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Description

Title of Invention: HIERARCHICAL LATENT VARIABLE

[0001]

[0002]

[0003]

[0004]

[0005]

[0006]

MODEL ESTIMATION DEVICE
Technical Field

The present invention relates to a hierarchical latent variable model estimation device
and a hierarchical latent variable model estimation method for estimating a hierarchical
latent variable model for multivariate data, and a computer-readable recording medium
having recorded thereon a program for estimating a hierarchical latent variable model

for multivariate data.

Background Art

Data typified by sensor data acquired from a car, sales performance of a store,
electricity demand history, and the like is data observed according to various factors
and accumulated. For example, sensor data acquired from a car varies depending on
driving mode. Thus, the data is accumulated as observation values resulting not from
one factor but from various factors.

Analysis of factors from which such data results can be applied to industrially
important situations. As an example, analyzing a cause of trouble of a car enables
quick repair of the car. As another example, analyzing correlations between sales and
weather and/or time of day enables reduction of stockout or overstock. As yet another
example, recognizing an electricity demand pattern enables prevention of excess or
shortage of electricity.

Moreover, if it is possible to analyze how switching between the plurality of factors
is made, prediction can be performed by combining knowledge obtained for each
factor. Besides, their switching rule can be used as knowledge for marketing, too. Such
analysis is therefore applicable to more sophisticated situations.

To separate the above-mentioned data resulting from the plurality of factors on a
factor-by-factor basis, a mixture latent variable model is typically used in modeling. As
a model including the above-mentioned switching rule, a hierarchical latent variable
model is proposed (for example, see Non Patent Literature (NPL) 1).

In order to use such a model, it is necessary to determine the number of hidden states,
the type of observation probability distribution, and distribution parameters. In the case
where the number of hidden states and the type of observation probability distribution
are known, the parameters can be estimated through the use of, for example, an ex-
pectation maximization algorithm described in NPL 2. Hence, how to determine the
number of hidden states and the type of observation probability distribution is

important.
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[0007]

[0008]

[0009]

[0010]

[0011]

[0012]

The problem of determining the number of hidden states and the type of observation
probability is commonly referred to as a "model selection problem" or a "system iden-
tification problem", and is an extremely important problem for constructing a reliable
model. Various methods for determining the number of hidden states and the type of

observation probability are accordingly proposed.
As a method for determining the number of hidden states, for instance, there is

proposed a method of maximizing variational free energy by a variational Bayesian
method (for example, see NPL 3). As another method for determining the number of
hidden states, there is proposed a nonparametric Bayesian method using a hierarchical
Dirichlet process prior distribution (for example, see NPL 4).

Further, a method for determining the type of observation probability by ap-
proximating, for a mixture model which is a typical example of a latent variable model,
a complete marginal likelihood function and maximizing its lower bound (lower limit)
is described in NPL 5.

Citation List

Non Patent Literature

[NPL 1] C. Bishop, M. Svensen, Bayesian Hierarchical Mixtures of Experts, Pro-
ceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, p.
57-64, 2002.

[NPL 2] C. Bishop, Pattern Recognition and Machine Learning, Springer, p.
423-459, 2007.

[NPL 3] Beal, M. J., Variational Algorithms for Approximate Bayesian Inference,
PhD thesis, University College London, May 2003.

[NPL 4] Van Gael, J., Saatci, Y., Teh, Y. W., and Ghahramani, Z., Beam Sampling
for the Infinite Hidden Markov Model, In ICML, 2008.

[NPL 5] Ryohei Fujimaki, Satoshi Morinaga, Factorized Asymptotic Bayesian
Inference for Mixture Modeling, Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics (AISTATS), March 2012.

Summary of Invention

Technical Problem

In the method of maximizing the variational free energy by the variational Bayesian
method, the independence of hidden states and distribution parameters in variational
distribution is assumed when maximizing the lower bound of the marginal likelihood
function. This causes a problem of decreased marginal likelihood approximation
accuracy.

As the nonparametric Bayesian method using the hierarchical Dirichlet process prior

distribution, a Monte Carlo-based optimization algorithm is known. However, this
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[0013]

[0014]

[0015]

[0016]

[0017]

[0018]

algorithm has a problem of extremely high computational complexity.

It is practically impossible to determine the type of observation probability by these
two methods, due to their problem of computational complexity. This problem of com-
putational complexity is described below, using an example where the observation
probability distribution is a mixture polynomial curve. Since the following discussion
does not depend on hidden states, their description is omitted.

In the case where an observation for a hidden state is a polynomial curve, it is
necessary to properly select the degree of the curve such as a linear curve (straight
line), a quadratic curve, a cubic curve, or the like, in order to determine the type of ob-
servation probability. When using a typical method, an information criterion needs to
be computed for all model candidates in such a manner that, for example, a straight
line and two quadratic curves are adopted when the number of hidden states is 3, or
three cubic curves and two quartic curves are adopted when the number of hidden
states 1s 5.

However, the number of model candidates increases exponentially with the
complexity of the model to be searched for. For instance, in the case where the number
of hidden states is 10 and the maximum degree of the curve is 10, the number of
candidates is about 100,000. In the case where the number of hidden states is 20 and
the maximum degree of the curve is 20, the number of candidates is about several tens
of billions. Thus, it is practically difficult to perform computation by a typical method.

The hierarchical latent variable model described in NPL 1 is a model estimated using
the method of maximizing the variational free energy by the variational Bayesian
method, where computation is practically difficult, too.

Even when the method described in NPL 5 is used, there is still a problem that the
model selection problem for a model including hierarchical latent variables cannot be
solved. This is because the method described in NPL 5 does not take hierarchical latent
variables into account, and so is unable to evidently establish a computational
procedure. Besides, since the method described in NPL 5 is based on a strong as-
sumption that it is not applicable to the case where there are hierarchical latent
variables, theoretical justification is lost if this method is simply applied.

In view of this, an exemplary object of the present invention is to provide a hier-
archical latent variable model estimation device, a hierarchical latent variable model
estimation method, and a computer-readable recording medium having recorded
thereon a hierarchical latent variable model estimation program that can solve the
model selection problem for a hierarchical latent variable model including hierarchical
latent variables and also estimate the hierarchical latent variable model with ap-

propriate computational complexity without losing theoretical justification.
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[0019]

[0020]

[0021]

Solution to Problem

An exemplary aspect of the present invention is a hierarchical latent variable model
estimation device for estimating a hierarchical latent variable model for multivariate
data, the hierarchical latent variable model estimation device including: a hierarchical
latent structure setting unit for setting a hierarchical latent structure that is a structure
in which latent variables are represented by a tree structure and components rep-
resenting probability models are located at nodes of a lowest level of the tree structure;
a variational probability computation unit for computing a variational probability of a
path latent variable that is a latent variable included in a path linking a root node to a
target node in the hierarchical latent structure; a component optimization unit for op-
timizing each of the components for the computed variational probability; and a gating
function optimization unit for optimizing a gating function model that is a model for
determining a branch direction according to the multivariate data in a node of the hier-
archical latent structure, on the basis of the variational probability of the latent variable
in the node.

An exemplary aspect of the present invention is a hierarchical latent variable model
estimation method for estimating a hierarchical latent variable model for multivariate
data, the hierarchical latent variable model estimation method including: setting a hier-
archical latent structure that is a structure in which latent variables are represented by a
tree structure and components representing probability models are located at nodes of a
lowest level of the tree structure; computing a variational probability of a path latent
variable that is a latent variable included in a path linking a root node to a target node
in the hierarchical latent structure; optimizing each of the components for the
computed variational probability; and optimizing a gating function model that is a
model for determining a branch direction according to the multivariate data in a node
of the hierarchical latent structure, on the basis of the variational probability of the
latent variable in the node.

An exemplary aspect of the present invention is a computer-readable recording
medium having recorded thereon a hierarchical latent variable model estimation
program for estimating a hierarchical latent variable model for multivariate data, the
hierarchical latent variable model estimation program causing a computer to execute: a
hierarchical latent structure setting process of setting a hierarchical latent structure that
is a structure in which latent variables are represented by a tree structure and
components representing probability models are located at nodes of a lowest level of
the tree structure; a variational probability computation process of computing a
variational probability of a path latent variable that is a latent variable included in a

path linking a root node to a target node in the hierarchical latent structure; a



WO 2014/119226 PCT/JP2014/000038

[0022]

[0023]

component optimization process of optimizing each of the components for the
computed variational probability; and a gating function optimization process of op-
timizing a gating function model that is a model for determining a branch direction
according to the multivariate data in a node of the hierarchical latent structure, on the
basis of the variational probability of the latent variable in the node.
Advantageous Effects of Invention

According to the present invention, it is possible to solve the model selection
problem for a hierarchical latent variable model including hierarchical latent variables,
and also estimate the hierarchical latent variable model with appropriate computational
complexity without losing theoretical justification.
Brief Description of Drawings
[fig.1]1t dipicts a block diagram showing a structure example of Exemplary Em-
bodiment 1 of a hierarchical latent variable model estimation device according to the
present invention.
[fig.2]1t dipicts a block diagram showing a structure example of a hierarchical latent
variable variational probability computation unit in Exemplary Embodiment 1.
[fig.3]1t dipicts a block diagram showing a structure example of a gating function opti-
mization unit in Exemplary Embodiment 1.
[fig.4]1t dipicts a flowchart showing an operation example of the hierarchical latent
variable model estimation device in Exemplary Embodiment 1.
[fig.5]1t dipicts a flowchart showing an operation example of the hierarchical latent
variable variational probability computation unit in Exemplary Embodiment 1.
[fig.6]1t dipicts a flowchart showing an operation example of the gating function opti-
mization unit in Exemplary Embodiment 1.
[fig.7]1t dipicts a block diagram showing a structure example of Exemplary Em-
bodiment 2 of a hierarchical latent variable model estimation device according to the
present invention.
[fig.8]1t dipicts a block diagram showing a structure example of a hierarchical latent
structure optimization unit in Exemplary Embodiment 2.
[fig.9]1t dipicts a flowchart showing an operation example of the hierarchical latent
variable model estimation device in Exemplary Embodiment 2.
[fig.10]1It dipicts a flowchart showing an operation example of the hierarchical latent
structure optimization unit in Exemplary Embodiment 2.
[fig.11]1t dipicts a block diagram showing a structure example of a gating function op-
timization unit in Exemplary Embodiment 3.
[fig.12]1t dipicts a flowchart showing an operation example of the gating function opti-

mization unit in Exemplary Embodiment 3.
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[0024]

[0025]

[0026]

[0027]

[0028]

[fig.13]1It dipicts a block diagram schematically showing a hierarchical latent variable
model estimation device according to the present invention.
Description of Embodiments

In the present invention, a hierarchical latent variable model is a model in which
latent variables (i.e. hierarchical structure) have a tree structure. Components which are
probability models are located at lowest-level nodes of the tree structure. Each branch
node is provided with a gating function for sorting branches according to input. In the
following description, a hierarchical latent variable model of depth 2 in particular is
described in detail.

Since the hierarchical structure is assumed to be the tree structure, a course from a
root node to a given node is uniquely determined. Hereafter, the course (link) when
linking the root node to the given node in the hierarchical latent structure is referred to
as a path. By tracing a latent variable for each path, a path latent variable is de-
termined. For example, a lowest-level path latent variable indicates a path latent
variable determined for each path from the root node to a lowest-level node.

In the following description, it is assumed that a data sequence x" (n = 1,..., N) is
input, where x" is an M-dimensional multivariate data sequence (x" = x,,..., Xy"). The
data sequence x" is also referred to as an observed variable. A first-level branch latent
variable z;", a lowest-level branch latent variable z;;", and a lowest-level path latent
variable z;" for the observed variable x® are defined.

z = 1 indicates that x" input to the root node branches to the first-level i-th node, and
z = 0 indicates that x" input to the root node does not branch to the first-level i-th
node. z;" = 1 indicates that x" input to the first-level i-th node branches to the second-
level j-th node, and z; = O indicates that x* input to the first-level i-th node does not
branch to the second-level j-th node. z;" = 1 indicates that x* corresponds to the
component traced by passing through the first-level i-th node and the second-level j-th
node, and z;* = 0 indicates that x* does not correspond to the component traced by
passing through the first-level i-th node and the second-level j-th node.

[Math.1]

Sincez,z.” =1, Z z,"=l,and z,,” =z,"z " aresatisfied,
il j il Y Pl

n_ n
z, —ij,.j holds true.

z"z;;" represents z;" multiplied z". The combination of x and z which is a repre-
sentative value of the lowest-level path latent variable z;" is referred to as a "complete

variable". In contrast, x is referred to as an "incomplete variable".
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[0029]

[0030]

[0031]

[0032]

[0033]

[0034]

[0035]

A hierarchical latent variable model joint distribution of depth 2 for the complete
variable is represented by the following Expression 1.
[Math.2]

P(mNy 2N M) = p(‘rN’ Z{Yst’ zé\fld|M)

K1 K1 K

N
= / H p(z?st! b) HP(ZS,WIIJ;’)Z? H Hp(m“] h,ij)z?‘z?li df

n=1 i=1 i=1j=1

(Expression 1)

That is, the hierarchical latent variable model joint distribution of depth 2 for the
complete variable is defined by P(x, y) = P(X, zy, Z»,4) included in Expression 1 shown
above. Here, a representative value of z is denoted by z,,", and a representative value
of z;" is denoted by z,,4". Moreover, a variational distribution for the first-level branch
latent variable z" is denoted by q(z"), and a variational distribution for the lowest-level
path latent variable z;" is denoted by q(z;").

In Expression 1 shown above, K; denotes the number of nodes of the first level, and
K, denotes the number of nodes branched from each of the nodes of the first level. The
components of the lowest level are represented by K;K,. K;K, represents K, multiplied
K. Meanwhile, f = (b, bl,..., bK;, hl,..., hKK,) denotes the parameter of the model.
Here, b is a branch parameter of the root node, bk is a branch parameter of a first-level
k-th node, and hk is an observation parameter for a k-th component.

Furthermore, S1,..., SK,K, represents the type of observation probability corre-
sponding to hk. As an example, in the case of multivariate data generation probability,
candidates that can be S1 to SK,K, are {normal distribution, lognormal distribution,
exponential distribution} and the like. As another example, in the case of outputting a
polynomial curve, candidates that can be S1 to SK;K; are {zero-degree curve, linear
curve, quadratic curve, cubic curve} and the like.

In the following description, a hierarchical latent variable model of depth 2 is used as
a specific example. Note, however, that the hierarchical latent variable model
estimated according to the present invention is not limited to a hierarchical latent
variable model of depth 2, and may be a hierarchical latent variable model of depth 1
or depth 3 or more. In these cases, too, Expression 1 shown above and Expressions 2 to
4 shown below can be derived as in the case of the hierarchical latent variable model of
depth 2, and so the estimation device can be realized by the same structure.

Though the following describes a distribution in the case where a target variable is X,
the present invention is equally applicable in the case where an observation distribution

is a conditional model P(Y1X) (Y is a target random variable) as in regression or dis-
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crimination.
[0036]  An essential difference between the estimation device according to the present

[0037]

[0038]

[0039]

[0040]

[0041]

[0042]

invention and the estimation method for the mixture latent variable model described in
NPL 5 is described below, before describing exemplary embodiments of the present
invention.

In the method described in NPL 5, a typical mixture model in which a latent variable
is an indicator of each component is assumed, and an optimization criterion is derived
as in Expression 10 in NPL 5. However, as Fisher information matrices are given in
the form of Expression 6 in NPL 5, it is assumed in the method described in NPL 5
that a probability distribution of the latent variable which is the indicator of each
component depends only on a mixture ratio of the mixture model. Therefore,
component switching according to input cannot be realized, and so this optimization
criterion is inappropriate.

In order to solve the problem stated above, it is necessary to set hierarchical latent
variables and perform computation using an appropriate optimization criterion, as
described in the exemplary embodiments of the present invention. In the present
invention, a multi-stage specific model for sorting branches at each branch node
according to input is assumed as an appropriate optimization criterion.

The following describes the exemplary embodiments of the present invention with
reference to drawings.

Exemplary Embodiment 1

Fig. 1 is a block diagram showing a structure example of Exemplary Embodiment 1
of a hierarchical latent variable model estimation device according to the present
invention. A hierarchical latent variable model estimation device 100 in this exemplary
embodiment includes a data input device 101, a hierarchical latent structure setting unit
102, an initialization unit 103, a hierarchical latent variable variational probability
computation unit 104, a component optimization unit 105, a gating function opti-
mization unit 106, an optimality determination unit 107, an optimal model selection
unit 108, and a model estimation result output device 109.

The hierarchical latent variable model estimation device 100, upon input of input
data 111, optimizes the hierarchical latent structure and the type of observation
probability for the input data 111, and outputs the result of optimization as a model es-
timation result 112.

Fig. 2 is a block diagram showing a structure example of the hierarchical latent
variable variational probability computation unit 104 in Exemplary Embodiment 1.
The hierarchical latent variable variational probability computation unit 104 includes a
lowest-level path latent variable variational probability computation unit 104-1, a hier-

archical setting unit 104-2, a higher-level path latent variable variational probability
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[0043]

[0044]

[0045]

[0046]

[0047]

[0048]

[0049]

computation unit 104-3, and a hierarchical computation end determination unit 104-4.

The hierarchical latent variable variational probability computation unit 104 outputs
a hierarchical latent variable variational probability 104-6, upon input of the input data
111 and a model 104-5 estimated by the below-mentioned component optimization
unit 105. The hierarchical latent variable variational probability computation unit 104
will be described in detail later.

Fig. 3 is a block diagram showing a structure example of the gating function opti-
mization unit 106 in Exemplary Embodiment 1. The gating function optimization unit
106 includes a branch node information acquisition unit 106-1, a branch node selection
unit 106-2, a branch parameter optimization unit 106-3, and a total branch node opti-
mization end determination unit 106-4.

The gating function optimization unit 106 outputs a gating function model 106-6,
upon input of the input data 111, the hierarchical latent variable variational probability
104-6 computed by the below-mentioned hierarchical latent variable variational
probability computation unit 104, and the model 104-5 estimated by the component
optimization unit 105. The gating function optimization unit 106 will be described in
detail later.

The data input device 101 is a device for inputting the input data 111. When
inputting the input data 111, the data input device 101 simultaneously inputs pa-
rameters necessary for model estimation, such as candidates for the type of observation
probability and the number of components.

The hierarchical latent structure setting unit 102 selects and sets a structure of a hier-
archical latent variable model as an optimization candidate, from the input candidates
for the type of observation probability and the number of components. The latent
structure used in the present invention is a tree structure. Hereafter, the set number of
components is denoted by C, and the mathematical expressions used in the description
relate to a hierarchical latent variable model of depth 2. Note that the hierarchical
latent structure setting unit 102 may store the selected hierarchical latent variable
model structure in an internal memory.

For example, in the case of a binary tree model (model in which each branch node
has two branches) of a tree structure of depth 2, the hierarchical latent structure setting
unit 102 selects a hierarchical latent structure having two first-level nodes and four
second-level nodes (lowest-level nodes in this exemplary embodiment).

The initialization unit 103 performs an initialization process for estimating the hier-
archical latent variable model. The initialization unit 103 is capable of executing the
initialization process by an arbitrary method. For example, the initialization unit 103
may randomly set the type of observation probability for each component, and

randomly set a parameter of each observation probability according to the set type.
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[0050]

[0051]

[0052]

[0053]

[0054]

[0055]

Moreover, the initialization unit 103 may randomly set a lowest-level path variational
probability of a hierarchical latent variable.

The hierarchical latent variable variational probability computation unit 104
computes a variational probability of a path latent variable for each level. Here, the
parameter { has been computed by the initialization unit 103 or by the component opti-
mization unit 105 and the gating function optimization unit 106. Accordingly, the hier-
archical latent variable variational probability computation unit 104 computes the
variational probability using the parameter f.

The hierarchical latent variable variational probability computation unit 104
computes the variational probability, by Laplace-approximating a marginal log-
likelihood function with respect to an estimate (e.g. a maximum likelihood estimate or
a maximum a posteriori probability estimate) for the complete variable and
maximizing its lower bound. Such computed value is hereafter referred to as an opti-
mization criterion A.

In detail, the maximization criterion A is a value that can be computed when pa-
rameters of lowest-level path latent variables and components are given. A procedure
of computing the optimization criterion A is described below, using a hierarchical
latent variable model of depth 2 as an example. A marginal log-likelihood is given by
the following Expression 2.

[Math.3]

log p(z™ |M) > Z q(z™)log

zN

{p(:EN ? ZN llw) } (Expression 2)
q(z")

First, consider the lower bound of the marginal log-likelihood given by Expression 2
shown above. In Expression 2, the equality holds true when the lowest-level path latent
variable variational probability q(zY) is maximized. Laplace-approximating the
marginal likelihood of the complete variable in the numerator using the maximum
likelihood estimate for the complete variable yields an approximation of the marginal

log-likelihood function represented by the following Expression 3.
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[Math.4]
J (g, 7,zN) —Zq(zN){ log p(z™, 2V |7) = logN
D N K,
- Z log | D)5
n=1 j=1
K, Dh N T
— Z “ log Zzg — logq(zb’)}
=1 =1 n=1

(Expression 3)

[0056]  In Expression 3, the superscript bar indicates the maximum likelihood estimate for
the complete variable, and D+ indicates the dimensionality of the subscript parameter *.

[0057]  Next, by use of the property of the maximum likelihood estimate to maximize the
log-likelihood function and the fact that the logarithm function is a concave function,
the lower bound of Expression 3 is computed according to the following Expression 4.
The value computed according to Expression 4 exemplified below corresponds to the
optimization criterion A.

[0058] [Math.5]

G(a,q,q", f,z") _Zq N)[logp(:cN 2N 7)) — D——logN
Db Zn—lZJ 1~ ZT_LJ }
<o -1
Z { g(zq ) >V, ()
_ lez 10 Z H Zg=l Z'?j -1
g q z] ZN H(z?j

i=1 j=1 n=194

{Expression 4)

— log (2™ )]

[0059] A variational distribution q' of the first-level branch latent variable and a variational
distribution q" of the lowest-level path latent variable are each obtained by maximizing
Expression 4 for the variational distribution. Here, q" and f are fixed so that " = q®V
and f =Y, and q' is fixed at the value represented by the following Expression A.

[0060]
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[Math.6]
K2 -1 ,
q = _ q (Expression A)
J=1
[0061]  Here, the superscript (t) indicates the t-th iteration in iterative computation of the hi-

[0062]

[0063]

[0064]

[0065]

erarchical latent variable variational probability computation unit 104, the component
optimization unit 105, the gating function optimization unit 106, and the optimality de-
termination unit 107.

The following describes the operation of the hierarchical latent variable variational
probability computation unit 104 with reference to Fig. 2. The lowest-level path latent
variable variational probability computation unit 104-1 receives input of the input data
111 and the estimated model 104-5, and computes the lowest-level latent variable
variational probability q(z~). The hierarchical setting unit 104-2 sets the lowest level as
the variational probability computation target.

The higher-level path latent variable variational probability computation unit 104-3
computes the path latent variable variational probability of the immediately higher
level. In detail, the higher-level path latent variable variational probability computation
unit 104-3 computes the sum of latent variable variational probabilities of the current
level having the same branch node as the parent, and sets the sum as the path latent
variable variational probability of the immediately higher level.

The hierarchical computation end determination unit 104-4 determines whether or
not there is any higher level for which the variational probability is to be computed. In
the case where the hierarchical computation end determination unit 104-4 determines
that there is the higher level, the hierarchical setting unit 104-2 sets the immediately
higher level as the variational probability computation target. Subsequently, the higher-
level path latent variable variational probability computation unit 104-3 and the hier-
archical computation end determination unit 104-4 repeat the above-mentioned
process. In the case where the hierarchical computation end determination unit 104-4
determines that there is no higher level, the hierarchical computation end determination
unit 104-4 determines that the path latent variable variational probability has been
computed for all levels.

The component optimization unit 105 optimizes the model (parameter { and type S)
of each component for Expression 4 shown above, and outputs the optimized model
104-5. In the case of a hierarchical latent variable model of depth 2, the component op-
timization unit 105 fixes q and q" at the lowest-level path latent variable variational
probability q¥ computed by the hierarchical latent variable variational probability com-

putation unit 104, and fixes q' at the higher-level path latent variable variational
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probability represented by Expression A shown above. The component optimization
unit 105 then computes a model for maximizing the value of G in Expression 4.

G defined by Expression 4 can decompose the optimization function for each
component. Accordingly, S1 to SK;K,; and parameters hl to hK;K, can be separately
optimized without taking into account the component type combination (e.g. which
type of S1 to SK;K; is designated). The capability of optimizing in such a way is
important in this process. Thus, the type of component can be optimized while
avoiding combination explosion.

The following describes the operation of the gating function optimization unit 106
with reference to Fig. 3. The branch node information acquisition unit 106-1 extracts a
branch node list using the model 104-5 estimated by the component optimization unit
105. The branch node selection unit 106-2 selects one branch node from the extracted
branch node list. Hereafter, the selected node is also referred to as a selection node.

The branch parameter optimization unit 106-3 optimizes the branch parameter of the
selection node, using the input data 111 and the latent variable variational probability
for the selection node obtained from the hierarchical latent variable variational
probability 104-6. The branch parameter of the selection node corresponds to the
above-mentioned gating function.

The total branch node optimization end determination unit 106-4 determines whether
or not all branch nodes extracted by the branch node information acquisition unit 106-1
have been optimized. In the case where all branch nodes have been optimized, the
gating function optimization unit 106 ends the process. In the case where all branch
nodes have not been optimized, the branch node selection unit 106-2 performs its
process, and then the branch parameter optimization unit 106-3 and the total branch
node optimization end determination unit 106-4 perform their respective processes.

A specific example of the gating function is described below, using a gating function
based on a Bernoulli distribution for a binary tree hierarchical model. Hereafter, the
gating function based on the Bernoulli distribution is also referred to as a Bernoulli
gating function. Let x4 be the d-th dimension of x, g be a probability of branching to
the lower left of the binary tree when this value does not exceed a threshold w, and g+
be a probability of branching to the lower left of the binary tree when this value
exceeds the threshold w. The branch parameter optimization unit 106-3 optimizes the
above-mentioned optimization parameters d, w, g, and g*, based on the Bernoulli dis-
tribution. In this case, each parameter has an analytical solution unlike the one based
on a logit function described in NPL 1, which contributes to faster optimization.

The optimality determination unit 107 determines whether or not the optimization
criterion A computed using Expression 4 shown above has converged. In the case

where the optimization criterion A has not converged, the processes by the hierarchical
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latent variable variational probability computation unit 104, the component opti-
mization unit 105, the gating function optimization unit 106, and the optimality deter-
mination unit 107 are repeated. For example, the optimality determination unit 107
may determine that the optimization criterion A has converged in the case where an
increment of the optimization criterion A is less than a predetermined threshold.

Hereafter, the processes by the hierarchical latent variable variational probability
computation unit 104, the component optimization unit 105, the gating function opti-
mization unit 106, and the optimality determination unit 107 are also collectively
referred to as the processes by the hierarchical latent variable variational probability
computation unit 104 to the optimality determination unit 107. The processes by the hi-
erarchical latent variable variational probability computation unit 104 to the optimality
determination unit 107 are repeatedly performed to update the variational distribution
and the model, as a result of which an appropriate model can be selected. Note that re-
peatedly performing these processes ensures that the optimization criterion A increases
monotonically.

The optimal model selection unit 108 selects an optimal model. In detail, in the case
where the optimization criterion A computed as a result of the processes by the hier-
archical latent variable variational probability computation unit 104 to the optimality
determination unit 107 is greater than the currently set optimization criterion A for the
number C of hidden states set by the hierarchical latent structure setting unit 102, the
optimal model selection unit 108 selects the model as the optimal model.

The model estimation result output device 109 outputs the optimal number of hidden
states, type of observation probability, parameter, variational distribution, and the like
as the model estimation result output result 112, in the case where model optimization
has been completed for the candidate of the hierarchical latent variable model structure
set from the input candidates for the type of observation probability and the number of
components. In the case where there is any candidate for which optimization has not
been completed, on the other hand, the procedure goes to the process by the hier-
archical latent structure setting unit 102, and the same processes as described above are
performed.

The hierarchical latent structure setting unit 102, the initialization unit 103, the hier-
archical latent variable variational probability computation unit 104 (more specifically,
the lowest-level path latent variable variational probability computation unit 104-1, the
hierarchical setting unit 104-2, the higher-level path latent variable variational
probability computation unit 104-3, and the hierarchical computation end deter-
mination unit 104-4), the component optimization unit 105, the gating function opti-
mization unit 106 (more specifically, the branch node information acquisition unit

106-1, the branch node selection unit 106-2, the branch parameter optimization unit
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106-3, and the total branch node optimization end determination unit 106-4), the op-
timality determination unit 107, and the optimal model selection unit 108 are realized
by a CPU of a computer operating according to a program (hierarchical latent variable
model estimation program).

For example, the program may be stored in a storage unit (not shown) in the hier-
archical latent variable model estimation device 100, with the CPU reading the
program and, according to the program, operating as the hierarchical latent structure
setting unit 102, the initialization unit 103, the hierarchical latent variable variational
probability computation unit 104 (more specifically, the lowest-level path latent
variable variational probability computation unit 104-1, the hierarchical setting unit
104-2, the higher-level path latent variable variational probability computation unit
104-3, and the hierarchical computation end determination unit 104-4), the component
optimization unit 105, the gating function optimization unit 106 (more specifically, the
branch node information acquisition unit 106-1, the branch node selection unit 106-2,
the branch parameter optimization unit 106-3, and the total branch node optimization
end determination unit 106-4), the optimality determination unit 107, and the optimal
model selection unit 108.

Alternatively, the hierarchical latent structure setting unit 102, the initialization unit
103, the hierarchical latent variable variational probability computation unit 104, the
component optimization unit 105, the gating function optimization unit 106, the op-
timality determination unit 107, and the optimal model selection unit 108 may each be
realized by dedicated hardware.

The following describes the operation of the hierarchical latent variable model es-
timation device in this exemplary embodiment. Fig. 4 is a flowchart showing an
operation example of the hierarchical latent variable model estimation device in this
exemplary embodiment.

First, the data input device 101 inputs the input data 111 (step S100). Next, the hier-
archical latent structure setting unit 102 selects and sets a hierarchical latent structure
which has not been optimized, from the input hierarchical latent structure candidate
values (step S101). Next, the initialization unit 103 performs the initialization process
of the latent variable variational probability and the parameter used for estimation, for
the set hierarchical latent structure (step S102).

Next, the hierarchical latent variable variational probability computation unit 104
computes the variational probability of each path latent variable (step S103). Next, the
component optimization unit 105 optimizes each component by estimating the type of
observation probability and the parameter (step S104).

Next, the gating function optimization unit 106 optimizes the branch parameter in

each branch node (step S105). Next, the optimality determination unit 107 determines
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whether or not the optimization criterion A has converged (step S106). That is, the op-
timality determination unit 107 determines the optimality of the model.

In the case where, in step S106, it is not determined that the optimization criterion A
has converged, i.e. it is determined that the model is not optimal (step S106a: No), the
processes of steps S103 to S106 are repeated.

In the case where, in step S106, it is determined that the optimization criterion A has
converged, i.e. it is determined that the model is optimal (step S106a: Yes), on the
other hand, the optimal model selection unit 108 compares the value of the opti-
mization criterion A according to the currently set optimal model (e.g. the number of
components, the type of observation probability, the parameter) with the value of the
optimization criterion A according to the model optimized in this process, and selects
the model with the greater value as the optimal model (step S107).

Next, the optimal model selection unit 108 determines whether or not any hier-
archical latent structure candidate which has not been estimated remains (step S108).
In the case where the candidate remains (step S108: Yes), the processes of steps S101
to S108 are repeated. In the case where no candidate remains (step S108: No), on the
other hand, the model estimation result output device 109 outputs the model estimation
result, and ends the process (step S109).

The following describes the operation of the hierarchical latent variable variational
probability computation unit 104 in this exemplary embodiment. Fig. 5 is a flowchart
showing an operation example of the hierarchical latent variable variational probability
computation unit 104 in this exemplary embodiment.

First, the lowest-level path latent variable variational probability computation unit
104-1 computes the lowest-level path latent variable variational probability (step
S111). Next, the hierarchical setting unit 104-2 sets to which level the path latent
variable has been computed (step S112). Next, the higher-level path latent variable
variational probability computation unit 104-3 computes the path latent variable
variational probability of the immediately higher level, using the path latent variable
variational probabilities of the level set by the hierarchical setting unit 104-2 (step
S113).

Next, the hierarchical computation end determination unit 104-4 determines whether
or not any level for which the path latent variable has not been computed remains (step
S114). In the case where the level for which the path latent variable has not been
computed remains (step S114: No), the processes of steps S112 to S113 are repeated.
In the case where no level for which the path latent variable has not been computed
remains, on the other hand, the hierarchical latent variable variational probability com-
putation unit 104 ends the process.

The following describes the operation of the gating function optimization unit 106 in
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this exemplary embodiment. Fig. 6 is a flowchart showing an operation example of the
gating function optimization unit 106 in this exemplary embodiment.

First, the branch node information acquisition unit 106-1 recognizes all branch nodes
(step S121). Next, the branch node selection unit 106-2 selects one branch node as the
optimization target (step S122). Next, the branch parameter optimization unit 106-3
optimizes the branch parameter in the selected branch node (step S123).

Next, the total branch node optimization end determination unit 106-4 determines
whether or not any branch node which has not been optimized remains (step S124). In
the case where the branch node which has not been optimized remains, the processes
of steps S122 to S123 are repeated. In the case where no branch node which has not
been optimized remains, on the other hand, the gating function optimization unit 106
ends the process.

As described above, according to this exemplary embodiment, the hierarchical latent
structure setting unit 102 sets the hierarchical latent structure. Here, the hierarchical
latent structure is a structure in which latent variables are represented by a tree
structure, with components representing probability models being located at lowest-
level nodes of the tree structure.

The hierarchical latent variable variational probability computation unit 104
computes the variational probability of the path latent variable. The hierarchical latent
variable variational probability computation unit 104 may compute the variational
probability of the latent variable for each level of the tree structure, from the lowest-
level node in sequence. For example, the hierarchical latent variable variational
probability computation unit 104 may compute the lowest-level path latent variable
variational probability for maximizing the optimization criterion A on the basis of the
given parameter, and further compute, on a level-by-level basis in sequence, the
higher-level path latent variable variational probability using the expression for
computing the variational probability sum. For example,

[Math.7]

4(z") =) a(z").

Following this, the component optimization unit 105 optimizes the component for the
computed variational probability, and the gating function optimization unit 106
optimizes the gating function model on the basis of the variational probability of the
latent variable in the node of the hierarchical latent structure. Note that the gating
function model is a model for determining the branch direction according to the mul-

tivariate data in the node of the hierarchical latent structure.
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Since the hierarchical latent variable model for the multivariate data is estimated by
the structure described above, the hierarchical latent variable model including hier-
archical latent variables can be estimated with appropriate computational complexity
without losing theoretical justification, and also the model selection problem for the hi-
erarchical latent variable model can be solved.

Here, the hierarchical latent structure setting unit 102 may set the hierarchical latent
structure in which the latent variables are represented by a binary tree structure, where
the gating function optimization unit 106 optimizes the gating function model based on
a Bernoulli distribution, on the basis of the variational probability of the latent variable
in the node. In this case, each parameter has an analytical solution, which contributes
to faster optimization.

Exemplary Embodiment 2

Fig. 7 is a block diagram showing a structure example of Exemplary Embodiment 2
of a hierarchical latent variable model estimation device according to the present
invention. The same structures as those in Exemplary Embodiment 1 are given the
same reference signs as in Fig. 1, and their description is omitted. A hierarchical latent
variable model estimation device 200 in this exemplary embodiment differs from the
hierarchical latent variable model estimation device 100 only in that a hierarchical
latent structure optimization unit 201 is connected and the optimal model selection unit
108 is not connected.

In Exemplary Embodiment 1, the hierarchical latent variable model estimation device
100 optimizes the model of gating functions and components for the hierarchical latent
structure candidate, and selects the hierarchical latent structure for optimizing the opti-
mization criterion A. In the hierarchical latent variable model estimation device 200 in
this exemplary embodiment, on the other hand, a process whereby the hierarchical
latent structure optimization unit 201 removes a path having a reduced latent variable
from the model is added after the process by the hierarchical latent variable variational
probability computation unit 104.

Fig. 8 is a block diagram showing a structure example of the hierarchical latent
structure optimization unit 201 in Exemplary Embodiment 2. The hierarchical latent
structure optimization unit 201 includes a path latent variable summation operation
unit 201-1, a path removal determination unit 201-2, and a path removal execution unit
201-3.

The path latent variable summation operation unit 201-1 receives input of the hier-
archical latent variable variational probability 104-6, and computes the sum (hereafter
referred to as "sample sum") of lowest-level path latent variable variational proba-
bilities in each component.

The path removal determination unit 201-2 determines whether or not the sample
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sum is equal to or less than a predetermined threshold e. Here, € is a threshold input
together with the input data 111. In detail, the condition determined by the path
removal determination unit 201-2 can be represented by, for example, the following
Expression 5.

[Math.8]

ZQ(Z )< e

That is, the path removal determination unit 201-2 determines whether or not the
lowest-level path latent variable variational probability q(z;*) in each component
satisfies the criterion defined by Expression 5 shown above. In other words, the path
removal determination unit 201-2 determines whether or not the sample sum is suf-
ficiently small.

The path removal execution unit 201-3 sets the variational probability of the path for
which the sample sum is determined to be sufficiently small, to 0. The path removal
execution unit 201-3 then re-computes the hierarchical latent variable variational
probability 104-6 for each level using the lowest-level path latent variable variational
probability normalized for each remaining path (i.e. path whose variational probability
is not set to 0), and outputs the re-computation result.

The validity of this process is described below. Expression 6 shown below as an
example is an update expression of q(z;") in iterative optimization.

[Math.9]

q¢'(23) < gi" g5j; p(a™| hij)

“Db, + “‘Dhij
TN TR @) 2D
n=1 j= lq 1] n=19 ¥
(Expression 6)

In Expression 6 shown above, the negative term is included in the exponent part, and
q(z;") computed in the preceding process is present in the denominator of the term. Ac-
cordingly, the value of optimized q(z;") is smaller when the denominator is smaller.
Thus, a small path latent variable variational probability is gradually reduced through
iterative computation.

Note that the hierarchical latent structure optimization unit 201 (more specifically,

the path latent variable summation operation unit 201-1, the path removal deter-
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mination unit 201-2, and the path removal execution unit 201-3) is realized by a CPU
of a computer operating according to a program (hierarchical latent variable model es-
timation program).

The following describes the operation of the hierarchical latent variable model es-
timation device 200 in this exemplary embodiment. Fig. 9 is a flowchart showing an
operation example of the hierarchical latent variable model estimation device 200 in
this exemplary embodiment.

First, the data input device 101 inputs the input data 111 (step S200). Next, the hier-
archical latent structure setting unit 102 sets an initial state of the number of hidden
states as the hierarchical latent structure (step S201).

In Exemplary Embodiment 1, the plurality of candidates are all executed for the
number of components to search for the optimal solution. In this exemplary em-
bodiment, on the other hand, the number of components can be optimized, too, so that
the hierarchical latent structure can be optimized in one operation. Therefore, in step
S201, only the initial value of the number of hidden states needs to be set once, unlike
step S102 in Exemplary Embodiment 1 where the candidate which has not been
optimized is selected from the plurality of candidates.

Next, the initialization unit 103 performs the initialization process of the latent
variable variational probability and the parameter used for estimation, for the set hier-
archical latent structure (step S202).

Next, the hierarchical latent variable variational probability computation unit 104
computes the variational probability of each path latent variable (step S203). Next, the
hierarchical latent structure optimization unit 201 optimizes the hierarchical latent
structure by estimating the number of components (step S204). That is, since the
components are located at the lowest-level nodes, when optimizing the hierarchical
latent structure, the number of components is optimized, too.

Next, the component optimization unit 105 optimizes each component by estimating
the type of observation probability and the parameter (step S205). Next, the gating
function optimization unit 106 optimizes the branch parameter in each branch node
(step S206). Next, the optimality determination unit 107 determines whether or not the
optimization criterion A has converged (step S207). That is, the optimality deter-
mination unit 107 determines the optimality of the model.

In the case where, in step S207, it is not determined that the optimization criterion A
has converged, i.e. it is determined that the model is not optimal (step S207a: No), the
processes of steps S203 to S207 are repeated.

In the case where, in step S207, it is determined that the optimization criterion A has
converged, i.e. it is determined that the model is optimal (step S207a: Yes), on the

other hand, the model estimation result output device 109 outputs the model estimation
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result, and ends the process (step S208).

The following describes the operation of the hierarchical latent structure optimization
unit 201 in this exemplary embodiment. Fig. 10 is a flowchart showing an operation
example of the hierarchical latent structure optimization unit 201 in this exemplary em-
bodiment.

First, the path latent variable summation operation unit 201-1 computes the sample
sum of path latent variables (step S211). Next, the path removal determination unit
201-2 determines whether or not the computed sample sum is sufficiently small (step
S212). Next, the path removal execution unit 201-3 outputs the hierarchical latent
variable variational probability re-computed in a state where the lowest-level path
latent variable variational probability for which the sample sum is determined to be
sufficiently small is set to 0, and ends the process (step S213).

As described above, in this exemplary embodiment, the hierarchical latent structure
optimization unit 201 optimizes the hierarchical latent structure by removing, from the
model, the path whose computed variational probability is equal to or less than the pre-
determined threshold.

According to such a structure, in addition to the advantageous effects of Exemplary
Embodiment 1, the number of components can be optimized in one operation, with
there being no need to optimize the plurality of hierarchical latent structure candidates
as in the hierarchical latent variable model estimation device 100. This enables the
number of components, the type and parameter of observation probability, and the
variational distribution to be estimated simultaneously, so that computation costs can
be reduced.

Exemplary Embodiment 3

The following describes Exemplary Embodiment 3 of a hierarchical latent variable
model estimation device according to the present invention. The hierarchical latent
variable model estimation device in this exemplary embodiment differs from the hier-
archical latent variable model estimation device 200 only in that the gating function
optimization unit 106 is replaced by a gating function optimization unit 113.

Fig. 11 is a block diagram showing a structure example of the gating function opti-
mization unit 113 in Exemplary Embodiment 3. The gating function optimization unit
113 includes an effective branch node selection unit 113-1 and a branch parameter op-
timization parallel processing unit 113-2.

The effective branch node selection unit 113-1 selects only effective branch nodes
from the hierarchical latent structure. In detail, through the use of the model 104-5
estimated by the component optimization unit 105, the effective branch node selection
unit 113-1 selects only the effective branch nodes by taking into account the path

removed from the model. Thus, an effective branch node means a branch node on a



22

WO 2014/119226 PCT/JP2014/000038

[0123]

[0124]

[0125]

[0126]

[0127]

[0128]

[0129]

path not removed from the hierarchical latent structure.

The branch parameter optimization parallel processing unit 113-2 performs the
branch parameter optimization process for the effective branch nodes in parallel, and
outputs the gating function model 106-6. In detail, the branch parameter optimization
parallel processing unit 113-2 optimizes the branch parameters for all effective branch
nodes simultaneously in parallel, using the input data 111 and the hierarchical latent
variable variational probability 104-6 computed by the hierarchical latent variable
variational probability computation unit 104.

For instance, the branch parameter optimization parallel processing unit 113-2 may
include the branch parameter optimization units 106-3 in Exemplary Embodiment 1
arranged in parallel, as exemplified in Fig. 11. Such a structure allows the branch pa-
rameters of all gating functions to be optimized at one time.

That is, while the hierarchical latent variable model estimation devices 100 and 200
execute the optimization process of the gating functions one at a time, the hierarchical
latent variable model estimation device in this exemplary embodiment can execute the
optimization process of the gating functions in parallel, which contributes to faster
model estimation.

Note that the gating function optimization unit 113 (more specifically, the effective
branch node selection unit 113-1 and the branch parameter optimization parallel
processing unit 113-2) is realized by a CPU of a computer operating according to a
program (hierarchical latent variable model estimation program).

The following describes the operation of the gating function optimization unit 113 in
this exemplary embodiment. Fig. 12 is a flowchart showing an operation example of
the gating function optimization unit 113 in this exemplary embodiment. First, the
effective branch node selection unit 113-1 selects all effective branch nodes (step
S301). Next, the branch parameter optimization parallel processing unit 113-2
optimizes all effective branch nodes in parallel, and ends the process (step S302).

As described above, according to this exemplary embodiment, the effective branch
node selection unit 113-1 selects the effective branch nodes from the hierarchical latent
structure nodes, and the branch parameter optimization parallel processing unit 113-2
optimizes the gating function model on the basis of the variational probability of the
latent variable in each effective branch node. Here, the branch parameter optimization
parallel processing unit 113-2 optimizes the branch parameters for the effective branch
nodes in parallel. Thus, the optimization process of the gating functions can be
performed in parallel, so that faster model estimation can be achieved in addition to the
advantageous effects of the foregoing exemplary embodiments.

Note that each program (hierarchical latent variable model estimation program)

described above is stored in a computer-readable recording medium, and causes a
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computer to execute the processes by the above-mentioned units.

The following describes the present invention using specific examples. Note,
however, that the scope of the present invention is not limited to the following, and the
variable model estimation device according to the present invention is applicable to
various models.

A specific example of the hierarchical latent variable model estimation device in
Exemplary Embodiment 1 is described first. An example of applying the hierarchical
latent variable model estimation device in Exemplary Embodiment 1 to a situation of
analyzing electricity demand history of a building is used here.

By applying the hierarchical latent variable model estimation device in Exemplary
Embodiment 1, for example it is possible to decompose the relations between power
consumption and multivariate data acquired from a plurality of sensors installed in the
building, for each of a plurality of different circumstances such as "weekdays and
weekends". Moreover, by applying the hierarchical latent variable model estimation
device in Exemplary Embodiment 1, for example it is possible to estimate a rule of
switching between the acquired plurality of relations, such as switching their relation
to a specific relation in the case of "a given temperature or higher".

For power consumption prediction used for resolving excess or shortage of electricity
supply, it is extremely important to not only estimate the plurality of relations but also
estimate how to switch between the plurality of relations.

For example, consider a hierarchical latent variable model in which an assumed
polynomial regression expression having air temperature, time of day, and day of week
as explanatory variables and power consumption after one hour as a response variable
is applied to each component. A model to be estimated here is a hierarchical latent
structure, a regression parameter (hk), and a lowest-level path latent variable
variational distribution (q).

First, the data input device 101 inputs a plurality of different tree structures as hier-
archical latent structure candidates to the hierarchical latent variable model estimation
device, together with the data of the explanatory variables and the response variable.
The hierarchical latent structure setting unit 102 sets the input tree structures in
sequence. Next, the initialization unit 103 randomly sets a regression degree and other
parameters for the set hierarchical latent structure, as the initialization process. The
model is then estimated through the processes by the hierarchical latent variable
variational probability computation unit 104 to the optimality determination unit 107.

By these processes, a plurality of regression models representing different cir-
cumstances and their switching rule can be obtained automatically. Examples of the
plurality of regression models representing the different circumstances include a re-

gression model having a large regression coefficient of an explanatory variable in-
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dicating about 9 o'clock which is the time to arrive at the office, and a regression
model having a relatively small regression coefficient of a parameter indicating the
time of day.

Furthermore, the optimal model selection unit 108 automatically selects which hier-
archical latent structure is optimal. Hence, it is possible to, for example, automatically
detect the number of different power consumption patterns according to the building
and model the relations of the appropriate number of patterns and their switching rule.

A specific example of the hierarchical latent variable model estimation device in
Exemplary Embodiment 2 is described next. An example of applying the hierarchical
latent variable model estimation device in Exemplary Embodiment 2 to a situation of
analyzing purchase information of a mass retailer is used here.

For example, by analyzing POS system information and information of weather,
neighborhood events, and the like by comparison, it is possible to determine stockout
or inventory deficiency and obtain marketing knowledge of when products sell well.
Consider a binary tree hierarchical latent variable model in which an assumed
polynomial regression expression having weather, time of day, and day of week as ex-
planatory variables and sales of each product as a response variable is applied to each
component.

First, the data input device 101 inputs a depth Dmax of the hierarchical latent
structure and the threshold e for path selection to the hierarchical latent variable model
estimation device, together with the data of the explanatory variables and the response
variable. The hierarchical latent structure setting unit 102 sets the hierarchical latent
structure candidate as a binary tree of depth Dmax. The initialization unit 103
randomly initializes other parameters. The model is then estimated through the
processes by the hierarchical latent variable variational probability computation unit
104 to the optimality determination unit 107.

By these processes, patterns of selling well when the temperature is low or when the
temperature is high, patterns of selling well in the morning or in the afternoon, and
patterns of selling well in the beginning of week or in weekends can be separated.
Moreover, the path latent variable corresponding to any untypical pattern is reduced,
and so this path is removed by the hierarchical latent structure optimization unit 201. It
is therefore possible to extract only typical patterns as the final estimation result.

The following describes an overview of the present invention. Fig. 13 is a block
diagram schematically showing a hierarchical latent variable model estimation device
according to the present invention. The hierarchical latent variable model estimation
device according to the present invention is a hierarchical latent variable model es-
timation device for estimating a hierarchical latent variable model for multivariate

data, and includes: a hierarchical latent structure setting unit 81 (e.g. the hierarchical
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latent structure setting unit 102) for setting a hierarchical latent structure that is a
structure in which latent variables are represented by a tree structure and components
representing probability models are located at nodes of a lowest level of the tree
structure; a variational probability computation unit 82 (e.g. the hierarchical latent
variable variational probability computation unit 104) for computing a variational
probability of a path latent variable that is a latent variable included in a path linking a
root node to a target node in the hierarchical latent structure; a component optimization
unit 83 (e.g. the component optimization unit 105) for optimizing each of the
components for the computed variational probability; and a gating function opti-
mization unit 84 (e.g. the gating function optimization unit 106) for optimizing a
gating function model that is a model for determining a branch direction according to
the multivariate data in a node of the hierarchical latent structure, on the basis of the
variational probability of the latent variable in the node.

According to such a structure, the model selection problem for a hierarchical latent
variable model including hierarchical latent variables can be solved, and also the hier-
archical latent variable model can be estimated with appropriate computational
complexity without losing theoretical justification.

Moreover, the hierarchical latent variable model estimation device may include a hi-
erarchical latent structure optimization unit (e.g. the hierarchical latent structure opti-
mization unit 201) for optimizing the hierarchical latent structure by removing, from
the model, a path whose computed variational probability is equal to or less than a pre-
determined threshold. According to such a structure, the number of components can be
optimized in one operation, with there being no need to optimize a plurality of hier-
archical latent structure candidates.

Moreover, the gating function optimization unit 84 may include: an effective branch
node selection unit (e.g. the effective branch node selection unit 113-1) for selecting an
effective branch node from nodes of the hierarchical latent structure, the effective
branch node being a branch node of a path not removed from the hierarchical latent
structure; and a gating function optimization parallel processing unit (e.g. the branch
parameter optimization parallel processing unit 113-2) for optimizing the gating
function model on the basis of the variational probability of the latent variable in the
effective branch node. The gating function optimization parallel processing unit may
perform optimization of each branch parameter for the effective branch node in
parallel. According to such a structure, faster model estimation can be achieved.

Moreover, the hierarchical latent structure setting unit §1 may set the hierarchical
latent structure in which the latent variables are represented by a binary tree structure.
The gating function optimization unit 84 may then optimize the gating function model

based on a Bernoulli distribution, on the basis of the variational probability of the
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latent variable in the node. In this case, each parameter has an analytical solution,

which contributes to faster optimization.
In detail, the variational probability computation unit 82 may compute the variational

probability of the path latent variable of the lowest level so as to maximize an opti-
mization criterion (e.g. the optimization criterion A) computed on the basis of the path
latent variable of the lowest level and a parameter of a component, and compute a sum
of computed variational probabilities of path latent variables of the level as the
variational probability of the path latent variable of a higher level, on a level-by-level
basis. The example of the sum to state above is shown below.

[Math.10]

9(z") =) az").

While the invention has been particularly shown and described with reference to
exemplary embodiments thereof, the invention is not limited to these embodiments. It
will be understood by those of ordinary skill in the art that various changes in form and
details may be made therein without departing from the spirit and scope of the present
invention as defined by the claims.

This application claims priority to U.S. Patent Application No. 13/758,267, filed on
February 4, 2013, the entire contents of which are incorporated by reference herein.
Reference Signs List

100 hierarchical latent variable model estimation device

101 data input device

102 hierarchical latent structure setting unit

103 initialization unit

104 hierarchical latent variable variational probability computation unit

104-1 lowest-level path latent variable variational probability computation unit

104-2 hierarchical setting unit

104-3 higher-level path latent variable variational probability computation unit

104-4 hierarchical computation end determination unit

105 component optimization unit

106 gating function optimization unit

106-1 branch node information acquisition unit

106-2 branch node selection unit

106-3 branch parameter optimization unit

106-4 total branch node optimization end determination unit

107 optimality determination unit
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108 optimal model selection unit

109 model estimation result output device

113 gating function optimization unit

113-1 effective branch node selection unit

113-2 branch parameter optimization parallel processing unit
201 hierarchical latent structure optimization unit

201-1 path latent variable summation operation unit

201-2 path removal determination unit

201-3 path removal execution unit
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Claims

A hierarchical latent variable model estimation device for estimating a
hierarchical latent variable model for multivariate data, the hierarchical
latent variable model estimation device comprising:

a hierarchical latent structure setting unit for setting a hierarchical latent
structure that is a structure in which latent variables are represented by
a tree structure and components representing probability models are
located at nodes of a lowest level of the tree structure;

a variational probability computation unit for computing a variational
probability of a path latent variable that is a latent variable included in a
path linking a root node to a target node in the hierarchical latent
structure;

a component optimization unit for optimizing each of the components
for the computed variational probability; and

a gating function optimization unit for optimizing a gating function
model that is a model for determining a branch direction according to
the multivariate data in a node of the hierarchical latent structure, on
the basis of the variational probability of the latent variable in the node.
The hierarchical latent variable model estimation device according to
claim 1, comprising

a hierarchical latent structure optimization unit for optimizing the hier-
archical latent structure by removing, from the model, a path whose
computed variational probability is equal to or less than a prede-
termined threshold.

The hierarchical latent variable model estimation device according to
claim 2, wherein the gating function optimization unit includes:

an effective branch node selection unit for selecting an effective branch
node from nodes of the hierarchical latent structure, the effective
branch node being a branch node of a path not removed from the hier-
archical latent structure; and

a gating function optimization parallel processing unit for optimizing
the gating function model on the basis of the variational probability of
the latent variable in the effective branch node, and

wherein the gating function optimization parallel processing unit
performs optimization of each branch parameter for the effective
branch node in parallel.

The hierarchical latent variable model estimation device according to
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[Claim 6]

[Claim 7]

[Claim 8]
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any one of claims 1 to 3, wherein the hierarchical latent structure
setting unit sets the hierarchical latent structure in which the latent
variables are represented by a binary tree structure, and

wherein the gating function optimization unit optimizes the gating
function model based on a Bernoulli distribution, on the basis of the
variational probability of the latent variable in the node.

The hierarchical latent variable model estimation device according to
any one of claims 1 to 4, wherein the variational probability com-
putation unit computes the variational probability of the path latent
variable of the lowest level so as to maximize an optimization criterion
computed on the basis of the path latent variable of the lowest level and
a parameter of a component, and computes a sum of computed
variational probabilities of path latent variables of the level as the
variational probability of the path latent variable of a higher level, on a
level-by-level basis.

A hierarchical latent variable model estimation method for estimating a
hierarchical latent variable model for multivariate data, the hierarchical
latent variable model estimation method comprising:

setting a hierarchical latent structure that is a structure in which latent
variables are represented by a tree structure and components rep-
resenting probability models are located at nodes of a lowest level of
the tree structure;

computing a variational probability of a path latent variable that is a
latent variable included in a path linking a root node to a target node in
the hierarchical latent structure;

optimizing each of the components for the computed variational
probability; and

optimizing a gating function model that is a model for determining a
branch direction according to the multivariate data in a node of the hi-
erarchical latent structure, on the basis of the variational probability of
the latent variable in the node.

The hierarchical latent variable model estimation method according to
claim 6, comprising

optimizing the hierarchical latent structure by removing, from the
model, a path whose computed variational probability is equal to or less
than a predetermined threshold.

A computer-readable recording medium having recorded thereon a hi-

erarchical latent variable model estimation program for estimating a hi-
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erarchical latent variable model for multivariate data, the hierarchical
latent variable model estimation program causing a computer to
execute:

a hierarchical latent structure setting process of setting a hierarchical
latent structure that is a structure in which latent variables are rep-
resented by a tree structure and components representing probability
models are located at nodes of a lowest level of the tree structure;

a variational probability computation process of computing a
variational probability of a path latent variable that is a latent variable
included in a path linking a root node to a target node in the hier-
archical latent structure;

a component optimization process of optimizing each of the
components for the computed variational probability; and

a gating function optimization process of optimizing a gating function
model that is a model for determining a branch direction according to
the multivariate data in a node of the hierarchical latent structure, on
the basis of the variational probability of the latent variable in the node.
The recording medium according to claim 8, wherein the hierarchical
latent variable model estimation program causes the computer to
execute

a hierarchical latent structure optimization process of optimizing the hi-
erarchical latent structure by removing, from the model, a path whose
computed variational probability is equal to or less than a prede-

termined threshold.
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