

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
3 July 2008 (03.07.2008)

PCT

(10) International Publication Number
WO 2008/079082 A1

(51) International Patent Classification:

B21D 37/01 (2006.01) *B21D 22/28* (2006.01)
B21C 3/08 (2006.01) *C22C 29/08* (2006.01)

(74) Agent: HÄGGLÖF, Henrik; Sandvik Intellectual Property AB, S-811 81 Sandviken (SE).

(21) International Application Number:

PCT/SE2007/050956

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

7 December 2007 (07.12.2007)

(25) Filing Language:

English

(26) Publication Language:

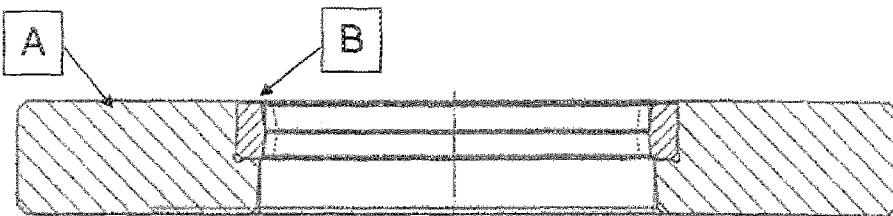
English

(30) Priority Data:

0602813-8 27 December 2006 (27.12.2006) SE

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): SANDVIK INTELLECTUAL PROPERTY AB [SE/SE]; S-811 81 Sandviken (SE).


(72) Inventors; and

(75) Inventors/Applicants (for US only): PAUTY, Emmanuel [FR/FR]; 26 Rue Paul Langevin, F-38130 Echirolles (FR). ENGSTRÖM, Håkan [SE/SE]; Peringskiöldsvägen 27, S-168 56 Bromma (SE). RIMBAU, Victor [ES/ES]; C/Aprestadora No 9 2o 3a, L'Hospitalet del Llobregat, E-08902 Barcelona (ES). VASCO I SALAS, Gerard [ES/ES]; Can Rosell, 12, Caldes de Montbui, E-08140 Barcelona (ES).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(54) Title: CORROSION RESISTANT TOOL FOR COLDFORMING OPERATIONS

(57) Abstract: There is disclosed a cemented carbide tool containing tungsten carbide, titanium carbide, nickel and cobalt, molybdenum and chromium. The composition of the materials provides a good resistance to corrosion as well as high hardness and wear resistance. These properties are particularly interesting for the manufacture of tools for coldforming operations. Cold forming tools made with these materials will have steady performance over a long period of time.

WO 2008/079082 A1

Corrosion resistant tool for coldforming operations

The present invention relates to a method of making improved cemented carbide tools for shaping or otherwise working materials.

5 The invention has particular application in making metal working tools, and specifically tools used in the manufacture of tubular casings and similar articles, such as two-piece beverage cans.

A two-piece can is made by a drawing and wall ironing process. In general, a two-piece can is made by stamping out metal 10 discs from a metal plate. A metal "cup" is formed from the disk. The formed cups are pushed through a body-forming die comprising a plurality of annular rings, generally known as draw, redraw, and ironing rings, by a body-forming punch. The clearances between the body-forming punch and the plurality of rings become progressively 15 smaller so that the thickness of cup wall is reduced and the cup is elongated. This process is generally referred to as the ironing operation. It is a particularly demanding operation causing high wear on the tools and is sensitive to the dimensional changes and lubrication conditions. Because of the tremendous volume of 20 beverage cans manufactured each year, each slight improvement in the manufacturing process can result in tremendous savings.

Tools for imparting a desired shape, form, or finish to a material, such as dies, punches, and the like, are characterized by extreme hardness, compressive strength and rigidity. This is 25 particularly necessary when shaping metals or similar materials. Commercial material working tools for mass production must also be resistant to wear, erosion and chipping from repeated and continuous stress and abrasion. In addition these tools should also exhibit good corrosion resistant properties in order not to 30 be damaged by the surrounding liquid media (coolant/lubricant). These tools must also be made from materials which can be designed and machined to close tolerances and maintain dimensional stability over a wide range of operating conditions.

It is known to make punches, dies, deep draw tooling and 35 similar material working tools from a variety of materials, including metals, cemented carbide and conventional ceramics. These known materials all have certain undesirable limitations. When making tools for shaping metal articles, particularly tubular casings such as two-piece beverage cans, the problems of prior 40 known materials becomes particularly significant.

A possible way to achieve better performance in can manufacturing is the use of ceramic materials, e. g. whisker reinforced alumina or silicon nitride as are disclosed in US patents US 5,095,730 and US 5,396,788 respectively, but so far 5 conventional cemented carbide seems to keep its position as the preferred material.

A second possible way to achieve better performance is the use of ultrafine grained cemented carbide. Many improvements could be reached by a grain size reduction leading to better wear 10 resistance as described in EP-A-1726672.

Slightly better corrosion resistance is expected from ultrafine material as also described in EP-A-1726673. However, this improvement is believed to be a result of thinner binder 15 films obtained via the WC grain size reduction. Thus, even if a slight improvement is reached, the leaching mechanism will not be drastically modified, leading to binder elimination with a consequent destruction of the cemented carbide structure.

It is, thus, an object of the present invention to provide a tool for coldforming and drawing operations particularly in the 20 manufacture of two-piece beverage aluminum or steel cans by the use of corrosion resistant cemented carbide grade giving better properties than prior art tools particularly for the ironing operation.

The present invention relates to the use a specific binder 25 design to get very good corrosion resistance of the cemented carbide against the coolant/lubricant used in the field. The cemented carbide exhibits a high hardness in order to reach a high wear resistance. This is obtained via the complex hard phase that contains tungsten carbide and titanium carbide. The cemented 30 carbide contains tungsten carbide, titanium carbide, nickel, molybdenum and chromium. This composition of the cemented carbide provides good resistance to corrosion as well as a high hardness and wear resistance as shown by example 1. The combination of a complex hard phase and corrosion resistant binder leads to the 35 desired better properties represented by 8% binder grade having hardness about 1930 HV30 i.e. higher hardness than the commonly used 6% Co binder grade that typical has a hardness of 1775 HV30.

Figure 1 shows an ironing die in which A= cemented carbide die and B= steel casing.

Figure 2 shows in 1500 times magnification in light optical microscope the cemented carbide used according to the present invention. The scale bar is 10 μm . The microstructure is etched by Murakami solution. Eta phase is black, gamma phase of size 2 to 3 μm is rounded and grey and WC is fine < 2 μm with angular shape and grey.

Figure 3 is a picture of the microstructure in higher resolution by SEM 10000x magnification in which

- S1 is WC,
- S2 gamma phase and
- S3 eta phase.

The cemented carbide used in the invention consists essentially of, in wt %: 80-90 WC, 5-15 TiC and 5-10 preferably 7-10 of the sum of Ni, Mo, Cr and Co in the following amounts, also in wt-%: 40-60, preferably 45-55, Ni or (Ni+Co), <20, preferably 10-18 Mo, 15-40, preferably 30-40 Cr. Up to 30 wt % of the (Ni+Co) can be Co. The carbon content is preferably sub-stoichiometric. In certain embodiments of the invention the sole components of the cemented carbide are those listed above, along with any normal minor impurities.

The cemented carbide structure comprises:

- WC with a grain size of <2, preferably 1-2 μm ,
- 1-10, preferably 5-7, vol-% eta-phase evenly distributed as little stars <50 μm , preferably <25 μm , of very fine grains <1 μm and
- gamma phase of size 2 to 3 μm , appears rounded and with grey colour in a light optical picture.

The material has a hardness of 1870-2000 HV30.

The cemented carbide used in the present invention is prepared from powders forming the hard constituents and powders forming the binder are wet milled together, dried, pressed to bodies of desired shape and sintered. The powder mixture should preferably have such a carbon content to give an eta-phase content of the sintered bodies according to above.

Thus the invention relates to the use of cemented carbide with complex hard phase and corrosion resistant binder ending to high hardness, improved wear and corrosion resistance in coldforming and drawing operations particularly in the ironing process of aluminium and steel beverage can manufacturing. However the invention has broad applicability for use in manufacturing a

variety of other shaped articles, particularly tubular casings, such as dry cell battery casings and aerosol cans. The invention also applies to the use of the cemented carbide according to the invention particularly for other coldforming and drawing operations such as the drawing operation of wire and especially tire cord.

Example 1

Two cemented carbide bodies with the composition according to 10 the table below, in weight % were prepared and characterized.

Ref	A	B
Sample	invention	prior art
WC	83.3	93.73
TiC	8.65	0
Co	0	6
Ni	4	0
Mo	1.15	0
Cr	2.9	0.27
d WC μm	1.2	0.8

The microstructure of the tool according to the invention, ref A, is shown in Figures 2 and 3. The micrographs show the carbide phases WC, the gamma phase (TiC-based) and the fine eta phase. Prior art, B, is Sandvik's standard grade for ironing 15 operation.

The properties have been measured according to the standard used in the cemented carbide field i.e., ISO 3878:1983 for the hardness and ATM B611-85 for the abrasion wear resistance.

The corrosion resistance has been characterized using an 20 immersion test in a real lubricant formulation (used for body maker) diluted in at 3 wt% in demineralized water. The immersion has been performed during 15 days at 50°C, which correspond to the lubricant temperature during the drawing process. The weight of 25 the cemented carbide sample was measured before and after the immersion. Very fine SEM observations were carried out with the Scanning Electron Microscope equipped with a Field Emission Gun (FEG-SEM) in order to confirm if the some binder has been removed from the surface after the test.

30

The results are presented in the table below:

Ref	A	B
Sample	invention	prior art
Hardness (HV30)	1930	1775
Wear resistance (cm ⁻³)	98	66
Weight evolution (mg)	+1	-5
Leaching of the binder (SEM)	no	yes

Thus, compared to prior art, the invention exhibits 8.7% higher hardness, 48.5% higher wear resistance and a much better corrosion resistance as no leaching of the binder has been observed.

Example 2

In the deep drawing operation of beverage cans the ironing rings (see Figure 1) are subject to wear causing surface destruction, leading to change of the friction forces in the ironing operation. Ironing rings of composition A and B according to Example 1 were produced and tested in a can forming operation under normal drawing conditions. The force was measured on the third ironing ring. The evolution of the force with time was recorded for each test ring. The slope of the curve of Force vs Time is evaluated for each ring. The average results of the grades are compared and used as a measure of the performance. The results of the test are given in the table below.

Grade	Slope Force vs Time	Average slope Force vs Time
A (Invention)	0.17 0.20 0.08	0.15
B (Prior art)	0.26 0.26	0.26

20

Difference of slope between grade A (Invention) and slope of B (Prior art) expressed as percent

Average : -42 %

Min : -23 %

25 Max : -69 %

Thus the grade according to the invention exhibits better performance in the ironing operation than the prior art grade.

Claims

1. Use of a cemented carbide tool consisting essentially of, in wt %: 80-90 WC, 5-15 TiC and 5-10 preferably 7-10 of the sum of Ni, Mo, Cr and Co in the following amounts in wt-%: 40-60, preferably 45-55, Ni or (Ni+Co), <20, preferably 10-18 Mo, 15-40, preferably 30-40, Cr with a grain size of WC preferably of 1-2 μm and with a sub-stoichiometric carbon content giving 1-10, preferably 5-7, vol-% eta-phase evenly distributed as little stars <50 μm , preferably <25 μm , of very fine grains <1 μm for deep drawing and ironing operation of manufacturing of aluminium or steel beverage cans.
2. Use of a cemented carbide tool according to claim 1 in which up to 30 wt % of the (Ni+Co) is Co.
3. Use of a cemented carbide tool consisting essentially of, in wt %: 80-90 WC, 5-15 TiC and 5-10 preferably 7-10 of the sum of Ni, Mo, Cr and Co in the following amounts in wt-%: 40-60, preferably 45-55, Ni or (Ni+Co), <20, preferably 10-18 Mo, 15-40, preferably 30-40, Cr with a grain size of WC preferably of 1-2 μm and with a sub-stoichiometric carbon content giving 1-10, preferably 5-7, vol-% eta-phase evenly distributed as little stars <50 μm , preferably <25 μm , of very fine grains <1 μm for deep drawing and ironing operation of manufacturing of a variety of other shaped articles, particularly tubular casings, such as dry cell battery casings and aerosol cans.
4. Use of a cemented carbide tool according to claim 3 in which up to 30 wt % of the (Ni+Co) is Co.
5. Use of a cemented carbide tool consisting essentially of, in wt %: 80-90 WC, 5-15 TiC and 5-10 preferably 7-10 of the sum of Ni, Mo, Cr and Co in the following amounts in wt-%: 40-60, preferably 45-55, Ni or (Ni+Co), <20, preferably 10-18 Mo, 15-40, preferably 30-40, Cr with a grain size of WC preferably of 1-2 μm and with a sub-stoichiometric carbon content giving 1-10, preferably 5-7, vol-% eta-phase evenly distributed as little stars <50 μm , preferably <25 μm , of very fine grains <1 μm for the drawing operation of steel wire, especially steel tire cord wire.
6. Use of a cemented carbide tool according to claim 5 in which up to 30 wt % of the (Ni+Co) is Co.

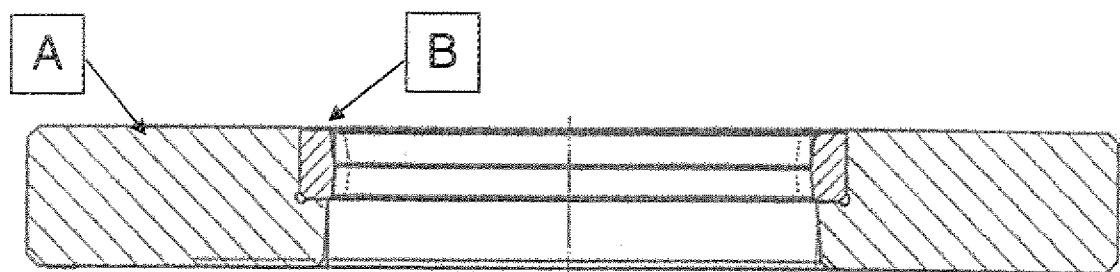


Fig. 1

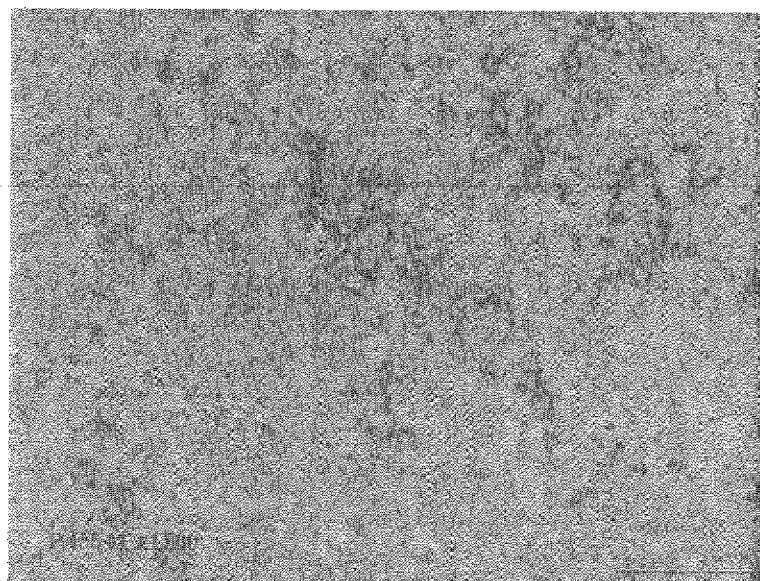


Fig. 2

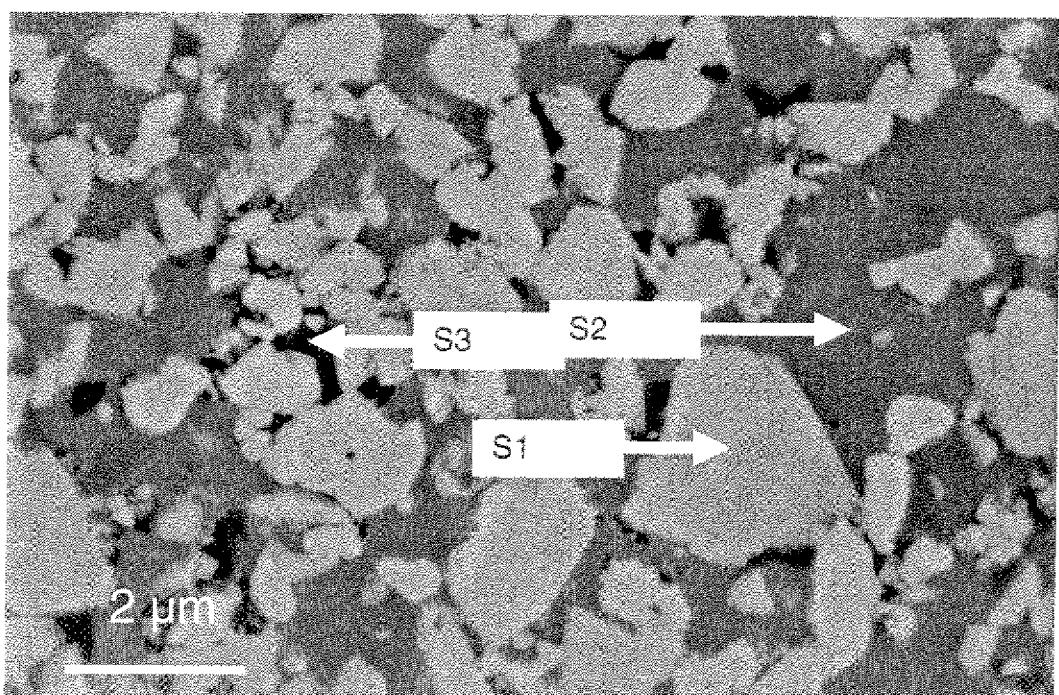


Fig. 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE2007/050956

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: B21D, B21C, C22C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 60125348 A, HITACHI CHOKO KK, 1985-07-04: (abstract) Retrieved from: PAJ database --	1-6
A	JP 55115944 A, YOSHIZAKI KOZO, 1980-09-06: (abstract) Retrieved from: PAJ database --	1-6
A	JP 03258424 A, MITSUBISHI MATERIALS CORP, 1991-11-18: (abstract) Retrieved from: PAJ database --	1-6
A	US 5736658 A (MIRCHANDANI, P K ET AL), 7 April 1998 (07.04.1998), claim 1, abstract --	1-6

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
8 May 2008

Date of mailing of the international search report
12-05-2008

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. + 46 8 666 02 86

Authorized officer
Mats Raidla/PR
Telephone No. + 46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE2007/050956

International patent classification (IPC)

B21D 37/01 (2006.01)

B21C 3/08 (2006.01)

B21D 22/28 (2006.01)

C22C 29/08 (2006.01)

Download your patent documents at www.prv.se

The cited patent documents can be downloaded at www.prv.se by following the links:

- In English/Searches and advisory services/Cited documents (service in English) or
- e-tjänster/anförläda dokument (service in Swedish).

Use the application number as username.

The password is **KLWOLMJPBE**.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE2007/050956

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 9932681 A1 (O'DONNELL, SYLVIE ET AL), 1 July 1999 (01.07.1999), claim 1 -- -----	1-6

INTERNATIONAL SEARCH REPORT
Information on patent family members

26/01/2008

International application No.
PCT/SE2007/050956

US	5736658	A	07/04/1998	NONE	
WO	9932681	A1	01/07/1999	AT	225412 T 15/10/2002
				CN	1094990 B,C 27/11/2002
				CN	1283236 A,T 07/02/2001
				DE	69808514 D,T 30/01/2003
				EP	1042522 A,B 11/10/2000
				SE	1042522 T3
				JP	2001526974 T 25/12/2001
				SE	511212 C 23/08/1999
				SE	9704845 A,L 23/06/1999
				US	6375707 B 23/04/2002