-

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

Internati

onal Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3

GOGF 15/00

Al

(11) International Publication Number:

(43) International Publication Date:

WO 84/ 02410

21 June 1984 (21.06.84)

(21) International Application Number:

(22) International Filing Date: 17 October 1983 (17.10.83)

(31) Priority Application Number:

(32) Priority Date:

(33) Priority Country:

(71) Applicant: MOTOROLA, INC. [US/US]; 1303 E. Al-

7 December 1982 (07.12.82)
Us

PCT/US83/01621

447,721

gonquin Road, Schaumburg, IL 60196 (US).

(72) Inventors: MILLS, Marvin, A., Jr. ; 335 E. Paradise
Boulevard #54, Indiatlantic, FL 32903 (US). MOY-
ER, William, C. ; 10805 Burnwood Drive, 'Austin, TX
78758 (US). MacGREGOR, Douglas, B. ; 3705 Tarra-
gona Lane, Austin, TX 78759 (US). ZOLNOWSKY,
John, E. ; 11104 Hidden Bluff, Austin, TX 78754

(US).

(74) Agents: GILLMAN, James, W. et al.; Motorola, Inc.,
Patent Department - Suite 200F, 4350 E. Camelback
Road, Phoenix, AZ 85018 (US).

(81) Designated States: DE (European patent), FR (Euro-
pean patent), GB (European patent), JP, NL (Euro-
pean patent).

Published
With. international search report.

(54) Title: VIRTUAL MACHINE DATA PROCESSOR

(57) Abstract

INTERRUPT 6800 Wiy CLOCK EXCEPTION
CONTROL INTERFACE GENERATORS e CONTROLLER
~ 60 48
58
38+ TLLEGAL .
MICRO ROM OUTPUT LATCH INSTRUCTION
DECODER
MICRO ROM 518
J g
{MICRO ADDRESS LATCH = €
-
NANO ROM
NANG ROM OUTPUT LATCH
MICRO Rmnness
CAPTU H
£ LATC [[insTRUCTION| DECODE | |BUS (RD BUS) |\ T
88/ T T
N IRD -
AU SR ALY
CONTROL _ CONTROLY™ ”
- -~ I REGISTER FIELD REGISTER
20 CONTROL TRANSLATION CONTROL | e
{LADDR ¢ (HIGH) UNIT {LOW AND DATA)] 72
T =0 I (48 | N7) 2 |z
BurrERS EXECUTION UNIT sotrens | g
: 94 16

A data processor (12) capable of automatically storing in an external memory (20) all essential information relating
to the internal state thereof upon the detection of an access fault during instruction execution. Upon correction of the
cause of the fault, the data processor (12) automatically retrieves the stored state information and restores the state thereof
in accordance with the retrieved state information. The data processor (12) then resumes execution of the instruction. The
faulted access may be selectively rerun upon the resumption of instruction execution. Means are provided to verify that the
retrieved state information is valid.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pampbhiets publishing international ap-
plications under the PCT.

AT Austria LI Liechtenstein
. AU Australia - 1K Sri Lanka

BE Belgium jR1) Luxembourg

‘BR Brazil MC Monaco

CF Central African Republic MG Madagascar

CG Congo MR Mauritania

CH Switzerland MW Malawi

™ Cameroon ' NL Netherlands

DE Germany, Federal Republic of NO Norway

DK Denmark RO Romania

FT Finland SE Sweden

FR France ' SN Senegal

GA Gabon SuU Soviet Union

GB United Kingdom ™D Chad

HU Hungary TG Togo

Jp Japan us United States of America

KP Democratic People's Republic of Korea

)

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-1=

VIRTUAL MACHINE DATA PROCESSOR

Technical Field
The present invention relates to data processors and,
in particular, one which supports a virtual machine

environment.

Background Art

Digital data processing systems typically include a
data processor having a characteristic logical address
space, a limited amount of primary memory directly
accessible within a physical address space, a much larger
amount of secondary memory accessible only with the help
of one or more peripheral controllers, and any of a number
of customary input/output devices. In systems which
include a data processor having a particularly large
logical address space, the user may decide that his
application is so time critical as to justify providing an
equivalent amount of relatively expensive primary memory.
More often, however, the user will choose to use these
funds to provide a much larger amount of the less
expensive secondary memory, and accept the time penalty
associated with swapping portions of his programs/data
between the primary and secondary memories as they are
required by the processor. 1In general, the efficiency of
the swapping operations depended upon the judicious
segmentation of the application programs by a talented
programmer into a series of interrelated, but somewhat
autonomous overlays. To somewhat alleviate the problem of
finding or developing such experienced programmers and the
expense inherent in perfecting large segmented programs,
supervisor programs were developed which allowed each
application program to pretend that it had direct access
to the full logical address space of the processor
regardless of whether the corresponding physical address

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

Ca2a : .

space was presently assigned to the program or even
actually present in primary memory! Such "virtual memory"
supervisor programs typically relied upon associative
memory mapping hardware to detect accesses by the
currently executing program outside the boundaries of the
portion(s) of the physical address space assigned to the
program. In response to such "faults", the processor
would store some necessary state information before
branching to a fault handling portion of the supervisor
program which recognizes the "virtual" access and, if
appropriate, loads the required program code/data from
sécondafy memory into primary memory; If desired, the
supervisor can move some of the program code/data from the
primary memory to the secondary memory to make room for
the new code/data. Typicaliy, the supervisor program
would then reexecute the particular instruction which the
processor was executing when the fault occurred. Just how
much information had to be stacked off and the mechanism
employed by the supervisor program to prepare the
processor to reexecute the "faulted" instruction varied
from machine to machine.

In some designs, the processor simply stored the
contents of the various user registers, the instruction
register, the progfam counter and the current status
information, just as if an interrupt had occurred. The
supervisor program had to "back up" the program counter,
if necessary, to find out what instruction the processor
had been executing, and then to reconfigure the registers
and status bits to approximate as close as possible the
state of the processor when the faulted instruction was
originally started. Even in systems where the processor
instruction set was relatively regular and predictable,
the burden placed on the supervisor program was far from
insubstantial. 1In more complex systems, this'approach was
often impossible to implement.

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-3-

When the burden on software Eecame insurmountable,
additional hardware was added to keep track of the
instruction execution sequence by "marking"™ the completion
of each step in the sequence. When a fault occurred, the
mark information was stacked together with the register
and status information. The supervisor program still had
to determine which instruction the processor was executing
at the time of the fault, and later instruct the hardware A
to reexecute that instruction. Now, however, the
supervisor program could supply the "0ld" mark information
to the hardware. As the hardware proceded through each
step'ih the execution sequencé, marking its"progress as
always, additional control circuitry would compare the
"ecurrent" mark information with the "old" mark
information. If the control circuitry determined that a
particular step had already been performed before the
fault occurred, it would suppress only the conseguences of
that step, and then allow the execution sequence to
continue. Once the "current®" and "old" mark information
coincided, indicating that the processor'had reached the
step where the fault had occurred, the control circuitry
ceased interfering in the actual performance of the
succeeding steps in the execution sequence. 1In this
manner, the burden of restarting a faulted instruction was
shared between the software and the hardware. Of course,
it was still the responsibility of the supervisor program
to fix the underlying cause of the fault before attempting
to restart the faulted instruction.

There is no inherent limitation in the virtual memory
concept which restricts its use to single processor
systems. In fact, multi-processor systems have been
proposed where a fault encountered by one processor
generates an interrupt to a parallel processor. Upon
responding to the interrupt, the latter processor will
attempt to fix the problem which caused the other

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-4 - , s

processor's fault. Meanwhile, the faulted processor is
simply kept waiting for the fault to be resolved. If and
when the fault is successfully resolved by the other
processor, the faulted processor goes on its way without
ever being aware that the access fault occurred. Note
that the supervisor program of the processor which assumes
the task of fixing the faults requires no information on
the instruction being executed by the faulted processor.
It will however have to have access to the specifics of
the logical address which was faulted, and some
information about the address space of the program which
encountered the fault. Such information can be easily
latched during the course of each bus cycle so that it
will be available when a fault occurs. Besides requiring
at least two processors and additional latch and interrupt
generation hardware, this virtual memory technique forces
the faulted processor to wait until the other processor
has corrected the fault, thus tieing up both processors
during each fault resolution.

In multiprocessing systems, it is generally desirable
that any processor in the system be able to execute any
program awaiting execution. This could include resuming
execution of a program which has been temporarily
suspended because of an interrupt or time sharing
constraints. As long as the several processors have the
same instruction set, there is no hardware limitation
which prevents such an arrangement. A problem arises when
this technique is extended to include resuming execution
of a ptogram which has been suspended due to a fault

_condition in the course of executing an instruction. 1In

order to properly resume execution of such a suspended
program, the processor attempting to do so must execute
the same instruction set in the same sequence as the
processor which was originally executing the program.
Otherwise, there is no assurance that the faulted

WO 84/02410. PCT/US83/01621

10

15

20

5=

instruction will be properly completed. While the
supervisor of each processor can attempt to detect such
incompatibilities, the same supervisor program may be
simultaneously executing on several processors and must
therefore rely upon the integrity of a memory based,
resource data base for information on processor
characteristics. 1In such software controlled systems, a
substantial risk still exists that an incompatible
processor resumption of a faulted program will go
undetected.

In a virtual machine environment, the data processor
must be able to support user program accesses to both real
and non-existant system resources. In genefal, virtual
memory data processors can be used in such systems to
support the majority of accesses to data/instructions
within the user program's logical address space. However,
such processors are not able to support accesses to
non-existant system resources. Accordingly, the
supervisor simply intercepted accesses to such unavailable
resources, and simulated the access using a compatible
resource actually available in the system. The supervisor
then made it appear to the faulted instruction that the
access to the non-existant resource was successful.

WO 84/02410 PCT/US83/01621

10

15

20

25

30

-6

Summary of the Invention

Accordingly, it is an object of the present invention
to provide a data processor which can support a virtual
machine environment wherein a faulted instruction may be
suspended while the cause of the fault is resolved, and
thereafter resumed at the start of the access which had
encountered the fault.

Another object of the present invention is to provide
a virtual machine data processor wherein a faulted
instruction is suspended while the cause of the fault is
resolved and the faulted access performed, and then the
faulted instruction is resumed as if the faulted access
had been successful.

These and other objects of the present invention are
achieved in a data processor having external access means
for providing access to a resource external to the data
processor; instruction execution control means for
controlling the execution by the data processor of at
least one instruction which requires access to the
resource via the external access means; and access fault
recovery means for storing information indicative of the
state of the instruction execution control means as of the
time an access fault is detected, and for restoring the
state of the instruction execution control means using
the stored state information after the access fault has
been corrected. In the present invention, the data
processor includes access rerun control means for enabling
the external access means to rerun the faulted access upon
the access fault recovery means enabling the instruction
execution control means to resume execution of the
instruction, but only in response to a rerun signal
indicating that the access should be rerun.

WO 84/02410 PCT/US83/01621

10

15

-7-

Brief Description of the Drawings

Figure 1 is a block diagram of a virtual memory data
processing system having the virtual memory data processor
of the present invention.

Figure 2 is a block diagram of the virtual memory
data processor of Figure 1. '

Figure 3 is block diagram of the execution unit of
the virtual memory data processor of Figure 2.

Figure 4 is a block-diagram of the high section of
the execution unit of Figure 3.

Figure 5 is a block diagram of the low section of the
execution unit of Figure 3.

Figure 6 is a block diagram of the data section of
the execution unit of Figure 3.

Figure 7 is a block diagram illustrating the
relationship of the field translation unit of the virtual
memory data processor of Figure 2 to other functional

units therein.

WO 84/02410 PCT/US83/01621

10

15

20

25

30

-8-

Detailed Description of Invention

Shown in Figure 1 is a virtual memory data processing
system 10 wherein logical addresses (LADDR) issued by a
virtual memory data processor (VMDP) 12 are mapped by a
memory management unit (MMU) 14 to a corresponding
physical address (PADDR) for output on a physical bus
(PBUS) 16. Simultaneously, the various logical access
control signals (LCNTL) provided by VMDP 12 to control the
access are converted to appropriately timed physical
acéess control signals (PCNTL) by a modifier unit 18 under
the control of MMU 14.

In responée to a particular range of physical
addresses (PADDR), memory 20 will cooperate with an error
detection and correction circuit (EDAC) 22 to exchange
data (DATA) with VMDP 12 in synchrohization with the
physical access control signals (PCNTL) on PBUS 16. Upon
detecting an error in the data, EDAC 22 will either signal
a bus error (BERR) or request VMDP 12 to retry (RETRY) the
exchange, depending upon the type of error.

In response to a different physical address, mass
storage interface 24 will cooperate with VDMP 12 to
transfer data to or from mass storage 26. If an error
occurs during the transfer, interface 24 may signal a bus
error (BERR) or, if appropriate, request a retry (RETRY).

In response to yet another physical address, a direct
memory access controller (DMAC) 28 will accept data from
the VMDP 12 defining a data transfer operation. Upon
being released to perform the operation, DMAC 28 will use
appropriate PCNTL lines to periodically request VMDP 12 to
relinquish control of the bus. Upon being granted control
of the bus, the DMAC 28 will transfer a block of data
within memory 20 or between memory 20 and mass storage 26.
If an error is detected during any such transfer by either
the EDAC 22 or mass storage interface 24, DMAC 28 will

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-9-

either abort or retry the transfer, depending upon whether
BERR or RETRY was signaled.

In the event that the MMU 14 is unable to map a
particular logical address (LADDR) into a corresponding
physical address (PADDR), the MMU 14 will signal an access
fault (FAULT). As a check for MMU 14, and for DMAC 28 as
well, a watchdog timer 30 may be provided to signal a bus
error (BERR) if no physical device has responded to a
physical address (PADDR) within a suitable time period
relative to the physical access control signals (PCNTL).

If, during a data access bus cycle, a RETRY is
requested, OR gates 32 and 34 will respectively activate
the BERR and HALT inputs of VMDP 12. In response to the
simultaneous activation of both the BERR and HALT inputs
thereof during a VMDP-controlled bus cycle, VMDP 12 will
abort the current bus cycle and, upon the termination of
the RETRY signal, retry the cycle.

If desired, operaﬁion of VMDP 12 may be externally
controlled by judicious use of a HALT signal. 1In response
to the activation of only the HALT input thereof via OR
gate 34, VMDP 12 will halt at the end of the current bus
cycle, and will resume operation only upon the termination
of the HALT signal.

In response to the activation of only the BERR input
thereof during a processor-controlled bus cycle, VMDP 12
will abort the current bus cycle, internally save the
contents of the status register, enter the supervisor
state, turn off the trace state if on, and generate a bus
error vector number. VMDP 12 will then stack into a
supervisor stack area in memory 20 a block of information
which reflects the current internal context of the
processor, and then use the vector number to branch to an
error handling portion of the supervisor program.

Up to this point, the operation of VMDP 12 is
identical to the operation of Motorola's MC68000

WO 84/02410 PCT/US83/01621

10

15

20

25

30

-10-

microprocessor. However, VMDP 12 differs from the MC68000
primarily in the amount of information which is stacked in
response to the assertion of BERR. The information
stacked by the MC68000 consists of: the saved status
register, the current contents of the program counter, the
contents of the instruction register which is usually the
first word of the currently executing instruction, the
logical address which was being accessed by the aborted
bus cycle, and the characteristics of the aborted bus
cycle, i.e. read/write, instruction/data and function
code. In addition to the above information, VMDP 12 is
constructed to stack much more information about the
internal machine state. If the exception handler is
successful in resolving the error, the last instruction
thereof will return control of VMDP 12 to the aborted
program. During the execution of this instruction, the
additional stacked information is retrieved and loaded
into the appropriate portions of VMDP 12 to restore the
state which existed at the time the bus error occurred.

Under certain circumstances, such as when an access
is attempted to a non-existent peripheral, the supervisor
may choose to perform the requested access but utilize a
different resource. If the faulted access was a read, the
supervisor can store the accessed information in the
appropriate location in the stack. To make it appear to
the faulted instruction as if the non-existent peripheral
had actually responded, the supervisor can set a flag in
the stack indicating that the access has already been
performed. Just before resuming execution of the faulted
instruction, VMDP 12 can check the flag and, if set, can
resume instruction execution as if the access had just
been successfully completed. Thus, the faulted program
will be unaware that the accessed resource is not actually
Present.

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-11-

The preferred operation of VMDP 12 will be described
with reference to Figure 2 which illustrates the internal
organization of a microprogrammable embodiment of VMDP 12.
Since the illustrated form of VMDP 12 is very similar to
the Motorola MC68000 microprocessor described in detail in
the several US Patents cited hereafter, the common
operational aspects will be described rather broadly.

Once a general understanding of the internal architecture
of VMDP 12 is established, the discussion will focus on
the unigue aspects which distinguish VMDP 12 from the
MC68000, and enable the former to support virtual memory.

The VMDP 12, like the MC68000, is a pipelined,
microprogrammed data processor. In a pipelined processor,
each instruction is typically fetched during the execution
of the preceding instruction, and the interpretation of
the fetched instruction usually begins before the end of
the preceding instruction. 1In a microprogrammed data
processor, each instruction is executed as a sequence of
microinstructions which perform small pieces of the
operation defined by the instruction. If desired, user
instructions may be thought of as macroinstructions to
avoid confusion with the microinstructions. 1In the
MC68000 and VMDP 12, each microinstruction comprises a
microword which controls microinstruction sequencing and
function code generation, and a corresponding nanoword
which controls the actual routing of information between
functional units and the actuation of special function
units within VMDP 12. With this in mind, a typical
instruction execution cycle will be described.

At an appropriate time during the execution of each
instruction, a prefetch microinstruction will be executed.
The microword portion thereof will, upon being loaded from
micro ROM 36 into micro ROM output latch 38, enable
function code buffers 40 to output a function code (FC)
portion of the logical address (LADDR) indicating an

., BUREAT

,

/”’r

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-12-

instruction cycle. Upon being simultaneously loaded from
nano ROM 42 into nano ROM output latch 44, the
corresponding nanoword requests bus controller 46 to
perform a instruction fetch bus cycle, and instructs
execution unit 48 to provide the logical address of the
first word of the next instruction to address buffers 50.
Upon obtaining control of the PBUS 16, bus controller 46
will enable address buffers 50 to output the address
portion of the logical address (LADDR). Shortly
thereafter, bus controller 46 will provide appropriate
data strobes (some of the LCNTL signals) to activate
memory 20. When the memory 20 has provided the requested
information, bus controller 46 enables instruction

5

register capture (IRC) 52 to input the first word of the
next instruction from PBUS 16. At a later point in the
execution of the current instruction, another
microinstruction will be executed to transfer the first
word of the next instruction from IRC 52 intc instruction
register (IR) 54, and to load the next word frqm memory 20

~into IRC 52. Depending upon the type ofrinstruction in IR

54, the word in IRC 52 may be immediate data, the address
of an operand, or the first word of a subsequent
instruction. Details of the instruction set and the
microinstruction sequences thereof are set forth fully in
US Patent No. 4,325,121 entitled "Two Level Control Store
for Microprogrammed Data Processor, issued 13 April 1982
to Gunter et al.

As soon as the first word of the next instruction has
been loaded into IR 54, address 1 decoder 56 begins
decoding certain control fields in the instruction to
determine the micro address of the first microinstruction
in the initial microsequence of the particular instruction
in IR 54. Simultaneously, illegal instruction decoder 58
will begin examining the format of the instruction in IR
54. If the format is determined to be incorrect, illegal

ﬁﬁm 0
, OMPL
W WIPO W

%mo“?“

WO 84/02410. PCT/US83/01621

10

15

20

25

30

35

-13=-

instruction decoder 58 will provide the micro address of

the first microinstruction of an illegal instruction
microsequence. In response to the format error, exception
logic 60 will force multiplexor 62 to substitute the micro
address provided by illegal instruction decoder 58 for the
micro address provide by address 1 decoder 56. Thus, upon
execution of the last microinstruction of the currently
executing instruction, the microword portion thereof may
enable multiplexor 62 to provide to an appropriate micro
address to micro address latch 64, while the nanoword
portion thereof enables instruction register decoder (IRD)
66 to load the first word of the next instruction from IR
54, Upon the selected micro address being loaded into
micro address latch 64, micro ROM 36 will output a
respective microword to micro ROM output latch 38 and nano
ROM 42 will output a corresponding nanoword to nano ROM
output latch 44. .

Generally, a portion of each microword which is
loaded into micro ROM output latch 38 specifies the micro
address of the next microinstruction to be executed, while
another portion determines which of the alternative micro
addresses will be selected by multiplexor 62 for input to
micro address latch 64. In certain instructions, more
than one microsequence must be executed to accomplish the
specified operation. These tasks, such as indirect
address resolution, are generally specified using
additional control fields within the instruction. The
micro addresses of the first microinstructions for these
additional microsequences are developed by address 2/3
decoder 68 using control information in IR 54. In the
simpler form of such instructions, the first microsequence
will typically perform some preparatory task and then
enable multiplexor 62 to select the micro address of the
microsequence which will perform the actual operation as
developed by the address 3 portion of address 2/3 decoder

/’%W

, OMPIL
W WO
\7‘5}? NATY ng?‘/

v

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-14-

68. In more complex forms of such instructions, the first
microsequence will perform the first preparatory task and
then will enable multiplexor 62 to select the micro
address of the next preparatory microsequence as developed
by the address 2 portion of address 2/3 decoder 68. Upon
performing this additional preparatory task, the second
microsequence then enables multiplexor 62 to select the
micro address of the microsequence which will perform the
actual operation as developed by the address 3'portion of
address 2/3 decoder 68. In any event, the last
microinstruction in the last microsequence of each

instruction will enable multiplexor 62 to select the micro

address of the first microinstruction of the next
instruction as developed by address 1 decoder 56. 1In this
manner, execution of each instruction will proceed through
an appropriate sequence of microinstructions. A more
thorough explanation of the micro address sequence
selection mechanism is given in US Patent No. 4,342,078
entitled "Instruction Register Sequence Decoder for
Microprogrammed Data Processor" issued 27 July 1982 to
Tredennick et al.

In contrast to the microwords, the nanowords which
are loaded into nano ROM output latch 44 indirectly
control the routing of operands into and, if necessary,
between the several registers in the exection unit 48 by
exercising control over register control (high) 70 and
register control (low and data) 72. 1In certain
circumstances, the nanoword enables field translation unit
74 to extract particular bit fields from-the instruction
in IRD 66 for input to the execution unit 48. The
nanowords also indirectly control effective address
calculations and actual operand calculations within the
execution unit 48 by exercising control over AU control 76
and ALU control 78. 1In appropriate circumstances, the
nanowords enable ALU control 78 to store into status

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-15=

register SR the condition codes which result from each
operand calculation by execution unit 48. A more detailed
explanation of ALU control 78 is given in US Patent No.
4,312,034 entitled "ALU and Condition Code Control Unit
for Data Processor" issued 19 January 1982 to Gunter et
al.

As can be seen in Figure 3, the execution unit 48 in
VMDP 12, like the execution unit in the MC68000, comprises
a high section 48A, a low section 48B, and a data section
48C, which can be selectively connected to respective
segments of address and data buses 80 and 82,
respectively. Since'execution unit 48 is so similar to
the execution unit of the MC68000 as described in US
Patent No. 4,296,469, the common functional units will be
described only briefly, followed by a more detailed
description of the new elements which allow VDMP 12 to
support virtual memory. '

As shown in Figure 4, the high section 48A is
comprised primarily of a set of nine high address
registers AGH-A7'H for storing the most significant 16
bits of 32 bit address operands, a set of eight high data
registers DPH-D7H for storing the most significant 16 bits
of 32 bit data operands, a temporéry high address register
ATH, a temporary high data register DTH, an arithmetic
unit high AUH for performing arithmetic calculations on
operands provided on the high section of address and data
buses 80 and 82, a sign extension circuit 84 for allowing
32 bit operations on 16 bit operands, and the most
significant 16 bits of the program counter PCH and address
output buffers AOBH. As shown in Figure 5, the low
section 48B is comprised primarily of a set of nine low
address registers APL-A7'L for storing the least
significant 16 bits of 32 bit address operands, an
arithmetic unit low AUL for performing arithmetic
calculations on operands provided on the low section of

WO 84/02410 ' _ PCT/US83/01621

10

15

20

25

30

-16-

' address and data buses 80 and 82, a priority encoder

register PER used in multi-register move operations, and
the least significant 16 bits of the program counter PCL
and address output buffers AOBL. Figure 5 also
illustrates the relationship of an FTU register portion of
field translation unit 74 to the low sections of address
and data buses 80 and 82. As shown in Figure 6, the data
section 48C is comprised primarily of a set of eight low
data registers DPL-D7L for storing 16 bit operands which
may be the least significant 16 bits of 32 bit data
operands, a decoder register DCR for generating 16 bit
operand masks, an arithmetic and logic unit ALU for
performing arithmetic and logical operations on operands
provided on the data section of address and data buses 80
and 82, an ALU buffer register ALUB, an ALU extension
register ALUE for multiword shift operations, and
multiplexed data input and output buffers DBIN and DOB,
respectively.

Thus far, VMDP 12 has been described in terms of the
hardware features which are common with the MC68000.
VMDP 12 also responds to error conditions in a manner
somewhat similar to the MC68000. Recall that MMU 14 will
signal an address error by generating a FAULT signal,
while the other peripheral circuits report bus errors by
issuing a BERR signal. 1In either event, VMDP 12 will
receive a BERR signal via OR gate 32. In response to the
BERR signal, bus controller 46 will notify exception |
logic 60 of the error and then orderly terminate the
faulty bus cycle. Exception logic 60 then provides
multiplexor 62 with the micro address of the bus error
exception handler microsequence to be forced into the
micro address latch 64. At this point, the MC68000 would
simply load the micro address provided by exception logic
60 into micro address latch 64 and control would pass to

WO 84/02410 PCT/US83/01621

10

15

20

25

30

-17-

the exception handler microsequence to stack out the
following information:

SSWB Special Systém Status Word Bus;

AOBH Access Address High;

AOBL Access Address Low;

IRD Instruction Register Decode;

SR Status Register;

PCH Program Counter High; and

PCL. Program Counter Low.
while this information is ordinarily adequate to determine
the cause of the error, this information is not sufficient
to allow the present state to be restored after the error
has been resolved. Accordingly, VMDP 12 internally saves
additional information about the current state thereof,
before loading the micro address of the exception handler
microsequence. To accomplish this, VMDP 12 has several
additional registers for cépturing-the necessary state
information, and some additional access paths are provided
to certain existing registers. For example, as shown in
Figure 2, VMDP 12 has a micro address capture latch 86 for
storing the micro address in the micro address latch 64 at
the time the fault occurred. Within field translation
unit 74, a special status word internal (SSWI) register 88
is provided as shown in Figure 7 to save the following:

PR Trap Privilege Exception Latch (from exception
logic 60); -

TR Trap Trace Exception Latch (from exception logic
60);

TP Trace Pending Latch (from SR);

LP Loop Mode Latch (new bit);

HX Hidden-X Status Bit (from ALU);

ARXx Priority Encoder Output Register Selector (from

PER); and

WO 84/02410. ' PCT/US83/01621

10

15

20

25

30

35

-18~-

TUN Trap Vector Number Latch (from exception logic
60). '
In addition, the special status word bds (SSWB) register
90 in field translation unit 74, which in the MC68000
saved only:

R/W Read/Write (R/W); and

FC Function Code for faulted access;
now saves the following additional information:

IF nanoROM bit NIRC (instruction fetch to IRC);

DF nanoROM bit NDBI (data fetch to DBIN);

RM Read-Modify-Write cycle;

HB nanoROM bit NIOH (high byte transfer from DOB

or to DBIN); and '

BY byte/word transfer.

Once this additional state information has been
latched, VMDP 12 loads the micro address provided by
exception logic 60 into micro address latch 64 and begins
executing the exeception handler microsequence. In the
exception handler microsequence of VMDP 12, the initial
microinstructions must clear the address calculation and
output paths in execution unit 48 so that the stack
address may be safely calculated and provided to MMU 14,
MMU 14. Accordingly, several additional registers are
provided in the execution unit 48 to store the existing
address, data and control information: in the high section
48A shown in Figure 4, three virtual address temporary
high registers VAT1H-VAT3H are provided to facilitate
capture of the output of AUH and the address in AOBH; in
the low section 48B shown in Figure 5, three virtual
address temporary low registers VATI1L-VAT3L are provided
to allow capture of the output of AUL and the address in
AOBL; and, in the data section 48C shown in Figure 6, two
virtual data temporary registers VDT1-VDT2 are provided to
store the control information in FTU and the data in DOB.
Having cleared the execution unit 48 , the exception

-

WO 84/02410

10

15

20

25

30

35

PCT/US83/01621

-19-

handler calculates the stack address and proceeds

the following information:

SR
PCH
PCL
VOR
SSWB
AOBH
AOBL
DOB
DIB
IRC
MAL
ALUB
FTU
ATH
ALU
ATL
AUH
AUL
DCRL
PERL
SSWI
IR
DTH
DTL
- IRD
ALUE

Status Register;

Program Counter High;

Program Counter Low;

Stack Frame Format and Vector Offset;
Special System Status Word Bus;
Access Address High;

Access Address Low;

Data Output Buffer;

Data Input Buffer;-

Instruction Register Capture;
Micro Address Capture Latch;
Contents of ALUB;

Field Translate Unit Register;
Address Temporary High

ALU OQutput Latch

Address Temporary Low;

AU Latch High;

AU Latch Low;

Decoder Latch;

PER Output Register;

Special Status Word Internal
Instruction Register

Data Temporary High;

Data Temporary Low;

Instruction Register Decode; and
ALUE Register.

to stack

The exeception handler microsequence then vectors to the
error recovery routine in the supervisor program.
the stacked state information, the supervisor program can
determine the cause of the fault, and, if appropriate,

attempt to fix the problem.

Using

For example, an access to a

logical address which has no corresponding physical -
address may simply require that a block of program/data be

WO 84/02410 ' PCT/US83/01621

10

15

20

25

30

35

-20-

loaded from mass storage 26 into memory 20. Of course,
other processing may also be performed before the faulted
program is restarted. ’

To return control to a program which has been
suspended, the supervisor program in both the MC68000 and
VMDP 12 executes a return from exeception (RTE)
instruction. In the MC68000, this instruction will be
executed only if the exeception was of the type which
occurred on instruction boundaries. Thus, the
microsequence for this instruction could simply reload the
status register SR and program counter PCH-PCL from the
stack, and then pass. control to the instruction whose
address is in the program counter. In VMDP 12, this
instruction is also used to return from access faults
which typically occur during execution of an instruction.
Accordingly, the initial microinstructions in this
microsequence fetch the VOR word from the stack to
determine the stack frame format. If the short format is
indicated, the microsequence will proceed as in the
MC68000. If, on the other hand, the long format is
indicated, several other words are fetched from the stack
to assure that the full frame is available in memory. If
the frame format is neither short nor long, VMDP 12 will
assume that the stack frame is either incorrect or was
generated by an incompatible type of processor and will
transfer control to a stack frame format error exception
handler microsequence. If another fault is generated at
this stage, indicating that a portion of the stack frame
has been inadvertantly swapped out of memory 20, the same
access fault handling procedure will be used to retrieve
the rest of the stack.

During the microsequence which stacks the state
information, the micro address contained in the micro
address capture latch 86 is coupled to the FTU via a
portion of the BC bus, as shown in Figure 7.

8]

~WIF
CRNATY

o

WO 84/02410 PCT/US83/01621

10

15

20

25

30

35

-21=-

gimultaneously, rev validator 92 impresses on the
available portion of the BC bus a code which uniquely
identifies the version of the microcode contained within
VMDP 12. This combined word is subsequently transferred
into DOB in the data section 48C of the execution unit 48
for output via data buffers 94 to memory 20. During the
validation phase of the instruction continuation
microsequence, the MAL word is fetched from the stack and
loaded into both IRC 52 and DBIN in the data section 48C
of the execution unit 48. From DBIN, MAL is transferred
to FTU and coupled to the BC bus. Rev validator 92 then

- compares the version humber portion of MAL to the internal

version number. If they are not the same, rev validator 92
will signal branch control unit 96 to transfer control to
the stack frame format exeception handler microsequence.
Otherwise, rev validator 92 will simply allow the
microsequence to load the micro address portion of MAL
into address 4 latch 98.

Once the stack frame has been determined to be
valid, the microsequence will enter a critical phase where
any fault will be considered a double fault and VMDP 12
will terminate processing until externally reset. During
this phase, the rest of the information in the stack is
fetched and either reloaded into the original locations or
into the several temporary registers. For‘example, the
contents of the micro address latch 64 which were captured
by the micro address capture latch 86 will be loaded into
address 4 latch 98. However, only after the last stack
access are the contents of AUH-AUL and SR restored from
the temporary registers. The last microinstruction in
this instruction continuation microsequence restores the
contents of AOBH, AOBL, FTU, and DOB, signals bus
controller 46 to restart the faulted bus cycle using the
information in SSWB 90, and requests multiplexor 62 to
select the micro address in address 4 latch 98.

WO 84/02410. PCT/US83/01621

10

15

20

25

30

35

-22-~

In the preferred form, bus controller 46 will respond
to the restart signal provided by the last
microinstruction of the instruction continuation
microsequence by examining a rerun bit RR in SSWB 90. If *
the supervisor has not set the RR bit in the stack, the
bus controller 46 will proceed to rerun the faulted bus

¥

cycle under control of the other information in SSWB 90,
and then signal exception logic 60 when the cycle has been
successfully compieted. If, on the other hand, the
supervisor has set the RR bit, the bus controller 46 will
not rerun the bus cycle, but will simply signal exception
iogic 60 that the cyclé is complete. 1In response to the
cycle complete sigﬁal, exception logic 60 will enable
multiplexor to output the micro address in address 4 latch
98 to micro address latch 64. The faulted instruction
will then resume control of VMDP 12 as if the fault had
never occurred.

VMPD 12, unlike the MC68000, is also capable of
creating the illusion that the currently executing user
program is executing in the supervisor state. This has
been achieved by making all instructions which access the
supervisor/user bit in status register SR into privileged
instructions. Thus, whenever an attempt is made by the

user program to modify or even read the supervisor/user

bit, control will automatically revert to the supervisor.
The supervisor will then be able to prepare and return a
suitably modified image of SR to the user program. The
user program, being insulated from the true SR, can then
pretend that it is the supervisor. With the help of the
true supervisor, this pseudo supervisor can control the

execution of other user programs. This capability to .
control accesses to both real and non-existent system
resources from user programs, whether true user or pseudo =

supervisor, enables the user to use VMDP 12 to create a
virtual machine environment.

WO 84/02410 ' PCT/US83/01621

-23=

1. In a data processor comprising:
external access means for providing access to a
resource external to said data processcr-
instruction execution control means coupled to said
5 external access means, for controlling the
execution by said data processor of at least one
- instruction which requires. access to said
resource via said external access means; and
access fault recovery means coupled to said external
10 access means and to said instruction execution
control means, for storing information indicative
of the state of said instruction execution control -
means as of the time an access fault is detected,
and for restoring the state of said instruction
15 execution control means using said stored state
information after said access fault has been
corrected;
access rerun control means coupled to said external access
means and to said access fault recovery means, for
20 enabling said external access means to rerun said
faulted access upon said access fault recovery means
enabling said instruction execution control means to
resume execution of said one instruction, but only in
response to a rerun signal indicating that said access

25 should be rerun.

2. The data processor of claim 1 wherein said access
rerun means is responsive to said rerun signal being in

said stored state information.

To B

UREA i
/
Y

U .
Wicr O
RNAT&OV‘)

10

WO 84/02410 ' PCT/US83/01621

-24-

3. The data processor of claim 1 further comprising:
exception handling means coupled to said instruction
execution control means and to said access fault
recovery means, for enabling said instruction
execution control means to control the execution by
said data processor of a selected sequence of
instructions to correct the detected access fault
after said access fault recovery means has stored

said state information.

4. The data processor of claim 3 wherein said exception
handling means also completes said faulted access after
correéting said fault, stores any results thereof together
with said stored state information, and then provides said
rerun signal to said access rerun control means indicating
that said access should not be rerun.

5. A method for recovering from a faulted access by a
data processor to a system resource during the execution
by said data processor of an instruction, comprising the
steps of:
storing information indicative of the state of said
data processor upon detecting an access fault;
restoring the state of said data processor using said
stored state information after said fault has been
corrected; and,
rerunning said faulted access upon said data processor
resuming execution of said one instruction, but
only in response to a rerun signal indicating that
'said access should be rerun. —

6. The method of claim 5 further including the step of:
providing said rerun signal in said stored state
information.

WO 84/02410 " PCT/US83/01621

-25-

7. The method of claim 5 further including the steps of:
enabling said data processor to execute a selected
sequence of instructions to correct .the detected
access fault after said state information has been

stored.

8. The data processor of claim 5 wherein said selected
sequence of instructions also completes said faulted
access after correcting said fault, stores any results
thereof together with said stored state information, and
then provides said rerun signal to said access rerun
control rieans indicating that said acc¢ess should not be

rerun.

WO 84/02410 PCT/US83/01621

1/6
30
FATCHDOG
TIMER 20
N
ADDR (I
Fc | LADDR PADDR | N
MMU PCNTL S
g 3 L /S
14 DATA
_ EDAC | DATA
. , 22
% BERR j=—OR F——BERR RETRY
7] RETRY 28
9 32
3
S HALT|=—CR[] HALT | |PADDR
& , |
| 34 P
& B
~ Ul DATA | DMAC
: TRRE
S ontL| LonTL §E |
[
E SH PCNTL
~ ~
3 BERR
S 18 N RETRY
E DATA DATA BERR
RETRY
12 | | 24
10 6 |
- 1 N PADDR 253
| MASS
{ DATA | STORAGE o
y oy & &3 INTERFACE gg
[~
4 | PCNTL &

PCT/US83/01621

WO 84/02410

BUREAD

© Sy3ding sSy344ng
1INN NOILND3X3
Q! viva SS3aaqy |
)) w._v\ A ﬂ 0S ‘ Y
z. 1(viva anv mo) (H9IH) ¥aav
TOMINOD NOLLYISNVML OMINOD ,\o\, E
.ll.rl.. NETTSRE D a3 NE TS REN
Y]
] mm ﬁ F gy 3 | 9/) N
JOYINOD JOMINOD -
sna ayl sng| | 30003d | NOLLONMISNI
og TINN ._oEzoo/ () H THOIVT 3uN1dvD
HONvdE [_ SS38AAY OO
96 Z9 HOLVT INdLNO WOM ONWN .y
3300030 ‘
| ssayaav < WO ONWN [Tz
| = +9
(S .
= _ HOLY1 SS3Y¥aav OMOIN
HOLV Bl Y - 9F
¥ SSIHAQY_Me) NOY OMOIW -
y30003d _ S30092
NOLLONMLSNI -~ HOLV1 1NdiNO WOY ONJIN NOLLONNJ
VO3 T - ge U
o¥
8%
9% 09
U3 T108INOD) 21901 SHOIVMINID JOVIMILNI J0MINOD
sng NOLd30xX3 | MO010 0089 1dNYYIALINI

| LS

R

OMPI
WIPO

72,

WO 84/02410 PCT/US83/01621

3/6

80C ~
ADDRESS BUS DATA

808 ~
ADDRESS BUS LOW

80A~
ADDRESS BUS HIGH

48C

, L
EXECUTION UNIT: EXECUTION UNIT: EXECUTION UNIT:
HIGH SECTION LOW SECTION DATA SECTION

DATA BUS HIGH DATA BUS LOW DATA BUS DATA
82A 828 ' 82C

Fr7G. S

MICRO | |
ADDRESS | 8¢ | —
CAPTURE | EXCEPTION BUS 46
]FCZ-FCOI LATCH LOGIC CONTROLLERE™ &6
60 |

IRD BUS | IRD

I A e .
| SPECIAL STATUS
WORD INTERNAL

REVISION
VALIDATOR

SFC{DFC

PCT/US83/01621

WO 84/02410

ves

HASN _um.nﬂﬂm._ 2 L. A

Haa
l HOd | ~{HLIVA
I N |

Hav

HY8A |HEIVA|HZIVA| HLV

‘4/6

HVSN

Haa

H1a || Hay | Has | Hax | Hox | Haw | vy | Heu | e [z | Hoy | Hey | Hvy [Hey [Hzy | Hiy [Hoy
HdSS | Hdsn |
HV| HZY | Hov | Hev | v | Hev | Hev | HLy | Hov |Hza | Hoa | Hea | Hya | Hsa | Hza | Hia | Hoa

| {1

o

EU REA U
oMM
WiPO

s

PCT/US83/01621

WO 84/02410

ddsN | acs
18aa

ey | 6y | va ||y | 10w | oy | 13 | 3y | ey
1dsn | 1dss | yanA | eva | Tzava | v
oV | v | ey RAARARSARARZARD

[72 .
N\ avsSN .
‘0 _m:mnom_ [Hovn av| vza _ Ov—SLV | HASN

18a

d3d — TLIVA —l— 10d 1a0v

< "271.4d HVSN

A

3U REA[T
OMPL
IAYTDM

I8

PCT/US83/01621

WO 84/02410

6/6

.
P e

< o
o I
Q "971.d [oa=sia] oze wo%
‘ S

aaa

108 |11y |28 | ey [s [sy | 19y |y
10a |11a|za | 7ea | walsa|19a | za

INTERNATIONAL SEARCH REPORT
" International Application N0 PCT/US83/01621

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)-3

According to Integnational Patent Classification (IPC) or to both National Classification and IPC
INT. CL&GO6F 15/00 ,
Us. CL. 3647200

II. FIELDS SEARCHED

Minimum Documentation Searched ¢

Classification System |]) Classification Symbols

Us l 364/200,900

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched 8

ill. DOCUMENTS CONSIDERED TO BE RELEVANT 14

Category * | Citation of Document, 16 with indication, where appropriate, of the relevant passages 17 Relavant to Claim No. 18

Y US,A, 4,288,496, (Katzman:et al) 14 Oct..1980 1=8
See Col. 64,

Y Us,A, 4,315,310, (Bayliss et al) 09 Feb. 1982 1-8
See Cols 20, and 34-38,

Y E |US,A, 4,410,941, (Barrow et al) 18 Oct. 1983 1-8
See Cols 11=-14 '

Y Us,A, 4,010,450, (Porter et al) 01 Mar. 1977 1-8
See Cols 17-18

A US,A, 4,124,891, (Weller, III et al) 1-8
07 Nov. 1978

A UsS,A, 4,321,666, (Tasar et al) 23 Mar. 1982
AP IUS,A, 4,407,016, (Bayliss et al) 27 Sept.1983
AP |US,A, 4,415,969, (Bayliss et al 15 Nov. 1983

A iUS,A, 3,976,978, (Patterson et al)
24, Aug.1976

-— — — —
1 [}]
® o W ©

* Spacial categories of cited documents: 13

other means

upr document published prior to the international filing date but
later than the priority date claimed

in the art.
ugn document member of the same patent family

“T" later document published after the lqternationai filing date
or priority date and not in conflict with the application but

“A" document defining the general state of the art which is not : con ing the
considered to be of particular relevance ::rnifleecfl‘ tggnunderstand the principie or theory underlying t
“g" earlier document but published on or after the international ux" document of particular relevance; the claimed invention

filing date cannot be considered novel or cannct be considered to

L d%cu'r‘nent wlgch may éﬁr?‘w ;Ioubt:"on prioc;it;[cl?im(szhor involve an inventive step
which is cited to establish the publication date of another wyr f particular relevance; the claimed invention
citation or other special reason (as specified) Y gg:ggebn; coneidared to involve an inventive step when the
“Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

IV. CERTIFICATION

Date of Mailing of this international Search Report 3

30 December 1983 X 25 JAN 1%4

Date of the Actual Completion of the International Search 2

International Searching Authority * Signature of Authprized Officer 20

ISA/US {

Form PCT/ISA[210 (second sheet) (October 1981)

l

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

