Abstract: A phacoemulsification cannula (10) includes a hub (12) for engagement with an ophthalmic surgical instrument. An elongated needle (14) having a proximal end (16) is attached to the hub (12). The cannula (10) has an aspiration lumen (20) spanning a majority of a length of a needle (14) from the proximal end towards a distal end (18). A venturi lumen (22) is formed in the needle adjacent the distal end. The venturi lumen (22) is in communication with the aspiration lumen (20) so that fluid and tissue may be aspirated through the venturi lumen (22) and the aspiration lumen (20).
Date of publication of the international search report: 10 July 2008

Date of publication of this corrected version: 21 August 2008

Declaration under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))

Published:
— with international search report

Information about Correction: see Notice of 21 August 2008
PHACOEMULSIFICATION CANNULA WITH IMPROVED PURCHASE

Background of the Invention

1. Field of the Invention

The present is related to phacoemulsification needles or cannulas for use in ophthalmic surgery, especially cataract surgery. More particularly, the present invention is directed to a phacoemulsification cannula with improved purchase or suction at the distal end of the cannula.

2. Description of Related Art

The use of phacoemulsification cannulas in ophthalmic surgery and especially in cataract surgery is well known. Typical cannulas include an inner lumen through which fluids and tissue are aspirated away from a patient's eye, through the lumen of the aspiration needle, and eventually to a collection bag or cassette. The purpose of the phacoemulsification cannula is to transfer ultrasonic energy from a phacoemulsification handpiece in order to break-up cataracts in the eye and then aspirate fluids and the cataract tissue through the lumen of the cannula.

There have been many phacoemulsification cannula designs which typically are directed towards improving the break-up of cataract tissue in order to make the surgery more time efficient. Such designs include having angled tips and having bores within the tip that transition from a larger diameter to a smaller diameter. In addition, these larger bores at the distal end of the phacoemulsification needles
typically are either stepped in their transition or tapered. Each of these prior art needles or cannulas has been designed to more efficiently break-up cataract tissue once it has been sucked within the cannula lumen. Because of the longitudinal in and out or jack hammer-like motion of the phaco needle during the use of ultrasonic energy, it is often difficult for the phacoemulsification cannula to make significant contact with the cataract. This is because as the cannula moves out away from the handpiece and towards the cataract, the cannula effectively pushes the cataract away. A surgeon relies on the vacuum or suction force of the surgical system that is asserted through the lumen of the cannula to hold or purchase the cataract to the cannula. In order to provide greater purchase of the cannula, the aspiration levels need to be increased. Such an increase in aspiration levels can cause significant dangers and problems in surgery, such as a surge of fluid into the cannula after an occlusion of the cannula has been cleared. This post-occlusion surge can cause the collapse of the eye resulting in damage to delicate tissues in the eye and in serious damage to the eye.

Therefore, it would be desirable to provide a phacoemulsification cannula with increased purchase as compared to the prior art without the need to significant increase the aspiration levels applied through the cannula's lumen.

Brief Description of the Drawings

FIG. 1 is a perspective view of a phacoemulsification cannula in accordance with the present invention;

FIG. 2 is a partial cut away of FIG. 1 taken along line 2-2; and
FIG. 3 is an alternate embodiment of FIG. 2 in accordance with the present invention.

Detailed Description of the Preferred Embodiment

FIG. 1 shows a phacoemulsification cannula 10 for use in ophthalmic surgery. Cannula 10 includes a hub 12 for engagement with an ophthalmic surgical instrument (not shown), such as an ultrasonic handpiece for vibrating cannula 10 during cataract surgery. Those skilled in the art will appreciate that cannula 10 may also be attached to other devices such as an irrigation/aspiration handpiece. Cannula 10 further includes an elongated needle 14 having a proximal end 16 attached to the hub 12 and a distal end 18. The cannula 10 has an aspiration lumen 20 shown as dashed lines in FIG. 1. Lumen 20 spans a majority of a length of needle 14 and has a first diameter which is essentially constant from the proximal end 16 towards the distal end 18. A venturi lumen, shown generally at 22, is in communication with the aspiration lumen 20 as shown, so that fluid and tissue may be aspirated through the venturi lumen and the aspiration lumen 20.

As is shown, hub 12 is preferably threaded so that the cannula 10 may be attached to a standard ultrasonic handpiece. Though other hub configurations and attachment mechanisms may be used.

As can be seen, venturi lumen 22 has a generally hour-glass shape, such that the venturi lumen 22 includes structure creating a double venturi. That is to say that the venturi lumen at the tip of distal end 18 transitions from a large diameter to a small diameter and then back out towards a larger diameter before transitioning to lumen 20.
FIG. 2 shows a partial cut away elevation of FIG. 1 along line 2-2. As can be seen, the venturi lumen 22 includes a first venturi section 24 having a maximum diameter 26, a second venturi section 28 having a minimum diameter 30, and a third venturi section 32 at a place shown generally at 34 connecting the aspiration lumen 20 to the venturi lumen 22. As can be seen, the venturi lumen 22 includes structure forming smoothly varying transitions between each of the first, second, and third venturi sections 24, 28, and 32, respectively. As those skilled in the art will appreciate, such smoothly varying transitions are important to promote non-turbulent laminar flow into the venturi lumen 22.

As fluid and debris are pulled within venturi lumen 22, as indicated by arrows 36, the transition to minimum diameter 30 causes the fluid to increase in speed which causes a significant increase in the suction power at the distal end 18. By placing the venturi lumen 22 as near as possible to the distal end 18, a significant increase in suction power at a given aspiration level is achieved as compared to prior art phacoemulsification cannulas that have either a straight, stepped, or tapered bore at the distal end. In fact, depending on the construction of the prior art phacoemulsification cannulas, prior art cannulas may actually have a somewhat adverse effect on the suction at the cannula's tip rather than the increased suction of the present invention. These pressure losses at the tips of the prior art cannulas, may also be referred to as vena contracta. If the shape of the internal lumen presents abrupt changes in diameter the flow of fluid will be disrupted and may actually work to repel the inflow of tissue. It is important that the venturi lumen be placed as near the distal end 18 as possible so that
the increased fluid velocity and resulting suction can be utilized for fluids and tissue outside of the cannula 10.

In modeling the present inventive venturi cannula in comparison to a prior art phacoemulsification cannula, it was found that the purchase or suction of the present invention was at least four (4) times greater than the prior art cannula and it is believed that the purchase may be much greater compared to some other prior art cannulas. The prior art cannula had a profile that generated approximately 0.8 meters-per-second velocity at the distal end of the cannula compared to the present invention which generated approximately 2.1 meters-per-second velocity of fluid at the distal tip. According to Bernoulli’s Laws of Fluid Mechanics, the force resulting from the pressure generated by a fluid flow is proportional to the square of the velocity. Therefore, the present invention creates a significantly higher holding force than the prior art cannula to which it was compared.

FIG. 3 shows an alternate embodiment in accordance with the present invention of a venturi lumen. Venturi lumen 38 is essentially the same as venturi lumen 22 described above and includes venturi lumen sections 40, 42, and 44, which are essentially the same as venturi lumen sections 24, 28, and 32, described above. FIG. 3 is different from FIG. 2 in that the minimum diameter 46 of venturi lumen section 42 is approximately equal to the diameter of aspiration lumen 20. Another embodiment not shown includes a venturi lumen without the third venturi section, but instead smoothly transitions from the minimum diameter to a diameter equal to the aspiration lumen 20. Aspiration lumen 20 should preferably not be smaller than the minimum diameter of the venturi lumen to prevent particles from clogging the phacoemulsification cannula.
FIG. 2, the third venturi section has a largest diameter that is greater than the minimum diameter 30 and is greater than the first diameter of aspiration lumen 20 and is equal to or less than the maximum diameter of the first venturi section 24.

The terms first venturi section, second venturi section, and third venturi section are not to be construed as to be referring to a specific place within the venturi lumen or within the cannula 10, but rather are terms to describe the shape of the venturi lumen. As mentioned above, each section smoothly transitions from one section to another and therefore, there is no specific place where one section stops and another section begins. The venturi section terms have been used as a convenient way to describe the venturi lumen and its shape. The venturi lumen may be formed using known machining methods or molding methods and may be formed of any acceptable materials, such as titanium or other hard materials suited to phacoemulsification surgery.

Thus, there has been shown an inventive phacoemulsification cannula for use in ophthalmic surgery, and especially cataract surgery, which provides increased suction at the distal end 18 as compared to prior art cannulas. This increased suction allows greater purchase of a cataract during surgery, which allows the surgeon to manipulate and hold the cataract with the phacoemulsification cannula and more efficiently break up and aspirate the cataract from the patient's eye. This increased purchase or holdability enhances the safety and efficiency of an operation by allowing a surgeon to more easily manipulate a cataract as compared to prior art surgery with a prior art cannula at the same aspiration level.
What is Claimed:

1. A phacoemulsification cannula for use in ophthalmic surgery comprising:
 a hub for engagement with an ophthalmic surgical instrument;
 an elongated needle having a proximal end attached to the hub and a distal end; and
 the cannula having an aspiration lumen with a first diameter spanning a majority of a length of the needle from the proximal end towards the distal end and a venturi lumen formed in the needle adjacent the distal end, wherein the venturi lumen is in communication with the aspiration lumen so that fluid and tissue may be aspirated through the venturi lumen and the aspiration lumen.

2. The cannula of claim 1, wherein the hub is threaded.

3. The cannula of claim 1, wherein the venturi lumen has a generally hourglass shape.

4. The cannula of claim 1, wherein the venturi lumen includes structure creating a double-venturi.
5. A phacoemulsification cannula for use in ophthalmic surgery comprising:
 a hub for engagement with an ophthalmic surgical instrument;
 an elongated needle having a proximal end attached to the hub and a distal
 end;
 wherein the needle has an aspiration lumen with a first diameter spanning a
 majority of a length of the needle from the proximal end towards the
 distal end;
 wherein the needle has a venturi lumen formed from the distal end to the
 aspiration lumen, wherein the venturi lumen includes a first venturi
 section having a maximum diameter, and a second venturi section
 having a minimum diameter, and a third venturi section ending at a
 place connecting the aspiration lumen to the venturi lumen; and
 wherein the venturi lumen includes structure forming smoothly varying
 transitions between each of the first, second, and third venturi
 sections.

6. The cannula of claim 5, wherein the venturi lumen has a generally hour-
 glass shape.

7. The cannula of claim 5, wherein the venturi lumen includes structure
 creating a double-venturi.
8. The cannula of claim 5, wherein the minimum diameter of the second venturi section is approximately equal to the first diameter.

9. The cannula of claim 5, wherein the third venturi section has a largest diameter greater than the minimum diameter and equal to or less than the maximum diameter.

10. The cannula of claim 9, wherein the largest diameter of the third venturi section is equal to or greater than the first diameter.
Fig. 1
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2007/083127

A CLASSIFICATION OF SUBJECT MATTER

INV. A61F9/007

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61F A61B A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and where practical search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 129 681 A (OPTIKON 2000 SPA [IT]) 5 September 2001 (2001-09-05)</td>
<td>1,2,5</td>
</tr>
<tr>
<td>A</td>
<td>paragraphs [0027], [0029], [0033]; figures</td>
<td>3,6,8-10</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 342 448 A (SUMITOMO BAKELITE CO [JP]) 23 November 1989 (1989-11-23)</td>
<td>1,2</td>
</tr>
<tr>
<td>A</td>
<td>column 4, lines 12-14; figures 1B,2B,5A/B,6A/B</td>
<td>4,5,7</td>
</tr>
<tr>
<td>A</td>
<td>US 5 464 389 A (STAHL NORM 0 [US]) 7 November 1995 (1995-11-07)</td>
<td>1,2,5,</td>
</tr>
<tr>
<td></td>
<td>column 1, line 62 - column 2, line 22</td>
<td>8-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents
 'A' document defining the general state of the art which is not considered to be of particular relevance.
 'E' earlier document but published on or after the international filing date.
 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
 'O' document referring to an oral disclosure use exhibition or other means.
 'P' document published prior to the international filing date but later than the priority date claimed.

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

'X' document of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

'Y' document of particular relevance the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art.

'A' document member of the same patent family.

Date of the actual completion of the international search
29 April 2008

Date of mailing of the international search report
13/05/2008

Name and mailing address of the ISA/European Patent Office P B 5818 Patennlaan 2 NL-2280 HV Rijswijk
Tel (+31-70) 340-2040 Tx 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer
Merte, Birgit

Form PCT/ISA/210 (second sh(04) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 96/38091 A (SURGICAL DESIGN CORP [US]; STRUKEL IGOR [US]; BANKO WILLIAM [US]) 5 December 1996 (1996-12-05) page 15, lines 6-9 page 16, lines 7-9; figure 47</td>
<td>1,5,8-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 2006/029181 A (DEWEY STEVEN H [US]) 16 March 2006 (2006-03-16) paragraphs [0094], [0095]; figures 43-45</td>
<td>1,5</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3403189 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1308327 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68912396 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68912396 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 236189 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2048782 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2051519 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5032094 Y2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5042461 A</td>
</tr>
<tr>
<td>US 5464389 A</td>
<td>07-11-1995</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 9638091 A</td>
<td>05-12-1996</td>
<td>AU 6268396 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69630188 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69630188 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5743871 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5725495 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5741226 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6159175 A</td>
</tr>
</tbody>
</table>