flag is inferred to be equal to 1, the palette mode is 

inferred to be equal to the INDEX mode, palette index is set equal to the 

ESCAPE, palette run value is set equal to the block size, and the palette 

transpose flag is set to 0.

• If palette size is 1 and no escape pixels are used in the block, then no palette 

mode, palette run, or palette transpose flag are signaled, and palette mode is 

derived to be equal to the INDEX mode, palette index is set to 0, palette run 

value is set equal to the block size, and the palette transpose flag is set to 0.

[0031] This disclosure describes techniques related to palette-based coding, which may 

be particularly suitable for screen generated content coding. For example, assuming 

that a particular area of video data has a relatively small number of colors, a video coder 

(e.g., a video encoder or video decoder) may form a so-called “palette” to represent the 

video data of the particular area. The palette may be expressed as a table of colors or 

pixel values representing the video data of the particular area (e.g., a given block). For 

example, the palette may include the most dominant pixel values in the given block. In 

some cases, the most dominant pixel values may include the one or more pixel values 

that occur most frequently within the block. Additionally, in some cases, a video coder 

may apply a threshold value to determine whether a pixel value is to be included as one 

of the most dominant pixel values in the block. According to various aspects of palette­

based coding, the video coder may code index values indicative of one or more of the 

pixels values of the current block, instead of coding actual pixel values or their residuals 

for a current block of video data. In the context of palette-based coding, the index 

values indicate respective entries in the palette that are used to represent individual pixel 

values of the current block.

[0032] For example, the video encoder may encode a block of video data by 

determining the palette for the block (e.g., coding the palette explicitly, predicting the 

palette, or a combination thereof), locating an entry in the palette to represent one or 

more of the pixel values, and encoding the block with index values that indicate the 

entry in the palette used to represent the pixel values of the block. In some examples, 

the video encoder may signal the palette and/or the index values in an encoded 

bitstream. In turn, the video decoder may obtain, from an encoded bitstream, a palette 

for a block, as well as index values for the individual pixels of the block. The video 
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decoder may relate the index values of the pixels to entries of the palette to reconstruct 

the various pixel values of the block.

[0033] More particularly, pixels of a block coded using palette mode may be coded 

using an “index” mode, in which a pixel is coded using a reference to the palette, or a 

copy from above mode, in which the pixel is coded using a reference to an above­

neighboring pixel. A third option is to code the pixel as an escape pixel. In this case, 

the value of the pixel (or a quantized value for the pixel) is signaled directly.

[0034] In the current SCM3.0 as of the time of this disclosure, dequantization is used to 

reconstruct quantized escape pixels in palette mode. Specifically, the following 

procedure is used to reconstruct the escape pixels:

1. A quantization parameter qP is derived according to different color component 

index (cldx) values as follows:

qP = ( cldx = = 0 ) ? Qp'Y : (( cldx = = 1 ) ? Qp'Cb : Qp'Cr)

2. A quantization ratio qPper and a quantization remainder qPrem are derived as 

follows:

qPper = qP /6

qPrem = qP%6

3. A right shift parameter invQuantRightShift and an offset parameter addOffset 

derived as follows:

invQuantRightShift = 6 - qPper

addOffset = invQuantRightShift == 0 ? 0 : 1« (invQuantRightShift - 1)

4. A dequantized escape pixel deQuantEspValue is derived based on entropy 

decoded EspValue as follows

deQuantEspValue = (EspValue * invQuantScale[qPrem] + addOffset)» 

invQuantRightShift

5. deQuantEspValue is further modified to be in the depth range as follows 
deQuantEspValue = clip3 (0, 2bltDcpth-p deQuantEspValue)

[0035] One problem that may be encountered in the current design of SCM3.0 is that, 

when qPper is larger than 6, invQuantRightShift is negative. There is no definition of 

right shift by a negative number. Thus, this scenario may cause different interpretation 

of dequantization for different decoders, which is not desirable for a practical design.

[0036] In accordance with techniques of this disclosure, video coders (e.g., video 

encoders and video decoders) may be configured to avoid the problem described above. 

In particular, video coders may be configured to address the full range of quantization 
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parameter (qP) values. For instance, qP can be in the range of [0, 1, ...,51] inclusive. 

And different dequantization processes may be used to reconstruct the escape pixels for 

palette mode. These and other techniques are described in greater detail below.

[0037] FIG. lisa block diagram illustrating an example video encoding and decoding 

system 10 that may utilize techniques of this disclosure for coding escape pixels in 

palette-mode coded blocks. As shown in FIG. 1, system 10 includes a source device 12 

that provides encoded video data to be decoded at a later time by a destination device 

14. In particular, source device 12 provides the video data to destination device 14 via a 

computer-readable medium 16. Source device 12 and destination device 14 may 

comprise any of a wide range of devices, including desktop computers, notebook (i.e., 

laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called 

“smart” phones, so-called “smart” pads, televisions, cameras, display devices, digital 

media players, video gaming consoles, video streaming device, or the like. In some 

cases, source device 12 and destination device 14 may be equipped for wireless 

communication.

[0038] Destination device 14 may receive the encoded video data to be decoded via 

computer-readable medium 16. Computer-readable medium 16 may comprise any type 

of medium or device capable of moving the encoded video data from source device 12 

to destination device 14. In one example, computer-readable medium 16 may comprise 

a communication medium to enable source device 12 to transmit encoded video data 

directly to destination device 14 in real-time. The encoded video data may be 

modulated according to a communication standard, such as a wireless communication 

protocol, and transmitted to destination device 14. The communication medium may 

comprise any wireless or wired communication medium, such as a radio frequency (RF) 

spectrum or one or more physical transmission lines. The communication medium may 

form part of a packet-based network, such as a local area network, a wide-area network, 

or a global network such as the Internet. The communication medium may include 

routers, switches, base stations, or any other equipment that may be useful to facilitate 

communication from source device 12 to destination device 14.

[0039] In some examples, encoded data may be output from output interface 22 to a 

storage device. Similarly, encoded data may be accessed from the storage device by 

input interface. The storage device may include any of a variety of distributed or locally 

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, 

flash memory, volatile or non-volatile memory, or any other suitable digital storage 
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media for storing encoded video data. In a further example, the storage device may 

correspond to a file server or another intermediate storage device that may store the 

encoded video generated by source device 12. Destination device 14 may access stored 

video data from the storage device via streaming or download. The file server may be 

any type of server capable of storing encoded video data and transmitting that encoded 

video data to the destination device 14. Example file servers include a web server (e.g., 

for a website), an FTP server, network attached storage (NAS) devices, or a local disk 

drive. Destination device 14 may access the encoded video data through any standard 

data connection, including an Internet connection. This may include a wireless channel 

(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a 

combination of both that is suitable for accessing encoded video data stored on a file 

server. The transmission of encoded video data from the storage device may be a 

streaming transmission, a download transmission, or a combination thereof.

[0040] The techniques of this disclosure are not necessarily limited to wireless 

applications or settings. The techniques may be applied to video coding in support of 

any of a variety of multimedia applications, such as over-the-air television broadcasts, 

cable television transmissions, satellite television transmissions, Internet streaming 

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital 

video that is encoded onto a data storage medium, decoding of digital video stored on a 

data storage medium, or other applications. In some examples, system 10 may be 

configured to support one-way or two-way video transmission to support applications 

such as video streaming, video playback, video broadcasting, and/or video telephony. 

[0041] In the example of FIG. 1, source device 12 includes video source 18, video 

encoder 20, and output interface 22. Destination device 14 includes input interface 28, 

video decoder 30, and display device 32. In accordance with this disclosure, video 

encoder 20 of source device 12 may be configured to apply the techniques for coding 

escape pixels in palette-mode coded blocks. In other examples, a source device and a 

destination device may include other components or arrangements. For example, source 

device 12 may receive video data from an external video source 18, such as an external 

camera. Likewise, destination device 14 may interface with an external display device, 

rather than including an integrated display device.

[0042] The illustrated system 10 of FIG. 1 is merely one example. Techniques for 

coding escape pixels in palette-mode coded blocks may be performed by any digital 

video encoding and/or decoding device. Although generally the techniques of this 
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disclosure are performed by a video encoding device, the techniques may also be 

performed by a video encoder/decoder, typically referred to as a “CODEC.” Moreover, 

the techniques of this disclosure may also be performed by a video preprocessor.

Source device 12 and destination device 14 are merely examples of such coding devices 

in which source device 12 generates coded video data for transmission to destination 

device 14. In some examples, devices 12, 14 may operate in a substantially symmetrical 

manner such that each of devices 12, 14 includes video encoding and decoding 

components. Hence, system 10 may support one-way or two-way video transmission 

between video devices 12, 14, e.g., for video streaming, video playback, video 

broadcasting, or video telephony.

[0043] Video source 18 of source device 12 may include a video capture device, such as 

a video camera, a video archive containing previously captured video, and/or a video 

feed interface to receive video from a video content provider. As a further alternative, 

video source 18 may generate computer graphics-based data as the source video, or a 

combination of live video, archived video, and computer-generated video. In some 

cases, if video source 18 is a video camera, source device 12 and destination device 14 

may form so-called camera phones or video phones. As mentioned above, however, the 

techniques described in this disclosure may be applicable to video coding in general, 

and may be applied to wireless and/or wired applications. In each case, the captured, 

pre-captured, or computer-generated video may be encoded by video encoder 20. The 

encoded video information may then be output by output interface 22 onto a computer- 

readable medium 16.

[0044] Computer-readable medium 16 may include transient media, such as a wireless 

broadcast or wired network transmission, or storage media (that is, non-transitory 

storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray 

disc, or other computer-readable media. In some examples, a network server (not 

shown) may receive encoded video data from source device 12 and provide the encoded 

video data to destination device 14, e.g., via network transmission. Similarly, a 

computing device of a medium production facility, such as a disc stamping facility, may 

receive encoded video data from source device 12 and produce a disc containing the 

encoded video data. Therefore, computer-readable medium 16 may be understood to 

include one or more computer-readable media of various forms, in various examples.

[0045] Input interface 28 of destination device 14 receives information from computer- 

readable medium 16. The information of computer-readable medium 16 may include 
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syntax information defined by video encoder 20, which is also used by video decoder 

30, that includes syntax elements that describe characteristics and/or processing of 

blocks and other coded units. Display device 32 displays the decoded video data to a 

user, and may comprise any of a variety of display devices such as a cathode ray tube 

(CRT), a liquid crystal display (LCD), a plasma display, an organic light emitting diode 

(OLED) display, or another type of display device.

[0046] Video encoder 20 and video decoder 30 may operate according to a video coding 

standard, such as the High Efficiency Video Coding (HEVC) standard, also referred to 

as ITU-T H.265. Alternatively, video encoder 20 and video decoder 30 may operate 

according to other proprietary or industry standards, such as the ITU-T H.264 standard, 

alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or 

extensions of such standards. The techniques of this disclosure, however, are not 

limited to any particular coding standard. Other examples of video coding standards 

include MPEG-2 and ITU-T H.263. Although not shown in FIG. 1, in some aspects, 

video encoder 20 and video decoder 30 may each be integrated with an audio encoder 

and decoder, and may include appropriate MUX-DEMUX units, or other hardware and 

software, to handle encoding of both audio and video in a common data stream or 

separate data streams. If applicable, MUX-DEMUX units may conform to the ITU 

H.223 multiplexer protocol, or other protocols such as the user datagram protocol 

(UDP).

[0047] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), field programmable 

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations 

thereof. When the techniques are implemented partially in software, a device may store 

instructions for the software in a suitable, non-transitory computer-readable medium and 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be 

included in one or more encoders or decoders, either of which may be integrated as part 

of a combined encoder/decoder (CODEC) in a respective device.

[0048] In general, according to ITU-T H.265, a video picture may be divided into a 

sequence of coding tree units (CTUs) (or largest coding units (LCUs)) that may include 

both luma and chroma samples. Alternatively, CTUs may include monochrome data 

(i.e., only luma samples). Syntax data within a bitstream may define a size for the CTU, 



WO 2016/123492 PCT/US2016/01567214

which is a largest coding unit in terms of the number of pixels. A slice includes a 

number of consecutive CTUs in coding order. A video picture may be partitioned into 

one or more slices. Each CTU may be split into coding units (CUs) according to a 

quadtree. In general, a quadtree data structure includes one node per CU, with a root 

node corresponding to the CTU. If a CU is split into four sub-CUs, the node 

corresponding to the CU includes four leaf nodes, each of which corresponds to one of 

the sub-CUs.

[0049] Each node of the quadtree data structure may provide syntax data for the 

corresponding CU. For example, a node in the quadtree may include a split flag, 

indicating whether the CU corresponding to the node is split into sub-CUs. Syntax 

elements for a CU may be defined recursively, and may depend on whether the CU is 

split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this 

disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there 

is no explicit splitting of the original leaf-CU. For example, if a CU at 16x16 size is not 

split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the 

16x16 CU was never split.

[0050] A CU has a similar purpose as a macroblock of the H.264 standard, except that a 

CU does not have a size distinction. For example, a CTU may be split into four child 

nodes (also referred to as sub-CUs), and each child node may in turn be a parent node 

and be split into another four child nodes. A final, unsplit child node, referred to as a 

leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU. 

Syntax data associated with a coded bitstream may define a maximum number of times 

a CTU may be split, referred to as a maximum CU depth, and may also define a 

minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest 

coding unit (SCU). This disclosure uses the term “block” to refer to any of a CU, 

prediction unit (PU), or transform unit (TU), in the context of HEVC, or similar data 

structures in the context of other standards (e.g., macroblocks and sub-blocks thereof in 

H.264/AVC).

[0051] A CU includes a coding node and prediction units (PUs) and transform units 

(TUs) associated with the coding node. A size of the CU corresponds to a size of the 

coding node and is generally square in shape. The size of the CU may range from 8x8 

pixels up to the size of the CTU with a maximum size, e.g., 64x64 pixels or greater. 

Each CU may contain one or more PUs and one or more TUs. Syntax data associated 

with a CU may describe, for example, partitioning of the CU into one or more PUs.
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Partitioning modes may differ between whether the CU is skip or direct mode encoded, 

intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be 

partitioned to be non-square in shape. Syntax data associated with a CU may also 

describe, for example, partitioning of the CU into one or more TUs according to a 

quadtree. A TU can be square or non-square (e.g., rectangular) in shape.

[0052] The HEVC standard allows for transformations according to TUs, which may be 

different for different CUs. The TUs are typically sized based on the size of PUs within 

a given CU defined for a partitioned CTU, although this may not always be the case. 

The TUs are typically the same size or smaller than the PUs. In some examples, 

residual samples corresponding to a CU may be subdivided into smaller units using a 

quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT 

may be referred to as transform units (TUs). Pixel difference values associated with the 

TUs may be transformed to produce transform coefficients, which may be quantized. 

[0053] A leaf-CU may include one or more prediction units (PUs). In general, a PU 

represents a spatial area corresponding to all or a portion of the corresponding CU, and 

may include data for retrieving and/or generating a reference sample for the PU. 

Moreover, a PU includes data related to prediction. For example, when the PU is intra­

mode encoded, data for the PU may be included in a residual quadtree (RQT), which 

may include data describing an intra-prediction mode for a TU corresponding to the PU. 

The RQT may also be referred to as a transform tree. In some examples, the intra­

prediction mode may be signaled in the leaf-CU syntax, instead of the RQT. As another 

example, when the PU is inter-mode encoded, the PU may include data defining motion 

information, such as one or more motion vectors, for the PU. The data defining the 

motion vector for a PU may describe, for example, a horizontal component of the 

motion vector, a vertical component of the motion vector, a resolution for the motion 

vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference 

picture to which the motion vector points, and/or a reference picture list (e.g., List 0 or 

List 1) for the motion vector.

[0054] A leaf-CU having one or more PUs may also include one or more transform 

units (TUs). The transform units may be specified using an RQT (also referred to as a 

TU quadtree structure), as discussed above. For example, a split flag may indicate 

whether a leaf-CU is split into four transform units. Then, each transform unit may be 

split further into further sub-TUs. When a TU is not split further, it may be referred to 

as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU share 
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the same intra prediction mode. That is, the same intra-prediction mode is generally 

applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video 

encoder may calculate a residual value for each leaf-TU using the intra prediction mode, 

as a difference between the portion of the CU corresponding to the TU and the original 

block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be larger or 

smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf- 

TU for the same CU. In some examples, the maximum size of a leaf-TU may 

correspond to the size of the corresponding leaf-CU.

[0055] Moreover, TUs of leaf-CUs may also be associated with respective quadtree data 

structures, referred to as residual quadtrees (RQTs). That is, a leaf-CU may include a 

quadtree indicating how the leaf-CU is partitioned into TUs. The root node of a TU 

quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree 

generally corresponds to a CTU (or LCU). TUs of the RQT that are not split are 

referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to 

leaf-CU and leaf-TU, respectively, unless noted otherwise.

[0056] A video sequence typically includes a series of video frames or pictures, starting 

with a random access point (RAP) picture. A video sequence may include syntax data 

in a sequence parameter set (SPS) that characteristics of the video sequence. Each slice 

of a picture may include slice syntax data that describes an encoding mode for the 

respective slice. Video encoder 20 typically operates on video blocks within individual 

video slices in order to encode the video data. A video block may correspond to a 

coding node within a CU. The video blocks may have fixed or varying sizes, and may 

differ in size according to a specified coding standard.

[0057] As an example, prediction may be performed for PUs of various sizes. 

Assuming that the size of a particular CU is 2Nx2N, intra-prediction may be performed 

on PU sizes of 2Nx2N or NxN, and inter-prediction may be performed on symmetric 

PU sizes of 2Nx2N, 2NxN, Nx2N, or NxN. Asymmetric partitioning for inter­

prediction may also be performed for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N. 

In asymmetric partitioning, one direction of a CU is not partitioned, while the other 

direction is partitioned into 25% and 75%. The portion of the CU corresponding to the 

25% partition is indicated by an “n” followed by an indication of “Up”, “Down,” “Left,” 

or “Right.” Thus, for example, “2NxnU” refers to a 2Nx2N CU that is partitioned 

horizontally with a 2NxO.5N PU on top and a 2Nxl.5N PU on bottom.
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[0058] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to 

the pixel dimensions of a video block in terms of vertical and horizontal dimensions, 

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a 

vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an 

NxN block generally has N pixels in a vertical direction and N pixels in a horizontal 

direction, where N represents a nonnegative integer value. The pixels in a block may be 

arranged in rows and columns. Moreover, blocks need not necessarily have the same 

number of pixels in the horizontal direction as in the vertical direction. For example, 

blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0059] Following intra-predictive or inter-predictive coding using the PUs of a CU, 

video encoder 20 may calculate residual data for the TUs of the CU. The PUs may 

comprise syntax data describing a method or mode of generating predictive pixel data in 

the spatial domain (also referred to as the pixel domain) and the TUs may comprise 

coefficients in the transform domain following application of a transform, e.g., a 

discrete cosine transform (DCT), an integer transform, a wavelet transform, or a 

conceptually similar transform to residual video data. The residual data may correspond 

to pixel differences between pixels of the unencoded picture and prediction values 

corresponding to the PUs. Video encoder 20 may form the TUs to include quantized 

transform coefficients representative of the residual data for the CU. That is, video 

encoder 20 may calculate the residual data (in the form of a residual block), transform 

the residual block to produce a block of transform coefficients, and then quantize the 

transform coefficients to form quantized transform coefficients. Video encoder 20 may 

form a TU including the quantized transform coefficients, as well as other syntax 

information (e.g., splitting information for the TU).

[0060] As noted above, following any transforms to produce transform coefficients, 

video encoder 20 may perform quantization of the transform coefficients. Quantization 

generally refers to a process in which transform coefficients are quantized to possibly 

reduce the amount of data used to represent the coefficients, providing further 

compression. The quantization process may reduce the bit depth associated with some 

or all of the coefficients. For example, an zz-bit value may be rounded down to an m-bit 

value during quantization, where n is greater than m.

[0061] Following quantization, the video encoder may scan the transform coefficients, 

producing a one-dimensional vector from the two-dimensional matrix including the 

quantized transform coefficients. The scan may be designed to place higher energy (and
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therefore lower frequency) coefficients at the front of the array and to place lower 

energy (and therefore higher frequency) coefficients at the back of the array. In some 

examples, video encoder 20 may utilize a predefined scan order to scan the quantized 

transform coefficients to produce a serialized vector that can be entropy encoded. In 

other examples, video encoder 20 may perform an adaptive scan. After scanning the 

quantized transform coefficients to form a one-dimensional vector, video encoder 20 

may entropy encode the one-dimensional vector, e.g., according to context-adaptive 

variable length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC), 

syntax-based context-adaptive binary arithmetic coding (SBAC), Probability Interval 

Partitioning Entropy (PIPE) coding or another entropy encoding methodology. Video 

encoder 20 may also entropy encode syntax elements associated with the encoded video 

data for use by video decoder 30 in decoding the video data.

[0062] To perform CAB AC, video encoder 20 may assign a context within a context 

model to a symbol to be transmitted. The context may relate to, for example, whether 

neighboring values of the symbol are non-zero or not. To perform CAVLC, video 

encoder 20 may select a variable length code for a symbol to be transmitted. 

Codewords in VLC may be constructed such that relatively shorter codes correspond to 

more probable symbols, while longer codes correspond to less probable symbols. In 

this way, the use of VLC may achieve a bit savings over, for example, using equal­

length codewords for each symbol to be transmitted. The probability determination 

may be based on a context assigned to the symbol.

[0063] In general, video decoder 30 performs a substantially similar, albeit reciprocal, 

process to that performed by video encoder 20 to decode encoded data. For example, 

video decoder 30 inverse quantizes and inverse transforms coefficients of a received TU 

to reproduce a residual block. Video decoder 30 uses a signaled prediction mode (intra- 

or inter-prediction, or palette mode) to form a predicted block. Then video decoder 30 

combines the predicted block and the residual block (on a pixel-by-pixel basis) to 

reproduce the original block. Additional processing may be performed, such as 

performing a deblocking process to reduce visual artifacts along block boundaries. 

Furthermore, video decoder 30 may decode syntax elements using CAB AC in a manner 

substantially similar to, albeit reciprocal to, the CAB AC encoding process of video 

encoder 20.

[0064] Video encoder 20 may further send syntax data, such as block-based syntax data, 

picture-based syntax data, and sequence-based syntax data, to video decoder 30, e.g., in 
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a picture header, a block header, a slice header, or other syntax data, such as a sequence 

parameter set (SPS), picture parameter set (PPS), or video parameter set (VPS). Video 

decoder 30 may use these parameters to decode video data.

[0065] In accordance with the techniques of this disclosure, video encoder 20 may 

perform the following process to quantize an escape pixel value during palette mode 

coding:

1. Video encoder 20 derives a quantization parameter qP according to different

color component index (cldx) values as follows:

qP = ( cldx = = 0 ) ? Qp'Y : (( cldx = = 1 ) ? Qp'Cb : Qp'Cr)

2. Video encoder 20 derives a quantization ratio qPper and a quantization

remainder qPrem as follows:

qPper = qP /6

qPrem = qP%6

3. Video encoder 20 derives a right shift parameter quantRightShift and an offset 

parameter Offset as follows:

quantRightShift = 14 + qPper

Offset = 1 « (quantRightShift - 1)

4. The quantized escape pixel value is derived as follows

EspValue = (pixelValue * quantScale[qPrem]+Offset) » quantRightShift 

[0066] Likewise, as a reciprocal process, video decoder 30 may perform the following 

process to inverse quantize (or dequantize) an escape pixel value during palette mode 

coding:

1. Video decoder 30 derives a quantization parameter qP according to different

color component index (cldx) values as follows:

qP = ( cldx = = 0 ) ? Qp'Y : (( cldx = = 1 ) ? Qp'Cb : Qp'Cr)

2. Video decoder 30 derives a quantization ratio qPper and a quantization

remainder qPrem as follows:

qPper = qP /6

qPrem = qP%6

3. Video decoder 30 derives a right shift parameter invQuantRightShift and an

offset parameter addOffset as follows:

invQuantRightShift = 6 - qPper

addOffset = invQuantRightShift == 0 ? 0 : 1« (invQuantRightShift - 1)
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4A.If invQuantRightShift is larger than 0, video decoder 30 performs the following 

procedure:

deQuantEspValue = (EspValue * invQuantScalefqPrem] + addOffset)» 

invQuantRightShift

4B. Otherwise (invQuantRightShift <= 0), video decoder 30 performs the following 

procedure:

invQuantLeftShift = - invQuantRightShift 

deQuantEspValue = EspValue * invQuantScalefqPrem] « invQuantLeftShift

5. Video decoder 30 further modifies deQuantEspValue to be in the depth range as 

follows:
deQuantEspValue = clip3 (0, 2bltDcpth-p deQuantEspValue)

[0067] quantScalef.] and invQuantScalef.] may be lookup tables (e.g., implemented as 

arrays) that may be {26214,23302,20560, 18396, 16384, 14564}, {40, 45, 51, 57, 64, 

72} respectively, or another lookup table (or array) of 6 entries when Adaptive 

Quantization Scaling is enabled. For example, when Adaptive Quantization Scaling is 

enabled, video decoder 30 may adjust invQuantRightShift and/or invQuantLeftShift to 

normalize the scaling factor introduced by Adaptive Quantization Scaling.

[0068] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder or decoder circuitry, as applicable, such as one or more 

microprocessors, digital signal processors (DSPs), application specific integrated 

circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic circuitry, 

software, hardware, firmware or any combinations thereof. Each of video encoder 20 

and video decoder 30 may be included in one or more encoders or decoders, either of 

which may be integrated as part of a combined video encoder/decoder (CODEC). A 

device including video encoder 20 and/or video decoder 30 may comprise an integrated 

circuit, a microprocessor, and/or a wireless communication device, such as a cellular 

telephone.

[0069] FIG. 2 is a block diagram illustrating an example of video encoder 20 that may 

implement techniques for encoding escape pixels in palette-mode coded blocks in 

accordance with the techniques of this disclosure. Video encoder 20 may perform intra- 

and inter-coding of video blocks within video slices. Intra-coding relies on spatial 

prediction to reduce or remove spatial redundancy in video within a given video frame 

or picture. Inter-coding relies on temporal prediction to reduce or remove temporal 

redundancy in video within adjacent frames or pictures of a video sequence. Intra-mode 
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(I mode) may refer to any of several spatial based coding modes. Inter-modes, such as 

uni-directional prediction (P mode) or bi-prediction (B mode), may refer to any of 

several temporal-based coding modes.

[0070] As shown in FIG. 2, video encoder 20 receives a current video block within a 

video frame to be encoded. In the example of FIG. 2, video encoder 20 includes mode 

select unit 40, reference picture memory 64 (which may also be referred to as a decoded 

picture buffer (DPB)), summer 50, transform processing unit 52, quantization unit 54, 

and entropy encoding unit 56. Mode select unit 40, in turn, includes motion 

compensation unit 44, motion estimation unit 42, intra-prediction unit 46, palette-mode 

encoding unit 49, and partition unit 48. For video block reconstruction, video encoder 

20 also includes inverse quantization unit 58, inverse transform unit 60, and summer 62. 

A deblocking filter (not shown in FIG. 2) may also be included to filter block 

boundaries to remove blockiness artifacts from reconstructed video. If desired, the 

deblocking filter would typically filter the output of summer 62. Additional filters (in 

loop or post loop) may also be used in addition to the deblocking filter. Such filters are 

not shown for brevity, but if desired, may filter the output of summer 50 (as an in-loop 

filter).

[0071] During the encoding process, video encoder 20 receives a video frame or slice to 

be coded. The frame or slice may be divided into multiple video blocks. Motion 

estimation unit 42 and motion compensation unit 44 perform inter-predictive encoding 

of the received video block relative to one or more blocks in one or more reference 

frames to provide temporal prediction. Intra-prediction unit 46 may alternatively 

perform intra-predictive encoding of the received video block relative to one or more 

neighboring blocks in the same frame or slice as the block to be coded to provide spatial 

prediction. Video encoder 20 may perform multiple coding passes, e.g., to select an 

appropriate coding mode for each block of video data.

[0072] Moreover, partition unit 48 may partition blocks of video data into sub-blocks, 

based on evaluation of previous partitioning schemes in previous coding passes. For 

example, partition unit 48 may initially partition a frame or slice into CTUs, and 

partition each of the CTUs into sub-CUs based on rate-distortion analysis (e.g., rate­

distortion optimization). Mode select unit 40 may further produce a quadtree data 

structure indicative of partitioning of a CTU into sub-CUs. Leaf-node CUs of the 

quadtree may include one or more PUs and one or more TUs.
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[0073] Mode select unit 40 may select one of the prediction modes, intra or inter, e.g., 

based on error results, and provides the resulting predicted block to summer 50 to 

generate residual data and to summer 62 to reconstruct the encoded block for use as a 

reference frame. In addition, mode select unit 40 may select palette mode as an 

alternative to intra- and inter-prediction modes. Mode select unit 40 also provides 

syntax elements, such as motion vectors, intra-mode indicators, partition information, 

and other such syntax information, to entropy encoding unit 56.

[0074] Motion estimation unit 42 and motion compensation unit 44 may be highly 

integrated, but are illustrated separately for conceptual purposes. Motion estimation, 

performed by motion estimation unit 42, is the process of generating motion vectors, 

which estimate motion for video blocks. A motion vector, for example, may indicate 

the displacement of a PU of a video block within a current video frame or picture 

relative to a predictive block within a reference frame (or other coded unit) relative to 

the current block being coded within the current frame (or other coded unit). A 

predictive block is a block that is found to closely match the block to be coded, in terms 

of pixel difference, which may be determined by sum of absolute difference (SAD), sum 

of square difference (SSD), or other difference metrics. In some examples, video 

encoder 20 may calculate values for sub-integer pixel positions of reference pictures 

stored in reference picture memory 64. For example, video encoder 20 may interpolate 

values of one-quarter pixel positions, one-eighth pixel positions, or other fractional 

pixel positions of the reference picture. Therefore, motion estimation unit 42 may 

perform a motion search relative to the full pixel positions and fractional pixel positions 

and output a motion vector with fractional pixel precision.

[0075] Motion estimation unit 42 calculates a motion vector for a PU of a video block 

in an inter-coded slice by comparing the position of the PU to the position of a 

predictive block of a reference picture. The reference picture may be selected from a 

first reference picture list (List 0) or a second reference picture list (List 1), each of 

which identify one or more reference pictures stored in reference picture memory 64. 

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit 

56 and motion compensation unit 44.

[0076] Motion compensation, performed by motion compensation unit 44, may involve 

fetching or generating the predictive block based on the motion vector determined by 

motion estimation unit 42. Again, motion estimation unit 42 and motion compensation 

unit 44 may be functionally integrated, in some examples. Upon receiving the motion 
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vector for the PU of the current video block, motion compensation unit 44 may locate 

the predictive block to which the motion vector points in one of the reference picture 

lists. Summer 50 forms a residual video block by subtracting pixel values of the 

predictive block from the pixel values of the current video block being coded, forming 

pixel difference values, as discussed below. In general, motion estimation unit 42 

performs motion estimation relative to luma components, and motion compensation unit 

44 uses motion vectors calculated based on the luma components for both chroma 

components and luma components. Mode select unit 40 may also generate syntax 

elements associated with the video blocks and the video slice for use by video decoder 

30 in decoding the video blocks of the video slice.

[0077] Intra-prediction unit 46 may intra-predict a current block, as an alternative to the 

inter-prediction performed by motion estimation unit 42 and motion compensation unit 

44, as described above. In particular, intra-prediction unit 46 may determine an intra­

prediction mode to use to encode a current block. In some examples, intra-prediction 

unit 46 may encode a current block using various intra-prediction modes, e.g., during 

separate encoding passes, and intra-prediction unit 46 (or mode select unit 40, in some 

examples) may select an appropriate intra-prediction mode to use from the tested 

modes.

[0078] For example, intra-prediction unit 46 may calculate rate-distortion values using a 

rate-distortion analysis for the various tested intra-prediction modes, and select the 

intra-prediction mode having the best rate-distortion characteristics among the tested 

modes. Rate-distortion analysis generally determines an amount of distortion (or error) 

between an encoded block and an original, unencoded block that was encoded to 

produce the encoded block, as well as a bitrate (that is, a number of bits) used to 

produce the encoded block. Intra-prediction unit 46 may calculate ratios from the 

distortions and rates for the various encoded blocks to determine which intra-prediction 

mode exhibits the best rate-distortion value for the block.

[0079] After selecting an intra-prediction mode for a block, intra-prediction unit 46 may 

provide information indicative of the selected intra-prediction mode for the block to 

entropy encoding unit 56. Entropy encoding unit 56 may encode the information 

indicating the selected intra-prediction mode. Video encoder 20 may include in the 

transmitted bitstream configuration data, which may include a plurality of intra­

prediction mode index tables and a plurality of modified intra-prediction mode index 

tables (also referred to as codeword mapping tables), definitions of encoding contexts 
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for various blocks, and indications of a most probable intra-prediction mode, an intra­

prediction mode index table, and a modified intra-prediction mode index table to use for 

each of the contexts.

[0080] Video encoder 20 forms a residual video block by subtracting the prediction data 

from mode select unit 40 from the original video block being coded. Summer 50 

represents the component or components that perform this subtraction operation. 

Transform processing unit 52 applies a transform, such as a discrete cosine transform 

(DCT) or a conceptually similar transform, to the residual block, producing a video 

block comprising transform coefficient values. Wavelet transforms, integer transforms, 

sub-band transforms, discrete sine transforms (DSTs), or other types of transforms 

could be used instead of a DCT. In any case, transform processing unit 52 applies the 

transform to the residual block, producing a block of transform coefficients. The 

transform may convert the residual information from a pixel domain to a transform 

domain, such as a frequency domain. Transform processing unit 52 may send the 

resulting transform coefficients to quantization unit 54. Quantization unit 54 quantizes 

the transform coefficients to further reduce bit rate. The quantization process may 

reduce the bit depth associated with some or all of the coefficients. The degree of 

quantization may be modified by adjusting a quantization parameter.

[0081] Following quantization, entropy encoding unit 56 entropy codes the quantized 

transform coefficients. For example, entropy encoding unit 56 may perform context 

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding 

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability 

interval partitioning entropy (PIPE) coding or another entropy coding technique. In the 

case of context-based entropy coding, context may be based on neighboring blocks. 

Following the entropy coding by entropy encoding unit 56, the encoded bitstream may 

be transmitted to another device (e.g., video decoder 30) or archived for later 

transmission or retrieval.

[0082] Inverse quantization unit 58 and inverse transform unit 60 apply inverse 

quantization and inverse transformation, respectively, to reconstruct the residual block 

in the pixel domain. In particular, summer 62 adds the reconstructed residual block to 

the motion compensated prediction block earlier produced by motion compensation unit 

44 or intra-prediction unit 46 to produce a reconstructed video block for storage in 

reference picture memory 64. The reconstructed video block may be used by motion 
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estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a 

block in a subsequent video frame.

[0083] In accordance with the techniques of this disclosure, video encoder 20 may be 

configured to perform palette-based coding. More particularly, palette encoding unit 49 

may perform palette mode encoding of a block (e.g., a CU or a PU) of video data. With 

respect to the HEVC framework, as an example, the palette-based coding techniques 

may be configured to be used as a CU mode. In other examples, the palette-based 

coding techniques may be configured to be used as a PU mode in the framework of 

HEVC. Accordingly, all of the disclosed processes described herein (throughout this 

disclosure) in the context of a CU mode may, additionally or alternatively, apply to a 

PU mode. However, these HEVC-based examples should not be considered a 

restriction or limitation of the palette-based coding techniques described herein, as such 

techniques may be applied to work independently or as part of other existing or yet to be 

developed systems/standards. In these cases, the unit for palette coding can be square 

blocks, rectangular blocks, or even regions of non-rectangular shape.

[0084] Palette encoding unit 49, for example, may perform palette-based encoding 

when a palette-based encoding mode is selected, e.g., for a CU or PU. For example, 

palette encoding unit 49 may be configured to generate a palette having entries 

indicating pixel values, select pixel values in a palette to represent pixel values of at 

least some positions of a block of video data, and signal information associating at least 

some of the positions of the block of video data with entries in the palette 

corresponding, respectively, to the selected pixel values. Although various functions 

are described as being performed by palette encoding unit 49, some or all of such 

functions may be performed by other processing units, or a combination of different 

processing units.

[0085] According to one or more of the techniques of this disclosure, video encoder 20, 

and specifically palette encoding unit 49, may perform palette-based video coding of 

predicted video blocks. As described above, a palette generated by video encoder 20 

may be explicitly encoded, predicted from previous palette entries, predicted from 

previous pixel values, or a combination thereof.

[0086] In particular, mode select unit 40 may determine an encoding mode for a block 

(e.g., a CU or PU) of video data, such as inter-prediction, intra-prediction, or palette 

mode. Assuming palette mode is selected, palette encoding unit 49 may form a palette 

for the block based on statistics of pixel values for the block. For each pixel of the 
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block, palette encoding unit 49 may determine whether the pixel has a corresponding 

value in the palette, and if so, signal an index into the palette to the corresponding value 

for the pixel. Palette encoding unit 49 may also signal a run value, representing a 

number of pixels having the same value as the previous pixel.

[0087] Alternatively, if a sequence of pixels has values equal to above-neighboring 

pixels, palette encoding unit 49 may signal a run value for “copy-from-above” mode, 

where the run represents the number of pixels having values equal to above-neighboring 

pixels.

[0088] If neither the index mode nor the copy-from-above mode adequately represents 

the value of a current pixel of the palette-mode coded block, palette encoding unit 49 

may use the techniques of this disclosure to code the pixel as an escape pixel. That is, 

these techniques may be performed to quantize an escape pixel value, where the escape 

pixel value represents the actual value of the pixel (e.g., luma and/or chroma values) 

being coded. In accordance with the techniques of this disclosure, video encoder 20 

may quantize the value of the pixel to be coded as an escape pixel, e.g., as discussed 

above with respect to FIG. 1. That is, palette encoding unit 49 may perform the 

following quantization process:

1. Palette encoding unit 49 derives qP according to different color 

component index cldx as follows:

qP = ( cldx = = 0 ) ? Qp'Y : (( cldx = = 1 ) ? Qp'Cb : Qp'Cr)

2. Palette encoding unit 49 derives a quantization ratio qPper and a 

quantization remainder qPrem as follows:

qPper = qP /6 

qPrem = qP%6

3. Palette encoding unit 49 derives a right shift parameter 

invQuantRightShift and an offset parameter addOffset as follows: 

invQuantRightShift = 6 - qPper

addOffset = invQuantRightShift == 0 ? 0 : 1« (invQuantRightShift - 1)

4. Palette encoding unit 49 derives a dequantized escape pixel

deQuantEspValue based on entropy decoded EspValue as follows: 

deQuantEspValue = (EspValue * invQuantScale[qPrem] + 

addOffset)»invQuantRightShift

5. Palette encoding unit 49 further modifies deQuantEspValue to be in the 

depth range as follows:
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deQuantEspValue = clip3 (0, 2bitDepth-l, deQuantEspValue)

[0089] In this example, “EspValue” represents the quantized escape value for the pixel 

having an original value represented by “pixelValue.”

[0090] In this manner, video encoder 20 of FIG. 2 represents an example of a video 

encoder configured to determine that a value for a left shift parameter for an escape­

mode coded pixel of a palette-mode coded block of video data is less than zero, based 

on the value for the left shift parameter being less than zero, set a value for a right shift 

parameter to a positive value having an absolute value equal to an absolute value of the 

left shift parameter, and quantize the escape-mode coded pixel using the value of the left 

shift parameter.

[0091] FIG. 3 is a block diagram illustrating an example of video decoder 30 that may 

implement techniques for decoding escape pixels in palette-mode coded blocks in 

accordance with the techniques of this disclosure. In the example of FIG. 3, video 

decoder 30 includes an entropy decoding unit 70, motion compensation unit 72, intra 

prediction unit 74, palette decoding unit 75, inverse quantization unit 76, inverse 

transformation unit 78, reference picture memory 82 and summer 80. Video decoder 30 

may, in some examples, perform a decoding pass generally reciprocal to the encoding 

pass described with respect to video encoder 20 (FIG. 2). Motion compensation unit 72 

may generate prediction data based on motion vectors received from entropy decoding 

unit 70, while intra-prediction unit 74 may generate prediction data based on intra­

prediction mode indicators received from entropy decoding unit 70.

[0092] During the decoding process, video decoder 30 receives an encoded video 

bitstream that represents video blocks of an encoded video slice and associated syntax 

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy 

decodes the bitstream to generate quantized coefficients, motion vectors or intra­

prediction mode indicators, and other syntax elements. Entropy decoding unit 70 

forwards the motion vectors to and other syntax elements to motion compensation unit 

72. Video decoder 30 may receive the syntax elements at the video slice level and/or 

the video block level.

[0093] When the video slice is coded as an intra-coded (I) slice, intra prediction unit 74 

may generate prediction data for a video block of the current video slice based on a 

signaled intra prediction mode and data from previously decoded blocks of the current 

frame or picture. When the video frame is coded as an inter-coded (i.e., B or P) slice, 

motion compensation unit 72 produces predictive blocks for a video block of the current 
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video slice based on the motion vectors and other syntax elements received from 

entropy decoding unit 70. The predictive blocks may be produced from one of the 

reference pictures within one of the reference picture lists. Video decoder 30 may 

construct the reference frame lists, List 0 and List 1, using default construction 

techniques based on reference pictures stored in reference picture memory 82. Motion 

compensation unit 72 determines prediction information for a video block of the current 

video slice by parsing the motion vectors and other syntax elements, and uses the 

prediction information to produce the predictive blocks for the current video block 

being decoded. For example, motion compensation unit 72 uses some of the received 

syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to 

code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice or P 

slice), construction information for one or more of the reference picture lists for the 

slice, motion vectors for each inter-encoded video block of the slice, inter-prediction 

status for each inter-coded video block of the slice, and other information to decode the 

video blocks in the current video slice.

[0094] Motion compensation unit 72 may also perform interpolation based on 

interpolation filters. Motion compensation unit 72 may use interpolation filters as used 

by video encoder 20 during encoding of the video blocks to calculate interpolated values 

for sub-integer pixels of reference blocks. In this case, motion compensation unit 72 

may determine the interpolation filters used by video encoder 20 from the received 

syntax elements and use the interpolation filters to produce predictive blocks.

[0095] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized 

transform coefficients provided in the bitstream and decoded by entropy decoding unit 

70. The inverse quantization process may include use of a quantization parameter QPY 

calculated by video decoder 30 for each video block in the video slice to determine a 

degree of quantization and, likewise, a degree of inverse quantization that should be 

applied.

[0096] Inverse transform unit 78 applies an inverse transform, e.g., an inverse DCT, an 

inverse integer transform, or a conceptually similar inverse transform process, to the 

transform coefficients in order to produce residual blocks in the pixel domain.

[0097] After motion compensation unit 72 generates the predictive block for the current 

video block based on the motion vectors and other syntax elements, video decoder 30 

forms a decoded video block by summing the residual blocks from inverse transform 

unit 78 with the corresponding predictive blocks generated by motion compensation 
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unit 72. Summer 80 represents the component or components that perform this 

summation operation. If desired, a deblocking filter may also be applied to filter the 

decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the 

coding loop or after the coding loop) may also be used to smooth pixel transitions, or 

otherwise improve the video quality. The decoded video blocks in a given frame or 

picture are then stored in reference picture memory 82, which stores reference pictures 

used for subsequent motion compensation. Reference picture memory 82 also stores 

decoded video for later presentation on a display device, such as display device 32 of 

FIG. 1.

[0098] In accordance with various examples of this disclosure, video decoder 30 may be 

configured to perform palette-based decoding. In particular, video decoder 30 includes 

palette decoding unit 75 that may perform palette-based decoding. For example, palette 

decoding unit 75 may be configured to generate a palette having entries indicating pixel 

values. Furthermore, in this example, palette decoding unit 75 may receive information, 

such as the syntax elements shown in FIG. 3, associating at least some positions of a 

block of video data with entries in the palette. In this example, palette decoding unit 75 

may select pixel values in the palette based on the information. Additionally, in this 

example, palette decoding unit 75 may reconstruct pixel values of the block based on 

the selected pixel values. Although various functions are described as being performed 

by palette decoding unit 75, some or all of such functions may be performed by other 

processing units, or a combination of different processing units.

[0099] Palette decoding unit 75 may receive palette coding mode information, and 

perform the above operations when the palette coding mode information indicates that 

the palette coding mode applies to the block. When the palette coding mode 

information indicates that the palette coding mode does not apply to the block, or when 

other mode information indicates the use of a different mode, palette decoding unit 75 

decodes the block of video data using a non-palette based coding mode, e.g., such as an 

HEVC inter-predictive or intra-predictive coding mode, when the palette coding mode 

information indicates that the palette coding mode does not apply to the block. The 

block of video data may be, for example, a CU or PU generated according to an HEVC 

coding process. Video decoder 30 may decode some blocks with inter-predictive 

temporal prediction or intra-predictive spatial coding modes and decode other blocks 

with the palette-based coding mode. The palette-based coding mode may comprise one 
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of a plurality of different palette-based coding modes, or there may be a single palette­

based coding mode.

[0100] According to one or more of the techniques of this disclosure, video decoder 30, 

and specifically palette decoding unit 75, may perform palette-based video decoding of 

palette-coded video blocks. As described above, a palette decoded by video decoder 30 

may be explicitly encoded and signaled, reconstructed by video decoder 30 with respect 

to a received palette-coded block, predicted from previous palette entries, predicted 

from previous pixel values, or a combination thereof.

[0101] In particular, entropy decoding unit 150 may decode information indicating that 

a block (e.g., a PU or CU) of video data is coded using palette mode. Entropy decoding 

unit 150 may further decode information representative of how each pixel of the block 

is coded using palette mode. For example, entropy decoding unit 150 may decode an 

index value and a run value as an {index, run} pair. The index value represents an entry 

of the palette for the block, where the entry specifies a pixel value, and the run value 

indicates a number of pixels in addition to the current pixel that have the same value. 

[0102] If the index value is equal to the size of the palette, entropy decoding unit 150 

may determine that the current pixel is an escape pixel. Thus, entropy decoding unit 

150 may entropy decode a value representative of the escape pixel. In particular, 

entropy decoding unit 150 may decode a quantized escape pixel value for the escape 

pixel. Entropy decoding unit 150 may then pass the quantized escape pixel value to 

palette decoding unit 75.

[0103] In accordance with the techniques of this disclosure, palette decoding unit 75 

may dequantize the quantized escape pixel value. To dequantize the quantized escape 

pixel value, palette decoding unit 75 may perform the following process:

1. Palette decoding unit 75 derives a quantization parameter qP according to 

different color component index cldx as follows:

qP = ( cldx = = 0 ) ? Qp'Y : (( cldx = = 1 ) ? Qp'Cb : Qp'Cr)

2. Palette decoding unit 75 derives a quantization ratio qPper and a quantization 

remainder qPrem as follows:

qPper = qP /6 

qPrem = qP%6

3. Palette decoding unit 75 derives a right shift parameter invQuantRightShift and 

an offset parameter addOffset as follows:

invQuantRightShift = 6 - qPper
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addOffset = invQuantRightShift == 0 ? 0 : 1« (invQuantRightShift - 1) 

4A.If invQuantRightShift is larger than 0, palette decoding unit 75 performs the 

following procedure:

deQuantEspValue = (EspValue * invQuantScalefqPrem] + addOffset)» 

invQuantRightShift

4B. Otherwise (invQuantRightShift <= 0), palette decoding unit 75 performs the 

following procedure:

invQuantLeftShift = - invQuantRightShift 

deQuantEspValue = EspValue * invQuantScalefqPrem] « invQuantLeftShift

5. Palette decoding unit 75 further modifies deQuantEspValue to be in the depth 

range as follows:
deQuantEspValue = clip3 (0, 2bltDepth-l, deQuantEspValue)

[0104] The invQuantScalef.] lookup table may be implemented as an array having 

entries {40, 45, 51, 57, 64, 72}, or another lookup table of, e.g., 6 entries, and may be 

used when Adaptive Quantization Scaling is enabled. For example, when Adaptive 

Quantization Scaling is enabled, video decoder 30 may adjust invQuantRightShift 

and/or invQuantLeftShift to normalize the scaling factor introduced by Adaptive 

Quantization Scaling.

[0105] In this manner, video decoder 30 of FIG. 3 represents an example of a video 

decoder configured to determine that a value for a right shift parameter for an escape­

mode coded pixel of a palette-mode coded block of the video data is less than zero, 

based on the original value for the right shift parameter being less than zero, set a value 

for a left shift parameter to a positive value having an absolute value equal to an 

absolute value of the original value, and inverse quantize the escape-mode coded pixel 

using the value of the left shift parameter.

[0106] FIG. 4 is a flowchart illustrating an example method for encoding a block of 

video data in accordance with the techniques of this disclosure. The method of FIG. 4 

may be performed by video encoder 20 and the components thereof (e.g., illustrated in 

FIG. 2).

[0107] In this example, mode select unit 40 initially receives a block of video data 

(100). The block may be, for example, a prediction unit (PU) or a coding unit (CU). 

Mode select unit 40 then determines a coding mode for the block (102). For example, 

mode select unit 40 may test various coding modes and compare the modes using a rate­
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distortion optimization (RDO) process. Furthermore, mode select unit 40 may also 

compare various block sizes and block partitioning schemes using the RDO process. 

[0108] Mode select unit 40 may select an intra- or inter-prediction mode, in which case 

motion estimation unit 42 and motion compensation unit 44 or intra prediction unit 46 

may predict pixels of the block using intra-prediction or inter-prediction (104), 

respectively, forming a predicted block. Video encoder 20 may then form and process 

residual values of the block (106). For example, residual generation unit 50 may 

subtract the original block from the predicted block on a pixel-by-pixel basis, forming a 

residual block. Transform processing unit 52 may then transform the residual block 

using a transform such as, for example, a DCT, forming a transform block. 

Quantization unit 54 may then quantize transform coefficients of the transform block, 

and provide the quantized transform coefficients to entropy encoding unit 56. Mode 

select unit 40 also provides information representative of the prediction mode (e.g., 

intra/inter, a selected intra mode if intra-prediction is used, or motion parameters if 

inter-prediction is used) to entropy encoding unit 56. Thus, entropy encoding unit 56 

entropy encodes the prediction information and the residual values (i.e., the quantized 

transform coefficients) (108).

[0109] Alternatively, mode select unit 40 may select palette mode to code the block, in 

which case palette encoding unit 49 analyzes pixel statistics for the block (110). For 

example, palette encoding unit 49 may determine frequently used pixel values. Palette 

encoding unit 49 then forms a palette for the block based on the statistics (112). 

Although not shown in FIG. 4, entropy encoding unit 56 may entropy encode data for 

the palette. For example, the palette may be predictively coded relative to a previously 

used palette, e.g., as discussed above with respect to Tables 1 and 2.

[0110] Palette encoding unit 49 may then scan pixels of the block (114) to determine 

how to code the pixels. For example, palette encoding unit 49 may determine whether a 

current pixel value is included in the palette. If the pixel value is included in the palette, 

palette encoding unit 49 may provide an index from the palette that corresponds to the 

pixel value to entropy encoding unit 56, which may entropy encode the index value 

(116). Moreover, palette encoding unit 49 may determine a number of pixels in a row 

following the previous pixel that have the same value, and provide a “run” value to 

entropy encoding unit 56, which may entropy encode the run value (118).

[0111] Alternatively, if the current pixel does not have a value in the palette, palette 

encoding unit 49 may determine whether the value for the pixel is the same as an above­
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neighboring pixel value. In some examples, this determination may be made prior to 

determining whether the pixel value corresponds to a value in the palette. In any case, if 

the current pixel has a value that is equal to an above-neighboring pixel value, palette 

encoding unit 49 may provide a run value describing a number of pixels that have 

values equal to their above-neighboring pixels to entropy encoding unit 56, which may 

entropy encode the run value (120).

[0112] If the current pixel does not correspond to a value in the palette and does not 

have a value equal to an above-neighboring pixel, palette encoding unit 49 may encode 

the pixel as an escape pixel. In particular, palette encoding unit 49 may provide an 

index value equal to the size of the palette to entropy encoding unit 56, which may 

entropy code the index value as the size of the palette (122). An index value equal to 

the size of the palette may signal that the current pixel is being encoded as an escape 

pixel. Palette encoding unit 49 may further provide the value of the escape pixel to 

entropy encoding unit 56.

[0113] In accordance with the techniques of this disclosure, palette encoding unit 49 

may quantize the pixel value (124). Quantization of the pixel value may generally 

include a bitwise shift operation. In particular, as explained above, if palette encoding 

unit 49 determines during quantization that a left shift parameter is less than or equal to 

zero, palette encoding unit 49 may instead perform a bitwise right-shift using a right 

shift parameter having an absolute value equal to the absolute value of the left shift 

parameter, but also having a positive value. Palette encoding unit 49 may then provide 

the quantized escape pixel value to entropy encoding unit 56, which may entropy 

encode the quantized pixel value (126).

[0114] Video encoder 20 may perform this process (e.g., one of the sequence of steps 

116 and 118, step 120, or the sequence of steps 122-126) for each pixel of the palette 

mode coded block.

[0115] In this manner, the method of FIG. 4 represents an example of a method of 

encoding video data including determining that a value for a left shift parameter for an 

escape-mode coded pixel of a palette-mode coded block of video data is less than zero, 

based on the value for the left shift parameter being less than zero, setting a value for a 

right shift parameter to a positive value having an absolute value equal to an absolute 

value of the left shift parameter, and quantizing the escape-mode coded pixel using the 

value of the left shift parameter.
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[0116] FIG. 5 is a flowchart illustrating an example method for decoding a block of 

video data in accordance with the techniques of this disclosure. The method of FIG. 5 

may be performed by video decoder 30 and the components thereof (e.g., illustrated in 

FIG. 3).

[0117] Initially, entropy decoding unit 70 may decode data indicating a coding mode 

for a block of video data (150). Entropy decoding unit 70 may use this data to 

determine a coding mode for the block (152), e.g., one of intra-prediction, inter­

prediction, or palette mode.

[0118] In the case that the coding mode is intra-prediction or inter-prediction, entropy 

decoding unit 70 may decode prediction information (e.g., an intra-mode or motion 

parameters) and provide the prediction information to an appropriate one of motion 

compensation unit 72 or intra prediction unit 74 to perform intra-prediction or inter­

prediction (154). For example, intra prediction unit 74 may use an intra-prediction 

mode to construct a prediction block from neighboring pixels to the block. As another 

example, motion compensation unit 72 may use the motion parameters to retrieve (and 

potentially process, e.g., filter) a reference block from a previously decoded picture of 

reference picture memory 82.

[0119] In addition, video decoder 30 may decode and process residual values of the 

block (156). For example, inverse quantization unit 76 may inverse quantize quantized 

transform coefficients, and inverse transform unit 78 may inverse transform the 

transform coefficients, to reconstruct a residual block. Summer 80 may then combine 

residual values of the residual block and predicted values of the predicted block (158) to 

reconstruct the original block.

[0120] Alternatively, entropy decoding unit 70 may determine that the coding mode for 

the block is palette mode. In this case, entropy decoding unit 70 may entropy decode 

data for a palette of the block, while palette decoding unit 75 may decode the palette for 

the block (160) using the entropy decoded data. As discussed above with respect to 

Tables 1 and 2, the palette may be predictively coded relative to a previous palette. 

Thus, entropy decoding unit 70 may provide entropy decoded data for the palette to 

palette decoding unit 75, which may reconstruct the palette for the block using the 

decoded data.

[0121] Entropy decoding unit 70 may also decode data for pixels of the block (164). 

For example, the decoded data may correspond to an index value that is less than the 

size of the palette. In this case, entropy decoding unit 70 may also decode a run value 
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(166) and provide the index and the run value to palette decoding unit 75. Palette 

decoding unit 75 may set the value of the pixel and each of the pixels in the run equal to 

the pixel value of the palette that corresponds to the index value (168).

[0122] As another example, the decoded data may be a run value without an index 

value. Such a run value without an index value may indicate a number of pixels coded 

using copy from above mode. In this case, entropy decoding unit 70 may provide the 

run value to palette decoding unit 75, which may set values for each of the pixels in the 

run equal to the values of respective above-neighboring pixel values (170).

[0123] As another example, the decoded data may be an index value that is equal to the 

size of the palette. In this case, entropy decoding unit 70 may determine that the current 

pixel is encoded as an escape pixel. Thus, entropy decoding unit 70 may entropy 

decode a quantized value for the escape pixel (172), and provide the quantized value to 

palette decoding unit 75. Palette decoding unit 75, in turn, may de-quantize the 

quantized value (174). In particular, palette decoding unit 75 may de-quantize the 

quantized value using the techniques of this disclosure, e.g., as explained in greater 

detail above and with respect to FIG. 6 below.

[0124] Video decoder 30 may perform this process (e.g., one of the sequence of steps 

166 and 168, step 170, or the sequence of steps 172 and 174) for each pixel of the 

palette mode coded block, thereby decoding the palette mode coded block.

[0125] In this manner, the method of FIG. 5 represents an example of a method 

including determining that a value for a right shift parameter for an escape-mode coded 

pixel of a palette-mode coded block of video data is less than zero, based on the original 

value for the right shift parameter being less than zero, setting a value for a left shift 

parameter to a positive value having an absolute value equal to an absolute value of the 

original value, and inverse quantizing the escape-mode coded pixel using the value of 

the left shift parameter.

[0126] FIG. 6 is a flowchart illustrating an example technique by which palette 

decoding unit 75 may dequantize a quantized escape pixel value of a palette-mode 

encoded block of video data, in accordance with the techniques of this disclosure. In 

general, the method of FIG. 6 may correspond to element 174 of FIG. 5. That is, FIG. 6 

represents one example of a method of dequantizing a quantized escape pixel value of a 

palette-mode encoded block of video data. The steps shown in FIG. 6 need not 

necessarily be performed in the order shown, and certain steps may be performed in 

parallel.



WO 2016/123492 PCT/US2016/01567236

[0127] In this example, initially, palette decoding unit 75 derives a quantization 

parameter (QP) for a palette-mode encoded block of video data (200). For example, 

palette decoding unit 75 may determine the QP using the following formula:

QP = ( cldx = = 0 ) ? Qp'Y : (( cldx = = 1 ) ? Qp'Cb : Qp'Cr)

In this example formula, cldx represents a context index for the block of video data. 

The value of cldx may be set based on whether the block is a luma block, a blue hue 

chrominance block, or a red hue chrominance block.

[0128] Palette decoding unit 75 may then deterimine a QP ratio value and a QP 

remainder value (202). For example, palette decoding unit 75 may determine the QP 

ratio (qPper) value and the QP remainder (qPrem) value according to the following 

formulas:

qPper = qP /6

qPrem = qP%6

[0129] Palette decoding unit 75 may then derive a right shift parameter value (204). For 

example, palette decoding unit 75 may derive the right shift parameter 

(invQuantRightShift) value according to the following formula:

invQuantRightShift = 6 - qPper

[0130] Furthermore, palette decoding unit 75 may derive an offset parameter value 

(206). Palette decoding unit 75 may derive the offset parameter (addOffset) value 

according to the following formula:

addOffset = invQuantRightShift == 0 ? 0 : 1« (invQuantRightShift - 1)

[0131] Palette decoding unit 75 may then determine whether the right shift parameter 

value is less than or equal to zero (208). If not (i.e., if the right shift parameter value is 

greater than zero) (“NO” branch of 208), palette decoding unit 75 may calculate the de­

quantized value for the escape pixel from a quantized value for the escape pixel using 

the right shift parameter value and the offset parameter value (210). For example, 

palette decoding unit 75 may calculate the de-quantized value (deQuantEspValue) 

according to the following formula:

deQuantEspValue = (EspValue * invQuantScale[qPrem] + addOffset)» 

invQuantRightShift,

where EspValue represents the quantized value, and invQuantScale[.] represents a 

lookup table, such as {40, 45, 51, 57, 64, 72}.

[0132] On the other hand, if the right shift parameter is less than or equal to zero 

(“YES” branch of 208), palette decoding unit 75 may calculate a left shift parameter 
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value as being a positive value equal to the absolute value of the right shift parameter 

value (212). Palette decoding unit 75 may then calculate the de-quantized value from a 

quantized value using the left shift parameter value (214). For example, palette 

decoding unit 75 may calculate the de-quantized value (deQuantEspValue) according to 

the following formula:

deQuantEspValue = EspValue * invQuantScalefqPrem] « invQuantLeftShift 

[0133] Palette decoding unit 75 may then round the de-quantized value (216). For 

example, palette decoding unit 75 may round the de-quantize value using the following 

example clipping operation:

deQuantEspValue = clip3 (0, 2bltDepth-l, deQuantEspValue),

where clip3 is a function as defined in ITU-T H.265. In particular, H.265 defines 

clip3(x, y, z) as follows:

(x; z < x
y;z > y .

z; otherwise

In other examples, other rounding operations may be used to ensure that the value of the 

de-quantized escape pixel is within a corresponding depth range.

[0134] In this manner, the method of FIG. 6 represents an example of a method 

including determining that a value for a right shift parameter for an escape-mode coded 

pixel of a palette-mode coded block of video data is less than zero, based on the original 

value for the right shift parameter being less than zero, setting a value for a left shift 

parameter to a positive value having an absolute value equal to an absolute value of the 

original value, and inverse quantizing the escape-mode coded pixel using the value of 

the left shift parameter.

[0135] It is to be recognized that depending on the example, certain acts or events of 

any of the techniques described herein can be performed in a different sequence, may be 

added, merged, or left out altogether (e.g., not all described acts or events are necessary 

for the practice of the techniques). Moreover, in certain examples, acts or events may 

be performed concurrently, e.g., through multi-threaded processing, interrupt 

processing, or multiple processors, rather than sequentially.

[0136] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over as one or more instructions or code 

on a computer-readable medium and executed by a hardware-based processing unit.
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Computer-readable media may include computer-readable storage media, which 

corresponds to a tangible medium such as data storage media, or communication media 

including any medium that facilitates transfer of a computer program from one place to 

another, e.g., according to a communication protocol. In this manner, computer- 

readable media generally may correspond to (1) tangible computer-readable storage 

media which is non-transitory or (2) a communication medium such as a signal or 

carrier wave. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. A 

computer program product may include a computer-readable medium.

[0137] By way of example, and not limitation, such computer-readable storage media 

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 

disk storage, or other magnetic storage devices, flash memory, or any other medium that 

can be used to store desired program code in the form of instructions or data structures 

and that can be accessed by a computer. Also, any connection is properly termed a 

computer-readable medium. For example, if instructions are transmitted from a 

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless 

technologies such as infrared, radio, and microwave are included in the definition of 

medium. It should be understood, however, that computer-readable storage media and 

data storage media do not include connections, carrier waves, signals, or other transitory 

media, but are instead directed to non-transitory, tangible storage media. Disk and disc, 

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc 

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, 

while discs reproduce data optically with lasers. Combinations of the above should also 

be included within the scope of computer-readable media.

[0138] Instructions may be executed by one or more processors, such as one or more 

digital signal processors (DSPs), general purpose microprocessors, application specific 

integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other 

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as 

used herein may refer to any of the foregoing structure or any other structure suitable for 

implementation of the techniques described herein. In addition, in some aspects, the 

functionality described herein may be provided within dedicated hardware and/or
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codec. Also, the techniques could be fully implemented in one or more circuits or logic 

elements.

[0139] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware.

[0140] Various examples have been described. These and other examples are within 

the scope of the following claims.

[0141] It will be understood that the term “comprise” and any of its derivatives (eg 

comprises, comprising) as used in this specification is to be taken to be inclusive of 

features to which it refers, and is not meant to exclude the presence of any additional 

features unless otherwise stated or implied.

[0142] The reference to any prior art in this specification is not, and should not be taken 

as, an acknowledgement or any form of suggestion that such prior art forms part of the 

common general knowledge.
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CLAIMS

1. A method of decoding video data, the method comprising:
obtaining, by a video decoder, an escape-mode coded pixel of a palette-mode coded 

block of video data, the palette-mode coded block comprising palette index values mapping 

pixel values for the palette-mode coded block to respective entries of a color palette, the 
escape-mode coded pixel corresponding to a pixel value that is not in the color palette; and 

inverse quantizing, by the video decoder, the escape-mode coded pixel using a value 
of a left shift parameter, wherein inverse quantizing comprises calculating a value for the 
escape-mode coded pixel (deQuantEspValue) according to a formula comprising: 

deQuantEspValue=EspValue*invQuantScale[qPrem]«invQuantLeftShift, 
wherein EspValue represents a coded quantized escape value coded for the 

escape-mode coded pixel, invQuantScale represents an array of inverse quantization 
scale values, qPrem represents a quantization parameter remainder value, 

invQuantLeftShift represents the value of the left shift parameter, and « represents 
the bitwise left shift operator.

2. The method of claim 1, further comprising determining the value for the left shift 
parameter based on a value of a quantization parameter (qP) for the block.

3. The method of claim 2, further comprising determining the value of qP based on a 

color component index (cldx) of a color component including the escape-mode coded pixel.

4. The method of any of claims 2 to 3, wherein determining the value for the left shift 
parameter comprises:

calculating a quantization ratio (qPper) according to the formula qPper=qP/6, wherein 
qP represents the value of the qP; and

calculating the value for the left shift parameter using qPper.

5. The method of any of claims 1 to 4, wherein the array of inverse quantization scale 

values represented by invQuantScale comprises {40, 45, 51, 57, 64, 72}.
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6. The method of any of claims 1 to 5, further comprising: 

decoding the color palette for the palette-mode coded block;
decoding at least one of the pixel values of the block using the color palette; and 
reconstructing the block using the escape-mode coded pixel and the decoded at least 

one of the pixel values.

7. A device for decoding video data, the device comprising:

a memory configured to store video data; and
a video decoder configured to:

obtain an escape-mode coded pixel of a palette-mode coded block of the video 
data, the palette-mode coded block comprising palette index values mapping pixel 
values for the palette-mode coded block to respective entries of a color palette, the 
escape-mode coded pixel corresponding to a pixel value that is not in the color 
palette; and

inverse quantize the escape-mode coded pixel using the value of a left shift 
parameter, wherein to inverse quantize the escape-mode coded pixel, the video 
decoder is configured to calculate a value for the escape-mode coded pixel 
(deQuantEspValue) according to a formula comprising:

deQuantEspValue=EspValue*invQuantScale[qPrem]«invQuantLeftShift, 

wherein EspValue represents a coded quantized escape value coded for the 

escape-mode coded pixel, invQuantScale represents an array of inverse 
quantization scale values, qPrem represents a quantization parameter remainder 

value, invQuantLeftShift represents the value of the left shift parameter, and « 
represents the bitwise left shift operator.

8. The device of claim 7, wherein the video decoder is further configured to determine 
the value for the left shift parameter based on a value of a quantization parameter (qP) for 
the block.
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9. The device of claim 8, wherein the video decoder is further configured to determine 
the value of the qP based on a color component index (cldx) of a color component 

including the escape-mode coded pixel.

10. The device of any of claims 8 to 9, wherein to determine the value for the left shift 
parameter, the video decoder is configured to:

calculate a quantization ratio (qPper) according to the formula qPper=qP/6, wherein 

qP represents the value of the qP; and
calculate the value for the left shift parameter using qPper.

11. The device of any of claims 7 to 10, wherein the array of inverse quantization scale 
values represented by invQuantScale comprises {40, 45, 51, 57, 64, 72}.

12. The device of any of claims 7 to 11, wherein the video decoder is further configured 
to:

decode the palette for the palette-mode coded block;

decode at least one of the pixel values of the block using the color palette; and 
reconstruct the block using the escape-mode coded pixel and the decoded at least one 

of the pixel values.

13. The device of any of claims 7 to 12, wherein the device comprises at least one of:
an integrated circuit;
a microprocessor; or

a wireless communication device.

14. A device for decoding video data, the device comprising:
means for obtaining an escape-mode coded pixel of a palette-mode coded block of 

video data, the palette-mode coded block comprising palette index values mapping pixel 
values for the palette-mode coded block to respective entries of a color palette, the escape­
mode coded pixel corresponding to a pixel value that is not in the color palette; and
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means for inverse quantizing the escape-mode coded pixel using the value of the left 
shift parameter, wherein the means for inverse quantizing comprises means for calculating 

a value for the escape-mode coded pixel (deQuantEspValue) according to a formula 
comprising:

deQuantEspValue=EspValue*invQuantScale[qPrem]«invQuantLeftShift, 

wherein EspValue represents a coded quantized escape value coded for the 
escape-mode coded pixel, invQuantScale represents an array of inverse quantization 
scale values, qPrem represents a quantization parameter remainder value, 
invQuantLeftShift represents the value of the left shift parameter, and « represents 
the bitwise left shift operator.

15. The device of claim 14, further comprising means for determining the value for the 
left shift parameter based on a value of a quantization parameter (qP) for the block.

16. The device of claim 15, further comprising means for determining the value of the qP 
based on a color component index (cldx) of a color component including the escape-mode 

coded pixel.

17. The device of any of claims 15 to 16, wherein the means for determining the value for 
the left shift parameter comprises:

means for calculating a quantization ratio (qPper) according to the formula 

qPper=qP/6, wherein qP represents the value of the qP; and
means for calculating the value for the left shift parameter using qPper.

18. The device of any of claims 14 to 17, wherein the array of inverse quantization scale 

values represented by invQuantScale comprises {40, 45, 51, 57, 64, 72}.

19. The device of any of claims 14 to 18, further comprising:
means for decoding the color palette for the palette-mode coded block;
means for decoding at least one of the pixel values of the block using the color 

palette; and
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means for reconstructing the block using the escape-mode coded pixel and the 
decoded at least one of the pixel values.

20. A non-transitory computer-readable storage medium having stored thereon 

instructions that, when executed, cause a processor of a device for decoding video data to 
perform the method of any of claims 1 to 6.
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FIG. 4
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