The object of the present invention is to provide means for connecting the bone fragments of fractures situated in the neighborhood of a joint in such a manner that also in the case of absorptions normally taking place during the process of healing a permanent contact of the fracture surfaces is ensured. For this purpose two connecting elements which for example are inserted in the case of fractures of the femoral neck from outside up to the femoral head are provided in connection with other elements being fixed either at a lower point of the femur or at a higher point towards the trochanter. This enables the surgeon to provide the best fitting connection still during the operation by selecting for any type of femoral neck fractures including sub- and pertrochanteric fractures from a relatively small set of combinable elements, for which purpose until now a substantially greater number of complete connections for the femoral neck would have been necessary, which, however, in most cases were not available. The connection is done in such a way that on the one hand the parts of the bone to be connected are strongly pressed together, in order to avoid bending of the fragments in any direction, but to make possible on the other hand a relative displacement of the bone ends in the sense of pressing together the fracture surfaces during the whole healing period. In many cases this displacement can already take place under the influence of the muscular pull. Where the muscular pull cannot be made use of, for example because the muscle system of the patient is too weak or because a longer rest of the patient is necessary from certain grounds, springs are employed, which are put under corresponding tension and ensure a safe compression of the fracture surfaces up to the complete healing.

The drawings represent various examples of execution of the invention.

Fig. 1 shows a connection by two screws in a case of absorption of the whole femoral neck.

Fig. 2 illustrates another example of execution of this type.

Fig. 3 represents a connection for a similar fracture again with an absorbed femoral neck making use of a screw and a nail.

Fig. 4 shows a similar connection in another executional form.

Fig. 5 shows a connection by two coupled screws in the case of a fracture of the femoral neck and an additional subtrochanteric fracture.

Fig. 6 shows a further possible execution of a device for connecting the bone-ends again in the case of an absorbed femoral neck by a pair of screws.

Fig. 7 is a detail view of the connecting device according to Fig. 6, seen from the left.

Fig. 8 shows a similar connection.

Fig. 9 shows a different execution of a detail of the connection shown in Fig. 8.

Fig. 10 shows a further executional example, and

Fig. 11 is a cross sectional view along the line A—B of Fig. 2 on an enlarged scale.
wishes to let converge the nail 32 and the screw 23 as indicated by the broken line 23a. The nail is provided with an extension 32b bearing the eye 32a, said extension corresponding in shape to the curved bone profile.

This construction has the disadvantage that for instance with four different lengths of femoral necks and four different lengths of extension it is necessary to have in stock sixteen nails of different sizes, to give the possibility to select a suitable nail, while with the construction shown in Figs. 1, 2 and 3 having separate coupling members only four nails and four coupling members are necessary in order to have available the most suitable connecting device for every fracture.

Fig. 5 shows an arrangement for the simultaneous treatment of a subtrochanteric fracture g and a fracture of the femoral neck k by means of again two screws 23 and 25, which are arranged obliquely to each other. The same as at Fig. 1 the shank 24c of the coupling member 24 is inserted in a boring 22a at the outer end of the screw 22, the shank 24b of the coupling member 24, however, is longitudinally traversed by a boring 24d, in which a slide pin 24e supporting the eye 24e is longitudinally movable, the inner end of which is provided with a limiting nut 24f. Also in this case again a compression spring 26 is arranged between the eye 24c and the nut 25.

Furthermore, however, a pull spring 35 engages the screw 23 behind the nut 25a, said spring being attached at its outer end to a button 35 of the coupling member 24. Thus the springs 26 and 35 exert in common a pull upon the screw 23 and at the same time the fracture g is tightly compressed by the pull of the spring 35, while the members 24b and 24e are pushed into one another.

In the executional form of Figs. 6 and 7 the shank 24b of the coupling member 24 has a flat extension 24f provided with a longitudinal slot 24g, a corresponding extension 23f of the pull screw 23 to which is suiting, having a slot 23g. A screw 37 traversing both slots draws the flat extensions 24f and 23f together. When inserting between them for instance a thermoplastic artificial resina plate 38 (Fig. 7), softened by heating, this plate will when the screw 37 is tightened be deformed in such a manner that ribs engaging the slots are produced, so that after hardening of the resin the screws 22 and 23 are unnervously held in their relative angle position.

The connection of the extensions 23f and 24f eventually can be reached by two screws 37 as shown in Fig. 14, in order to obtain a still greater stability.

At the executional form of Fig. 13 a pressure spring 39 is inserted into the boring 22a of the supporting screw 22, which spring is acting in the sense of pushing out the coupling member 24. Thereby, owing to the coupling of the extension 24f with the extension 23f of the pull screw 23 a pull acts on said screw simultaneously.

In the constructional form of Fig. 10, a boring of the screw 22 receives similarly as in Fig. 1 a shank 24c of a coupling member 24, the 8-shaped shank 24b of which supports at its end an eye 24c, through which with the interpolation of a spring 26 a pull screw 23 is also turned into the femoral head. With the sleeve 40 a solid arm 41 is connected, at the free end of which there is a slanting socket 42, through which a screw 43 may be screwed into the bone.

The boring of a supporting screw or a supporting nail are suitably provided wholly or partly with an obtuse thread, thus making it possible inserting into them either a head screw or a smooth shank of a coupling member.

In case the supporting screw or the supporting nail shall be used without any auxiliary parts, a screw with a somewhat bigger, more or less elastic collar may be screwed into the obtuse thread.

Of course certain variations in the construction and in the shape of elements may be provided without departing from the spirit of the invention. Thus for instance the sleeve receiving a connecting member may have a prismatical instead of a cylindrical shape and the connecting member may be shaped correspondingly or a key and groove interlocking engagement of the sleeve and connecting member may be provided.

I claim:
1. Connecting device for fractures in the neighborhood of joints, more particularly for femoral neck and subtrochanteric fractures, consisting of two connecting elements to be separately driven through the femoral neck into the femoral head, said elements being loosely coupled at their outer ends to allow a relative longitudinal movement.

2. Connecting device according to claim 1, wherein the two connecting elements are designed to be driven into the femoral head one above the other, the lower connecting element being stronger and having a bearing function and elements on the upper connecting element having a drawing function.

3. Connecting device according to claim 2, wherein the lower connecting element is a nail and the upper connecting element is a screw.

4. Connecting device according to claim 1, having between the connecting elements a coupling, allowing the relative longitudinal movement.

5. Connecting device according to claim 4, wherein both the connecting elements are coupled by a member shiftable at least against one of them.

6. Connecting device according to claim 5, wherein the coupling member is an angular piece, the one shank of which engages a boring in one of the connecting elements, the other shank being coupled by a spring with the second connecting element.

7. Connecting device according to claim 5, having a pressure spring lodged in one of the connecting elements, the coupling member resting on said spring and rigidly engaging the other connecting element.

8. Connecting device according to claim 5, wherein a coupling member arranged between the connecting elements is extensible and both the extensible parts are under the influence of a spring acting in contracting sense.

9. Connecting device according to claim 5, wherein the coupling member shiftable guided in one of the connecting elements and the other connecting element has slotted flat portions to be screwed together.

10. Connecting device according to claim 9, wherein a thermoplastic plate is interposed between said flat portions.

11. Connecting device according to claim 1, having between the connecting elements a coupling, allowing the relative longitudinal movement, and wherein both the connecting elements are coupled with interposition of a spring.

References Cited in the file of this patent

UNITED STATES PATENTS

2,081,293 Davis May 25, 1937
2,397,545 Harding Apr. 2, 1946
2,501,832 Harding Sept. 3, 1949
2,486,136 Ericsson Oct. 25, 1949
2,500,370 McKibben Mar. 14, 1950
2,580,821 Nicol Jan. 1, 1952
2,612,159 Collinson Sept. 30, 1952
2,702,543 Fugh et al. Feb. 22, 1955

FOREIGN PATENTS

95,658 Sweden May 9, 1939

OTHER REFERENCES