COLLAPSIBLE CANOPY SHELTER

Inventor: Ron Sy-Facunda, Thousand Oaks, CA (US)

Correspondence Address:
HOLLAND & HART, LLP
P.O. BOX 8749
DENVER, CO 80201 (US)

Assignee: Bravo Sports Corporation, Santa Fe Springs, CA (US)

Filed: Jul. 7, 2010

Related U.S. Application Data
Continuation of application No. 11/854,911, filed on Sep. 13, 2007, now Pat. No. 7,753,064.

Publication Classification
Int. Cl.
E04H 15/50 (2006.01)
E04H 15/48 (2006.01)

U.S. Cl. 135/145; 135/143; 135/146

ABSTRACT

The technology of the present application provides a collapsible canopy shelter having reinforced eaves for additional structural integrity, as well as at least one collapsible ventilation flap in the canopy cover that is capable of moving between a closed position and an open position to ventilate air from beneath the canopy cover as desired. Further, the collapsible canopy shelter comprises a canopy frame with a robust, spring-loaded pull latch, allowing the user to quickly and easily assemble and collapse the shelter without risking injury.
COLLAPSIBLE CANOPY SHELTER

BACKGROUND

[0001] 1. Field

[0002] The present invention relates generally to collapsible canopy shelters and more specifically to collapsible canopy shelters with reinforced eaves, an adjustable ventilation system, and spring loaded pull latches.

[0003] 2. Background

[0004] Many tents and canopy shelters with collapsible frames exist. These structures are commonly used to provide portable shelter for outdoor activities such as camping, picnicking, parties, weddings, and more. Such collapsible canopy shelters typically comprise a canopy cover and a canopy frame configured to stand alone when in an assembled position and to collapse into a compact position for storage and transport.

[0005] While conventional collapsible canopy shelters are useful for a variety of purposes, such as providing portable shade and/or shelter from the elements and providing an aesthetically pleasing backdrop for special events, conventional canopy frames lack structural integrity. As a result, they are vulnerable to severe weather and human or animal interference and are prone to bow or sag.

[0006] In addition, the support poles of conventional canopy frames typically have unreliable latches that stick when the user attempts to assemble or collapse the shelter. Moreover, traditional spring-pin latches, or latches comprising a retractable spring pin that the user pushes inward to release, are temperamental to use and can pinch the user’s hands and fingers when he or she attempts to assemble or collapse the shelter.

[0007] Moreover, conventional canopy covers do not allow for adjustable ventilation. They either have no ventilation at all and trap unwanted heat during warm weather, or alternately, they have permanent screens or vents that vent much needed warm air during cool weather. There is therefore a need in the art for a collapsible canopy shelter having a frame with greater structural rigidity and stability and robust, easy to use pull latches, as well as an adjustable ventilation system.

SUMMARY

[0008] Embodiments disclosed herein address the above stated needs by providing a collapsible canopy shelter with reinforced eaves to provide greater structural integrity. The technology of the present application also features a collapsible flap capable of moving between a closed and an open position to ventilate air from the collapsible canopy shelter when desired. Another aspect of the technology of the present application includes a sliding, spring-loaded pull latch to lock the eaves in an assembled position.

[0009] The foregoing, as well as other features, utilities, and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 shows a front plan view of one embodiment of a canopy frame for a collapsible canopy shelter;

[0011] FIG. 2 shows a side plan view of one embodiment of a sliding eave mount slidably coupled to an upwardly extending pole and fixably coupled to the first left cross member;

[0012] FIG. 3 shows a sectional view of one embodiment of the sliding eave mount shown in FIG. 2 with the latch in the locked position;

[0013] FIG. 4 shows a sectional view of the embodiment of the sliding eave mount shown in FIG. 2 with the latch in the unlocked position;

[0014] FIG. 5 shows a partial side plan view of one embodiment of the canopy frame and the canopy cover having at least one collapsible flap supported by a pivoting support;

[0015] FIG. 6 shows a side plan view of one embodiment of the pivoting support in the open position;

[0016] FIG. 7 shows a side plan view of the pivoting support shown in FIG. 6 in the closed position;

[0017] FIG. 8 shows a side plan view of another embodiment of a pivoting support in the open position;

[0018] FIG. 9 shows a side plan view of the embodiment of the pivoting support shown in FIG. 8 in the closed position;

[0019] FIG. 10 shows a front plan view of one embodiment of a fulcrum.

DETAILED DESCRIPTION

[0020] The technology of the present application will be further explained with reference to FIGS. 1 through 10. FIG. 1 shows a front plan view of one embodiment of a canopy frame 10 for a collapsible canopy shelter. In this embodiment, canopy frame 10 comprises a plurality of eaves 12 linking a plurality of upwardly extending poles 14. Each eave 12 may comprise a series of pivotally coupled scissors-jacks 18, each scissors-jack 18 may include a left cross member 20, a right cross member 22, and a pivot 32. Each scissors-jack 18 is pivotally mounted to a plurality of upwardly extending poles 14. To provide additional rigidity to improve the structural integrity of canopy frame 10, two reinforcing cross members 26 may be cross-braced and pivotally coupled to left cross members 20 and right cross members 22 at each intersection of scissors-jacks 18. All pivot points may be pinned, bolted, riveted, joined by rotational fasteners, or otherwise rotatably connected as is known in the art.

[0021] Each eave 12 may be collapsibly coupled to a pair of upwardly extending poles 14 through two fixed eave mounts 30 and two sliding eave mounts 32. Fixed eave mounts 30 may be fixably coupled to the top ends 34 of upwardly extending poles 14, and sliding, eave mounts 32 may be slidably coupled to poles 14, such that sliding eave mounts 32 slide over the length of upwardly extending poles 14 from the bases 36 of poles 14 to just below fixed eave mounts 30. In turn, a first left cross member 20 and a second right cross member 22 may be pivotally coupled to sliding eave mounts 32 while a first right cross member 22 and a second left cross member 20 may be fixably coupled to fixed eave mounts 30, allowing scissors-jacks 18 to collapse in a manner similar to the compression of an accordion when one or more of sliding eave mounts 32 are released and slid in a downward direction denoted by arrow A.

[0022] Of course, one of ordinary skill in the art will readily understand that several alternative mechanisms could be used to collapsibly couple eaves 12 to upwardly extending poles 14. For example, eaves 12 could be coupled to upwardly extending poles 14 through locking channel systems or a quick release for scissors-jacks 18 as is generally known in the art.

[0023] FIG. 2 shows a side plan view of sliding eave mount 32 slidably coupled to upwardly extending pole 14 and fixably coupled to first left cross member 20. In this embodi-
ment, sliding eave mount 32 may comprise a sliding body 38, a plurality of arms 40 to fixably attach to eaves 12, and a latch 42. In further detail, latch 42 may comprise a spring-loaded lever 44 with a locking pin 46 that is pivotally coupled to sliding body 38 through a hinge pin 48 that may be press fit into sliding body 38. A torsion spring 50 (FIGS. 3, 4) may encircle hinge pin 48, such that a first leg 52 and a second leg 54 of torsion spring 50 compress when lever 44 is pulled in the direction of arrow B. Lever 44 and locking pin 46 may be configured to allow locking pin 46 to mate with a pin hole 56 located in upwardly extending pole 14 when latch 42 and locking pin 46 are slid into alignment with pin hole 56.

[0024] FIGS. 3 and 4 show sectional views of one embodiment of sliding eave mount 32 with latch 42 in the locked and unlocked positions, respectively. To unlock latch 42, a user may swivel latch 42 in the direction of arrow C, thereby withdrawing locking pin 46 from pin hole 56 and compressing torsion spring 50. As a result, sliding eave mount 32 may slide in a downward direction along upwardly extending pole 14 (FIG. 1) and allow eave 12 to collapse as upwardly extending pole 14 is moved inward towards the remaining upwardly extending poles 14.

[0025] To lock latch 42, a user may slide sliding eave mount 32 upward into alignment with pin hole 56. Once in alignment, torsion spring 50 automatically pivots latch 42 in the direction of arrow D (FIG. 4), thereby snapping locking pin 46 into pin hole 56 and locking sliding eave mount 32 into an assembled position. While described as a torsion spring here, other elastically deformable devices are possible, including, for example, helical or coil springs, leaf springs, or the like. These deformable devices may be formed of spring metals such as music wire or metal alloys, plastics, composites, or any other suitable material known in the art.

[0026] To ventilate air from the collapsible canopy shelter, one embodiment of the collapsible canopy shelter may include at least one collapsible flap that may be opened and closed as desired. FIG. 5 shows a partial side view of one embodiment of canopy frame 10 having a cover support member 73, as well as a canopy cover 60 having at least one collapsible flap 62 supported by a pivoting support 70, 100 (FIGS. 9, 10). To ventilate air from beneath canopy cover 60, pivoting support 70, 100 may be used to pivot collapsible flap 62 in the direction of arrow E into an open position. Alternately, collapsible flap 62 may be pivoted in the direction of arrow E into a closed position to prevent air flow. One of ordinary skill in the art readily understands that a user may also position collapsible flap 62 in any intermediate position between the open and closed positions.

[0027] In further detail, FIGS. 6 and 7 show side view of one embodiment of pivoting support 70 in the open and a closed positions, respectively. In this embodiment, pivoting support 70 may comprise a cantilever 72 attached to collapsible flap 62 through a set of cover straps 63 or any other means of attachment generally known in the art, including, for example, a sheet formed of canopy material, snaps, VEL-CRO®, and the like. Cantilever 72 may also be pivotally coupled to cover support member 73 through a fixed fastener 74 and an adjustable fastener 76, each of which may interlock cover support member 73 and cantilever 72 along an axis that is perpendicular to cantilever 72. Fixed fastener 74 may be set at a fixed height y and held in position by a nut 78. Adjustable fastener 76 may comprise a handle 80 and be threaded into a threaded receiving hole 82 in cantilever 72, such that rotating handle 80 in a first direction pivots cantilever between the closed position and the open position in the direction of arrow G, and rotating adjustable fastener in a second, opposite direction pivots the cantilever between the open position and the closed position in the direction of arrow H.

[0028] A first flexible spacer 84 may encase fixed fastener 74 between a top surface 86 of cover support member 73 and a bottom surface 88 of cantilever 72, while a second flexible spacer 90 may encase adjustable fastener 76 between a top surface 86 of cover support member 73 and a bottom surface 88 of cantilever 72. First and second flexible spacers 84, 90 stabilize cantilever 72 and allow it to pivot between the closed and open positions in response to the rotation of adjustable fastener 76. Flexible spacers may be formed of rubber or any other suitable elastic material with a density sufficient to withstand the downward force exerted by the weight of cantilever 72 and collapsible flap 62.

[0029] Fixed fastener 74 and adjustable fastener 76 may consist of a variety of rotational fasteners, including, for example, screws, bolts, adjustable pins, or any other suitable fastener as is generally known in the art. Optionally, pivoting support 70 may further comprise a sleeve 92. Sleeve 92 may provide aesthetic benefits as well as protect cover support member 73 from exposure to light and moisture at the points where it has been drilled to accommodate fixed fastener 74 and adjustable fastener 76.

[0030] FIGS. 8 and 9 illustrate side plane views of another embodiment of pivoting support 100 in the open and closed positions, respectively. Pivoting support 100 may comprise a cantilever 102 that is attached to cover support member 73 in the same manner described with respect to cantilever 72 above. Moreover, cantilever 102 may be pivotally coupled with cover support member 73 through a pivoting bracket 104 located at a pivot point 105. Pivoting bracket 104 may be offset a distance x from a pivot end 106 of cantilever 102, such that pivot end 106 serves as a hard stop to prevent cantilever 102 from rotating beyond the open position shown in FIG. 8. In addition, a fulcrum 108 may be slidably coupled to cover support member 73 such that it restrains cantilever 102 when in the closed position and props cantilever 102 when in the open position or any position between the closed and open positions.

[0031] FIG. 10 shows a front plan view of one embodiment of fulcrum 108. In this embodiment, fulcrum 108 may comprise a cantilever hole 110 sized to frictionally engage cantilever 102 when cantilever 102 is in the closed position shown in FIG. 9. Fulcrum 108 may further comprise a roof support hole 112 configured to slideably engage with roof support member 73, such that it props cantilever 102 when in the open position shown in FIG. 8. Of course, one of ordinary skill in the art will readily understand that fulcrum 108 may prop cantilever 102 in any intermediate position between the closed and open positions to provide varying levels of air flow. Cantilever 102, bracket 104, and fulcrum 108 may be formed of metal, plastic, or any other material of suitable strength as is generally known in the art.

[0032] The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein.
but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

1-19. (canceled)

20. A collapsible canopy shelter, comprising:
 a collapsible canopy frame comprising
 a plurality of upwardly extending poles;
 each of the plurality of upwardly extending poles having
 a top end and a base defining a longitudinal axis with
 at least one pin hole arranged between the top end and
 the base;
 each of the upwardly extending poles being connected
 by at least one eave and comprising a fixed eave
 mount coupled to at least one eave and attached to
 the upwardly extending poles proximate the top end
 and a sliding eave mount coupled to at least one eave
 and slingly coupled to the upwardly extending poles
 between the fixed eave mount and the base;
 a canopy cover supported by the collapsible frame;
 the sliding eave mount comprising a latch wherein the latch
 comprises
 a hinge pin;
 a lever traversing the longitudinal axis and pivotally
 coupled to the hinge pin, the lever having a spring end
 and a pin end the lever being movable between a
 locked position and an unlocked position;
 means for pivoting the lever from an unlocked position
to a locked position; and
 a locking pin proximate the pin end configured to engage
 the at least one pin hole when the lever is pivoted into
 the locked position and configured to disengage when
 the pin hole when the lever is pivoted from the locked
 position towards the unlocked position.

21. The collapsible canopy shelter of claim 20, wherein the
 spring is a torsion spring.

22. The collapsible canopy shelter of claim 21, wherein the
torsion spring encircles the hinge pin.

23. The collapsible canopy shelter of claim 21, wherein the
 at least one eave comprises a plurality of eaves.

24. The collapsible canopy shelter of claim 22, wherein
 pivoting the lever from the locked position to the unlocked
 position compresses the torsion spring.

25. The collapsible canopy shelter of claim 24, wherein the
 torsion spring automatically pivots the lever from the
 unlocked position to the locked position when the locking
 pin is aligned with the pin hole.

26. The collapsible canopy shelter of claim 20, wherein
 each hinge pin has a longitudinal axis parallel to the
 longitudinal axis of the upwardly extending poles.

27. A collapsible canopy shelter, comprising:
 a collapsible canopy frame comprising
 a plurality of upwardly extending poles;
 each of the plurality of upwardly extending poles having
 a top end and a base defining a longitudinal axis with
 at least one pin hole arranged between the top end and
 the base;
 each of the upwardly extending poles being connected
 by at least one eave and comprising a fixed eave
 mount coupled to at least one eave and attached to
 the upwardly extending poles proximate the top end
 and a sliding eave mount coupled to at least one eave
 and slingly coupled to the upwardly extending poles
 between the fixed eave mount and the base;
 a canopy cover supported by the collapsible frame;
 the sliding eave mount comprising a latch wherein the latch
 comprises
 a hinge pin;
 a lever traversing the longitudinal axis and pivotally
 coupled to the hinge pin, the lever having a spring end
 and a pin end the lever being movable between a
 locked position and an unlocked position;
 means for pivoting the lever from an unlocked position
to a locked position; and
 a locking pin proximate the pin end configured to engage
 the at least one pin hole when the lever is pivoted into
 the locked position and configured to disengage when
 the pin hole when the lever is pivoted from the locked
 position towards the unlocked position.

28. The collapsible canopy shelter of claim 27, wherein the
 means for pivoting the lever is a spring.

29. The collapsible canopy shelter of claim 28, wherein the
 spring is a torsion spring.

30. The collapsible canopy shelter of claim 29, wherein the
torsion spring encircles the hinge pin.

31. The collapsible canopy shelter of claim 27, wherein the
 at least one eave comprises a plurality of eaves.

32. The collapsible canopy shelter of claim 29, wherein
 pivoting the lever from the locked position to the unlocked
 position compresses the torsion spring.

33. The collapsible canopy shelter of claim 32, wherein the
torsion spring automatically pivots the lever from the
 unlocked position to the locked position when the locking
 pin is aligned with the pin hole.

34. The collapsible canopy shelter of claim 27, wherein
 each hinge pin has a longitudinal axis parallel to the
 longitudinal axis of the upwardly extending poles.

35. A collapsible canopy shelter, comprising:
 a collapsible canopy frame comprising
 a plurality of upwardly extending poles being generally
 rectangular having a first face and a second face forming
 an approximately a 90° angle;
 each of the plurality of upwardly extending poles having
 a top end and a base defining a longitudinal axis with
 at least one pin hole arranged between the top end and
 the base;
 each of the upwardly extending poles being connected
 by at least one eave and comprising a fixed eave
 mount coupled to at least one eave and attached to
 the upwardly extending poles proximate the top end
 and a sliding eave mount coupled to at least one eave
 and slingly coupled to the upwardly extending poles
 between the fixed eave mount and the base;
a locking pin proximate the pin end configured to engage the at least one pin hole when the lever is pivoted into the locked position and configured to disengage when the pin hole when the lever is pivoted from the locked position towards the unlocked position.

36. The collapsible canopy shelter of claim 35, wherein the spring is a torsion spring.

37. The collapsible canopy shelter of claim 36, wherein the torsion spring encircles the hinge pin.

38. The collapsible canopy shelter of claim 36, wherein pivoting the lever from the locked position to the unlocked position compresses the torsion spring.

39. The collapsible canopy shelter of claim 35, wherein each hinge pin has a longitudinal axis parallel to the longitudinal axis of the upwardly extending poles.

* * * * *