Abstract: The present disclosure describes a pharmaceutical combination of an anti-CD19 antibody and a Bruton's tyrosine kinase (BTK) inhibitor for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.
COMBINATION OF AN ANTI-CD19 ANTIBODY AND A BRUTON'S TYROSINE KINASE INHIBITOR AND USES THEREOF
Field of the Invention

The present disclosure is related to a pharmaceutical combination of an anti-CD19 antibody and a Bruton's tyrosine kinase (BTK) inhibitor for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.

Background

B cells are lymphocytes that play a large role in the humoral immune response. They are produced in the bone marrow of most mammals, and represent 5-15% of the circulating lymphoid pool. The principal function of B cells is to make antibodies against various antigens, and are an essential component of the adaptive immune system.

Because of their critical role in regulating the immune system, disregulation of B cells is associated with a variety of disorders, such as lymphomas, and leukemias. These include non-Hodgkin's lymphoma (NHL), chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL).

NHL is a heterogeneous malignancy originating from lymphocytes. In the United States (U.S.), the incidence is estimated at 65,000/year with mortality of approximately 20,000 (American Cancer Society, 2006; and SEER Cancer Statistics Review). The disease can occur in all ages, the usual onset begins in adults over 40 years, with the incidence increasing with age. NHL is characterized by a clonal proliferation of lymphocytes that accumulate in the lymph nodes, blood, bone marrow and spleen, although any major organ may be involved. The current classification system used by pathologists and clinicians is the World Health Organization (WHO) Classification of Tumours, which organizes NHL into precursor and mature B-cell or T-cell neoplasms. The PDQ is currently dividing NHL as indolent or aggressive for entry into clinical trials. The indolent NHL group is comprised primarily of follicular subtypes, small lymphocytic lymphoma, MALT (mucosa-associated lymphoid tissue), and marginal zone; indolent encompasses approximately 50% of newly diagnosed B-cell NHL patients. Aggressive NHL includes patients with histologic diagnoses of primarily diffuse large B cell (DLBL, DLBCL, or DLCL) (40% of all newly diagnosed patients have diffuse large cell), Burkitt's, and mantle cell. The clinical course of NHL is highly variable. A major determinant of clinical course is the histologic subtype. Most indolent types of NHL are considered to be incurable disease. Patients respond initially to either chemotherapy or antibody therapy and most will relapse. Studies to date have not demonstrated an improvement in survival with early intervention. In asymptomatic patients, it is acceptable to "watch and wait" until the patient becomes symptomatic or the disease pace appears to be accelerating. Over time, the disease may transform to a more aggressive histology. The median survival is 8 to 10 years, and indolent patients often
receive 3 or more treatments during the treatment phase of their disease. Initial treatment of the symptomatic indolent NHL patient historically has been combination chemotherapy. The most commonly used agents include: cyclophosphamide, vincristine and prednisone (CVP); or cyclophosphamide, Adriamycin, vincristine, prednisone (CHOP). Approximately 70% to 80% of patients will respond to their initial chemotherapy, duration of remissions last on the order of 2-3 years. Ultimately the majority of patients relapse. The discovery and clinical use of the anti-CD20 antibody, rituximab, has provided significant improvements in response and survival rate. The current standard of care for most patients is rituximab + CHOP (R-CHOP) or rituximab + CVP (R-CVP). Interferon is approved for initial treatment of NHL in combination with alkylating agents, but has limited use in the U.S. Rituximab therapy has been shown to be efficacious in several types of NHL, and is currently approved as a first line treatment for both indolent (follicular lymphoma) and aggressive NHL (diffuse large B cell lymphoma). However, there are significant limitations of anti-CD20 monoclonal antibody (mAb), including primary resistance (50% response in relapsed indolent patients), acquired resistance (50% response rate upon re-treatment), rare complete response (2% complete response rate in relapsed population), and a continued pattern of relapse. Finally, many B cells do not express CD20, and thus many B-cell disorders are not treatable using anti-CD20 antibody therapy.

In addition to NHL there are several types of leukemias that result from disregulation of B cells. Chronic lymphocytic leukemia (also known as "chronic lymphoid leukemia" or "CLL"), is a type of adult leukemia caused by an abnormal accumulation of B lymphocytes. In CLL, the malignant lymphocytes may look normal and mature, but they are not able to cope effectively with infection. CLL is the most common form of leukemia in adults. Men are twice as likely to develop CLL as women. However, the key risk factor is age. Over 75% of new cases are diagnosed in patients over age 50. More than 10,000 cases are diagnosed every year and the mortality is almost 5,000 a year (American Cancer Society, 2006; and SEER Cancer Statistics Review). CLL is an incurable disease but progresses slowly in most cases. Many people with CLL lead normal and active lives for many years. Because of its slow onset, early-stage CLL is generally not treated since it is believed that early CLL intervention does not improve survival time or quality of life. Instead, the condition is monitored over time. Initial CLL treatments vary depending on the exact diagnosis and the progression of the disease. There are dozens of agents used for CLL therapy. Combination chemotherapy regimens such as FCR (fludarabine, cyclophosphamide and rituximab), and BR (Ibrutinib and rituximab) are effective in both newly-diagnosed and relapsed CLL. Allogeneic bone marrow (stem cell) transplantation is rarely used as a first-line treatment for CLL due to its risk.

Another type of leukemia is acute lymphoblastic leukemia (ALL), also known as acute lymphocytic leukemia. ALL is characterised by the overproduction and continuous multiplication of
malignant and immature white blood cells (also known as lymphoblasts) in the bone marrow. 'Acute' refers to the undifferentiated, immature state of the circulating lymphocytes ("blasts"), and that the disease progresses rapidly with life expectancy of weeks to months if left untreated. ALL is most common in childhood with a peak incidence of 4-5 years of age. Children of age 12-16 die more easily from it than others. Currently, at least 80% of childhood ALL are considered curable. Under 4,000 cases are diagnosed every year and the mortality is almost 1,500 a year (American Cancer Society, 2006; and SEER Cancer Statistics Review).

Therefore, the CD 19 antigen is a target for immunotherapy in the treatment of non-Hodgkin's lymphoma (including each the subtypes described herein), chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.

Certain CD19 therapies have been shown. T cells expressing an anti-CD19 chimeric antigen receptor (CAR) including both Cσ 3-ζ and the 4-BB costimulatory domain were administered to three patients with advanced CLL. Kalos et al., T cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia, Science Translational Medicine, vol. 3, no. 95 (10 August 2011), which is incorporated by reference in its entirety. Sadelain et al., The promise and potential pitfalls of chimeric antigen receptors, Current Opinion in Immunology, Elsevier, vol. 21, no.2, 2 April 2009, which is incorporated by reference in its entirety, also describes anti-CD19 chimeric antigen receptors (CARs). Neither Kalos et al. nor Sadelain et al., however, describe the antibody specific for CD19 in combination with a Bruton's tyrosine kinase (BTK) inhibitor as exemplified herein.

The use of a CD19 antibody in non-specific B cell lymphomas is discussed in WO2007076950 (US2007154473), which are both incorporated by reference in their entireties, along with the cursory mention of Ibrutinib within a long list of potential combination partners, but
fails either to teach the antibody exemplified herein or suggest the synergistic effects of the combination in the treatment of non-Hodgkin’s lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia as exemplified herein.

The use of a CD19 antibody in CLL, NHL and ALL is described in Scheuermann et al., CD19 Antigen in Leukemia and Lymphoma Diagnosis and Immunotherapy, Leukemia and Lymphoma, Vol. 18, 385-397 (1995), which is incorporated by reference in its entirety, but fails to suggest the combination exemplified herein.

Additional antibodies specific for CD19 are described in WO2005012493 (US71 09304), WO2010053716 (US1 2/266,999) (Immunomedics); WO2007002223 (US US8097703) (Medarex); WO2008022152 (12/377,251) and WO20081 50494 (Xencor), WO2008031056 (US1 1/852,106) (Medimmune); WO 2007076950 (US 11/648,505) (Merck Patent GmbH); WO 2009/052431 (US1 2/253,895) (Seattle Genetics); and WO201 0095031 (12/710,442) (Glenmark Pharmaceuticals), WO201 201 0562 and WO201 201 0561 (International Drug Development), WO201 1147834 (Roche Glycart), and WO 2012/156455 (Sanofi), which are all incorporated by reference in their entireties.

Combinations of antibodies specific for CD19 and other agents are described in WO2010151341 (US 13/377,514) (The Feinstein Institute); US5686072 (University of Texas), and WO2002022212 (PCT/US01/29026) (IDEC Pharmaceuticals), WO2013/024097 (14/126,928) (MorphoSys AG) and WO2013/024095 (14/127,217) (MorphoSys AG), which are all incorporated by reference in their entireties.

Certain bruton’s tyrosine kinase inhibitors are commercially available. Ibrutinib, also known as PCI-32765, and marketed under the name Imbruvica is an anticancer drug targeting B-cell malignancies. Ibrutinib is described in US Patent Nos. 7,514,444; 8,008,309; 8,697,711; 8,735,403; 8,957,079; and 8,754,090, which are all incorporated by reference in their entireties.

It is clear that in spite of the recent progress in the discovery and development of anti-cancer agents, many forms of cancer involving CD19-expressing tumors still have a poor prognosis. Thus, there is a need for improved methods for treating such forms of cancer.
Summary

Neither alone nor in combination does the prior art suggest the synergistic effects of the combination of the exemplified antibody and Ibrutinib in the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.

In one aspect, the present disclosure relates to a synergistic combination of an antibody specific for CD19 and a Bruton's tyrosine kinase (BTK) inhibitor. Such combinations are useful in the treatment of B cell malignancies, such as, non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.

In vitro models are considered indicative of how a certain compound or combination of compounds would behave in humans.

MEC-1 cells in this in vitro model are indicative of how the combination will work in the treatment of chronic lymphoid leukemia (CLL) in humans. Ramos cells in this in vitro model are indicative of how the combination will work in the treatment of non-Hogkins lymphoma (NHL) in humans. MEC-1 cells (DSMZ# ACC497) are a chronic B-cell leukemia cell line. Ramos cells (ATCC number CRL-1596), a human Burkitt's lymphoma cells.

In addition, when compounds are combined in vitro, one expects that the combination has only additive effects. Surprisingly, the inventors found that the combination of a particular antibody specific for CD19 and Ibrutinib mediated a synergistic level of specific cell killing in vitro in comparison to the antibody and Ibrutinib alone. Specifically, the inventors found that the combination of MOR00208 and Ibrutinib mediated a synergistic level of specific cell killing in vitro in MEC-1 cells compared to the antibody and Ibrutinib alone.

In addition, and also unexpectedly, the inventors found that the combination of a particular antibody specific for CD19 and Ibrutinib had certain functional properties, in comparison to the antibody and Ibrutinib alone.

In summary, the combination of the exemplified anti-CD19 antibody and Ibrutinib behaved synergistically in models relevant to CLL. As CLL is a B cell related disorders and CD19 is highly expressed on B-cells, the exemplified combination would have the same mechanism of action and should also behave synergistically in the treatment of other B cell related disorders, e.g. ALL and NHL.

Therefore, the combination of the exemplified antibody specific for CD19 and Ibrutinib should be effective in the treatment of humans in non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia. The expected efficacy of the combination of the antibody specific to CD19 exemplified and Ibrutinib will be confirmed in clinical trials.

As the mechanism of action of Ibrutinib and other Bruton's tyrosine kinase (BTK) inhibitors are similar, as they all work by inhibiting the tyrosine-protein kinase BTK enzyme, which plays a
crucial role in B-cell development, it is believed that synergy should also be seen when treating humans having non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia with a combination of the exemplified anti-CD19 antibody and a Bruton's tyrosine kinase (BTK) inhibitor other than Ibrutinib.

As the exemplified anti-CD19 antibody and other anti-CD19 antibodies bind CD19, it is believed that synergy should also be seen when treating humans having non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia with a combination of any anti-CD19 antibody and a Bruton's tyrosine kinase (BTK) inhibitor, e.g., Ibrutinib.

An aspect of the present disclosure comprises a synergistic combination wherein the antibody specific for CD19 comprises an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYGTRVFDY (SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNNGNTLY (SEQ ID NO: 4), an LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPIT (SEQ ID NO: 6) and Ibrutinib. In preferred aspects, the combination is used for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.

Description of Drawings

Figure 1 shows the cytotoxicity effects of MOR00208 and Ibrutinib alone and in combination on Ramos cells. Ramos cells were pre-treated with 40µM Ibrutinib for 24 hours.

Figure 2 shows the cytotoxicity effects of MOR00208 and Ibrutinib alone and in combination on MEC-1 cells. MEC-1 cells were pre-treated with 30µM Ibrutinib for 24 hours.

Figure 3 shows the cytotoxicity effects of MOR00208 and Ibrutinib alone and in combination on MEC-1 cells. MEC-1 cells were pre-treated with 30µM Ibrutinib for 24 hours.

Figure 4 shows the amino acid sequence of the variable domains of MOR00208.

Figure 5 shows the amino acid sequence of the Fc regions of MOR00208.

Figures 6-8 show the cytotoxicity of MOR00208 and Ibrutinib alone and in combination in MEC-1 cell line.

Figures 9-11 show Chou-Talay Combination Index curves of MOR00208 and Ibrutinib in combination in MEC-1 cell line.
Figures 12-20 show the Clarke et al. synergy calculations of MOR00208 and Ibrutinib in combination in MEC-1 cell line.

Detailed description of the invention

"Synergy", "synergism" or "synergistic" mean more than the expected additive effect of a combination. The "synergy", "synergism" or "synergistic" effect of a combination is determined herein by the methods of Chou et al., Clarke et al. and/or Webb et al. See Ting-Chao Chou, Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies, Pharmacol Rev 58:621-681 (2006), which is incorporated by reference in its entirety. See also Clarke et al., Issues in experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models, Breast Cancer Research and Treatment 46:255-278 (1997), which is incorporated by reference in its entirety. See also Webb, J. L. (1963) Enzyme and Metabolic Inhibitors, Academic Press, New York, which is incorporated by reference in its entirety.

The term "antibody" means monoclonal antibodies, including any isotype, such as, IgG, IgM, IgA, IgD and IgE. An IgG antibody is comprised of two identical heavy chains and two identical light chains that are joined by disulfide bonds. Each heavy and light chain contains a constant region and a variable region. Each variable region contains three segments called "complementarity-determining regions" ("CDRs") or "hypervariable regions", which are primarily responsible for binding an epitope of an antigen. They are referred to as CDR1, CDR2, and CDR3, numbered sequentially from the N-terminus. The more highly conserved portions of the variable regions outside of the CDRs are called the "framework regions". An "antibody fragment" means an Fv, scFv, dsFv, Fab, Fab', F(ab')2 fragment, or other fragment, which contains at least one variable heavy or variable light chain, each containing CDRs and framework regions.

A "Bruton's tyrosine kinase (BTK) inhibitor" is a class of drug that functions by inhibiting the tyrosine-protein kinase BTK enzyme, which plays an important role in B-cell development. Specifically, BTK contains a PH domain that binds phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3 binding induces Btk to phosphorylate phospholipase C, which in turn hydrolyzes PIP2, a phosphatidylinositol, into two second messengers, inositol triphosphate (IP3) and diacylglycerol (DAG), which then go on to modulate the activity of downstream proteins during B-cell signalling.

Bruton's tyrosine kinase (BTK) inhibitors include Ibrutinib. Ibrutinib is marketed by Pharmacyclics, Inc and Johnson & Johnson's Janssen Pharmaceutical (trade name Imbruvica, also named PCI-32765). Ibrutinib is is currently labelled for the treatment of patients with Mantle cell lymphoma (MCL) who have received at least one prior therapy, Chronic lymphocytic leukemia (CLL) who have received at least one prior therapy, Chronic lymphocytic leukemia with 17p
deletion, and Waldenstrom's macroglobulinemia. The formula of Ibrutinib is 1-[(3R)-3-[4-amino-3-(4-phenoxyphenyl)-1 H-pyrazolo[3,4-d]pyrimidin-1-yl]-1-piperidinyl]-2-propen-1-one and has the following structure:

![Ibrutinib Structure]

Ibrutinib is a small-molecule inhibitor of BTK. Ibrutinib forms a covalent bond with a cysteine residue in the BTK active site, leading to inhibition of BTK enzymatic activity. BTK is a signaling molecule of the B-cell antigen receptor (BCR) and cytokine receptor pathways. BTK’s role in signaling through the B-cell surface receptors results in activation of pathways necessary for B-cell trafficking, chemotaxis, and adhesion. Nonclinical studies show that ibrutinib inhibits malignant B-cell proliferation and survival in vivo as well as cell migration and substrate adhesion in vitro.

Additional Bruton's tyrosine kinase (BTK) inhibitors include:
ACP-196 (Acerta Pharma BV), which is described in WO 2012170976 (US Application No: 14/1 12,428), WO 2013010380 (US Application No: 14/233,478), and WO 20141 13932 (US Application No: 14/160,587), which are all incorporated by reference in their entireties;
BGB-31 11 (BeiGene, Co., Ltd.), and CC-292 Evans et al. 2013

"VH" refers to the variable region of an immunoglobulin heavy chain of an antibody, or antibody fragment. "VL" refers to the variable region of the immunoglobulin light chain of an antibody, or antibody fragment.

The term "CD19" refers to the protein known as CD19, having the following synonyms: B4, B-lymphocyte antigen CD19, B-lymphocyte surface antigen B4, CVID3, Differentiation antigen CD19, MGC12802, and T-cell surface antigen Leu-12.

Human CD19 has the amino acid sequence of:

```
MPPPRLLFLTRPMEVREPLVVKVEEGDNAVLQCLKGTSGDGPTQQLTWSRESPLKPLKLGLPGGLGHMRPLAIWLIFNVSQMQMGGFYLCPQPGPPEKAWQPGWTVNVEGSGELFRWNVSDLGLGCLGLKNSSEGERPSPSPSGKLMSPKLYVWAKDRPENGEPPLPPRDSLNQSLQDLTMAPGS
```

(SEQ ID NO: 7)
"MOR00208" is an anti-CD19 antibody. The amino acid sequence of the variable domains is provided in Figure 4. The amino acid sequence of the heavy and light chain Fc regions of MOR00208 are provided in Figure 5. "MOR00208" and "XmAb 5574" are used as synonyms to describe the antibody shown in Figures 4 and 5. The MOR00208 antibody is described in US patent application serial number 12/377,251, which is incorporated by reference in its entirety.

US patent application serial number 12/377,251 describes the antibody named 4G7 H1.52 Hybrid S239D/I332E / 4G7 L1.155 (later named MOR00208) as follows:

>4G7 H1.52 Hybrid S239D/I332E

EVQLVESGGGLVKPGGSLKLSCAASGYTFTSYVMHWVRQAPGKGLEWIGYINPYNDGTKYNEKFQGRVTISSDKSISTAYMELSSLRSEDTAMYYCARGTYYYGTRVFDYWQGQTLVTVSSAST

The amino acid sequence of the heavy and light chain Fc regions of MOR00208 are provided in Figure 5. "MOR00208" and "XmAb 5574" are used as synonyms to describe the antibody shown in Figures 4 and 5. The MOR00208 antibody is described in US patent application serial number 12/377,251, which is incorporated by reference in its entirety.

Additional antibodies specific for CD19 are described in US patent no. 7,109,304 (Immunomedics), which is incorporated by reference in its entirety; US application serial no. 11/917,750 (Medarex), which is incorporated by reference in its entirety; US application serial no. 11/852,106 (Medimmune), which is incorporated by reference in its entirety; US application serial no. 11/648,505 (Merck Patent GmbH), which is incorporated by reference in its entirety; US patent no. 7,968,687 (Seattle Genetics), which is incorporated by reference in its entirety; and US application serial no. 12/710,442 (Glenmark Pharmaceuticals), which is incorporated by reference in its entirety.

"Fc region" means the constant region of an antibody, which in humans may be of the IgG1, 2, 3, 4 subclass or others. The sequences of human Fc regions are available at IMGT, Human IGH C-REGIONs, http://www.imgt.org/IMGTreperoire/Proteins /protein/human/IGH/IGHC/Hu_IGHCallgenes.html (retrieved on 16 May 2011).
"RefmAb33" is an antibody whose amino acid sequence is as follows:

Heavy chain including the Fc region:
QVTLRESGPALVTTLCTFSGFSLSTAGMSVWIRQPPGKALEWLDIWDDKKHYNPSLKDLRTISKDKNQVVLKVTNMDPAVTATYCARDMIYNFAYFDVWQQGTTTVSSASTKGPSVFPLAPSKSTSTGGTAALGLVKDYPFEPVTAVSWNSGALTGHTFPALQSSGLYSLSSVVTVPSSSLGTTQTYICNHNKPSNTKVDDKVEPKSCDKTHTCPPCPAPELGGPDVFVLPKDPKDTLMISRTPEVTCVVDVSHEDPEVQFNWYVDGEVHNAKTPREEQFSTFRVVSLLTVVHDWLNGKE

Light chain including the Fc region:
DIQMTQSPSTLSAVGDRVTITCSASSRVMHYQYQQPKPGKAPKLLYDTSKLASSGVPSPRSGSGSTFPLTISLSQPDFATYYCFQGSYYPFTFGGKTVEIKRTVAAPSVFIFPPSDQQLKSRACTSVCLNNFYPREAKVQKVTDNLQGNSQESVTEQDKSTYLSSTLTSKADYEHKYACEVTHQGLSSVPVTFSNREGEC (SEQ ID NO: 9)

RefmAb33 is specific for RSV, and is used as isotype control, as it shares the same Fc region as MOR00208.

A "combination" means more than one item, e.g. a compound such as an antibody and ibrutinib.

The present disclosure also relates to combinations, pharmaceuticals, and pharmaceutical compositions containing the described combinations. The two components of the synergistic combination of the present invention, e.g. the antibody specific for CD19 and ibrutinib, may be administered together, simultaneously, separately or subsequently, either physically or in time.

Ibrutinib is currently taken orally and is currently dosed once per day. MOR00208 is administered intravenously, and is currently dosed either once a week or once every two weeks.

Preferably, administration of both drugs allows for both drugs to be active in the patent at the same time. For example, if MOR208 is dosed weekly and ibrutinib is dosed daily then the active substance of both drugs is present in the patient at the same time. In an embodiment, ibrutinib, is administered prior to and/or separately from the administration of the antibody specific for CD19, e.g. MOR00208.

Simultaneously means that the two components are administered at a time where both components (drugs) are active in the patient at the same time. It is implied by "synergism" that both drugs are active in the patient at the same time.

Administered together can mean administered at the same time.
The two components may be formulated in different pharmaceutical compositions. A pharmaceutical composition includes an active agent, e.g. an antibody for therapeutic use in humans. A pharmaceutical composition may include acceptable carriers or excipients.

"Administered" or "administration" includes but is not limited to delivery by an injectable form, such as, for example, an intravenous, intramuscular, intradermal or subcutaneous route or mucosal route, for example, as a nasal spray or aerosol for inhalation or as an ingestible solution, capsule or tablet.

A "therapeutically effective amount" of a compound or combination refers to an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a given disease or disorder and its complications. The amount that is effective for a particular therapeutic purpose will depend on the severity of the disease or injury as well as on the weight and general state of the subject. It will be understood that determination of an appropriate dosage may be achieved, using routine experimentation, by constructing a matrix of values and testing different points in the matrix, all of which is within the ordinary skills of a trained physician or clinical scientist.

"Cross competes" means the ability of an antibody or other binding agent to interfere with the binding of other antibodies or binding agents to CD19 in a standard competitive binding assay. The ability or extent to which an antibody or other binding agent is able to interfere with the binding of another antibody or binding molecule to CD19, and, therefore whether it can be said to cross-compete according to the invention, can be determined using standard competition binding assays. One suitable assay involves the use of the Biacore technology (e.g. by using the BIAcore 3000 instrument (Biacore, Uppsala, Sweden)), which can measure the extent of interactions using surface plasmon resonance technology. Another assay for measuring cross-competing uses an ELISA-based approach. A high throughput process for "epitope binning" antibodies based upon their cross-competition is described in International Patent Application No. WO 2003/48731.

The term "epitope" includes any protein determinant capable of specific binding to an antibody or otherwise interacting with a molecule. Epitopic determinants generally consist of chemically active surface groupings of molecules such as amino acids or carbohydrate or sugar side chains and can have specific three-dimensional structural characteristics, as well as specific charge characteristics. An epitope may be "linear" or "conformational." The term "linear epitope"
refers to an epitope with all of the points of interaction between the protein and the interacting molecule (such as an antibody) occur linearally along the primary amino acid sequence of the protein (continuous). The term "conformational epitope" refers to an epitope in which discontinuous amino acids that come together in three dimensional conformation. In a conformational epitope, the points of interaction occur across amino acid residues on the protein that are separated from one another.

"Binds the same epitope as" means the ability of an antibody or other binding agent to bind to CD19 and having the same epitope as the exemplified antibody. The epitopes of the exemplified antibody and other antibodies to CD19 can be determined using standard epitope mapping techniques. Epitope mapping techniques, well known in the art. include Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66 (Glenn E.Morris, Ed., 1996) Humana Press, Totowa, New Jersey. For example, linear epitopes may be determined by e.g., concurrently synthesizing large numbers of peptides on solid supports, the peptides corresponding to portions of the protein molecule, and reacting the peptides with antibodies while the peptides are still attached to the supports. Such techniques are known in the art and described in, e.g., U.S. Patent No. 4,708,871 ; Geysen et al, (1984) Proc. Natl. Acad. Sci. USA 8:3998-4002; Geysen et al, (1985) Proc. Natl. Acad. Sci. USA 82:78-182; Geysen et al, (1986) Mol. Immunol. 23 :709-715. Similarly, conformational epitopes are readily identified by determining spatial conformation of amino acids such as by, e.g., hydrogen/deuterium exchange, x-ray crystallography and two-dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols, supra. Antigenic regions of proteins can also be identified using standard antigenicity and hydropathy plots, such as those calculated using, e.g., the Omiga version 1.0 software program available from the Oxford Molecular Group. This computer program employs the Hopp/Woods method, Hopp et al, (1981) Proc. Natl. Acad. Sci USA 78:3824-3828; for determining antigenicity profiles, and the Kyte-Doolittle technique, Kyte et al, (1982) J.Mol. Biol. 157: 105-132; for hydropathy plots.

Embodiments

An aspect of the present disclosure is a combination comprising an antibody specific for CD19 and a Bruton's tyrosine kinase (BTK) inhibitor for use in the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia. In embodiments, the combination is synergistic.

Herein, the combination of the exemplified anti-CD19 antibody and Ibrutinib behaved synergistically in in vitro models relevant to CLL. As CLL is a B cell related disorder and CD19 is highly expressed on B-cells, the exemplified combination should have the same mechanism of action and should also behave synergistically in the treatment of other B cell related disorders, e.g. ALL and
NHL. Therefore, the combination of the exemplified antibody specific for CD19 and Ibrutinib should be effective in the treatment of humans in non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia. The expected efficacy of the combination of the antibody specific to CD19 exemplified and Ibrutinib will be confirmed in clinical trials.

MEC-1 cells (DSMZ# ACC497) a chronic B-cell leukemia cell line was tested. MEC-1 cells in this in vitro model are indicative of how the combination will work in the treatment of chronic lymphoid leukemia (CLL) in humans. The Chou index values indicate clear synergism of the combination of MOR00208 and Ibrutinib in the specific killing of MEC-1 cells as compared to MOR00208 and Ibrutinib alone.

Additional cell lines are evaluated: Ramos cells (ATCC number CRL-1596), a human Burkitt's lymphoma cells. HG-3 (DSMZ#ACC765), and CLL (DSMZ#ACC773) are a chronic lymphocytic leukemia cell line. Su-DHL 6 (DSMZ#ACC572), U2932 (DSMZ#ACC633) and OCI-LY7 (DSMZ#ACC688) are a Diffuse large B-cell lymphoma (DLBCL) cell line. JVM-2 (ATCC® CRL-3002) is a mantle cell lymphoma cell line. BALL-1 (DSMZ#ACC742) is an acute lymphoblastic leukemia cell line.

Ramos cells in this in vitro model are indicative of how the combination will work in the treatment of non-Hogkins lymphoma (NHL) in humans. HG-3 and CLL cells in this in vitro model are indicative of how the combination will work in the treatment of chronic lymphoid leukemia (CLL) in humans. Su-DHL 6, U2932 and OCI-LY7 cells in this in vitro model are indicative of how the combination will work in the treatment non-Hogkins lymphoma in humans. JVM-2 cells in this in vitro model are indicative of how the combination will work in the treatment non-Hogkins lymphoma in humans. BALL-1 cells in this in vitro model are indicative of how the combination will work in the treatment of acute lymphoblastic leukemia in humans.

In summary, the combination of the exemplified anti-CD19 antibody and Ibrutinib behaved synergistically in models relevant to CLL.

Therefore, the combination of the exemplified antibody specific for CD19 and Ibrutinib should be effective in the treatment of humans in non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.

As the mechanism of action of Ibrutinib and other Bruton's tyrosine kinase (BTK) inhibitors are similar, as they all work by inhibiting the tyrosine-protein kinase BTK enzyme, which plays a crucial role in B-cell development, it is believed that synergy should also be seen when treating humans having non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia with a combination of the exemplified anti-CD19 antibody and a Bruton's tyrosine kinase (BTK) inhibitor other than Ibrutinib.

As the exemplified anti-CD19 antibody and other anti-CD19 antibodies bind CD19, it is
believed that synergy should also be seen when treating humans having non-Hodgkin’s lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia with a combination of any anti-CD19 antibody and a Bruton’s tyrosine kinase (BTK) inhibitor, where the anti-CD19 antibody is, for example, described in US patent application serial number 12/377,251 (Xencor), WO2005012493, WO201 0053716 (Immunomedics); WO2007002223 (Medarex); WO2008022152 (Xencor); WO2008031056 (Medimmune); WO 2007/076950 (Merck Patent GmbH); WO 2009/052431 (Seattle Genetics); and WO201 0095031 (Glenmark Pharmaceuticals), all of which are incorporated by reference in their entireties.

In embodiments, the antibody specific for CD19 comprises an antibody that cross-competes with the antibody comprising an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYYYGTRVFDY (SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNNGNTLYL (SEQ ID NO: 4), an LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPI (SEQ ID NO: 6).

In embodiments, the antibody specific for CD19 comprises an antibody that binds to the same epitope as an antibody comprising an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYYYGTRVFDY (SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNNGNTLYL (SEQ ID NO: 4), an LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPI (SEQ ID NO: 6).

In embodiments, the antibody specific for CD19 comprises an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYYYGTRVFDY (SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNNGNTLYL (SEQ ID NO: 4), an LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPI (SEQ ID NO: 6).

In embodiments, the antibody specific for CD19 comprises a variable heavy chain of the sequence EVOLVESGGGLVKPGGSLKLSCAASGYTFTSYVMHWVRQAPGKGLEWIGYINPY NDGTKYNEKFQGRVTISSDKSISTAYMELSSLRSEDTAMYYCARGTYYYYGTRVFDYWG QGTLVTVSS (SEQ ID NO: 10) and a variable light chain of the sequence DIVMTQSPATLSPGERATLSCRSSKSLQNNGNTLYWFQGKPGQPQLLFYR MSNLNSGVPHDFSGSGSGTEFTLTISSEPEDFAVYCMQHLEYPIFGAGTKLEIK (SEQ ID NO: 11).

In certain embodiments said antibody comprises a heavy chain constant domain of the sequence
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
SSVVTVPSSSLGTQTYICNVNHKPSNTKV DKVEPKSCDKTHTCPPCPAPELLGGDPVF LLFPKPK
DTLMISRTPEVT CVVDVSDPEVKFQ FNWYVDGEVHNAKTKPREEQFNSTFRVSVL TVVHQD
WLNGKEYKCK VSNKALPAPEEKTISKTGQPREPQV YTLPPREMTKNQVSLTC LV KGFYPDIA
VEWESNGQPENNYK TTPMP LDSDGSF LYSKLTVDKSRWQQ NVFSCSVM HEALHNHYTQKSL
SLSPGK (SEQ ID NO: 12).

In embodiments, the antibody specific for CD19 comprises a light chain constant domain of
the sequence
RTVAAPSFVFIFPSDEQLKGTASVVCLNNFYPREKVQV KD NALQSGNSQESVT EQ DSKD
STYSLSSSTLSKADYEKHVKYACEVTHQGLSSPVT KSFNRGEC. (SEQ ID NO: 13)

In embodiments, the Bruton's tyrosine kinase (BTK) inhibitor is Ibrutinib.

In embodiments, the components of the combination, the antibody specific for CD19 and
Ibrutinib, are administered separately. In an embodiment, Ibrutinib is administered prior to
administration of the antibody specific for CD19.

In embodiments, the components of the combination are administered at a time where both
components (drugs) are active in the patient at the same time. It is implied by "synergism" that
both drugs are active in the patient at the same time. In embodiments, the components of the
combination are administered together, simultaneously, separately or subsequently, either
physically or in time. In embodiments, the components of the combination are administered
simultaneously.

In embodiments the combination is a pharmaceutical composition. In embodiments, the
combination comprises an acceptable carrier. In embodiments, the combination is administered
in an effective amount.

In another aspect the synergistic combination of an antibody specific for CD19 comprising
an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG
(SEQ ID NO: 2), an HCDR3 region of sequence GTYYYGTRVFDY (SEQ ID NO: 3), an LCDR1
region of sequence RSSKSLQNVN GNTLY (SEQ ID NO: 4), an LCDR2 region of sequence
RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPIT (SEQ ID NO: 6) and
Ibrutinib is able to mediate killing of MEC-1 cells by ADCC in the presence of isolated human
PBMCs with an at least two-fold, three-fold, four-fold, or five-fold better efficacy than Ibrutinib
alone.

An aspect of the present disclosure comprises a synergistic combination of an antibody
specific for CD19 comprising an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2
region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYYGTRVFDY
(SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNVN GNTLY (SEQ ID NO: 4), an
LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPIT (SEQ ID NO: 6) and Ibrutinib for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia. In embodiments, the non-Hodgkin's lymphoma is selected from the group consisting of follicular lymphoma, small lymphocytic lymphoma, mucosa-associated lymphoid tissue, marginal zone, diffuse large B cell, Burkitt's, and mantle cell.

In embodiments, the non-Hodgkin's lymphoma is follicular lymphoma. In embodiments, the non-Hodgkin's lymphoma is small lymphocytic lymphoma. In embodiments, the non-Hodgkin's lymphoma is mucosa-associated lymphoid tissue. In embodiments, the non-Hodgkin's lymphoma is marginal zone lymphoma. In embodiments, the non-Hodgkin's lymphoma is diffuse large B cell lymphoma. In embodiments, the non-Hodgkin's lymphoma is Burkitt's lymphoma. In embodiments, the non-Hodgkin's lymphoma is mantle cell lymphoma.

In embodiments, the combination is for the treatment of chronic lymphocytic leukemia. In embodiments, the combination is for the treatment of acute lymphoblastic leukemia.

Another aspect comprises a method of treating non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia in an individual in need thereof, which method comprises administration of an antibody specific for CD19 and a Bruton's tyrosine kinase (BTK) inhibitor. In embodiments of the method, the antibody specific for CD19 comprises an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYGTRVFDY (SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNVNGNTYLY (SEQ ID NO: 4), an LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPIT (SEQ ID NO: 6). In embodiments of the method, the antibody comprises the exemplified antibody specific for CD19. In embodiments of the method the Bruton's tyrosine kinase (BTK) inhibitor is Ibrutinib.

Another aspect includes a use of an antibody specific for CD19 wherein said antibody comprises an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYGTRVFDY (SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNVNGNTYLY (SEQ ID NO: 4), an LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPIT (SEQ ID NO: 6) in the manufacture of a medicament for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia in synergistic combination with Ibrutinib.
Examples

Example 1: Cytotoxicity of MEC-1 cells using MOR00208 and Ibrutinib alone and in combination

Materials

Cell lines tested: MEC-1 cells (DSMZ# ACC497). Cell lines are tested: chronic B-cell leukemia cell line; JVM-2 (ATCC® CRL-3002) a mantle cell lymphoma cell line; Ramos cells (ATCC number CRL-1596), a human Burkitt's lymphoma cells; HG-3 (DSMZ#ACC765), and Cll (DSMZ#ACC773) are a chronic lymphocytic leukemia cell line; Su-DHL 6 (DSMZ#ACC572), U2932 (DSMZ#ACC633) and OCI-LY7 (DSMZ#ACC688) are a Diffuse large B-cell lymphoma (DLBCL) cell line; JVM-2 (ATCC® CRL-3002) is a mantle cell lymphoma cell line; and BALL-1 (DSMZ#ACC742) is an acute lymphoblastic leukemia cell line.

Culture conditions of cell lines used are according to supplier’s information.

Cell Medium: Iscove's Modified Dulbecco's Medium (IMDM), Invitrogen, Cat No.: 31980-048; RPMI1640, Invitrogen, Cat No.: 31870-074; GlutaMAX, Invitrogen, Cat No.: 35050-38 LOT No.: 1504647; FCS: Sigma CAT No.: F7524 LOT No.: 111M3396.

NKs: RPMI1640, with GlutaMAXTM, Invitrogen, Cat No.: 31870-074, 10% FCS; Biocoll: Biochrome AG CAT No.: L61 15 LOT No.: 0034D; MACS NK cell isolation kit: Miltenyi Biotec CAT No.: 130-092-657 LOT No.: 51501301 15; Ibrutinib :Selleck Chem LOT No.: S2680; FCS: Sigma CAT No.: F7524 LOT No.: 111M3396; and RefmAb33 (anti-RSV) with same Fc region as MOR00208.

Methods

The cytotoxicity of MOR00208 and Ibrutinib alone and in combination were tested in the MEC-1 cell line (CLL). The cytotoxicity of MOR00208 and Ibrutinib alone and in combination are tested in the following target cell lines: JVM-2, Ramos, HG-3, Cll, Su-DHL 6, U2932, OCI-LY7, JVM-2 and BALL-1.

Ibrutinib is a covalent inhibitor of Bruton's tyrosine kinase and should abrogate proliferation in target cell lines. MOR00208 targets CD19 and mediates target cell killing via ADCC. Target cell killing is measured using the following parameters: Ibrutinib at a concentration range of between 0.033 and 33 µM, specifically at 0.3 µM, 1.0 µM and 3.0 µM; MOR00208 at a concentration range from 0.001 - 10 nM, specifically at 0.01 nM, 0.1 nM, and 10nM, and the combination of MOR00208 and Ibrutinib. The following are used as controls: RefmAb33 or NK cells alone. In the Ibrutinib group as well as in the MOR00208+Ibrutinib combination group, target cells are pre-treated with Ibrutinib for 7 days prior to the ADCC assay measurements. The target cells are counted and stained using...
1Mg/ml CFSE end concentration. For DMSO treated target cells, an effector : target (E:T) ratio of 2:1 is chosen, corresponding to a cell density of 5x10⁵/ml. The proliferative effect on target cells caused by Ibrutinib treatment was included by adjusting the E:T ratio in inhibitor treated cells. The NK cells are counted and adjusted to 1x10⁶/ml. The target cell killing assays were performed as follows: using 96 well plates, 100µl of target cell suspension was added per well, followed by 100µl cell suspension of NK cells to each well resulting in an E:T ratio of 2:1. The antibodies were diluted in a range of 10 - 0.001 nM in medium. Cells were centrifuged and target : effector cell-pellets were re-suspended in 100 µl antibody-containing medium or the according control solution. The assay was incubated for 4h in CO2-incubator at 37°C. After 10 min incubation on ice, 50 µl DAPI solution was added to each well (final concentration 1 µg/ml) and incubated on ice for 10 min. The cell killing measurements were performed with FACS-Verse. Dead target cells were DAPI positive.

Pre-experiments following the methods described above were completed with both MEC-1 cells and RAMOS cells. Figures 1-3 show the results of the pre-experiments.

Data

In total, three experiments were performed in order to determine the mediation of ADCC on MEC-1 cells by the combination of MOR00208 and Ibrutinib. The ADCC dose response curves for Experiments 1-3 are shown in Figures 6-8.

The percent (%) dead cells (raw data) for Experiments 1-3 are shown in Tables 1-9 below.

Experiment 1:

Table 1 Ibrutinib at 3 µM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>73.77</td>
<td>72.31</td>
<td>56.54</td>
</tr>
<tr>
<td>B: Ibr alone 3µM</td>
<td>17.07</td>
<td>17.07</td>
<td>17.07</td>
</tr>
<tr>
<td>C: control (0.1%DMSO/Ref33)</td>
<td>25.27</td>
<td>25.27</td>
<td>25.27</td>
</tr>
<tr>
<td>AB: combination</td>
<td>88.01</td>
<td>88.59</td>
<td>65.89</td>
</tr>
</tbody>
</table>

Table 2 Ibrutinib at 1 µM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>73.77</td>
<td>72.31</td>
<td>56.54</td>
</tr>
<tr>
<td>B: Ibr alone 1µM</td>
<td>24.33</td>
<td>24.33</td>
<td>24.33</td>
</tr>
<tr>
<td>C: control (0.1%DMSO/Ref33)</td>
<td>25.27</td>
<td>25.27</td>
<td>25.27</td>
</tr>
<tr>
<td>AB: combination</td>
<td>85.48</td>
<td>84.83</td>
<td>62.22</td>
</tr>
</tbody>
</table>
Table 3: Ibrutinib at 0.3 μM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>73.77</td>
<td>72.31</td>
<td>56.54</td>
</tr>
<tr>
<td>B: Ibr alone 0.3μM</td>
<td>21.99</td>
<td>21.99</td>
<td>21.99</td>
</tr>
<tr>
<td>C: control (0.1%DMSO/Ref33)</td>
<td>25.27</td>
<td>25.27</td>
<td>25.27</td>
</tr>
<tr>
<td>AB: combination</td>
<td>80.51</td>
<td>77.08</td>
<td>56.79</td>
</tr>
</tbody>
</table>

Experiment 2:

Table 4: Ibrutinib at 3 μM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>50.83</td>
<td>52.10</td>
<td>37.57</td>
</tr>
<tr>
<td>B: Ibr alone 3μM</td>
<td>10.84</td>
<td>10.84</td>
<td>10.84</td>
</tr>
<tr>
<td>C: control (0.03%DMSO/Ref33)</td>
<td>9.81</td>
<td>9.81</td>
<td>9.81</td>
</tr>
<tr>
<td>AB: combination</td>
<td>66.70</td>
<td>62.47</td>
<td>42.25</td>
</tr>
</tbody>
</table>

Table 5: Ibrutinib at 1 μM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>50.83</td>
<td>52.10</td>
<td>37.57</td>
</tr>
<tr>
<td>B: Ibr alone 1μM</td>
<td>8.39</td>
<td>8.39</td>
<td>8.39</td>
</tr>
<tr>
<td>C: control (0.03%DMSO/Ref33)</td>
<td>9.81</td>
<td>9.81</td>
<td>9.81</td>
</tr>
<tr>
<td>AB: combination</td>
<td>63.56</td>
<td>63.97</td>
<td>40.84</td>
</tr>
</tbody>
</table>

Table 6: Ibrutinib at 0.3 μM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>50.83</td>
<td>52.10</td>
<td>37.57</td>
</tr>
<tr>
<td>B: Ibr alone 0.3μM</td>
<td>8.56</td>
<td>8.56</td>
<td>8.56</td>
</tr>
<tr>
<td>C: control (0.03%DMSO/Ref33)</td>
<td>9.81</td>
<td>9.81</td>
<td>9.81</td>
</tr>
<tr>
<td>AB: combination</td>
<td>53.41</td>
<td>54.22</td>
<td>34.83</td>
</tr>
</tbody>
</table>
Experiment 3:

Table 7 Ibrutinib at 3 μM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>81.41</td>
<td>81.30</td>
<td>63.66</td>
</tr>
<tr>
<td>B: Ibr alone 3μM</td>
<td>8.26</td>
<td>8.26</td>
<td>8.26</td>
</tr>
<tr>
<td>C: control (0.03%DMSO/Ref33)</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
</tr>
<tr>
<td>AB: combination</td>
<td>86.19</td>
<td>86.35</td>
<td>63.10</td>
</tr>
</tbody>
</table>

Table 8 Ibrutinib at 1 μM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>81.41</td>
<td>81.30</td>
<td>63.66</td>
</tr>
<tr>
<td>B: Ibr alone 1μM</td>
<td>7.50</td>
<td>7.50</td>
<td>7.50</td>
</tr>
<tr>
<td>C: control (0.03%DMSO/Ref33)</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
</tr>
<tr>
<td>AB: combination</td>
<td>88.75</td>
<td>85.58</td>
<td>58.17</td>
</tr>
</tbody>
</table>

Table 9 Ibrutinib at 0.3 μM

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: MOR00208 alone</td>
<td>81.41</td>
<td>81.30</td>
<td>63.66</td>
</tr>
<tr>
<td>B: Ibr alone 0.3μM</td>
<td>8.56</td>
<td>8.56</td>
<td>8.56</td>
</tr>
<tr>
<td>C: control (0.03%DMSO/Ref33)</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
</tr>
<tr>
<td>AB: combination</td>
<td>84.17</td>
<td>82.49</td>
<td>55.89</td>
</tr>
</tbody>
</table>

Calculation of synergism

The raw data (% dead cells) are analyzed as follows: 1) from the raw data (% dead cells), the background (controls) are subtracted, resulting in the specific killing for each treatment group; then 2) the specific killing values are normalized by setting the combination of MOR00208 + Ibrutinib to 1.

Combination Index (CI) calculations are completed in order to determine synergy of the combination of the exemplified anti-CD19 antibody and Ibrutinib as compared to MOR00208 and Ibrutinib alone. Such calculations are described in Ting-Chao Chou, Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies, Pharmacol Rev 58:621-681 (2006), which is incorporated by reference in its

Median effect equation

The median-effect equation models the effect of an inhibitor (such as a drug) as

\[F_a/F_u = (D/D_{50})^m, \]

where \(D\) is the dose, \(F_a\) and \(F_u\) is the fraction of the system affected and unaffected by the dose \(D\) (\(F_a + F_u = 1\)); \(D_{50}\) is the dose producing the median effect (e.g. IC50, ED50, LD50). The constant \(m\) determines the shape of the dose-effect curve.

We use GraphPad Prism to carry out a nonlinear regression calculation to estimate the parameters \(m\) and \(D_{50}\).

Cl-isobol method

The Cl-isobol method provides a quantitative assessment of synergism between drugs. A combination index (CI) is estimated from dose-effect data of single and combined drug treatments. A value of CI less than 1 indicates synergism; CI = 1 indicates additive effect; and CI > 1 indicates antagonism. Drug interaction (synergism or antagonism) is more pronounced the farther a CI value is from 1.

Formally, the combination index (CI) of a combined drug treatment is defined as

\[CI = \frac{D_1}{D_1^{CI}} + \frac{D_2}{D_2^{CI}} \]

Here \(D_1\) and \(D_2\) are the doses of drug 1 and drug 2 of the combination, respectively; and \(D_{1}^{CI}\), and \(D_{2}^{CI}\) is the dose of a treatment with only drug 1 and drug 2 that would give the same effect as that of the combination. The doses \(D_{1}\) and \(D_{2}\) need to be estimated from the dose-effect data of single drug treatments. Essentially, a median effect equation is fitted to the data of each drug.

From the median effect equation of a drug, we can estimate the dose (i.e. \(D\)) necessary to produce an effect (i.e. \(F_a, F_u\)). The further a point lies from the additive line, the bigger the different between 1 and its CI, thus the stronger the (synergistic or antagonistic) effect is.

Results

The Chou index curves are shown in Figures 9-1 1. Data from the three experiments (at the same concentrations) was merged to produce one curve for each Ibrutinib concentration.

The Chou index values indicate clear synergism of the combination of MOR00208 and Ibrutinib in the specific killing of MEC-1 cells as compared to MOR00208 and Ibrutinib alone.
Therefore, the combination of MOR00208 and Ibrutinib will also behave synergistically in the treatment of non-Hodgkin’s lymphoma (NHL), chronic lymphoid leukemia (CLL), and acute lymphoblastic leukemia (ALL) in humans.

Additional analysis.

Another approach to calculate and compare effects of single agents when used in combination is the fractional product concept first described by Webb J.L. in "Enzymes and metabolic inhibitors" in 1963. This analysis method considers that effects of several drugs can be directed against the same cell fraction, as long as the effects are mutually non-exclusive, which is true for MOR00208 and Ibrutinib, and therefore the measured combination effect will be less as the theoretical summation of the single effects. The fractional product concept claims, whenever two drugs kill 50% of a target cell fraction the effect in combination would only be 75% (applied equation: \(1 - (1 - 0.5) \times (1 - 0.5) = 0.75\)) and not the expected 100%, due to only 50% of the target cells still being viable and susceptible to one of the two drugs.

Another approach to calculate and compare effects of single agents when used in combination is the approach of Clarke et al., Issues in experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models, Breast Cancer Research and Treatment 46:255-278 (1997), which is incorporated by reference in its entirety.

The % dead cells (raw data) from Tables 1-16 was analysed in the following way:

- Antagonistic \(\frac{AB}{C} < \frac{A}{C} \times \frac{B}{C}\)
- Additive \(\frac{AB}{C} = \frac{A}{C} \times \frac{B}{C}\)
- Synergistic \(\frac{AB}{C} > \frac{A}{C} \times \frac{B}{C}\)

where A is the treatment with MOR00208 alone; B is the treatment with Ibrutinib alone; C is response to the control DMSO + RefMab33; AB is the combination of treatments A and B.

Experiment 1

Table 10: Clarke analysis of Data shown in Table 1

<table>
<thead>
<tr>
<th>MOR00208 Concentration</th>
<th>10 nM</th>
<th>0.1 nM</th>
<th>0.01 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>((AB)/C)</td>
<td>3.48</td>
<td>3.43</td>
<td>2.61</td>
</tr>
<tr>
<td>((A/C) \times (B/C))</td>
<td>1.97</td>
<td>1.93</td>
<td>1.51</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 1 is also graphically represented in Figure 12.
Table 11: Clarke analysis of Data shown in Table 2

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>3.38</td>
</tr>
<tr>
<td>(A/C)x(B/C)</td>
<td>2.81</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 2 is also graphically represented in Figure 13.

Table 12: Clarke analysis of Data shown in Table 3

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>3.19</td>
</tr>
<tr>
<td>(A/C)x(B/C)</td>
<td>2.54</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 3 is also graphically represented in Figure 14.

Experiment 2

Table 13: Clarke analysis of Data shown in Table 4

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>6.80</td>
</tr>
<tr>
<td>(A/C)x(B/C)</td>
<td>5.73</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 4 is also graphically represented in Figure 15.

Table 14: Clarke analysis of Data shown in Table 5

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>6.48</td>
</tr>
<tr>
<td>(A/C)x(B/C)</td>
<td>4.43</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 5 is also graphically represented in Figure 16.

Table 15: Clarke analysis of Data shown in Table 6

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>5.44</td>
</tr>
<tr>
<td>(A/C)x(B/C)</td>
<td>4.52</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 6 is also graphically represented in Figure 17.
Experiment 3

Table 16: Clarke analysis of Data shown in Table 7

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>5.26</td>
</tr>
<tr>
<td>(A/C)(B/C)</td>
<td>2.50</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 7 is also graphically represented in Figure 18.

Table 17: Clarke analysis of Data shown in Table 8

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>5.41</td>
</tr>
<tr>
<td>(A/C)(B/C)</td>
<td>2.27</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 8 is also graphically represented in Figure 19.

Table 18: Clarke analysis of Data shown in Table 9

<table>
<thead>
<tr>
<th></th>
<th>MOR00208 Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 nM</td>
</tr>
<tr>
<td>(AB)/C</td>
<td>5.13</td>
</tr>
<tr>
<td>(A/C)(B/C)</td>
<td>2.59</td>
</tr>
</tbody>
</table>

This Clarke analysis of the data shown in Table 9 is also graphically represented in Figure 20.

Results of Clarke Experiments 1-3 at each concentration showed clear synergy of the combination of MOR00208 + Ibrutinib using the methods of Clarke et al. The methods of Clarke et al., however, show synergism despite in a few experiments where the Ibrutinib activity was less than that of the control.

It is to be understood that the description, specific examples and data, while indicating exemplary embodiments, are given by way of illustration and are not intended to limit the present invention. Various changes and modifications within the present invention will become apparent to the skilled artisan from the discussion, disclosure and data contained herein, and thus are considered part of the invention.
We Claim:

1. A synergistic combination comprising an antibody specific for CD19 wherein said antibody comprises an HCDR1 region of sequence SYVMH (SEQ ID NO: 1), an HCDR2 region of sequence NPYNDG (SEQ ID NO: 2), an HCDR3 region of sequence GTYYYGTRF DY (SEQ ID NO: 3), an LCDR1 region of sequence RSSKSLQNVNGNTYLY (SEQ ID NO: 4), an LCDR2 region of sequence RMSNLNS (SEQ ID NO: 5), and an LCDR3 region of sequence MQHLEYPIT (SEQ ID NO: 6) and a Bruton's tyrosine kinase (BTK) inhibitor for use in the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and/or acute lymphoblastic leukemia.

2. A combination according to claim 1, wherein the antibody comprises a variable heavy chain of the sequence EVQLVESGGGLVKPGGSLKLSCAASGYTFTSYVMHWVRQAPGKGLEWIGYINPY NDGTKYNKFKQVRISSDKSISTAYMELESLRSEDTAMYCARGTYYYGTRF DYWG QGTLVTVSS (SEQ ID NO: 10) and a variable light chain of the sequence DIVMTQSPATLSLSPGERATLSCRSSKSLQNVNGNTYLYWFQQKPGQSPPLLQYR MSNLNSGVPRFSGSFSISTEFTLTISLEPEDFAYYCMQHLEYPITFGAGTKLEIK (SEQ ID NO: 11).

3. A combination according to claims 1 or 2, wherein the antibody comprises a heavy chain constant domain of the sequence ASTKGPSVFPLAPSSKSTSGGTAALGGLVKTQKVEEMCPAPSLPGPSVTPLAPLSQKVVKFGQPMEQYKHCYKPSQVLKVLPLGLQSGNSQESVREQDKLQKMTKPSSTQTQKVKTPTPQVSYTNYFPLSGLSLRKVNGNDYKQK FPPKPDGLYKPHDKTVFHLQKAPPPLQLSPKQKVPVPSKPPLQKPVPSKPQKPK DTLMISRTPEVTVCVD过分QFGVNEFQKPSKSDKTHTCPPCPAPELGGDPVFLFPPKPK DTLQKVYKCVSKALSITKSKQGPPPRPQVYTSIPREMTKQVSESTCLVGEYFKPS WNGKEYKCVSKALKAPPEEKTISKKGQPREPQVYTLPRESMNTKQVSLTCLVGEYFKPS DIA VENESNGQPPENYYKTTPPMILDSGDFLYSLYSLTVDKSRWQQGIVFCVMHEALHNYTQKSL SLSPGK (SEQ ID NO: 12).

4. A combination according to any one of the preceding claims, wherein the antibody comprises a light chain constant domain of the sequence RTVAAPSVFIFQPSSEQLKSGTASSVVCLLNNFYPREAVKQVKVDNALQSGNSQESVTEQDSKD STYSLSTLTLSKADYKHKVYACEVTHQGLSSLPSVTKSFNNGEC. (SEQ ID NO: 13)

5. A combination according to any one of the preceding claims, wherein said antibody specific for CD19 and said Bruton's tyrosine kinase (BTK) inhibitor are administered separately.
6. A combination according to any one of the preceding claims, wherein said Bruton's tyrosine kinase (BTK) inhibitor is administered prior to administration of the antibody specific for CD19.

7. A combination according to any one of the preceding claims, wherein said antibody specific for CD19 and said Bruton's tyrosine kinase (BTK) inhibitor are administered simultaneously.

8. A combination according to any one of the preceding claims, wherein said antibody specific for CD19 and said Bruton's tyrosine kinase (BTK) inhibitor are administered at a time where both drugs are active in the patient at the same time.

9. A combination according to any one of the preceding claims, where said Bruton's tyrosine kinase (BTK) inhibitor is Ibrutinib.

10. A combination according to any one of the preceding claims for use in the treatment of chronic lymphocytic leukemia.

11. A combination according to any one of the preceding claims for use in the treatment of acute lymphoblastic leukemia.

12. A combination according to any one of the preceding claims for use in the treatment of non-Hodgkin's lymphoma, wherein the non-Hodgkin's lymphoma is selected from the group consisting of follicular lymphoma, small lymphocytic lymphoma, mucosa-associated lymphoid tissue, marginal zone, diffuse large B cell, Burkitt's, and mantle cell.

13. A combination according to claim 12, wherein the non-Hodgkin's lymphoma is follicular lymphoma.

14. A combination according to claim 12, wherein the non-Hodgkin's lymphoma is small lymphocytic lymphoma.

15. A combination according to claim 12, wherein the non-Hodgkin's lymphoma is mucosa-associated lymphoid tissue.
16. A combination according to claim 12, wherein the non-Hodgkin’s lymphoma is diffuse large B cell lymphoma.

17. A combination according to claim 12, wherein the non-Hodgkin’s lymphoma is Burkitt’s lymphoma.

18. A combination according to claim 12, wherein the non-Hodgkin’s lymphoma is mantle cell lymphoma.
Figure 1

Cytotoxicity of MOR00208 and Ibrutinib alone and in combination
in Ramos cell line
Figure 2

Cytotoxicity of MOR00208 and Ibrutinib alone and in combination
in MEC-1 cell line

log antibody conc. [μg/mL]

% dead cells

- RefmAB33 IgG_Xen
- MOR00208 IgG_Xen
- 30μM Ibrutinib + RefmAB33
- 30μM Ibrutinib + MOR00208
Figure 3

Cytotoxicity of MOR00208 and Ibrutinib alone and in combination

in MEC-1 cell line

% dead cells

log antibody conc. [µg/mL]

RefmAB33 IgG_Xen
MOR00208 IgG_Xen
30µM Ibrutinib + RefmAB33
30µM Ibrutinib + MOR00208
The amino acid sequence of the MOR00208 Variable Heavy Domain is:
(The CDRs are bolded and underlined)

[NG]TD[TKYN][NEK][FQGRVT[IS][SSDKSI][STAY][ME][LSSLR][SE DT][AMYYC][AR][GTYYGTRVFDYWG][QGTLVT]V[SS] (SEQ ID NO: 10)

The amino acid sequence of the MOR00208 Variable Light Domain is:
(The CDRs are bolded and underlined)

DIVMTQSPATLSLSPGERATL[SC][RSSKS][LQNVNGNTL][Y][WFQ][KPGQS][PQLIY][RMSNLNS]GVPDRFSGSGT[ETF][LT][IS][LEP][F][D][AVYYC][MQHLEYPI][T][FGAGTKE][IK] (SEQ ID NO: 11)

The amino acid sequence of the MOR00208 HCDR1 is: SYVMH (SEQ ID NO: 1)
The amino acid sequence of the MOR00208 HCDR2 is: NPYNDG (SEQ ID NO: 2)
The amino acid sequence of the MOR00208 HCDR3 is: GTYYGTRVFDY (SEQ ID NO: 3)
The amino acid sequence of the MOR00208 LCDR1 is: RSSKS[LQNVNGNTLY](SEQ ID NO: 4)
The amino acid sequence of the MOR00208 LCDR2 is: RMSNLNS (SEQ ID NO: 5)
The amino acid sequence of the MOR00208 LCDR3 is: MQHLEYPIT (SEQ ID NO: 6)
Figure 5

Sequence of Fc regions

The amino acids sequence of the MOR00208 heavy chain Fc region is:
ASTKGPSVFPLAPSSKTSGGTAALGCLVKDYFPEPVTVSWSNGAALTSGVHTFPAVLQSS
GLYSLSVVTVPSSSLGTQITYINVKHPSNTKVKVVEPKSCKTHTCPPCPAPELLEG
PDVFLLPPPKKDLMISRTPETVCVVDVSHEDPEVQFNWVYVDGEVHNAKTIPREEQF
NSTFRVSVLTVHQDWNLNGKEYKCKVSNKALPAEEKTISKTKGGPREPQVYTLPPSRE
EMTKNQVSLTCVLKGFYPDIAVEWESNGQPENNYKTTPMLDSDGFLYSKLTVDKSR
WQQGNVFSCEVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 12).

The amino acids sequence of the MOR00208 light chain Fc region is:
RTVAAPSFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ
DSKDSTYLSSTLSKADYEKHKVYACEVTHQGLSSPVTKSFRGEC (SEQ ID NO: 13)
Figure 6
Cytotoxicity of MOR00208 and Ibrutinib alone and in combination in MEC-1 cell line
Figure 7

Cytotoxicity of MOR00208 and Ibrutinib alone and in combination in MEC-1 cell line
Figure 8

Cytotoxicity of MOR00208 and Ibrutinib alone and in combination

in MEC-1 cell line

![Graph showing cytotoxicity of MOR00208 and Ibrutinib]

- DMSO 0.03%
- 1µM Ibrutinib
- 0.3µM Ibrutinib
- 3µM Ibrutinib
- w/o Ab DMSO
- RefmAb DMSO
- MEC-1 only DMSO

MOR208
Figure 9

Chou Talay CI curves

Transform of CI MOR208 + 0.33 μM Ibrutinib

Combination Index

log c MOR208 [μg/ml]
Figure 10

Chou Talay CI curves

Transform of CI MOR208 + 1 μM Ibrutinib

Combination Index

0.0

0.5

1.0

1.5

-3

-2

-1

0

1

log c MOR208 [μg/ml]
Figure 11

Chou Talay Ci curves

Transform of Ci MOR208 + 3.33μM Ibrutinib

Combination Index

log c MOR208 [μg/ml]
Figure 12

Graphical representation of Clarke analysis in Table 10 of the data shown in Table 1

MOR208 + 3µM Ibrutinib

synergy

antagonism

0.01nM 0.1nM 10nM

MOR208
Figure 13

Graphical representation of Clarke analysis in Table 11 of the data shown in Table 2

MOR208 + 1μM Ibrutinib

antagonism synergy

2
1
0
0.01nM 0.1nM 10nM
MOR208
Figure 14

Graphical representation of Clarke analysis in Table 12 of the data shown in Table 3

MOR208 + 0.3µM Ibrutinib

Synergy

Antagonism

0.01nM 0.1nM 10nM

MOR208
Figure 15

Graphical representation of Clarke analysis in Table 13 of the data shown in Table 4

MOR208 + 3µM Ibrutinib

Synergy

Antagonism

0.01nM 0.1nM 10nM

MOR208
Figure 16

Graphical representation of Clarke analysis in Table 14 of the data shown in Table 5

MOR208 + 1μM Ibrutinib

synergy

antagonism

0.01nM 0.1nM 10nM

MOR208
Figure 17

Graphical representation of Clarke analysis in Table 15 of the data shown in Table 6

MOR208 + 0.3μM Ibrutinib

synergy

antagonism

0 0.01nM 0.1nM 10nM

MOR208
Figure 18

Graphical representation of Clarke analysis in Table 16 of the data shown in Table 7

MOR208 + 3µM Ibrutinib

![Graph showing synergy and antagonism](image)
Figure 19

Graphical representation of Clarke analysis in Table 17 of the data shown in Table 8

MOR208 + 1μM Ibrutinib

antagonism synergy

0 0.01nM 0.1nM 10nM MOR208
Figure 20
Graphical representation of Clarke analysis in Table 18 of the data shown in Table 9

MOR208 + 0.3µM Ibrutinib

antagonism
synergy

0
0.01nM 0.1nM 10nM
MOR208
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K39/395 A61K31/519 A61P35/00 A61K31/505
ADD. C07K16/28

According to International Patent Classification (IPC) and both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, BIOSIS, EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search: 14 July 2016

Date of mailing of the international search report: 21/07/2016

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HJ Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer: Covone-van Hees, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>the whole document</td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>JENNIFER A WOYACH ET AL: "2894 Final Results of a Phase I Study of the Fc-engineered CD19 Anti body XmAb(R)5574 (M0R00208) in Patents with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL)", INTERNET CITATION, [Online] 9 December 2012 (2012-12-09), page 1, XP002737890, Retrieved from the Internet: URL: https://ash.confex.com/ash/2012/webprogram/Paper51418.html > [retrieved on 2015-03-27]</td>
<td>1-8, 10-18</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>wo 2013/024097 AI (MOPHOSYS AG [DE]; AMERSDORFER JUTTA [DE]; STEIDL STEFAN [DE]; WINDEL) 21 February 2013 (2013-02-21)</td>
<td>1-8, 10-18</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>the whole document</td>
<td>9</td>
</tr>
<tr>
<td>Category*</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>WO 2013024097 AI</td>
<td>21-02-2013</td>
<td>CA 2841875 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103732252 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2744515 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014525926 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140064873 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 617770 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2014103492 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014255427 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013024097 AI</td>
</tr>
</tbody>
</table>