CONTAINER AND BLANK THEREFOR

ABSTRACT: A container and a blank therefor are disposed in a manner whereby a variety of objects may be supported therewithin. The blank has overlapping end panels each containing a transverse fold line to define an accommodation zone. The accommodation zone is divided into sections by perforation lines with the central section of each zone being readily removable to define a notch having a curved periphery at its inner end. The distance between an end of the bottom panel and the fold line on the end panels corresponds to approximately one-half the length of the bottom panel whereby the accommodation zone on each panel may overlie the bottom panel or be upright with respect thereto.
CONTAINER AND BLANK THEREFOR

This invention relates to a container which may be made from paperboard or similar materials and a blank from which the container may be assembled. The container is adapted to position and support objects therein which are of smaller size and configuration than the container such as a vase or other stemware, a planter, etc. As will be made clear hereinafter, the container is versatile so that it may accommodate a variety of sizes and shapes of objects.

The blank from which the container is made is as per a preferred embodiment illustrated in the drawings is rectangular. More specifically, the blank is a square. As per the preferred embodiment illustrated in the drawing, the container lacks a cover. A cover may be provided, if desired, by adding a panel foldably connected to a free side edge of a side panel.

The square blank is provided with a bottom panel foldably connected to side panels. The side panels are provided with end flaps foldably connected thereto. The bottom panel and end flaps are square in configuration. End panels are foldably connected to the bottom panel. Each of the end panels is provided with a transverse fold line at a distance from the adjacent edge of the bottom panel corresponding to approximately one-half the length of the bottom panel.

That portion of the end panel between the free edges and their transverse fold lines is designated as being an accommodation zone. The accommodation zone is divided into sections which may be folded or removed to accommodate different configurations of objects. The accommodation zone may be disposed upright with respect to the bottom panel or may overlie the bottom panel, depending upon the configuration of the object to be supported with the container.

It is an object of the present invention to provide a container blank which may be formed paper, paperboard, or the like and constructed in a novel manner so as to provide versatility in supporting a variety of objects within a container formed therefrom.

It is an object of the present invention to provide a novel blank for forming the container.

It is another object of the present invention to provide a novel blank which may be assembled into a container while having versatility in accommodating a variety of different shaped objects.

It is another object of the present invention to provide a novel blank which may be manufactured inexpensively with minimum waste and trim.

Other objects will appear hereinafter.

For the purpose of illustrating the invention, there is shown in the drawings a form which is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.

FIG. 1 is a top plan view of the blank of the present invention.

FIG. 2 is a partial perspective view of a container being assembled from the blank in FIG. 1 with an object in the form of stemware being supported therewith.

FIG. 3 is a partial perspective view of the container formed from the blank in FIG. 1, with the container having the accommodation on its end flaps upright with respect to the bottom panel.

FIG. 4 is a partial perspective view of a container being assembled from the blank in FIG. 1, and showing another disposition for the sections of the accommodation zone.

FIG. 5 is a perspective view of a box assembled from the blank in FIG. 1.

Referring to the drawing in detail, wherein like numerals indicate like elements, there is shown in FIG. 1 a plan view of a blank in accordance with the present invention designated generally as 10. The blank 10 is square in configuration and designed so as to require minimum waste and trim. It will be noted that there are no cutout portions. All divisions of the blank 10 are die cut slits, fold lines, or perforation lines.

The blank 10 is provided with a bottom panel 12. End panels 14 and 16 are foldably connected to the ends of the bottom panel 12 by fold lines. Side panels 18 and 20 are foldably connected to sides of the bottom panel 12 by fold lines. End flaps 22 and 24 are foldably connected to ends of the side panels 18 by fold lines. End flaps 26 and 28 are foldably connected to ends of the side panel 20 by fold lines.

It will be noted that the bottom panel 12 is square and that the end flaps 22—28 are square in configuration. The configuration of the end flaps is smaller in size than the bottom panel 12.

End flap 22 is provided with a slit 29. End flap 24 is provided with a slit 30. End flap 26 is provided with a slit 32. End flap 28 is provided with a slit 34. The slits 29 and 34 are identical. The slits 30 and 32 are identical. Each of the slits terminates in a curved portion. While slits 30 and 32 are straight except for their curved terminal portions, slits 28 and 34 define an obtuse angle. Slits 29 and 32 are mating slits for interlocking the end flaps 22 and 26. Slits 30 and 34 are mating slits for interlocking the end flaps 24 and 28.

Each of the end panels 14 and 16 are identical. Hence, only end panel 16 will be described in detail with corresponding primed numerals being provided for the corresponding structure on end panel 14.

End panel 16 is provided with concentric semicircular arc fold lines 36 and 38 which terminate in a transverse fold line 40. The distance between fold line 40 and the adjacent edge of the bottom panel 12 corresponds to approximately one-half the length of the bottom panel 12. The length of the bottom panel 12 is defined by the distance between the end panels 14 and 16. The distance between the fold line 40 and the free edge of the end panel 16 defines an accommodation zone designated generally as 42.

As illustrated in FIG. 1, the fold line 40 is interrupted with its end interconnected by an arcuate perforation line 46 concentric with the arcuate fold lines 36 and 38. Perforation lines 48, 50 and 52 extend from the perforation line 46 to the fold line 36. Perforation lines 48—52 radiate from the center of curvature for lines 36, 38 and 46.

The accommodation zone 42 is divided into a plurality of sections or tabs. Perforation lines 54 and 56 extend from the free edge 44 to the ends of the perforation line 46 to thereby define a removable tab 57. When tab 57 is removed, the accommodation zone 42 is provided with a notch whose inner periphery is curved as defined by perforation line 46. The accommodation zone 42 is provided with perforation lines 58 and 60 parallel to lines 54 and 56. Zone 42 is also provided with perforation lines 62 and 64 which are parallel to lines 54 and 56.

The perforation lines 54 and 60 extend to the free edge 44 and therefore define a tab 59 which may be manipulated about the fold line 40. Perforation lines 56 and 62 extend to the free edge 44 and define a tab 61 which may be manipulated about the fold line 40. The accommodation zone 42 may be modified in any desired manner by tearing the same along any of the perforation lines 54, 56, 58, 60, 62 or 64 as desired and/or dictated by the configuration of the object to be supported within the container 66 illustrated in configured in FIG. 5.

In FIG. 2, the container 66 is partially assembled and broken away for purposes of illustration. In FIG. 2, the object to be supported within the container is a stemware object 68.

The sequence of steps for using the present invention to support stemware object 68 as follows.

With the blank 10 lying flat as shown in FIG. 1, the object 68 is placed over the bottom panels 12 and centered thereon. Tabs 57 and 57' are removed from the end panels by tearing along the perforation lines. End panel 14 is folded so as to overlie the bottom panel 12 and the base of the stemware object 18. The notch defined by removal of tab 57' accommodates the stem of object 68. Thereafter, end panel 16 is folded in the same manner so as to overlie bottom panel 12, the base of the stemware object 68, and the end panel 14. At
3. A container blank in accordance with claim 1 wherein said end panels are provided with concentric arcuate fold lines on a portion thereof other than in the accommodation zone, said arcuate fold lines terminating at the transverse fold line each end panel.

4. A blank in accordance with claim 3 including radially disposed perforation lines with respect to the center of curvature of said arcuate fold lines, said perforation lines extending across the smaller of the arcuate fold lines on each end panel.

5. A blank in accordance with claim 1 wherein the distance between the transverse fold lines and each panel and the adjacent edge of the bottom panel corresponds to approximately one-half the length of the bottom panel.

6. A container blank comprising a bottom panel, a pair of side panels each side panel being foldably connected to one side of said bottom panel, an end flap foldably connected to each end of the side panels, a pair of end panels, each end panel being foldably connected to an end of said bottom panel, said end panels having a transverse fold line parallel to but spaced from the free edge thereof thereby defining an accommodation zone, said accommodation zone being divided into sections by perforation lines, the distance between each transverse fold line and the adjacent edge of the bottom panel being approximately one-half the length of the bottom panel.

7. A blank in accordance with claim 6 wherein the central section on each accommodation zone is removable to define a notch having a curved periphery at its inner end, and concentric arcuate fold lines on each end panel with the center of curvature thereof corresponding to the center of curvature of the curved periphery at the inner end of each notch.

8. A container comprising a bottom panel, a pair of upright side panels, each side panel being connected to a side of said bottom panel, and end flap foldably connected to each end of the side panels, means interconnecting the flaps at each end of the bottom panel so that the end flaps are upright and generally perpendicular to the side panels, a pair of end panels, each end panel being foldably connected to an end of said bottom panel and being disposed within the upright wall defined by the side panels and the end flaps, each end panel having a transverse fold line spaced from its free edge, thereby defining an accommodation zone, each accommodation zone being divided into sections by perforation lines, and the distance between each transverse fold line and the adjacent edge of the bottom panel being approximately one-half the length of the bottom panel.

9. A container in accordance with claim 8 including an fold line on each end panel, the center of curvature of said arcuate fold lines lying on the adjacent transverse fold line, and a plurality of perforation lines on each end panel radiating outwardly from said center of curvature.

10. A container in accordance with claim 8 wherein the central section on each accommodation zone is removable to define a notch, having a curved periphery at its inner end, the center of curvature of said curved periphery lying along the adjacent transverse fold line.