(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
9 October 2003 (09.10.2003) PCT WO 03/084116 Al
(51) International Patent Classification”: HO04L 1/22  (74) Agent: O’BANION, John, P.; O’Banion & Ritchey LLP,

Suite 1550, 400 Capitol Mall, Sacramento, CA 95814 (US).

(21) International Application Number: PCT/US03/09443 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(22) International Filing Date: 25 March 2003 (25.03.2003) CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
(25) Filing Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US,

(26) Publication Language: English UZ VC. VN, YU, ZA. ZM., ZW.

(30) Priority Data: (84) Designated States (regional): ARIPO patent (GH, GM,
60/367,615 25 March 2002 (25.03.2002) US KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
60/367,616 25 March 2002 (25.03.2002) US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

(71) Applicant (for all designated States except US): ETER- ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
NAL SYSTEMS, INC. [US/US]; 1901 South Bascom Av- SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
enue, Suite 1200, San Jose, CA 95008 (US). GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
(72) Inventors; and —  with international search report

(75) Inventors/Applicants (for US only): MOSER, Louise, E.
[US/US]; P.O. Box 13963, Santa Barbara, CA 93107 (US).  For two-letter codes and other abbreviations, refer to the "Guid-
MELLIAR-SMITH, Peter, M. [US/US]; P.O. Box 13963, ance Notes on Codes and Abbreviations" appearing at the begin-
Santa Barbara, CA 93107 (US). ning of each regular issue of the PCT Gazette.

(54) Title: TRANSPARENT CONSISTENT SEMI-ACTIVE AND PASSIVE REPLICATION OF MULTITHREADED APPLICA-

TION PROGRAMS
10\ ---------------
16~e’ " Primary ™., 18——e="" Backup ™
Replica ™, S\ Repli
o Npmles T Nbelca
TI T2 T3 OT4 s B v ¥
QQ/E 22% 2?% ?26 ‘-_\‘ . 28 30 GE% ?4
12- Ty
05 6 O (Ul (e 95
l Mutex J { Mr\u’/[ticx‘l { Ml\l;l(tfx l 1 Mﬁuzex l
: 48| i : e
244‘\sgam1 Shafed : ".‘584\ Shared Shiked
. ta : . 1 ta
D D2 Bi i3
— Consistent |42 / y Cousistent 56 ,"'
Multithreading K 5 Multithreading <
< Library K ‘\‘ Library
= o { ---- T e
v
g (57) Abstract: A system and method for replicating a multithreaded application program using a semi-active or passive replication
= strategy, wherein the application program executes under the control of an operating system having a thread library. The method
~~. comprises piggybacking mutex ordering information at the Primary replica (16) onto regular multicast messages specifying the order
g in which threads in the Primary replica (16) have been granted their claims to mutexes; and receiving the multicast messages at a
Backup replica (18) containing the mutex ordering information which determines the order in which threads in the Backup replica
O (18) are granted mutexes. Thread library interpositioning is preferably utilized to intercept calls to functions in the operating system’s

g thread library, so that the system and method of the invention may be implemented transparently. The invention enforces strong
replica consistency without the need to count instructions, add significant messaging overhead, or modify application code.



10

15

20

25

30

WO 03/084116 PCT/US03/09443

TRANSPARENT CONSISTENT SEMI-ACTIVE AND PASSIVE REPLICATION OF
MULTITHREADED APPLICATION PROGRAMS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority from U.S. provisional application serial
number 60/367,615 filed on March 25, 2002, incorporated herein by '
reference, and from U.S. provisional application serial number 60/367,616

filed on March 25, 2002, incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
OR DEVELOPMENT
[0002] This invention was made with Government support under Grant No.
70NANBOH3015, awarded by the U.S. Department of Commerce, National
Institute of Standards and Technology. The Government may have certain

rights in this invention.

INCORPORATION-BY-REFERENCE OF MATERIAL
SUBMITTED ON A COMPACT DISC
[0003] Not Applicable

'NOTICE OF MATERIAL SUBJECT TO COPYRIGHT PROTECTION

[0004] A portion of the material in this patent document is subject to copyright
protection under the copyright laws of the United States and of other
countries. The owner of the copyright rights has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it
appears in the United States Patent and Trademark Office publicly available
file or records, but otherwise reserves all copyright rights whatsoever. The
copyright owner does not hereby waive any of its rights to have this patent
document maintained in secrecy, including without limitation its rights pursuant
to 37 C.F.R. § 1.14.



WO 03/084116 PCT/US03/09443

REFERENCE TO A COMPUTER PROGRAM APPENDIX
[0005] Not Applicable

BACKGROUND OF THE INVENTION
1. Field of the Invention.

[0006] The invention relates to software-based fault-tolerant computer
systems and, in particular, to multithreaded application programs that are

replicated using the leader-follower semi-active and passive replication

strategies.
2. Description of Related Art.
[0007] Fault-tolerant systems are based on entity redundancy (replication) to

mask faults and, thus, to provide continuous service to their users. In
software fault tolerance, the entities that are replicated are the application
programs or parts thereof (processes, objects or components). A
fundamental issue in the design and implementation of fault-tolerant systems
is that of maintaining the consistency of the states of the replicas.

[0008] Distributed systems offer the opportunity for fault tolerance by allowing
replicas of the application programs to be hosted on different computers (i.e.,
in different fault containment regions). In the client-server model of distributed
computing, a client invokes a method of a server, typically hosted on a
different computer, by receiving a request message containing that method
invocation and by receiving a reply message from that server. To render an
application fault-tolerant, the server is replicated but the client may also be
replicated, particularly in multi-tier and peer-to-peer applications, where a
process, object or component acts as both a client and a server.

[0009] Fault-tolerant systems support several different replication strategies
including semi-active and passive replication, and variations thereof. In both
semi-active and passive replication, one of the replicas is distinguished as the
Primary replica and the other replicas are called the Backup replicas.

[0010] In semi-active replication, all of the replicas of a process, object or
component execute each method invoked on the replicas. The Primary

replica determines the order in which the methods and other operations are

-2-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

executed and communicates that order to the Backup replicas, which
executes the methods and other operations in the same order. If the Primary
replica makes a decision regarding a non-deterministic operation (such as the
order in which access to a shared resource is granted), it communicates that
decision to the Backup replicas which make the same decision. If the Primary
replica fails, a Backup replica takes over as the Primary replica and starts
making decisions that the other Backup replicas must follow.

In passive replication, only the Primary replica executes the methods
invoked on the replicas. The state of the Primary replica (values of its
variables or attributes) is checkpointed periodically or on demand, and the
messages, methods and other operations after the checkpoint are logged. If
the Primary replica fails, a Backup replica takes over as the Primary replica.
The checkpoint is loaded into the Backup replica and the messages, methods
and other operations after the checkpoint are replayed.

A challenging aspect of replication is to maintain strong replica
consistency, as methods are invoked on the replicas and the states of the
replicas change dynamically, and as faults occur. Strong replica consistency
means that, for each method invocation or operation, for each data access
within that method invocation or operation, the replicas obtain the same data
values. Moreover, for each result, message sent or request made to other
processes, objects or components, the replicas generate the same result,
message or request.

Many application programs written in modern programming languages
(such as C++, Java, etc.) involve multithreading, which is a source of non-
determinism. Unless it is properly handled, non-determinism can lead to
inconsistency in the states of the replicas. To maintain strong replica
consistency, it is necessary to sanitize or mask such sources of non-
determinism, i.e., to render a replicated application program virtually
deterministic. A virtually deterministic replicated application program is an
application program that exists as two or more replicas and that may involve
non-deterministic decisions; however, for those non-deterministic decisions

that affect the states of the replicas, the replicas must make the same non-

-3-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

deterministic decisions.

U.S. Patents 5,577,261 and 5,794,034 which are incorporated herein
by reference describe the implementation of “process management” functions,
such as the claim(), release(), suspend() and signal() functions, which are also
used by the current invention. Operations involving those methods are
rendered consistent by having each processor claim a global mutex (called
GLUPP) before performing any “process management” operation. Once it
has acquired the global mutex, the process performs the operation and then
distributes the results to the other processors before relinquishing the global
mutex.

U.S. Patent 4,718,002 which is incorporated herein by reference
describes how a mutex can be granted to processors, processes, replicas or
threads in a distributed system. Each grant of a mutex requires three
messages, two messages to claim and grant the mutex and one message to
release the mutex. It should be appreciated that this approach requires the
communication of multiple additional messages for claiming, granting and
releasing a mutex.

U.S. Patent 5,621,885 which is incorporated herein by reference
describes a strategy based on Primary/Backup replication, in which the
Primary replica executes the required operations. When the Primary replica
performs an I/O operation, the results of the I/O operation are communicated
to the Backup replica, so that the Backup replica performs the same operation
as the Primary replica. This strategy is directed at maintaining consistency
between Primary and Backup replicas only for I/O operations and does not
address inconsistency that arises from multithreading.

U.S. Patents 5,802,265 and 5,968,185 which are incorporated herein
by reference are related to the TFT system described below and describe a
strategy based on the Primary/Backup approach, in which the Primary replica
executes the required operations. When the Primary replica performs an
asynchronous or non-deterministic operation, it communicates the results of
that operation to the Backup replica, so that the Backup performs the same

operation as the Primary. The teachings of these patents disclose no

-4-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

[0018]

[0019]

[0020]

mechanism for guaranteeing that a Backup receives such communication
before or concurrently with the communication of results by the Primary to an
entity external to the system. As a result, the design is exposed to the risk
that the Primary might perform actions and communicate results of those
actions to clients, and subsequently fail without ensuring that the Backups
have received the communication from the Primary about the operating
system interactions. It should be appreciated that such a fault can leave a
Backup with the obligation of reproducing those actions; however, the Backup
replica might lack the necessary information to do so.

The TARGON/32 system (A. Borg, W. Blau, W. Graetsch, F. Herrmann
and W. And, Fault tolerance under Unix, ACM Transactions on Computer
Systems, vol. 7, no. 1, 1989, pp. 1-24, incorporated herein by reference)
provides mechanisms for the Unix operating system that ensure consistent
processing by multiple replicas of asynchronous operations and signals, such
as the claim() and release() functions. A designated control processor (the
Primary) records a checkpoint immediately before it processes an
asynchronous operation. If the control processor fails, a Backup processor
restarts from the checkpoint and then processes the asynchronous operation
immediately thereafter, ensuring that the Backup processes the operation
starting from the same state as the control processor.

The Delta-4 system (D. Powell (ed.), Delta-4: A Generic Architecture for
Dependable Distributed Computing, Springer-Verlag, 1991, incorporated
herein by reference) provides support for non-deterministic application
programs that employ semi-active or passive replication. To provide such
support, Delta-4 queues interrupts until the application program executes a
polling routine in which the replicas synchronize and agree on the interrupts
received and the order in which to process them.

The Hypervisor system (T. C. Bressoud and F. B. Schneider,
Hypervisor-based fault tolerance, ACM Transactions on Computer Systems,
vol. 14, no. 1, 1996, pp. 80-107, incorporated herein by reference) and the
Transparent Fault Tolerance (TFT) system (T. C. Bressoud, TFT: A software

system for application-transparent fault tolerance, Proceedings of the IEEE

-5-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

[0021]

[0022]

[0023]

[0024]

28th Fault-Tolerant Computing Symposium, Munich, Germany, June 1998,
pp. 128-137, incorporated herein by reference) uses a Primary/Backup
approach and aims for transparency to the application and the operating
system by utilizing hardware instruction counters to count the instructions
executed between two hardware interrupts. The TFT system utilizes object
code editing to modify the program code to provide fault tolerance.

Other researchers (J. H. Sly and E. N. Elnozahy, Supporting non-
deterministic execution in fault-tolerant systems, Proceedings of the IEEE
26th Fault Tolerant Computing Symposium, Sendai, Japan, June 1996, pp.
250-259, incorporated herein by reference) have introduced a software
instruction counter approach, analogous to the hardware instruction counter
approach of the Hypervisor system, to count the number of instructions
between non-deterministic events in log-based rollback-recovery systems. If a
fault occurs, the instruction counts are used to replay the instructions and the
non-deterministic events at the same execution points.

Non-preemptive deterministic scheduler strategies also exist that
impose a single logical thread of control on the replicas to maintain strong
replica consistency (P. Narasimhan, L. E. Moser and P. M. Melliar-Smith,
Enforcing determinism for the consistent replication of multithreaded CORBA
applications, Proceedings of the IEEE 18th Symposium on Reliable
Distributed Systems, Lausanne, Switzerland, October 1999, pp. 263-273,
incorporated herein by reference). The effect of this strategy is to undo the
multithreading that was programmed into the application program.

Transactional Drago (S. Arevalo, R. Jimenez-Peris and M. Patino-
Martinez, Deterministic scheduling for transactional multithreaded replicas,
Proceedings of the IEEE 19th Symposium on Reliable Distributed Systems,
Nurnberg, Germany, October 2000, pp. 164-173, incorporated herein by
reference) also uses a non-preemptive deterministic scheduler but is
configured for use in transaction processing systems.

Therefore, a need exists for systems, software mechanisms, methods,
improvements and apparatus for providing strong replica consistency for

multithreaded application programs based on semi-active and passive

-6-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

replication that maintain application transparency. The systems, software
mechanisms, methods, improvements and apparatus in accordance with the
present invention satisfy that need, as well as others, and overcome
deficiencies in previously known techniques.

BRIEF SUMMARY OF THE INVENTION

The present invention can be described as a system, software
mechanisms, methods, improvements and apparatus that aim at achieving
strong replica consistency of multithreaded application programs that are
replicated using the leader-follower (primary-backup) semi-active or passive
replication strategy. This invention is applicable to distributed systems in
which the several computers within the distributed system share no memory
and communicate with each other by messages.

Unlike U.S. Patents 5,802,265 and 5,968,185, described above, the
present invention ensures that the Backup replicas receive the necessary
access ordering information before or concurrently with the communication of
results by the Primary replica to an entity external to the system. Unlike the
Hypervisor system, previously described, the current invention does not
attempt to maintain transparent fault tolerance by counting instructions
executed between hardware interrupts. Moreover, unlike U.S. Patent
4,718,002, described above, the present invention does not require the
communication of additional separate messages for claiming, granting and
releasing a mutex over and above the regular messages that are transmitted
during normal operation. Unlike the non-preemptive scheduler strategies,
previously described, the current invention allows for the maximum degree of
concurrency of threads while maintaining strong replica consistency. |

An aspect of this invention is to provide mechanisms for fault-tolerant
systems based on replication, in which an application process, object or
component is replicated, and the replicas of the application process, object or
component are typically located on different computers within a distributed
system. In the event that one of the replicas is disabled by a fault, another
replica can continue to provide service.

Another aspect of this invention is to employ semi-active or passive

-7-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

replication, in which there are two or more replicas of an application process,
object or component, one of which is distinguished as the Primary replica and
the others of which are called the Backup replicas. If the Primary replica is
disabled by a fault, one of the Backup replicas takes over as the Primary
replica and continues to provide the service.

There are many sources of nondeterminism in application programs.
The mechanisms of this invention address nondeterminism caused by
multithreading in replicated application programs that use the semi-active or
passive replication strategy. They assume that the application program has
been correctly coded so that each resource that is shared by two or more
threads in a process, object or component is protected by a shared resource
control construct, such as a mutex, that allows only of those threads to access
the shared resource at a time. They assume further that each thread has a
unique thread identifier and that each mutual exclusion construct (mutex) has
a unique mutex identifier.

To maintain strong replica consistency for replicated multithreaded
application programs, it is necessary to sanitize or mask sources of non-
determinism. The mechanisms of the present invention sanitize multithreaded
application programs based on semi-active or passive replication strategies.
They mask multithreading as a source of non-determinism in the replicas, so
that strong replica consistency is maintained.

The present invention exploits a reliable source-ordered multicast
protocol to maintain strong replica consistency. Reliable means that the
replicas of a process, object or component receive the messages that are
multicast to it. Source ordered means that the replicas of a process, object or
component receive the messages from a given source in the same order.

For unithreaded application programs based on semi-active or passive
replication, a multicast protocol that delivers request and reply messages
reliably and in the same order to the replicas can be used to maintain strong
replica consistency. For multithreaded application programs, the problem of
maintaining strong replica consistency is more difficult because two threads in

a replica can access shared resources, such as shared data, in an order that

-8-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

is different from the order in which the corresponding threads in another
replica access the shared data; consequently, the states of the replicas can
become inconsistent.

For multithreaded application programs, if two threads access data that
are shared between them, then only one of those threads can access that
shared data at a time. Therefore, to maintain strong replica consistency, the
shared data must be protected, preferably with a mutex, wherein a thread
must claim the mutex and enter a critical section of code, preferably protected
with a mutex, before accessing the shared data. In the presence of
replication, the threads in the replicas must claim the mutexes, enter the
critical sections and access the shared data in an identical order.

The mechanisms of this invention ensure that, for replicated
multithreaded application programs based on the leader-follower (passive-
backup) strategy of semi-active or passive' replication, the threads in the
replicas are granted their claims to mutexes, semaphores and so forth in the
same order, even though the threads in the replicas might claim the mutexes,
semaphores and so forth in different orders. As a result, the mechanisms of
this invention eliminate multithreading as a source of nondeterminism in
replicated multithreaded application programs. In other words, they sanitize
such programs by rendering those programs virtually deterministic.

The mechanisms of this invention depend on the existence of a
Primary replica that dictates the order in which the threads in the Backup
replicas claim, and are granted, accesses to shared resources (i.e., mutexes).

The Primary replica piggybacks this resource access ordering and granting
information (i.e., mutex ordering information) on the messages that it
multicasts.

In the Primary replica, the mechanisms of the present invention
piggyback access ordering information, such as mutex ordering information,
onto the regular messages that they multicast. The access ordering
information conveys the order in which the threads in the Primary replica have
been granted their claims to access shared resources. In the Backup

replicas, the mechanisms of the present invention ensure that the

-9-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

corresponding threads are granted corresponding claims to access the shared
resources, in the same order as the threads in the Primary replicas, as
dictated by the access ordering information received from the Primary replica.

Embodiments of the present invention are exemplified with threads of
replicas claiming and releasing mutexes, semaphores and so forth,
associated with shared resources, preferably shared data and code that
manipulates such shared data. In a Backup replica, the granting of a given
resource, to a given thread, for a given claim number, is constrained until the
Primary has been granted the corresponding access, and other accesses
corresponding to previous accesses have been completed by the Backup
replica, and has communicated those accesses to the Backup replica. In this
way, threads in Backup replicas are constrained to follow the order and
granting of shared resource accesses by threads in the Primary replica, as
communicated by the Primary replica to the Backup replicas. As a result, the
system, methods, software mechanisms, improvements and apparatus of the
present invention sanitize replicated multithreaded abplication programs, by
masking multithreading as a source of non-determinism and, thus, render
such programs virtually deterministic, thereby maintaining strong replica
consistency.

To maintain application transparency for replicated multithreaded
application programs based on the leader-follower strategy of semi-active or
passive replication, while maintaining strong replica consistency, the invention
is preferably implemented using the technique of library interpositioning to
intercept the calls to functions in the operating system's thread library and to
divert them to another library. An example of this other library is herein
referred to as the Consistent Multithreading (CMT) library, which is the
preferred embodiment of this invention and is so-named because it eliminates
multithreading as a source of non-determinism in replicated multithreaded
application programs and maintains strong replica consistency.

The Consistent Multithreading (CMT) library is interposed ahead of the
operating system’s thread library, such as the standard POSIX thread
(PTHREAD) library. The CMT library contains control program code

-10-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

comprising wrapper functions for the functions of the operating system’s
thread library that claim and release mutexes, semaphores, condition
variables, and so forth. The application program invokes the wrapper
functions of the CMT library, instead of the corresponding functions of the
operating system’s thread library. The wrapper functions of the CMT library
subsequently invoke the corresponding functions of the operating system’s
thread library. This allows the CMT library to modify the behavior of the
replicated multithreaded application program, without modifying either the
application program or the functions of the operating system’s thread library.

When a thread in the Primary replica invokes a function to claim a
mutex, the CMT claim() function is invoked. The CMT claim() function in turn
invokes the claim() function of the operating system'’s thread library and
subsequently piggybacks ordering and granting information onto the next
message that it multicasts. The ordering and granting information specifies
which thread in the Primary replica has been granted access to a shared
resource (mutex) for a particular access request. The multicast protocol
delivers messages reliably and in the same source order to the Backup
replicas. In the Backup replicas, the threads are granted accesses to shared
resources (mutexes) in the same order as the corresponding accesses were
granted to the corresponding threads in the Primary replica, based on the
ordering and granting information that Primary replica multicasts to the
Backup replicas.

The multicast protocol might communicate a message containing the
ordering and granting information directly to the Backup replicas.
Alternatively, and preferably, the ordering and granting information is
piggybacked on the regular messages. If a regular message, such as a reply
message sent by a Primary server replica to a client in response to a request
message from that client, can be multicast to both the client and the Backup
server replicas, then the regular message communicates the ordering and
granting information to the Backup server replicas. If, however, the multicast
protocol is such that the regular message from the Primary server replica

cannot be multicast to both the client and the Backup server replicas, then the

11-



WO 03/084116 PCT/US03/09443

ordering and granting information is piggybacked on the next regular message
that the Primary server sends to the client, and the client also piggybacks that
same ordering and granting information on the next message it multicasts,
either its next request message or an acknowledgment message for the reply
message, to the Primary and Backup server replicas.

[0042] The mechanisms of this invention sanitize the non-deterministic
behavior of the threads in the different replicas in claiming mutexes, in a
manner that is transparent to the application program, and similarly for the
release() function and for semaphores, control variables, and other similar
structurés.

[0043] For application programs that run on an operating system that provides
Dynamically Linked Libraries (DLL) (e.g., Solaris, Linux, Windows), a
command is issued to the DLL mechanisms that causes the DLL mechanisms
to interpose the Consistent Multithreading (CMT) library, containing the
wrapper functions, ahead of the operating system'’s thread library. This
interpositioning causes the application program to invoke the functions of the
CMT library, rather than the corresponding functions of the operating system's
thread library directly. Thus, the mechanisms involve no modification or
recompilation of the application program and, thus, are transparent to the
application program.

[0044] If, on the other hand, the operating system does not provide
Dynamically Linked Libraries (e.g., VxWorks), it is necessary to insert a
statement into the makefile for the application program that directs the linker
to include the CMT library ahead of the operating system’s thread library. In
this case, the application program is not modified but the makefile is modified.

[0045] The mechanisms of this invention allow concurrency of threads that do
not simultaneously claim the same mutex, or that claim different mutexes,
while maintaining strong replica consistency. As a result, the mechanisms of
the invention provide the maximum degree of concurrency while maintaining
strong replica consistency.

[0046] The mechanisms of this invention sanitize multithreaded application

programs in that they mask multithreading as a source of non-determinism so

-12-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

that strong replica consistency is maintained.

[0047] Thus, the present invention provides an extension to existing systems,
in particular that have an operating system thread library that grants access to
shared resources without regard to consistent granting of those accesses
across multiple replicas, to provide fault tolerance and consistent replication
based on the semi-active or passive replication strategies. It should be
appreciated that, in the current invention, the Primary replica dictates the
order in which threads in a Backup replica are granted accesses to shared
resources, which order is the same as the order in which the corresponding
threads in the Primary replica are granted corresponding accesses to
corresponding shared resources. Further aspects of the invention include: (1)
at the Primary replica, piggybacking access ordering information onto regular
multicast messages that specifies the order in which threads in the Primary
replica have been granted accesses to shared resources, and (2) at a Backup
replica, receiving multicast messages from the Primary replica that contain the
access ordering information, which determines the order in which
corresponding threads in the Backup replica are granted corresponding
accesses to corresponding shared resources.

[0048] The source-ordered multicast protocol preferably piggybacks the
ordering information on regular messages being multicast, therein minimizing
communication overhead. The invention ensures that the Backup replicas
have the access ordering information that they need, in the event that the
Primary replica fails, to order to maintain strong replica consistency.

[0049] Further aspects of the invention will be brought out in the following
portions of this document, wherein the detailed description is for the purpose
of fully disclosing preferred embodiments of the invention without placing
limitations thereon.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

[0050] The invention will be more fully understood by reference to the
following drawings which are for illustrative purposes only:

[0051] FIG. 1 is a diagram of two replicas, the Primary replica and a Backup

replica, each executing multiple threads that share data, which are protected

-13-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

by mutexes. In accordance with the preferred embodiment of the invention,
the diagram shows the Consistent Multithreading (CMT) library and a reliable
source-ordered multicast protocol.

[0052] FIG. 2 is a process flow diagram of two replicas, the Primary replica
and a Backup replica, each executing mulitiple threads, with a history of the
order in which mutexes are claimed, granted and released, and in which
ordered claims are piggybacked and multicast.

[0053] FIG. 3 is a process flow diagram of two replicas, the Primary replica
and a Backup replica, each with two threads that share resources, such as
data, that illustrates the mutex ordering requirements for strong replica
consistency.

[0054] FIG. 4A is a process flow diagram that illustrates a first alternative
mechanism for communicating mutex ordering information to the replicas of a
process, object or component.

[0055] FIG. 4B is a process flow diagram that illustrates a second alternative
mechanism for communicating mutex ordering information for the threads in
the replicas of a process, object or component.

[0056] FIG. 5 is a flow chart that shows a thread of the Primary replica
invoking the CMT claim() function for a mutex and the steps taken by that
function when it is invoked.

[0057] FIG. 6 is a flow chart that shows a thread of the Primary replica
invoking the CMT release() function for a mutex and the steps taken by that
function when it is invoked.

[0058] FIG. 7 is a flow chart that shows a thread of a Backup replica invoking
the CMT claim() function for a mutex and the steps taken by that function
when it is invoked.

[0059] FIG. 8 is a flow chart that shows a thread of a Backup replica invoking
the CMT release() function for a mutex and the steps taken by that function
when it is invoked.

[0060] FIG. 9 is a flow chart that shows a Backup replica receiving a message
with piggybacked ordered claims and the steps taken by the CMT message

handler when it receives that message.

-14-



5

10

15

20

25

30

WO 03/084116 PCT/US03/09443

FIG. 10 is a flow chart that shows a thread of a Backup replica that is
awakened while waiting for a mutex and the steps taken by the CMT claim()
function.

DETAILED DESCRIPTION OF THE INVENTION

Referring more specifically to the drawings, for illustrative purposes the
present invention is embodied in the apparatus generally shown in FIG. 1
through FIG. 10. It will be appreciated that the apparatus may vary as to
configuration and as to details of the parts, and that the method may vary as
to the specific steps and sequence, without departing from the basic concepts
as disclosed herein. The example diagrams and flow charts herein may be
implemented in a number of different ways to achieve the same or similar
results without departing from the present invention.

It should be noted that the mechanisms of the invention pertain to the
semi-active and passive replication strategy. The algorithms, diagrams and
descriptions below generally refer to semi-active replication, but the
mechanisms apply equally to passive replication. Only one Backup replica is
shown in the diagrams, but the mechanisms of the invention apply equally if
multiple Backup replicas are used.

In the algorithms, diagrams and descriptions below, the term mutex
refers to a mutual exclusion construct, in particular a binary semaphore, which
respects the priority transfer mechanisms of the scheduler for an operating
system. However, the mechanisms of the invention apply equally well to
counting semaphores, condition variables, and other similar mechanisms for
controlling access to a shared resource.

The mechanisms of this invention employ the technique of library
interpositioning to intercept the calls to functions in the operating system’s
thread library. For example, for the standard POSIX Thread (PTHREAD)
library, the mechanisms intercept the calls to the functions in the PTHREAD
library. The Consistent Multithreading (CMT) library that is the preferred
embodiment of this invention contains wrappers for the functions in the
operating system’s thread library, such as the pthread_mutex_lock() and
pthread_mutex_unlock() functions in the PTHREAD library. In view of the

-15-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

[0066]

[0067]

[0068]

[0069]

[0070]

applicability of these mechanisms to thread libraries, other than the
PTHREAD library, these functions and the corresponding wrapper functions
are referred to more generally as claim() and release(), respectively.

When a thread of the Primary replica invokes a function to claim a
mutex, the claim() wrapper function of the CMT library is invoked, instead of
the corresponding claim() function in the operating system’s thread library.
The CMT claim() function takes appropriate steps, shown in FIG. 5 and FIG.
7, to ensure that the threads in the Backup replicas are granted their claims to
the mutexes in the same order as the corresponding threads in the Primary
replica were granted their claim to the mutexes.

For each mutex M, or other form of shared resource control, the
consistent multithreading mechanisms maintain a boolean variable, such as
M.available, which indicates whether or not mutex M is available. For each
thread T, the consistent multithreading mechanisms maintain a boolean
variable, such as T.suspended, which indicates whether or not thread T is
suspended.

In the Primary replica, when thread T claims a mutex M as its Nth claim
to any mutex, and that mutex is already being held by another thread, the
consistent multithreading mechanisms set T.suspended to true and suspend
thread T using the standard mutex scheduling mechanisms of the operating
system, which subsequently resume thread T, using priority transfer, as
appropriate.

In the Primary replica, the consistent multithreading mechanisms
maintain a queue, the ordered claims queue of triples (T, M, N), where thread
T has claimed, and has been granted, mutex M and this is the Nth claim for
any mutex that thread T has made. The ordered claims queue spans different
threads, different mutexes and different claims by the threads. It should be
appreciated that the Nth claim numbering can be based on the numbering of
claims to any mutex, numbered claims for mutexes from a given thread,
numbered claims for claims to a given mutex from a given thread, or otherwise
identified according to other alternative means for identifying claims.

In the Primary replica, as the mutexes are granted to the threads, the

-16-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

[0071]

[0072]

[0073]

[0074]

consistent multithreading mechanisms append a triple (T, M, N) to the ordered
claims queue, where N is the Nth claim of any mutex by thread T. The
consistent multithreading mechanisms remove one or more such triples from
the ordered claims queue, and piggyback those triples (the mutex ordering
information) onto the next message that they send, as shown at 100 and 114
in FIG. 2. If the Primary replica does not have a regular data message to
multicast in a timely manner, such as subject to a preconfigured timeout, it
multicasts a control (acknowledgment) message containing the mutex
ordering information.

In a Backup replica, thread T is not allowed to claim mutex M as its Nth
claim to any mutex, until the message from the Primary replica that contains
the ordering information (T, M, N) is ordered and delivered to the Backup
replica. The underlying reliable source-ordered multicast protocol guarantees
that the Backup replicas receive the messages from the Primary replica and
that they receive those messages in the same order.

In a Backup replica, for each mutex M, the consistent multithreading
mechanisms maintain an M.orderedClaims queue of (T, N) pairs, in the order
in which the Backup replicas receive those claims from the Primary replica.
The consistent multithreading mechanisms at a Backup replica append a (T,
N) pair to the M.orderedClaims queue, as the Backup replica receives
messages containing the (T, M, N) triples from the Primary replica.

In a Backup replica, when thread T claims a mutex M as its Nth claim to
any mutex, if the entry (T, N) is not the first entry in the M.orderedClaims
queue, the consistent multithreading mechanisms set T.suspended to true.
The consistent multithreading mechanisms resume a thread T that was
suspended in the order in which the pairs (T, N) occur in the M.orderedClaims
queue, rather than in the order in which they were suspended or an order
determined by the operating system scheduler.

Two Multithreaded Replicas with the Interposed CMT Library

By way of example, FIG. 1 depicts two replicas 10, the Primary replica

12 and a Backup replica 14, each executing in its own process. A reliable

source-ordered multicast protocol 36 conveys the messages to the Primary

-17-



WO 03/084116 PCT/US03/09443

replica and the Backup replica, and delivers the messages reliably and in the
same order (linear sequence) to both of the replicas.

[0075] In the Primary replica 12 there are four threads 16, comprising threads
T1-T4 20-26. Thread T1 20 and thread T2 22 access the shared resource 38
comprising the shared data D1 44 using mutex M1 46, which protects that
shared data. Thread T3 24 and thread T4 26 access the shared resource 40
comprising the shared data D2 48 using mutex M2 50, which protects that
shared data. The CMT library 42 is interposed between the Primary replica 16
and the operating system'’s thread library and is dynamically linked into the
Primary replica.

[0076] Similarly, in the Backup replica 14 there are four corresponding threads
18, comprising threads T1-T4 28-34. Thread T1 28 and thread T2 30 access
the shared resource 52 comprising the shared data D1 58 using mutex M1 60,
which protects that shared data. Thread T3 32 and thread T4 34 access the
shared resource 54 comprising the shared data D2 62 using mutex M2 64,
which protects that shared data. The CMT library 56 is interposed between
the Backup replica 18 and the operating system'’s thread library and is
dynamically linked into the Backup replica.

[0077] In the Primary replica 12, because thread T1 20 and thread T2 22 can
each read and write the shared data D1 44, access to which is protected by
mutex M1 46, and, similarly, for thread T3 24 and thread T4 26 and the
shared data D2 48. However, thread T1 20 and thread T2 22 share no data
with thread T3 24 and thread T4 26; as a result thread T1 20 and thread T2
22 can execute concurrently with thread T3 26 and thread T4 28 without the
need for a mutex. The same is true for the corresponding threads in the
Backup replica.

Scenario That lllustrates the CMT Mechanisms

[0078] FIG. 2 shows an example execution of the CMT library mechanisms
with the Primary replica and a single Backup replica. It is evident to those
skilled in the art that while the figure depicts only a single Backup replica, the
mechanisms are equally applicable to multiple Backup replicas. In the figure,
the Primary replica 70 executes threads T1 74, T2 76 and T3 78. Thread T1

-18-



5

10

15

20

25

30

WO 03/084116 PCT/US03/09443

74 and thread T2 76 access shared data, protected by mutex M 86. Thread
T3 78 does not share data with T1 74 and T2 76 and, thus, executes
concurrently with them without the need for a mutex.

Similarly, a Backup replica 72 executes threads T1 80, T2 82 and T3
84. Thread T1 80 and thread T2 82 access shared data, protected by mutex
M 88. Thread T3 84 does not share data with thread T1 80 and thread T2 82
and, thus, executes concurrently with them without the need for a mutex.

In the Primary replica 70, when thread T1 74 invokes the CMT claim()
function to claim mutex M, the CMT claim() function invokes the claim()
function of the operating system’s thread library to claim mutex M 86. If mutex
M 86 is unavailable, the operating system suspends thread T1 74. The
operating system may use thread priority to determine the thread to which it
grants the mutex next, and may use priority inheritance to expedite the
granting of mutexes to high priority threads. Referring to the figure, because
mutex M 86 is available and thread T1 74 is the highest priority thread waiting
for mutex M, the operating system grants mutex M 86 to thread T1 74. The
CMT claim() function then appends the claim (T1, M, 8) 94 to the
M.orderedClaims queue 92, and returns to the application program, granting
mutex M 86 to thread T1 74 and allowing it to proceed. Subsequently, the
consistent multithreading mechanisms extract the claim (T1, M, 8) from the
M.orderedClaims queue, which then becomes empty 102, and multicast a
message containing the claim (T1, M, 8) piggybacked onto the message 100.

Similarly, when thread T2 76 in the Primary replica 70 invokes 104 the
claim() function of the CMT library to claim mutex M 86, the CMT claim()
function invokes the claim() function of the operating system'’s thread library to
claim mutex M 86. Because mutex M 86 is unavailable, having been granted
to thread T1 74, the operating system suspends 106 thread T2 76.

When thread T1 74 invokes 108 the release() function of the CMT
library to release mutex M 86, the CMT release() function invokes the
release() function of the operating system’s thread library to release mutex M
86, and then returns, allowing thread T1 74 to proceed. The operating system
grants 112 mutex M 86 to thread T2 76 and awakens that thread, which was

-19-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

[0083]

[0084]

[0085]

previously suspended 106 by the CMT claim() function, as described above.

It resumes the processing of that function, which then appends the claim (T2,
M, 5) to the M.orderedClaims queue 110, and returns to the application
program, granting 112 mutex M 86 to thread T2 76, and allowing it to proceed.
Subsequently, the consistent multithreading mechanisms extract the claim
(T2, M, 5) from the M.orderedClaims queue, which then becomes empty 116,
and multicasts a message containing that claim piggybacked onto the
message 114.

In the Backup replica 72, when thread T2 82 invokes 118 the claim()
function to claim mutex M 88, the CMT claim() function checks whether the
claim is the first entry in the M.orderedClaims queue 120. Because that
queue is empty 122, the CMT claim() function sets T2.suspended 124 to true
and then invokes the suspend() function of the operating system'’s thread
library to suspend thread T2 82.

When the Backup replica 72 receives the claim (T1, M, 8) that the
Primary replica 70 multicast 100, and that the multicast protocol delivered to
the Backup replica 72, the consistent multithreading mechanisms in the
Backup replica 72 appends (T1, 8) to the M.orderedClaims queue 126. Even
though (T1, 8) is the first entry in the M.orderedClaims queue, because
T1.suspended 358 in FIG. 9 is false, the consistent multithreading
mechanisms do not invoke the signal() function of the operating system’s
thread library to awaken thread T1.

When thread T1 80 in the Backup replica 72, subsequently invokes 128
the claim() function to claim mutex M 88, the CMT claim() function checks
whether.the claim (T1, 8) is the first entry in the M.orderedClaims queue and
whether mutex M 88 is available. Because claim (T1, 8) is the first entry in
that queue 130 and mutex M 88 is available, the CMT claim() function sets
M.available to false 132 and then invokes the claim() function of the operating
system’s thread library to claim mutex M 88 for thread T1 80. The CMT
claim() function then removes (T1, 8) from the M.orderedClaims queue, which
then becomes empty 134, and returns, granting 136 mutex M 88 to thread T1
80.

-20-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

The Backup replica 72 receives the claim (T2, M, 5) 138 that the
Primary replica 70 multicast 114 and the multicast protocol delivered. The
CMT message handler appends (T2, 5) to the M.orderedClaims queue 138.
Even though (T2, 5) is the first entry in the M.orderedClaims queue, because
M.available 356 in FIG. 9 is false, the consistent multithreading message
handler does not invoke the signal() function of the operating system’s thread
library to awaken thread T2 82.

When thread T1 80 in the Backup replica 72 has finished accessing the
shared resource, it invokes 140 the release() function to release mutex M 88.
The CMT release() function invokes the release() function of the operating
system’s thread library to release mutex M 88, sets M.available to true, and
checks the M.orderedClaims queue. Because (T2, 5) is the first entry 142 in
the M.orderedClaims queue (which indicates that thread T2 82 is waiting for
mutex M 88), and because thread T2.suspended is true, the CMT release()
function invokes the signal() function of the operating system’s thread library
to awaken thread T2 82. The release() function then returns, allowing T1 80
to proceed.

Meanwhile, thread T2 82 in the Backup replica 72, which was
suspended by the CMT claim() function, awakens and resumes processing.
The CMT claim() function checks M.available and also the M.orderedClaims
queue. As (T2, 5)is the first entry in the M.orderedClaims queue, the CMT
claim() function sets T2.suspended to false and sets M.available to false. The
CMT claim() function then invokes the claim() function of the operating
system’s thread library to claim mutex M 88 for thread T2 82, and the
operating system grants 144 mutex M 88 to thread T2 82. The CMT claim()
function removes (T2, 5) from the M.orderedClaims queue, which then
becomes empty 146. The CMT claim() function then returns, allowing thread
T2 82 to proceed.

Mutex Ordering Requirements for Strong Replica Consistency

One might conclude that, for semi-active and passive replication, if the

Primary server replica fails and will never subsequently generate a reply, then

a Backup server replica can simply start processing the request that the

-21-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

Primary replica failed to complete, and now only the Backup replica matters.
That conclusion is false. During its operation, before it failed, the Primary
replica might have invoked methods of other servers. If a Backup replica
processes a method invocation that the failed Primary replica did not
complete, but the Backup replica invokes the methods of the other servers in
a different order than the Primary replica invoked the methods before it failed,
then inconsistencies in the states of the replicas can arise. Consequently, the
Primary replica must communicate ordering information to the Backup replicas
so that, in the event that the Primary replica fails, the threads of the Backup
replicas can process the same requests in the same order, and can be
granted the same mutexes in the same order, so that the processing by the
Backup replica exactly duplicates the processing that the Primary replica
performed before it failed, insofar as that processing is visible to other objects.

FIG. 3 shows a replicated server with a Primary replica 150 and a
Backup replica 152. In the Primary replica 150 there are depicted two
threads, thread A 154 and thread B 156, together with data 158 that are
shared by the two threads, where thread B 156 processes continuously and
thread A 154 processes requests from clients, 166, 168 and 170. When the
threads access the shared data 158, they claim mutexes and are granted
those mutexes in a specific order. During the processing of the first request
by thread A 154, the claims for the mutex are granted in the order: thread A
178, thread B 180 and thread A 182. As long as the processing is concealed
inside Primary replica 150, there is no need to communicate that ordering
information to the Backup replica 152. When thread A 154 generates its reply
to the client 184, the mutex ordering information is communicated to the
Backup replica 152. The mutex ordering information is piggybacked 186 on
the reply message 184.

In the figure it can be seen that thread A processes a second request
168. Again, mutexes are granted in the order, thread B 188 followed by
thread A 190. Thread A 154 then invokes a method of another server and
generates a request 192. To maintain the consistency of the Backup replica

152, so that it can make that same request if the Primary replica 150 fails, the

-22-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

Backup replica 152 is provided the mutex ordering information prior to that

~ request, and that information is preferably piggybacked 194 on the request

message 192. After thread A 154 has received the reply 196 to its request
194, the mutex is granted first to thread B 198 and then to thread A 200

before thread A 154 generates its reply 202. It should be appreciated that
mutex ordering information is piggybacked 204 on the reply message 202.

Thread A then starts to process another request 170. The mutex is
granted to thread A 206 and then to thread B 208. Before thread A can
complete its processing of this request, the Primary replica 150 fails 210 and
212. It did not communicate the mutex ordering information to the Backup
replica; however, it also did not communicate any results of that processing to
any other object. Thus, the order in which the mutex was granted is not
significant.

The right side of FIG. 3 shows the Backup replica 152, again with
thread A 160, thread B 162 and shared data 164. The operations of the
Backup replica 152 are slightly delayed relative to the Primary replica because
the Backup replica must wait until it has received the mutex ordering
information. Thread A 160 starts to process the request 172 when it receives
the mutex ordering information from the Primary replica 186. That mutex
ordering information directs the Backup replica 152 to grant the mutex in the
order thread A 214, thread B 216 and thread A 218. Note that the processing
and the granting of mutexes does not occur at the same time as in the
Primary replica, or even at the same relative time, but the order in which the
mutexes are granted is the same as in the Primary replica 150.
Consequently, thread A 160 in the Backup replica 152 performs the same
processing as thread A 154 in the Primary replica 150, and thread A 160 in
the Backup replica 152 generates a reply message 220, with the same mutex
ordering information 222 piggybacked on the message.

Similarly, in the Backup replica 152, during the processing of the next
request 174, leading to the generation of a request 232, a reply 236 to that
request and the reply to the client 238, theé' mutex is granted in exactly the
same order 224, 226, 228, and 230 as that mutex was granted in the Primary

-23-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

replica 150. However, when thread A 160 processes the next request 176, no
mutex ordering information is available. Consequently, in the Backup replica
the mutex is granted to the threads in whatever order the operating system
deems appropriate. That order 242, 244 differs from the order in which the
mutex was granted to the threads in the Primary replica, and the reply )
generated by the Backup replica 246 might be different from the reply that the
Primary replica would have generated had it not failed but, because the
Primary replica became faulty and did not generate that reply, any such
difference is of no significance.

Mechanisms That Communicate Mutex Ordering Information

FIG. 4A and FIG. 4B illustrate two mechanisms by which the
information related to the order in which messages are processed and the
order in which mutexes are granted to threads, is communicated to the
Backup replicas. In FIG. 4A a replicate client is shown with a Primary client
replica 250 and a Backup client replica 252. The figure also shows a
replicated server with a Primary server replica 254 and a Backup server
replica 256. The Primary client sends a request to the replicated server, and
the Primary server sends a reply.

The mechanism of FIG. 4A applies when the client and the server
communicate using a reliable source-ordered multicast protocol that allows a
single multicast message to be delivered to both the client replicas and the
server replicas. The Primary client 250 transmits the request message 258
and the Primary server 254 transmits the reply message 260 with mutex
ordering information piggybacked on the message. The reply message is
delivered to both client replicas 250, 252, and the Backup server replicas,
which is shown as a single Backup server replica 256 though generally may
be multiple Backup server replicas. If the Primary server 254 fails after
transmitting its reply, and the Backup server 256 did not receive the reply, the
mechanisms in the Backup server 256 determine the most recent messages
that the client replicas 250, 252 received from the Primary server 254 before it
failed. The mechanism in the Backup server 256 direct the client replicas to

send copies of such messages to the Backup servers so that the Backup

-24-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

[0097]

[0098]

[0099]

servers can obtain the mutex ordering information that they missed.
Consequently, the Backup servers obtain the mutex ordering information that
they need to ensure that their processing is consistent with that reply.

In general, it may be considered that message delivery in this case
comprises delivering of two multicast messages, one message multicast by a
first Primary replica to the replicas of other processes, objects or components
and one message multicast by a second Primary replica of the other
processes, objects or components to the first Primary replica and its Backup
replicas.

The mechanism depicted in FIG. 4B applies when the client and the
server communicate using a reliable source-ordered multicast protocol that
can address either the client replicas or the server replicas, but not both, in a
single transmission. Again, the Primary client 250 transmits a request
message 262 and the Primary server 254 transmits the reply message 264
with mutex ordering information piggybacked on the message. The reply
message is delivered to only the client replicas. The Primary client 250 then
transmits its next request message 266 to the replicated server and that
message carries the mutex ordering information reflected back to the server
replicas 254, 256. When a Backup server 256 receives that request
message, it receives the mutex ordering information for the processing of the
prior request message.

If the Primary server 254 fails after transmitting its reply message to the
client, and the Backup servers (a single Backup server 256 shown by example
while typically multiple Backup servers would exist) do not receive the reply,
the Backup servers request the client replicas to send the most recent
messages that they received from the Primary server 254 before it failed;
thus, the Backup servers 256 obtain the mutex ordering information that they

need to ensure that their processing is consistent with that reply.

[00100] A similar sequence of messages communicates the mutex ordering

information to the Backup servers if the Primary server acts as a client and

invokes a method of another server.

[00101] As shown in FIG. 4B, if the next request message of the Primary client

-25-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

250 is delayed, the Primary client will preferably send a control message
(acknowledgment) for the reply. Similarly, if the reply message of Primary
server is delayed, Primary server 254 preferably sends a control message
(acknowledgment) for the request. That control message also carries the
mutex ordering information. If a Primary replica accumulates too much mutex
ordering information before it generates its next request or reply message, it

transmits a control message to carry that information.

Primary Replica Thread Invokes CMT Claim() Function to Claim a Mutex
[00102] In the Primary replica, when thread T invokes the CMT claim() function

to claim mutex M, the CMT claim() function executes the following steps:
determine (T, M, N)
invoke the claim() function of the operating system’s thread library to
claim mutex M for thread T
when the claim() function of the operating system’s thread library grants
mutex M to thread T
append (T, M, N) to the ordered claims queue of claims to be multicast

[00103] FIG. 5 illustrates a flowchart of the CMT claim() function, when thread T

invokes the CMT claim() function to claim mutex M, as the Nth claim of T to
any mutex, as represented by block 300. The CMT claim() function first
detérmines the triple (T, M, N) as per block 302. It then invokes the claim()
function of the operating system'’s thread library to claim mutex M for thread T,
as in block 304, which allows the standard mutex scheduling mechanisms,

such as transfer of priority, to operate.

[00104] When the claim() function of the operating system'’s thread library

grants mutex M to thread T, which could be sometime later, the CMT claim()
function appends the triple (T, M, N) to the ordered claims queue of claims to
be multicast as depicted in block 306 and then returns to the application
program, granting mutex M to thread T and allowing T to proceed as per block
308. If mutex M is held by another thread, thread T will remain suspended
until that other thread releases the mutex and the operating system’s thread

library grants mutex M to thread T.

-26-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

Primary Replica Multicasts a Message with Piggybacked Ordered Claims

[00105] Periodically, or when they transmit a regular message, or when they
add an entry to the ordered claims queue, the mechanisms in the Primary
replica piggyback the entries of the ordered claims queue onto the message
and multicast it, as shown at 98, 100, 114 in FIG. 2. 4

Primary Replica Thread Invokes CMT Release() Function to Release a Mutex

[00106] When thread T of the Primary replica invokes the CMT release()
function to release mutex M, the CMT release() function executes the
following steps:

invoke the release() function of the operating system’s thread library to
release mutex M
(no special actions are required)

[00107] FIG. 6 exemplifies a flowchart for the Primary replica, when thread T
invokes the CMT release() function as represented by block 310 to release
mutex M, the CMT release() function invokes the release() function of the
operating system'’s thread library to release mutex M at block 312, and
returns, allowing thread T to proceed as per block 314. The CMT release()
function generally requires no other special actions.

Backup Replica Invokes CMT Claim() Function to Claim a Mutex

[00108] At a Backup replica, when thread T invokes the CMT claim() function to
claim a mutex M as its Nth claim of any mutex, the CMT claim() function
executes the following steps:

determine (T, M, N)
if (T, N) is the first entry in the M.orderedClaims queue
set M.available to false
invoke the claim() function of the operating system'’s thread
library to claim mutex M for thread T
if M is available, the operating system grants mutex M to
thread T immediately
if M is not available, the operating system makes thread T
wait for mutex M (which activates the priority transfer

mechanism)



10

15

20

25

30

WO 03/084116 PCT/US03/09443

when the operating system grants thread T its claim of mutex M

remove (T, N) from the M.orderedClaims queue

else
set T.suspended to true
invoke the suspend() function of the operating system'’s thread
library to suspend T
[00109] FIG. 7 exemplifies a flowchart of the claim function at a Backup replica.

When thread T invokes the CMT claim() function as represented by block 316
for mutex M, the CMT claim() function first determines (T, M, N) as per block
318.

[00110] It then checks whether (T, N) is the first entry in the M.orderedClaims
queue 320. If (T, N) is the first entry, it sets M.available to false as per block
322 and invokes the claim() function of the operating system’s thread library to
claim mutex M for thread T as depicted at block 324.

[00111] When thread T is granted its claim of mutex M, the CMT claim()
function removes (T, N) from the M.orderedClaims queue as block 326 and
returns at block 328. Otherwise, if (T, N) is not the first entry in the
M.orderedClaims queue, the CMT claim() function sets T.suspended to true
as represented by block 330 and invokes the suspend() function of the
operating system’s thread library to suspend thread T as per block 332.
Backup Replica Invokes the CMT Release() Function to Release a Mutex

[00112] When thread T invokes the CMT release() function to release mutex M,
the CMT release() function executes the following steps:

invoke the release() function of the operating system’s thread library to
release mutex M
set M.available to true
if the M.orderedClaims queue is not empty
determine the first entry (T, N’) in the M.orderedClaims queue
if T".suspended
invoke the signal() function of the operating system'’s thread
library to awaken thread T

[00113] FIG. 8 is a flowchart exemplifying a thread in a Backup replica invoking

-28-



WO 03/084116 PCT/US03/09443

the CMT release() function to release mutex M, as represented by block 334,
the CMT release() function invokes the release() function of the operating
system’s thread library as per block 336 to release mutex M and sets
M.available to true at block 338. It then checks whether the M.orderedClaims
5 queue is empty as represented by block 340. If the M.orderedClaims queueAis
not empty, it determines the first entry (T°, N’) in the M.orderedClaims queue
as depicted by block 342. It then checks whether thread T’ is suspended at
block 344. If T’ is suspended, it invokes the signal() function of the operating
system’s thread library to awaken thread T’ as per block 346 and then returns
10 at block 348. If the M.orderedClaims queue is empty, it simply returns.
Backup Replica Receives Ordered Claims Piggybacked on a Message
[00114] When a Backup replica receives ordered claims piggybacked on a
message, the consistent muitithreading message handler extracts, in order,
each ordered claim (T, M, N) from the message and then executes the
15 following steps:
append (T, N) to the M.orderedClaims queue
if M.available and T.suspended
invoke the signal() function of the operating system’s thread
library to awaken T
20 [00115] FIG. 9 is a flowchart exemplifying a Backup replica receiving ordered
claims piggybacked on a message as represented by block 350. For each
entry (T, M, N), extracted from the ordered claims in the message, the CMT
message handler appends (T, N) to the M.orderedClaims queue as per block
352. It then checks whether (T, N) is the first entry in the M.orderedClaims
25 queue 354. If (T, N) is the first entry in the M.orderedClaims queue, it checks
whether mutex M is available as depicted by block 356 and whether thread T
is suspended as represented by block 358. If the mutex is available and the
thread is suspended, the signal() function of the operating system’s thread
library is invoked to awaken thread T as depicted by block 360 and it
30 terminates at block 362. If (T, N) is not the first entry in the M.orderedClaims
queue or if the availability and suspension conditions are not true, then

termination immediately occurs at block 362.

-20-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

Backup Replica Thread Is Awakened
[00116] When a thread T is awakened while waiting for mutex M as its Nth
claim of any mutex, the CMT claim() function executes the following steps:
if M.available and (T, N) is the first entry in the M.orderedClaims queue
set T.suspended to false

set M.available to false

invoke operating system’s claim() function to claim mutex M for
T
if mutex M is available, the operating system grants mutex
M to thread T immediately
if mutex M is not available, the operating system makes
thread T wait for mutex M
(which activates the priority transfer mechanism)
when the operating system grants mutex M to thread T
remove (T, N) from the M.orderedClaims queue
resume thread T
else
set T.suspended to true
invoke the suspend() function of the operating system'’s thread
library to suspend thread T
[00117] FIG. 10 is a flowchart exemplifying a thread T of a Backup replica being
awakened while waiting for mutex M as its Nth claim of any mutex as shown
commencing at block 364. The CMT claim() function sets T.suspended to
false as per block 366, checks whether the mutex M is available at block 368,
and then checks whether (T, N) is the first entry in the M.orderedClaims queue
as depicted at block 370. If mutex M is available and (T, N) is the first entry in
the M.orderedClaims queue, then M.available is set to false at block 372. The
claim() function from the operating system'’s thread library is invoked as
depicted at block 374 to claim multex M. When the operating system grants
the claim for mutex M to thread T, the CMT claim() function removes (T, N)
from the M.orderedClaims queue as per block 376 and resumes thread T at

-30-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

block 378. If the mutex M is not available as determined at block 368, or if (T,
N) is not the first entry in the M.orderedClaims queue as determined at block
370, the CMT claim() function sets T.suspended to true as per block 380, and
invokes the suspend() function of the operating system’s thread library to

suspend thread T as per block 382.

[00118] As can be seen, therefore, The present invention provides a system,

software mechanisms, methods improvements and apparatus for determining
the order in which shared resources are accessed by threads in multiple
replicas, in a computer environment in which multithreaded application
programs are replicated using the semi-active or passive replication strategies
which are based on the leader-follower (primary-backup) approach. The
invention generally exemplifies generating an order in which claims to mutual
exclusion constructs (mutexes) are granted to threads in the Primary replica,
and is communicated to the Backup replicas for constraining the granting of
resource claims, so as to accord with the grant order of the Primary replica.
Numerous aspects of the invention, preferred embodiments, and optional
aspects are described. It will be appreciated that the present invention may
be practiced in various embodiments, such as having differing levels of
complexity and utilizing different routines and structures while still adhering to

the patentable aspects of the present invention.

[00119] As can also be seen, the system, software mechanisms, methods

improvements and apparatus for maintaining strong replica consistency are
readily applied to both new and existing applications. They are applicable to
computing environments that can execute replicated multithreaded application
programs and are particularly well-suited to distributed systems having
multiple computers, hosting Primary and Backup replicas, connected by a
local-area or wide-area network. The system, softwaré mechanisms,
methods, improvements and apparatus may be used to replicate processes,
objects, components and other software entities. In reference to software, the
present system, software mechanisms, methods, improvements and
apparatus may be supplied as a computer readable media, or other

distribution form, containing program code and/or data associated with the

-31-



WO 03/084116 PCT/US03/09443

described invention recited in the claims.

[00120] The preceding descriptions of functions, according to the present
invention for ordering access to shared resources to threads within Primary
and Backup replicas, has been embodied within functions contained in a
Consistent Multithreading library that preferably intercepts calls to the
operating system’s thread library; however, it should be appreciated that the
functions of the present invention may be incorporated, alternatively, into the
operating system’s thread library, or be otherwise configured without departing
from the teachings of the present invention.

[00121] The description above has described functions and mechanisms that
provide virtual determinism and strong replica consistency when multiple
multithreaded application replicas are being executed. It should be
appreciated that these functions and mechanisms may be modified in a
number of different ways, and/or be implemented with reduced functionality,
or added functionality, by one of ordinary skill in the art without departing from
the present invention.

[00122] Queue based ordering and granting of mutex claims is described by
way of example as a mechanism for ordering claims and suspending threads
awaiting a mutex; however, it should be appreciated that any other convenient
locking, tagging, or similar ordering means can be utilized, in combination with
communication of such claims, by one of ordinary skill without departing from
the teachings of the present invention.

[00123] The ordering and granting of claims to access shared resources by
Backup replicas is described by way of example to use the delivery order of
multicast messages from a Primary replica. However, other mechanisms may
be utilized for communicating ordering information across a number of
replicas as may be implemented by one of ordinary skill in the art without
departing from the teachings of the present invention.

[00124] Multicast messages are exemplified containing thread, mutex and claim
number information (T, M, N), wherein mutex claims may be distinguished
from one another; however, it should be appreciated that claims may be

distinguished from one another using alternative mechanisms and/or data

-32-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

structures, without departing from the teachings of the present invention. In a
similar manner, the entries in a claims queue for a particular mutex are
exemplified as containing fields for thread and claim number (T, N), wherein
alternative means for distinguishing one claim from another may be adopted
without departing from the teachings of the present invention. In the above
situations, it should also be appreciated that fields may be added to the above
claim descriptions to enhance functionality, or to accommodate additional
enhancements and/or modifications to the described systems, software
mechanisms, methods, improvements and apparatus, without departing from

the present invention.

[00125] The use of multicast messages with piggybacked ordering information

has been described for general use; however, messages may be delivered
utilizing any convenient mechanism, such as message multicasting of a
separate message (i.e. control message) containing the ordering information
under select situations, or point-to-point messages, to communicate the

ordering and granting of claims to multiple replicas.

[00126] The invention may be described as addressing the problem of

maintaining strong replica consistency of replicated multithreaded application
programs that employ the leader-follower (primary-backup) strategy of semi-
active or passive replication, by masking multithreading as a source for non-
determinism, and thus rendering a replicated multithreaded application
program virtually deterministic, in a manner that is transparent to the

application program.

[00127] To provide virtual determinism and to maintain strong replica

consistency, the Primary replica determines the order in which accesses to
shared resources are granted to threads in the Backup replicas, which is the
same order as the corresponding accesses were granted to the corresponding
threads in the Primary replica. In the Primary replica, when a request to
access a shared resource is ordered and granted to a thread, the Primary
replica multicasts a message containing the ordering and granting information
to the Backup replicas. In a Backup replica, when a thread requests access

to a shared resource, and when the multicast protocol orders and delivers a

-33-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

message containing the access request information from the Primary replica,
and when the shared resource is available, the request is granted to the

thread in the Backup replica.

[00128] To maintain transparency to the application program, the invention

intercepts the calls to functions of the operating system’s thread library and
diverts them to a Consistent Multithreading library that is interposed ahead of
the operating system’s thread library. The Consistent Multithreading library
contains wrapper functions of the functions of the operating system’s thread
library that claim and release mutexes, semaphores, condition variables, and
so forth. When the Primary or Backup replicas invoke functions to claim or
release shared resources, they invoke the wrapper functions of the Consistent
Multithreading library, which sanitize the non-determinism due to
multithreading that would otherwise exist and, in turn, invoke the
corresponding functions of the operating system’s thread library. Thus, the
invention ensures that the Primary and Backup replicas make the same
decisions when those functions are invoked, in a manner that is transparent to

the application program.

[00129] Although the description above contains many specificities, these

should not be construed as limiting the scope of the invention but as merely
providing illustrations of some of the presently preferred embodiments of this
invention. Thus, the scope of this invention should be determined by the
appended claims and their legal equivalents. Therefore, it will be appreciated
that the scope of the present invention fully encompasses other embodiments
which may become obvious to those skilled in the art, and that the scope of
the present invention is accordingly to be limited by nothing other than the
appended claims, in which reference to an element in the singular is not
intended to mean "one and only one" unless explicitly so stated, but rather
"one or more." All structural and functional equivalents to the elements of the
above-described preferred embodiment that are known to those of ordinary
skill in the art are expressly incorporated herein by reference and are intended
to be encompassed by the present claims. Moreover, it is not necessary for a

device or method to address each and every problem that the present

-34-



WO 03/084116 PCT/US03/09443

invention seeks to solve, for it to be encompassed by the present claims.
Furthermore, no element, component, or method step in the present
disclosure is intended to be dedicated to the public regardless of whether the
element, component, or method step is explicitly recited in the claims. No
claim element herein is to be construed under the provisions of 35 U.S.C. 112,
sixth paragraph, unless the element is expressly recited using the phrase

"means for."

-35-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

CLAIMS

What is claimed is:

1. A method for replicating a multithreaded application program using a
semi-active or passive replication strategy, wherein said application program
executes under the control of an operating system having a thread library, the
method comprising:

at a Primary replica, piggybacking mutex ordering information onto regular
multicast messages specifying the order in which threads in the Primary replica have
been granted their claims to mutexes; and

at a Backup replica, receiving said messages containing said mutex ordering
information which determines the order in which threads in said Backup replica are

granted mutexes.

2. A method as recited in claim 1, further comprising:
employing thread library interpositioning to intercept calls to functions in the

operating system'’s thread library.

3. A method as recited in claim 1, wherein said messages are multicast
according to a protocol that delivers messages reliably and in the same order from

the Primary replica to said Backup replicas.

4. A method as recited in claim 1, wherein strong replica consistency is
maintained without

counting the number of instructions between non-deterministic events,

additional messages for claiming, granting and releasing each mutex, and

risk that a result might be communicated to a client but the Backup replicas

might lack ordering information necessary for reproducing said result.

5. A method for replicating a multithreaded application program using the
semi-active or passive replication strategy, wherein said application program

executes under the control of an operating system having a thread library, the

-36-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

method comprising:
employing thread library interpositioning to intercept calls to functions in the
operating system’s thread library to render said application program virtually

deterministic.

6. A method as recited in claim 5, further comprising:

at a Primary replica, piggybacking mutex ordering information onto regular
multicast messages specifying the order in which threads in the Primary replica have
been granted their claims to mutexes; and

at a Backup replica, receiving said messages that determine the order in

which threads in said Backup replica are granted mutexes.

7. A method for replicating a multithreaded application program using the
leader-follower strategy of semi-active or passive replication, wherein said
application program executes under the control of an operating system having a
thread library, the method comprising:

at a Primary replica, piggybacking mutex ordering information onto regular
multicast messages specifying the order in which threads in the Primary replica have
been granted mutexes;

at a Backup replica, receiving said messages that determine the order in
which threads in said Backup replica are to claim mutexes; and

employing thread library interpositioning to intercept calls to functions in the
operating system’s thread library for performing said piggybacking and for controlling
said order in which threads in said Backup replica are granted their claims to

mutexes.

8. A method as recited in claim 7, wherein if the Primary replica does not
have a regular message to multicast, it multicasts a control message containing said

mutex ordering information.

9. A method as recited in claim 7, wherein a thread in said Backup replica

is not allowed to claim a given mutex, for a given claim, until said Backup replica

-37-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

receives a multicast message that contains said mutex ordering information for said

claim from said Primary replica.

10. A method for replicating a multithreaded application program using a
semi-active or passive replication strategy, wherein said application program
executes under the control of an operating system having a thread library, the
method comprising:

providing a consistent multithreading library that is interposed ahead of said
operating system’s thread library so that calls to functions of the operating system’s
thread library can be intercepted to render said application program virtually

deterministic.

11. A method as recited in claim 10, wherein said virtual determinism

enables strong replica consistency to be maintained.

12. A method as recited in claim 11, wherein said consistent multithreading
library contains wrapper functions for intercepting calls to functions in said operating

system’s thread library.

13. A method as recited in claim 12, wherein said application program
invokes said wrapper functions of said consistent multithreading library instead of the

corresponding functions of said operating system’s thread library.

14. A method as recited in claim 13, wherein in response to a Primary
replica invoking a function of said consistent multithreading library to claim a mutual
exclusion construct (mutex), said function invokes the corresponding function of the
operating system’s thread library to claim said mutex and piggybacks mutex ordering

information onto regular messages multicast to Backup replicas.

15. A method as recited in claim 14, wherein the invocation of a claim
function to claim a mutex by a thread in said Primary replica comprises invoking a

claim function of said consistent multithreading library and subsequently

-38-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

piggybacking ordering information onto the next message multicast.

16. A method as recited in claim 11, wherein said consistent multithreading
library mechanisms allow concurrency of threads that do not simultaneously acquire

the same mutex.

17. A method as recited in claim 11:

wherein if the application program runs on an operating system that provides
Dynamically Linked Libraries (DLL), the DLL mechanisms are used to interpose the
consistent multithreading library ahead of said operating system’s thread library; and

wherein said interpositioning causes the application program to invoke said
functions of said consistent multithreading library, instead of the corresponding

functions of said operating system’s thread library.

18. A method as recited in claim 17, further comprising inserting a
command into the makefile for said application program directing the linker to
interpose said consistent multithreading library ahead of said operating system’s

thread library.

19. A method as recited in claim 10, further comprising:

communicating mutex ordering information as messages from said primary
replica to said Backup replica specifying the order in which threads in said Primary
replica have been granted mutexes to establish the order in which threads in said
Backup replica are to claim mutexes;

wherein said message are communicated using a reliable source-ordered
multicast group communication protocol;

wherein said muiticast protocol delivers messages reliably and in the same
source-order to the Backup replicas;

wherein said mutexes are granted in the same source-order to the threads at

said Backup replicas.

20. A method as recited in claim 19, wherein said communicating mutex

-30-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

ordering information comprises piggybacking mutex ordering information onto regular

multicast messages.

21. A method as recited in claim 20, wherein if the Primary replica does not
have a regular message to multicast, it multicasts a control message containing said

mutex ordering information.

22. A method as recited in claim 19, wherein said communicating said
mutex ordering information comprises multicasting two messages, one message
multicast by a first Primary replica to the replicas of other processes, objects or
components and another message multicast by a second Primary replica of said
other processes, objects or components to first said Primary replica and its Backup

replicas.

23. A method of achieving strong replica consistency for a replicated
multithreaded application programs using the semi-active or passive replication
strategy, comprising:

sanitizing multithreaded application programs by masking multithreading as a
source of non-determinism to render said replicated multithreaded application

program virtually deterministic.

24. A method as recited in claim 23, wherein said sanitizing comprises:

piggybacking mutex ordering information onto regular multicast messages
from a Primary replica that specifies the order in which threads in the Primary replica
have been granted mutexes; and

delivering said messages to a Backup replica that determine the order in

which threads in said Backup replica are granted the mutexes that they claim.

25. A method as recited in claim 24, wherein said delivering of messages
comprises delivering of two multicast messages, one message multicast by a first
Primary replica to the replicas of other processes, objects or components and one

message multicast by a second Primary replica of said other processes, objects or

-40-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

components to first said Primary replica and its Backup replicas.

26. A method as recited in claim 23, wherein if said Primary replica does
not have a regular message to multicast, it multicasts a control message containing

said mutex ordering information.

27. A method as recited in claim 24, wherein said delivering using a reliable
source-ordered multicast group communication protocol to deliver messages from

the Primary replica to the Backup replica.

28. A method as recited in claim 24, further comprising employing thread
library interpositioning to intercept calls to functions of the operating system’s thread
library for performing said piggybacking and for controlling said order in which

threads in said Backup replica are granted the mutexes that they claim.

29. A method as recited in claim 28, wherein a thread T in said Backup
replica is not allowed to claim a given mutex M, for a given Nth time that thread T
has claimed any mutex, until it receives said message from said Primary replica that

contains the ordering information (T, M, N).

30. A method for replicating a multithreaded application program using a
semi-active or passive replication strategy, wherein said application program
executes under the control of an operating system, said method comprising:

using a multicast group communication protocol to render the multithreaded

application program virtually deterministic.

31. A system as recited in claim 30, wherein said virtual determinism

enables strong replica consistency to be maintained.

32. A method as recited in claim 31, further comprising:
using a mutex to protect shared resources accessed by threads in said

application program;

-41-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

wherein said threads are granted access to said shared resources in the

same order at the replicas of said application program.

33. A method as recited in claim 31, further comprising:

intercepting calls to the functions of the operating system’s thread library; and

multicasting ordering information from said Primary replica to said Backup
replicas, regarding the order in which threads in the Backup replicas are to be

granted their claims to mutexes.

34. A method as recited in claim 33, wherein said ordering information
describes the order in which threads in said Primary replica are granted their claims
to mutexes and which is delivered reliably and in the same order to said Backup

replicas.

35. A method as recited in claim 33, wherein said multicasting of ordering
information comprises piggybacking said ordering information onto regular messages

that are multicast from said Primary replica to said Backup replicas.

36. A method as recited in claim 35, wherein said means of multicasting
and piggybacking said ordering information uses two multicast messages, one
message muiticast by first said Primary replica to the replicas of other processes,
objects or components and one message multicast by second Primary replica of said
other processes, objects or components to first said Primary replica and its Backup

replicas.

37. A method as recited in claim 35, wherein if said Primary replica does
not have a regular message to multicast, it multicasts a control message containing

said ordering information.

38. A method as recited in claim 30, further comprising:
maintaining strong replica consistency and application transparency by

interpositioning a consistent multithreading library ahead of the operating system'’s

-42-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

thread library and intercepting calls to functions in said operating system’s thread

library.

39. A method as recited in claim 38,

wherein functions of said operating system’s thread library are wrapped by
functions of said consistent multithreading library;

wherein the application program invokes the wrapper functions of said
consistent multithreading library, instead of the corresponding functions of said
operating system’s thread library, thereby maintaining strong replica consistency and

application transparency.

40. A method as recited in claim 39, wherein said wrapping is performed by

dynamically linking said consistent multithreading library to said application program.

41. A software mechanism for replicating a multithreaded application
program using a semi-active or passive replication strategy, wherein said application
program executes under the control of an operating system having a thread library,
the mechanism comprising:

control program code;

said control program code at a Primary replica, being configured to piggyback
mutex ordering information onto regular multicast messages for specifying the order
in which threads in the Backup replicas are granted their claims to mutexes;

said control program code configured to deliver said control messages using a
multicast group communication protocol that delivers the messages in an order that
determines the order in which the threads in different replicas are granted their

claims to mutexes.

42. A software mechanism as recited in claim 41, further comprising a
consistent multithreading library containing said control program code that is
interpositioned for intercepting calls to functions of the operating system'’s thread

library.



10

15

20

25

30

WO 03/084116 PCT/US03/09443

43. A software mechanism for replicating a multithreaded application
program subject to a semi-active or passive replication strategy, wherein said
application program executes under the control of an operating system having a
thread library, the mechanism comprising:

a consistent multithreading library interpositioned to intercept calis to functions

of the operating system'’s thread library.

44. A software mechanism as recited in claim 43, further comprising:

control program code within said consistent multithreading library;

said control program code configured to cause mutex ordering information to
be piggybacked on messages multicast from the Primary replica to the Backup
replicas, which information specifies the order in which threads in said Primary
replica claimed, and were granted, mutexes;

said control program code configured to receive said messages by Backup
replicas from said multicast group communication protocol that delivers the
messages in an order that determines the order in which the corresponding threads

in said Backup replicas are granted corresponding claims to mutexes.

45. A software mechanism for replicating a multithreaded application
program using a semi-active or passive replication strategy, wherein said application
program executes under the control of an operating system having a thread library,
the mechanism comprising:

a consistent multithreading library that is interposed ahead of the operating
system’s thread library so that calls to functions of said operating system'’s thread

library can be intercepted to render said application program virtually deterministic.

46. A software mechanism as recited in claim 45, wherein said virtual

determinism enables strong replica consistency to be maintained.

47. A software mechanism as recited in claim 46, wherein said consistent
multithreading library contains wrapper functions for intercepting calls to functions of

said operating system’s thread library.

-44.-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

48. A software mechanism as recited in claim 47, wherein said application
program invokes said wrapper functions of said consistent multithreading library

instead of the corresponding functions of said operating system’s thread library.

49. A software mechanism as recited in claim 48, wherein when a Primary
replica invokes a function of the consistent multithreading library to claim a mutex,
said consistent multithreading library function invokes the corresponding function of
said operating system'’s thread library and subsequently piggybacks ordering

information onto the next message that it multicasts.

50. A software mechanism as recited in claim 49, wherein said multicasting
said ordering information uses two multicast messages, one message multicast by
first said Primary replica to the replicas of other processes, objects or components
and one message multicast by second Primary replica of said other processes,

objects or components to first said Primary replica and its Backup replicas.

51. A software mechanism as recited in claim 49, wherein if said Primary
replica does not have a regular message to multicast, it multicasts a control message

containing said ordering information.

52. A software mechanism as recited in claim 51, wherein said message is

multicast using a reliable source-ordered multicast group communication protocol.

53. A software mechanism as recited in claim 51:

wherein said source-ordered multicast protocol delivers messages reliably and
in the same source order from the Primary replica to the Backup replicas; and

wherein the mutexes are granted in the same order to the threads in the
Backup replicas as in the Primary replica, as dictated by the ordering information

piggybacked within said messages.

54, A software mechanism as recited in claim 45:

wherein if the application program runs on an operating system that provides

-45-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

Dynamically Linked Libraries (DLL), the dynamic linking mechanisms are used to
interpose the consistent multithreading library ahead of the operating system'’s
thread library; and '

wherein said interpositioning causes the application program to invoke the
functions of the consistent multithreading library, rather than the corresponding

functions of the operating system'’s thread library.

55. A software mechanism as recited in claim 46, further comprising
dynamically linking said consistent multithreading library to said application program
and interposing said consistent multithreading library ahead of said operating
system'’s thread library to maintain transparency to the application program and the

operating system.

56. A software mechanism for achieving strong replica consistency using a
semi-active or passive replication strategy for replicating multithreaded application
programs, comprising:

control program code configured to sanitize multithreaded application

programs by masking multithreading as a source of non-determinism.

57. A software mechanism as recited in claim 56, further comprising library
interpositioning of said control program code to intercept calls to functions of the
operating system’s thread library for sanitizing said multithreaded application

programs.

58. A software mechanism as recited in claim 57, wherein said control
program code comprises a consistent multithreading library containing wrapper
functions for said functions of said operating system’s thread library that claim and

release mutexes.

59. A software mechanism as recited in claim 57, wherein when a Primary
replica invokes a wrapper function of said consistent multithreading library to claim a

mutex, said consistent multithreading library function invokes the corresponding

-46-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

function of said operating system'’s thread library and then piggybacks ordering

information onto the next message that it multicasts to the Backup replicas.

60. A software mechanism as recited in claim 59, wherein said multicasting
uses two multicast messages, one message multicast by first said Primary replica to
the replicas of other processes, objects or components and one message multicast
by second Primary replica of said other processes, objects or components to first

said Primary replica and its Backup replicas.

61. A software mechanism as recited in claim 59, wherein if said Primary
replica does not have a regular message to multicast, it multicasts a control message

containing said ordering information.

62. A software mechanism for replicating a multithreaded application
program using a semi-active or passive replication strategy, wherein said application
program executes under the control of an operating system having a thread library,
the mechanism comprising:

a consistent multithreading library that is interposed ahead of said operating
system’s thread library;

wherein said consistent multithreading library contains wrapper functions for
functions of said operating system’s thread library;

wherein said wrapper functions ensure that the threads in the replicas are
granted their claims to mutexes in the same order, and similarly for releasing
mutexes; and

wherein said application program invokes the wrapper functions of said
consistent multithreading library instead of the corresponding functions in said

operating system’s thread library.

63. A software mechanism as recited in claim 62, wherein when a Primary
replica invokes a function of said consistent multithreading library to claim a mutex,
said function invokes the claim function of the operating system’s thread library and

subsequently piggybacks mutex ordering information onto the next regular message

-47-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

that it multicasts.

64. A software mechanism as recited in claim 63, wherein said regular
message is multicast using a reliable source-ordered multicast group communication

protocol.

65. A software mechanism as recited in claim 64:

wherein said multicast protocol delivers messages reliably and in the same
source order from the Primary replica to said Backup replicas; and

wherein the mutexes are granted in the same order to the threads in said
Backup replicas as dictated by the mutex ordering information piggybacked onto said

multicast messages.

66. A software mechanism as recited in claim 65, wherein said granting of

mutexes in the same order maintains strong replica consistency.

67. A software mechanism as recited in Clairh 66, wherein said multicasting
uses two multicast messages, one message multicast by first said Primary replica to
the replicas of other processes, objects or components and one message multicast
by second Primary replica of said other processes, objects or components to first

said Primary replica and its Backup replicas.

68. A software mechanism as recited in claim 67, wherein if said Primary
replica does not have a regular message to multicast, it multicasts a control message

containing said mutex ordering information.

69. A software mechanism as recited in claim 62:

wherein if the application program runs on an operating system that provides
Dynamically Linked Libraries, the dynamic linking mechanisms are used to interpose
the consistent multithreading library ahead of the operating system’s thread library;
and

wherein said interpositioning causes the application program to invoke the

-48-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

functions of said consistent multithreading library, rather than the corresponding

functions of said operating system’s thread library.

70. A software mechanism as recited in claim 62, further comprising
dynamically linking said consistent multithreading library to said application program
and interposing said consistent multithreading library ahead of said operating
system’s thread library to maintain transparency to the application program and the

operating system.

71. A software mechanism for replicating a multithreaded application
program using a semi-active or passive replication strategy, wherein said application
program executes under the control of an operating system, said mechanism
comprising:

control program code;

said control program code configured to use mutex ordering information
piggybacked on regular messages multicast by a source-ordered group
communication protocol from the Primary replica, which dictates the order in which
the threads in the Backup replicas are granted their claims to mutexes, to render the

replicated multithreaded application program virtually deterministic.

72. A software mechanism as recited in claim 71, wherein if said Primary
replica does not have a regular message to multicast, it multicasts a control message

containing said mutex ordering information.

73. A software mechanism as recited in claim 71, wherein said control

program code is configured to intercept calls to the operating system'’s thread library.

74. A software mechanism as recited in claim 73, wherein strong replica
consistency and application transparency are maintained by interpositioning said
consistent multithreading library ahead of said operating system’s thread library and

intercepting calls to functions of said operating system’s thread library.

-49-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

75. A software mechanism as recited in claim 74,

wherein said functions of said operating system’s thread library are wrapped
by functions of said consistent multithreading library; and

wherein said application program invokes the wrapper functions of said
consistent multithreading library, instead of the corresponding functions of said
operating system'’s thread library, thereby maintaining strong replica consistency and
application transparency.

76. A software mechanism as recited in claim 71:

wherein said control program code is configured to allow concurrent
processing of threads that do not claim the same mutex simultaneously and threads
that claim different mutexes;

wherein strong replica consistency is maintained.

77. A software mechanism as recited in claim 71:

wherein said control program code is configured to allow threads to
communicate with each other by multicasting messages;

wherein said control program code is configured to allow threads to use
shared resources; and

wherein strong replica consistency of the different replicas is maintained.

78. A system for executing threads that share resources, within a
computing environment that supports semi-active or passive replication of
multithreaded application programs, comprising:

means for identifying requests for accesses to shared resources by threads in
the Primary replica;

means for communicating to one or more Backup replicas the order in which
said requests are granted to threads in said Primary replica; and

means for ordering and granting requests for accesses to shared resources by
threads in a Backup replica, in response to the order in which corresponding
requests were granted to threads in said Primary replica and communicated by said

Primary replica to said Backup replica.

-50-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

79. A system as recited in claim 78, wherein said Primary replica dictates
the order in which said threads in said Backup replicas are granted access to shared

resources, as communicated by said Primary replica to said Backup replicas.

80. A system as recited in claim 78, wherein control programming for said
means for communicating and said means for ordering and granting are contained

in, or are invoked by, functions of a consistent multithreading library.

81. A system as recited in claim 80, wherein to render said application
programs virtually deterministic in a transparent manner, said system employs library
interpositioning to intercept calls to functions of the operating system’s thread library
and to direct them to said functions of said consistent multithreading library, which in

turn invoke said functions of the operating system’s thread library.

82. A system as recited in claim 81, further comprising dynamically linking
said consistent multithreading library to said application program and interposing said
consistent multithreading library ahead of said operating system’s thread library.

83. A system as recited in claim 81, further comprising inserting a
command into the makefile for the application program directing the linker to
interpose said consistent multithreading library ahead of said operating system'’s

thread library.

84. A system as recited in claim 81, wherein functions of said consistent
multithreading library are configured as a set of functions incorporated within the

operating system’s thread library.

85. A system as recited in claim 78, wherein said means for communicating
comprises a reliable source-ordered multicast protocol which guarantees that said
Backup replicas receive the messages from said Primary replica in an identical order,

as multicast by said Primary replica.

86. A system as recited in claim 85, wherein said means of communicating

-51-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

information, about claims for shared resources by threads in said Primary replica and
about the order in which said claims were granted, comprises piggybacking said

information on a message, multicast by said Primary replica to its Backup replicas.

87. A system as recited in claim 85, wherein said means of communicating
information comprises piggybacking information, about claims for shared resources
by threads in first said Primary replica and about the order in which said claims were
granted, on two or more messages, one message multicast by first said Primary
replica to the replicas of other processes, objects or components and one message
multicast by second Primary replica of said other processes, objects or components

to first said Primary replica and its Backup replicas.

88. A system as recited in claim 85, wherein lacking regular multicast
messages on which to piggyback ordering information, said means for
communicating is configured to multicast a control message containing information
about claims for shared resources by the threads in said Primary replica and about

the order in which said claims were granted.

89. A system as recited in claim 78, wherein a shared resource comprises
data configured for being shared between threads in a given replica or code sections

configured for manipulating shared data or both.

90. A system as recited in claim 78, wherein said shared resource is
configured for being accessed by a thread utilizing a mutual exclusion construct

(mutex).

91. A system as recited in claim 90, wherein a request by a thread of said
Backup replica to access a mutual exclusion construct is not granted until the
message from the Primary replica that contains information about the ordering and

granting of said request is delivered to said Backup replica.

92. A system as recited in claim 78, wherein said means for communicating

-52-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

to multiple replicas comprises a computing environment configured for providing
reliable source-ordered multicasting of messages to Backup replicas in response to

grants of requests to access shared resources by threads in said Primary replica.

93. A system as recited in claim 78, wherein said means for
communicating, and said means for ordering and granting, comprise functions that

maintain strong replica consistency

94. A system as recited in claim 93, wherein said means for granting
accesses to shared resources to threads in a Backup replica comprises a computing
environment that grants said accesses, based on the availability of said resources
and on the order in which accesses to corresponding resources were granted to
threads in said Primary replica and were communicated by said Primary replica and

received by said Backup replica from said means for communicating.

95. A system as recited in claim 94, wherein within said Backup replica
said means for ordering and granting is configured to grant a specific thread access
to a specific shared resource for a specific claim if said Primary replica has
previously communicated that the corresponding thread in said Primary replica has
been granted access to the corresponding shared resource for the corresponding

claim.

96. A system as recited in claim 95:

wherein said access to said shared resource is controlled by a mutual
exclusion construct;

wherein a thread in said Backup replica is not granted said mutual exclusion
construct for a given claim until said Primary replica has communicated that the
corresponding thread in said Primary replica has been granted access to the

corresponding shared resource for the corresponding claim.

97. A system for maintaining strong replica consistency of replicas of a

multithreaded application program within a computing environment, using semi-

-53-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

active or passive replication, comprising:

means for communicating the order in which access to a shared resource is
granted to a thread in the Primary replica; and

means for ordering and granting access to a shared resource to threads in a
Backup replica in response to the order of granting access to a corresponding

shared resource by a corresponding thread in said Primary replica.

98. A system as recited in claim 97, wherein said Primary replica dictates
the order in which said threads in said Backup replica are granted access to shared
resources, as communicated by said means of communicating to said Backup

replica.

99. A system as recited in claim 98, wherein said means for granting
access to shared resources comprises a computing environment that grants said
access to said shared resources, based on the availability of said shared resources
and on the order in which corresponding accesses to shared resources were granted
to the corresponding thread at said Primary replica and were communicated by said
Primary replica and received by said Backup replica from said means for

communicating.

100. A system as recited in claim 97, wherein said means for determining
the order in which threads can access shared resources comprises a mutual
exclusion construct that is granted to a thread in response to a claim to access the
resource, and which is then later released by said thread allowing said mutual

exclusion construct to be claimed by other threads.

101. A system as recited in claim 100, wherein said means for
communicating is configured to communicate the order in which threads in said

Primary replica are granted said mutual exclusion construct.

102. A system as recited in claim 100, wherein said means for ordering and

granting of accesses to threads in a Backup replica is configured to grant a mutual

-54-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

exclusion construct to said Backup replica as determined by the order in which the
corresponding mutual exclusion construct was granted to the corresponding thread in
said Primary replica, which order was communicated by said Primary replica to said

Backup replica.

103. A system as recited in claim 102, wherein a thread in said Backup
replica is not granted a mutual exclusion construct for a given claim until said Primary
replica has communicated that the corresponding thread in said Primary replica has
been granted the corresponding mutual exclusion construct to the corresponding

shared resource for the corresponding claim.

104. A system as recited in claim 97, wherein said means for
communicating, and said means for ordering and granting, comprise functions that
maintain strong replica consistency and are executed in response to calls to

functions of a consistent multithreading library.

105. A system as recited in claim 104, wherein said functions of said
consistent multithreading library are configured to intercept calls to corresponding

functions of the operating system’s thread library.

106. A system as recited in claim 105, further comprising dynamically linking
said consistent multithreading library to said application program and interposing said

consistent multithreading library ahead of said operating system's thread library.

107. A system as recited in claim 105, further comprising inserting a
command into the makefile for the application program directing the linker to
interpose said consistent multithreading library ahead of said operating system’s

thread library.

108. A system as recited in claim 104, wherein functions of said consistent
multithreading library are configured as a set of functions incorporated within the

operating system’s thread library.

-55-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

109. A system as recited in claim 104, wherein said functions of said
consistent multithreading library comprise functions configured for claiming or
releasing shared resources in a manner in which corresponding threads in different

replicas are granted access to the shared resource in an identical order.

110. A system as recited in claim 97, wherein said means for ordering and
granting resource accesses in each said Backup replica is configured to order and
grant said accesses in response to the order in which information about the claiming
and granting of corresponding accesses to shared resources by corresponding
threads in said Primary replica is communicated by said Primary replica to said

Backup replica.

111. A system as recited in claim 97, wherein said means for ordering and
granting access to shared resources by threads in said Backup replica is configured
to prevent said granting of shared resources until information about the claiming and
granting of corresponding accesses to shared resources by corresponding threads in
said Primary replica has been communicated to said Backup replica by said Primary

replica.

112. A system as recited in claim 111, wherein said means for
communicating to multiple replicas comprises a computing environment configured
for providing reliable source-ordered multicasting of messages by said Primary
replica to said Backup replicas in response to the granting of accesses to shared

resources by threads in said Primary replica.

113. A system as recited in claim 112, wherein said means for ordering and
granting of accesses to shared resources is configured to maintain an order of
granting said accesses to threads in said Backup replicas that is identical to the
order in which corresponding accesses are granted to threads in said Primary replica

and are communicated to said Backup replicas by said Primary replica.

114. A system as recited in claim 97, wherein said means for communicating

-56-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

to multiple replicas comprises a computing environment configured for providing
reliable source-ordered multicasting of messages to Backup replicas in response to

granting of accesses of shared resources by threads in said Primary replica.

115. A system as recited in claim 114, wherein said means of
communicating information, about accesses to shared resources by threads in said
Primary replica and about the order in which said accesses were granted, comprises
piggybacking said information on a message, multicast by said Primary replica to its

own Backup replicas.

116. A system as recited in claim 114, wherein said means of
communicating said information comprises piggybacking information, about the
granting of accesses to shared resources by threads in first said Primary replica and
about the order in which said accesses were granted, on two or more messages, one
message multicast by first said Primary replica to the replicas of other processes,
objects or components and one message multicast by second Primary replica of said
other processes, objects or components to first said Primary replica and its Backup

replicas.

117. A system as recited in claim 114, wherein lacking regular multicast
messages on which to piggyback ordering information, said means for
communicating is configured to multicast a control message containing information
about the granting of corresponding accesses to corresponding shared resources by
corresponding threads in said Primary replica and about the order in which said

accesses were granted.

118. A system as recited in claim 114, wherein said multicast messages
comprise information about which shared resource is being claimed by a thread in
said Primary replica, which thread is claiming the given shared resource, and which

shared resource claim request of said thread is being made.

119. A system as recited in claim 97:

-57-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

wherein said means for communicating, and said means for ordering and
granting, are configured for being executed transparently to said application
program;

wherein said transparency comprises the inclusion of said means for
communicating and said means for ordering and granting within said computing

environment without modifying the code of said multithreaded application program.

120. A system as recited in claim 119, further comprising dynamically linking
said consistent multithreading library to said application programming and
interposing said consistent multithreading library ahead of said operating system’s

thread library.

121. A system as recited in claim 119, further comprising inserting a
command into the makefile for the application program directing the linker to
interpose said consistent multithreading library ahead of said operating system'’s
thread library.

122. A system as recited in claim 119, wherein functions of said consistent
multithreading library are configured as a set of functions incorporated within the

operating system’s thread library.

123. A system as recited in claim 97, wherein said means for communicating
and said means for ordering and granting are provided by interposing a consistent
multithreading library ahead of said operating system’s thread library and by
intercepting calls of functions of said operating system'’s thread library and by
invoking instead corresponding functions of said consistent multithreading library,

which in turn invoke functions of said operating system’s thread library.
124. A system as recited in claim 97, wherein strong replica consistency can

be maintained without the need to count the number of instructions between non-

deterministic events.

-58-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

125. A system as recited in claim 97, wherein said computing environment

comprises a client-server system or a fault-tolerant system or both.

126. A system as recited in claim 97, wherein said shared resource
comprises data shared between said threads in a given replica, or code for

accessing said shared data in a given replica or both.

127. A system for executing a replicated multithreaded application program
within a computing environment, using a semi-active or passive replication strategy,
comprising:

means for granting access to shared resources to threads in a Backup replica
in response to information received about the order in which access to said shared
resources was granted to corresponding threads in said Primary replica; and

means for communicating the order of granting access of shared resources by

the Primary replica to the Backup replicas.

128. A system as recited in claim 127, wherein said means for
communicating information comprises a routine configured for multicasting
messages from said Primary replica to said Backup replicas in response to the

granting of accesses of shared resources to threads in said Primary replica.

129. A system as recited in claim 128, wherein said means for
communicating information, about the order of granting accesses to shared
resources, by said Primary replica to said Backup replicas, comprises piggybacking
said information on a message, multicast by said Primary replica to its Backup

replicas.

130. A system as recited in claim 128, wherein said means of
communicating information, about the order of granting accesses to shared
resources by first said Primary replica to said Backup replicas, comprises
piggybacking said information on two or more messages, one message multicast by

first said Primary replica to the replicas of other processes, objects or components

-59-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

and one message multicast by second Primary replica of said other processes,

objects or components to first said Primary replica and its Backup replicas.

131. A system as recited in claim 129, wherein lacking regular multicast
messages on which to piggyback ordering information, said means for
communicating is configured to multicast a control message containing information
about the order of granting accesses to shared resources by the Primary replica to

the Backup replicas.

132. A system as recited in claim 127, wherein said means for
communicating, and said means for ordering and granting, comprise functions that

maintain strong replica consistency.

133. A system as recited in claim 132, further comprising means for
transparently executing said ordering and granting, and said means for

communicating, without modifying the code of said application program.

134. A system as recited in claim 133, further comprising dynamically linking
said consistent multithreading library to said application program and interposing said

consistent multithreading library ahead of said operating system'’s thread library.

135. A system as recited in cléim 133, further comprising inserting a
command into the makefile for said application program directing the linker to
interpose said consistent multithreading library ahead of said operating system’s

thread library.

136. A system as recited in claim 133, wherein functions of said consistent
multithreading library are configured as a set of functions incorporated within the

operating system’s thread library.

137. A consistent multithreading library of functions for constraining the

order of granting accesses to shared resources by threads in a Backup replica to

-60-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

match the order of granting accesses to shared resources by corresponding threads
in the Primary replica, within a computing environment, using a semi-active or
passive replication strategy, comprising:

a communication routine configured for communicating information, about the
order in which said shared resources were granted to threads in said Primary replica,
to said Backup replicas within said computing environment; and

an ordering and granting routine in said Backup replica configured for granting
access to shared resources by threads in said Backup replica in response to the
order of granting access to shared resources by threads in said Backup replicas,

communicated by said Primary replica to said Backup replica.

138. A library as recited in claim 137, wherein said communication routine
and said allocation routine are configured as a consistent multithreading library
containing functions that intercept calls to functions in the operating system’s thread

library.

139. Alibrary as recited in claim 138, wherein said interception of calls to
said operating system’s thread library comprises:

performing said communication and said ordering and granting as functions of
said consistent multithreading library to constrain the order of granting access to
shared resources by threads in said Backup replicas to match the order of granting
access to said shared resources by threads in said Primary replica; and

invoking functions of said operating system’s thread library to grant access to

said shared resources, subject to said ordering constraints.

140. A library as recited in claim 138, wherein said interception comprises
intercepting calls to functions of said operating system’s thread library and diverting
said calls to wrapper functions of said consistent multithreading library to constrain
the granting of access to shared resources prior to invoking functions of said

operating system'’s thread library.

141. A library as recited in claim 138, wherein said interception of calls to

-61-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

said operating system'’s thread library by said wrapper functions of said consistent
multithreading library is performed in response to a dynamic linking process in which
said consistent multithreading library is interposed ahead of said operating system’s

thread library.

142. An apparatus for maintaining strong replica consistency for a replicated
multithreaded application program in a computer environment under the control of an
operating system having a thread library and using the semi-active or passive
replication strategy, comprising:

a computer configured for executing said multithreaded application programs;
and

programming associated with said computer for,

communicating the order of granting accesses to shared resources by
threads in a Primary replica to the Backup replicas, and

ordering and granting access to shared resources in said Backup
replicas in response to the order of granting corresponding accesses to
shared resources communicated from said Primary replica to said Backup

replicas.

143. An apparatus as recited in claim 142, wherein said ordering and
granting access comprises constraining the granting of access to the shared
resources by the threads in said Backup replicas to match the order of granting the
corresponding access to said shared resources, as communicated by said Primary

replica to said Backup replicas.

144. A media that is computer readable and includes a computer program
which, when executed on a computer configured for multithreaded execution and
communication with multiple program replicas, causes the computer to execute
instructions, comprising:

communicating to multiple replicas the order of granting access to shared
resources by threads in a Primary replica; and

ordering the granting of accesses to shared resources by threads in a Backup

-62-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

replica in response to the order of granting the corresponding accesses in the

Primary replica, communicated by said Primary replica to said Backup replica.

145. In a computer system configured for executing a replicated
multithreaded application program that executes under the control of an operating
system having a thread library, wherein the improvement comprises:

communicating the order of granting accesses to shared resources, to threads
in the Primary replica, to the Backup replicas; and

ordering the granting of accesses to shared resources, to threads in said
Backup replicas, in response to the order communicated by said Primary replica to

said Backup replicas.

146. A system as recited in claim 145, wherein said means for
communicating, and said means for ordering and granting, comprise functions that

maintain strong replica consistency.

147. An improvement as recited in claim 146, further comprising
transparently executing functions of a consistent multithreading library to perform
said communicating the order of granting accesses to shared resources from said
Primary replica to the Backup replicas; and said ordering the granting of accesses to

shared resources to threads in said Backup replicas.

148. An improvement as recited in claim 147, wherein said transparent
execution comprises interposing said consistent multithreading library ahead of said

operating system’s thread library

149. An improvement as recited in claim 148, further comprising dynamically
linking said consistent multithreading library to said application program and
interposing said consistent multithreading library ahead of said operating system’s

thread library.

150. An improvement as recited in claim 148, further comprising inserting a

-63-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

command into the makefile for said application program directing the linker to
interpose said consistent multithreading library ahead of said operating system’s
thread library.

151. Animprovement as recited in claim 147, wherein functions of said
consistent multithreading library are configured as a set of functions incorporated

within said operating system’s thread library.

152. A system for maintaining strong replica consistency within a computing
environment, using a semi-active or passive replication strategy, wherein threads
share resources and execute under the control of an operating system having a
thread library, comprising:

a message multicasting mechanism configured for communicating information
on the order of granting accesses to said shared resources by threads in the Primary
replica to the Backup replicas; and

means for ordering and granting accesses to shared resources to threads in
said Backup replicas in response to the delivery of messages from said Primary

replica to said Backup replicas containing said information.

163. A system as recited in claim 152, wherein said computing environment
provides multithreading, distributed computing, fault tolerance, and a client-server

paradigm.

154. A system as recited in claim 153, wherein said means for ordering and
granting accesses to shared resources constrains the order of granting access to
shared resources by threads in said Backup replicas to match the order of granting
said accesses to shared resources in said Primary replica, as communicated from

said Primary replica to said Backup replicas.

155. A system as recited in claim 152, wherein said shared resources are
shared through claiming and releasing functions applied to mutual exclusion

constructs for the shared resources.

-64-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

156. A system as recited in claim 152, wherein said means for ordering and
granting accesses to shared resources comprises functions of a consistent

multithreading library invoked in response to requests to access shared resources.

157. A system as recited in claim 156:

wherein calls to functions of said operating system’s thread library are
intercepted and diverted to calls to corresponding functions of said consistent
multithreading library;

wherein said functions of said consistent multithreading library invoke

functions of said operating system’s thread library.

158. A system as recited in claim 157, further comprising dynamically linking
said consistent multithreading library to said application program and interposing said

consistent multithreading library ahead of said operating system’s thread library.

159. A system as recited in claim 157, further comprising inserting a
command into the makefile for said application program directing the linker to
interpose said consistent multithreading library ahead of said operating system'’s

thread library.

160. A system as recited in claim 157, wherein functions of said consistent
multithreading library are configured as a set of functions incorporated within said

operating system’s thread library.

161. A system as recited in claim 152, wherein said means for ordering and
granting accesses to shared resources, comprises:

communication routines for communicating to said Backup replicas the order
of granting access to shared resources by threads in said Primary replica; and

ordering the granting of accesses to shared resource to threads in said
Backup replicas in response to the order of granting accesses to shared resources,

communicated by said Primary replica.

-65-



10

16

20

25

30

WO 03/084116 PCT/US03/09443

162. A system as recited in claim 161, wherein said order of granting
accesses to shared resources comprises:

identifying the thread accessing the shared resource;

identifying the shared resource being accessed; and

identifying the particular access so that multiple accesses to a shared

resource from each thread may be distinguished.

163. A method of maintaining strong replica consistency for a replicated
multithreaded application program, using the semi-active or passive replication
strategy, comprising:

granting access requests for shared resources to threads in the Backup
replicas in response to the order in which corresponding requests were granted to

corresponding threads in the Primary replica.

164. A method as recited in claim 163, wherein said granting of access
requests is performed by employing library interpositioning to intercept calls to

functions of the operating system'’s thread library.

165. A method as recited in claim 164, wherein said shared resources are

accessed using a mutual exclusion construct.

166. A method as recited in claim 165, wherein said granting of access
requests comprises:

piggybacking information, about the order of granting mutual exclusion
constructs to threads in said Primary replica, onto regular messages that are
multicast from said Primary replica to said Backup replicas;

delivering said mességes to said Backup replicas, that determine the order in
which threads in said Backup replica are granted their claims to mutual exclusion

constructs.

167. A method as recited in claim 166, wherein said piggybacking of

information comprises piggybacking information about claims for shared resources

-66-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

by threads in first said Primary replica and about the order in which said claims were
granted, on two or more messages, one message multicast by first said Primary

replica to the replicas of other processes, objects or components and one message
multicast by second Primary replica of said other processes, objects or components

to first said Primary replica and its Backup replicas.

168. A method as recited in claim 166, wherein if said Primary replica does
not have a regular message to multicast, it multicasts a control message containing

said information to said Backup replica.

169. A method as recited in claim 168, further comprising a consistent
multithreading library executing said ordering and granting of access requests by

intercepting calls to said operating system’s thread library.

170. A method of replicating multithreaded application programs in which
threads access shared resources, within a computing environment that uses semi-
active or passive replication, comprising:

claiming shared resources by a thread in the Primary replica;

granting said claim to said thread in said Primary replica;

communicating to the Backup replicas the order of granting said claim; and

granting the corresponding claim of a shared resource to a corresponding
thread in each Backup replica, as determined by the order in which corresponding
claims to shared resources were granted to corresponding threads in said Primary

replica.

171. A method as recited in claim 170, wherein said claiming, said
communicating, and said granting are controlled by the functions of a consistent
multithreading library that is interposed ahead of said operating system’s thread
library so that calls to functions of the operating system’s thread library are

intercepted to render said application program virtually deterministic.

172. A method as recited in claim 171, wherein said shared resources are

-67-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

accessed by using a mutual exclusion construct.

173. A method as recited in claim 171, wherein said communicating of said
claim comprises piggybacking information onto regular multicast messages
specifying the order in which threads in the Primary replica have been granted their

claims to said mutual exclusion constructs.

174. A method as recited in claim 173, wherein said multicasting comprises
piggybacking information, about claims for shared resources by threads in first said
Primary replica and about the order in which said claims were granted, on two or
more messages, one message multicast by first said Primary replica to the replicas
of other processes, objects or components and one message multicast by second
Primary replica of said other processes, objects or components to first said Primary

replica and its Backup replicas.

175. A method as recited in claim 173, wherein if said Primary replica does
not have a regular message to multicast, it multicasts a control message containing

said order of granting information.

176. A method as recited in claim 171:

wherein when said thread T of said Primary replica has been granted a mutual
exclusion construct M for its Nth claim of any mutual exclusion construct, a message
is multicast that contains the ordering information (T, M, N);

wherein said granting in said Backup replica comprises granting the
corresponding mutual exclusion consfruct M to the corresponding thread T in said
Backup replica for the corresponding claim N, only if said ordering information (T, M,
N) from said Primary replica has been delivered to, and received by, said Backup

replica.

177. A method as recited in claim 176, wherein said claiming of a shared
resource by a thread at said Primary replica comprises:

invoking the claim function to claim mutex M for thread T,

-68-



10

15

20

25

30

WO 03/084116 PCT/US03/09443

diverting the invocation from the claim function of the operating system’s
thread library to the corresponding claim function of the consistent multithreading
library;

determining the information (T, M, N) for a claim to a mutual exclusion
construct by a thread in the Primary replica, wherein T represents the thread making
said claim, M represents the mutual exclusion construct being claimed, and N
represents the claim number by thread T to access any mutual exclusion construct;

granting the mutual exclusion construct M to thread T in the Primary replica;

appending the information (T, M, N) to the queue of claims to be multicast to
the Backup replicas; and

multicasting messages including the piggybacked claim (T,M, N) to the

Backup replicas.

178. A method as recited in claim 176, wherein said granting of a shared
resource to a thread in said Backup replica comprises:

invoking the claim function to claim mutex M for thread T,

diverting the invocation from the claim function of the operating system’s
thread library to the corresponding claim function of the consistent muitithreading
library;

determining the information (T, M, N) for a claim to a mutual exclusion
construct by a thread in said Backup replica, wherein T represents the thread in said
Backup replica making said claim, M represents the mutual exclusion construct being
claimed, and N represents the claim number by thread T to access any mutual
exclusion construct;

determining if (T, M, N) matches the next grant for mutex M, as directed by
said communication from said Primary replica; if so, mutex M is granted to thread T
when mutex M is available; and

determining that (T, M, N) does not match the next grant for mutex M,
according to the order of mutex granting dictated by said Primary replica, wherein
said thread T is suspended until (T, M, N) is delivered to, and received by said
Backup replica, and is the next grant of mutex M in the order dictated by said

Primary replica.



PCT/US03/09443

WO 03/084116

111

} "Old

.. 9e \ 1000101 1SBINNIA L.
o T POISpIQ-901M0G J[qRIRY =T [ TTee,
.... Areiqry .... o Areiqr .,
s /1 Suprariny " ! SutpeaIyIN[nN
.... fole JUI)SISUO)) ,,.._ .... >4 JUQJSISUO)) ,,..
: wd 1d e 1a
: eye( ele(q . . e eie(q ..
i @Em pareys ~{ ool ; c\eﬁm pareis 1 . %
;e : R ."
; TN TN m : N TN m
] XMW XS : XN XMW .
: i h : : . = ;
' vm\ﬁwk %@ /Nm ; ...O.v\om\ 17 /wm :
... ... R 21
. a . . >~ -
-- ... T .V —. K .
. PE zeC oe 8¢ v 9C ve \( ¢¢ Oc
SovLo€eL Tl 1L ) N vL €L Tl IL
s, spealy %, speaIy], . !
eorfdoy eorjdoy ’
.. dmyoeg _.-~—8l .. Arewmg 3

-
*rnman=”



PCT/US03/09443

WO 03/084116

2/11

v8

W
osea[y

ov_.\

AL

2

0
(ap)
~—

L
=
‘=
>
<
=
<
/Z

il

IL |
N ;
wre[) oﬁ\\@NF
ozl K 1L '
Vel
popuadsns'z],
_—CCl i
N :
Wwrers .
( dqelieAT N
811 SWIR[)PalopIoy :
=02}
c8 N
el <L IL XOMN
Bal Bl Bal
pealyl P flmm pealyL //ww
—
eorjdey dnyoeg

Al
q.
h

¢ 'Old

......... ~\© L
CINTLIN:! m 4y
) o CINTL| ﬂz
LrLL G N ~—7) 1 JuBID)
Lo oLt ! _
S m C W
m ' \oop " y OSEORA
t | papuadsnsZ ] . : 80}
B W W
i 20k e
8L /ﬂ : vol
oy i OSWIL] W
m F 0 / N _‘A juerp
i Nve 096
“ : . mE_m_uEsEo./_\/A‘/m wre)
SWIe[) . \/ (
paropI) N ¢6 8. 9. 06 v,
1SednnA ” XA eL L L
- / - N\ a8 pealy], peaIyl  peaIyy,
: ~-86

0L
muzmomme\cm



WO 03/084116

3/11
150
154 Primary Replica _ 156
\ / Ve 158
166 Thread A Thread B Shared
Data
Request /—178
claim()>
g claim(y"| 180 .
186 1182
184 Reply clalm()> 79 T@adA
168 A8 W’g
claim()
Request 100
claim()’]
192 194 20 222
equest Reply
1198
" claim() 174
RePy N
clalm()>

232
170
Request 206
claim() | 236
claim()”] 208
238
210 010

246

FIG. 3

Request

PCT/US03/09443

152

Backup Replica
PR 162

Thread B

164

Shared
Data

S claim()\J 014

-216
-218

o

i 226

- 228

420




PCT/US03/09443

WO 03/084116

4/11

9G¢

962

9G¢

IOAIDS
dnyorg

IOAIDS
dnyoeg

IOAIRS
dnyoeg

12°T4

144

12°T4

IOAIDS
Arewrtig

IOAIRS
Arewig

1sonbay

IOAIAS
Arewitig

VY "Old

0S¢ U1

Arewtig

AT

UOIBULIOJUT JOPIO X3)INWI

payorqA33id ynm A1doy
09¢
) \  zeg
Areuwrtig
0Ge
842
0S¢ UL
Arewrnig
AT

L)
dnyoeg

JUST[)
dnyorg

JuRID
dnyorg



PCT/US03/09443

WO 03/084116

5/11

9G¢ IOAISS IQAIRS
dnypoeg ySe Arewatid

UOTIRULIOJUT JOPIO XN poyoeqA33id
1M JUSWZPI[MOUNIY 10 1sonbay 1XoN

952 IOAIRS 14°1 I9AISS
dnyoeg Arewrui
I9AIRS AT IOAIRS
Areurtx
962 dnopoeg d

1sonbay

99¢ JOAIIS IoAIRS
dayoeg G2 Areurtid

ar "Old

99¢

¥9¢

2c9¢

0S¢

0S¢

R
Arewtid

LEl o)

Arewrtid

UMD
2cZ dnyoeg

4214

JURID
dnsyoeg

UOIRWLIOJUT JOPIO Xoinwt payoeqA8sid
YIIM JUSWSPI[MOUNIY 10 Adoy

0Ge

092

U
Arewinld

s

Arewrid

U
dnyoeyg
AT

4219

Jualy
dnojoeg



WO 03/084116 PCT/US03/09443

6/11

Thread T of Primary replica
invokes CMT claim() function

300 to claim mutex M
as its Nth claim of any mutex
CMT claim() function
executes the following
302 Determine
™ T,M, N
Invoke

OS claim() function
304/ to claim M for T

Y
Append T, M, N
306\ to OrderedClaims queue
for multicasting

Y

308 Return

FIG. 5



WO 03/084116 PCT/US03/09443

7/11

Thread T of Primary replica
invokes CMT release() function
310 to release mutex M

CMT release() function
executes the following

Y

31 o Invoke OS release()
function to release mutex M

314

FIG. 6



WO 03/084116 PCT/US03/09443

8/11

Thread T of Backup replica

invokes CMT claim() function
316 to claim mutex M

as its Nth claim of any mutex

CMT claim() function
executes the following

Y

Determine
31 8_/ T,M,N

NO

first entry in
M.orderedClaims

Set M.available
300—"] 330
to false | 1 /

l Set T.suspended
Invoke to true
324—] OS claim() function
to claim M for T Y
When OS grants 332
T's claim of M Susgend
Remove T, N

When T is awakened
processing continues
in FIG. 10

326—/ from M.orderedClaims

328 Return

FIG. 7



WO 03/084116

9/11

Thread T of Backup re

PCT/US03/09443

plica

invokes CMT release() function

334 to release mutex M
CMT release() function
executes the following
Y
336\ “Invoke
OS release() function
for mutex M
\
Set M.available
338—" to true

340

342
\

Is
M.orderedClaims
empty

Determine first entry T', N'
in M.orderedClaims

?

YES

344

NO

A

346~

T'.suspended
?

Invoke OS signal() function

A

for thread T' to awaken 1t

348

FIG. 8



WO 03/084116 PCT/US03/09443

10/11

Backup replica receives a message

350 with piggybacked OrderedClaim T, M, N

CMT message handler
executes the following

Y

L Append T, N
352 to M.orderedClaims

354

T,N
first entry in
M.orderedClaims

NO

Y

356

M.available NO

?

 J

358

T.suspended
?

360\ Invoke OS signal() function
for thread T to awaken it

n

362>/v
= End

FIG. 9



WO 03/084116 PCT/US03/09443

11/11

Thread T of Backup replica

is awakened while waiting for

mutex M as its Nth claim
364 of any mutex

CMT claim() function
executes the following

366— Set T.suspended
to false

368

, NO
M.available

?

370

380 \ "

NO Set T.suspended
to true

Is
T,N
first entry in
M.orderedClaims
9

372\ Set M.available T.suspended
to false

Y 382

Invoke
OS claim() function
374—"] to claim M for T

When OS grants
T's claim of M

376~ Remove T, N
from M.orderedClaims

Y

ResumeT

378

FIG. 10



INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/09443

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) HO4L 1/22
USCL 714/6,714/15,709/104,709/102

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 714/6,714/15,709/104,709/102

Minimum documentation searcued (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A E US 6,574,750 B1 (FELBER ET AL.) 03 JUNE 2003, ABSTRACT 1-178
AP US 2002/0099973 A1 (MOSER ET AL. ) 25 JULY 2002, ABSTRACT 1-178
A US 5,968,185 A (BRESSOUD ET AL.) 19 OCTOBER 1999, ABSTRACT 1-178
A US 6,332,200 B1 (METH ET AL.) 18 DECEMBER 2001, ABSTRACT 1-178
AP US 6,463,454 B1 (LUMELSKY ET AL.) 08 OCTOBER 2002, ABSTRACT 1-178

r__—l Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

“A™  document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or afier the international filing date

“L”  document which may throw doubts on piiority claim(s) or which is cited 10
establish the publication date of another citation or other special reason (as
specified)

“O™ document referring 1o an oral disclosure, use, exhibition or other means

“P™  document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X* document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot be
consjdered to involve an inventive step when the document is
combined with one or more other such doc svch combination -
being obvious to a person skilled in the art

“&" document member of the same patent famnily

Date of the actual completion of the international search

24 June 2003 (24.06.2003)

Date of mailiig of the international search report

1 JUL, 2003

Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Name and mailing address of the ISA/US Authorized officer,
Mail Stop PCT, Attn: 1SA/US m " ; <_

Telepho 7 703-305-3900

Form PCT/ISA/210 (second sheet) (July 1998)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

