发明名称
一种变电站空调智能监控系统

摘要
本发明公开了一种变电站空调智能监控系统，包括若干个环境温湿度监测终端、若干个空调控制终端、若干个电能质量监测终端、一个控制分站和一个控制服务器。每个变电站都对应配备一个控制分站，所述变电站的开关室和控制室中的每台空调都对应配备一个环境温湿度监测终端、一个空调控制终端和一个电能质量监测终端。多个环境温湿度监测终端、多个空调控制终端和多个电能质量监测终端通过控制分站与控制服务器相连，并且环境温湿度监测终端、空调控制终端和电能质量监测终端和控制分站之间采用RS485通信；控制分站与控制服务器之间采用MIS网通信。本发明设计集数据传感、红外遥控和远程通信为一体，实现了变电站的空调远程控制系统，提高了变电站的智能化能力。
1. 一种变电站空调智能监控系统, 其特征在于, 包括若干个变电环境温度监测终端, 若干个空调控制终端, 若干个电能质量监测终端, 一个控制分站 [40] 和一个控制服务器 [50]; 每个变电站都对应配备一个控制分站 [40]; 所述变电站的开关室和控制室中的每台空调都对应配备一个变电环境温度监测终端 [10], 一个空调控制终端 [20] 和一个电能质量监测终端 [30]; 上述多个变电环境温度监测终端, 多个空调控制终端和多个电能质量监测终端均通过控制分站 [40] 与控制服务器相连 [50];

一种变电站空调智能监控系统

技术领域
[0001] 本发明属于电工技术领域，特别是一种变电站空调智能监控系统。

背景技术
[0002] 变电站中主要依靠空调控制环境的温湿度。无人值守变电站在长期运行过程中，空调的性能不断老化，可靠性下降，易发生故障。当前，变电站空调设备缺少监控手段，灵活性差，智能化程度低，故障后往往不能及时发现，导致站内温湿度控制不稳定，严重威胁开关室和控制室内一次设备和二次设备可靠性和寿命。
[0003] 专利号为“20120414176.8”，名为“变电站空调远程控制装置”的中国发明专利研发了空调远程控制装置。但上述空调远程控制装置存在两点不足，其一是上述装置只含有温度监测装置而不含有湿度监测装置，不能同时控制变电站内环境的温度与湿度；其二是上述装置监测的是变电站内的空气温度，其目的是提升变电站的管理水平，并不能监测开关柜内的环境温度，不能很好的起到保护变电站内开关室和控制室一次设备和二次设备的有效作用。
[0004] 由上可知，现有技术有如下不足：
1. 缺乏同时控制变电站内环境湿度与温度的智能性；
2. 无法检测开关柜内环境温度，保护变电站内开关室和控制室一次设备和二次设备的机制不够完善。

发明内容
[0005] 本发明所要解决的技术问题是提供一种新的设计更为合理、可靠性更高、效果更好的变电站空调智能监控系统。
[0006] 实现本发明目的的技术解决方案为：一种变电站空调智能监控系统，包括若干个环境温湿度监测终端、若干个空调控制终端、若干个电能质量监测终端，一个控制分站和一个控制服务器。每个变电站都对应配置一个控制分站，所述变电站的开关室和控制室中的每台空调都对应配备一个环境温湿度检测终端，一个空调控制终端和一个电能质量监测终端；所述多个环境温湿度监测终端、多个空调控制终端和多个电能质量监测终端均通过控制分站与控制服务器相连。

所述的环境温湿度监测终端安装在变电站开关柜内或室内墙壁上；所述的空调控制终端和电能质量监测终端安装在空调外壳上；所述控制分站安装在变电站值班室内，所述控制服务器安装在供电分公司监控中心。
[0007] 本发明与现有技术相比，显著优点为：本变电站空调智能监控系统集智能传感、红外遥控和远程通信为一体，实现了变电站的空调远程控制，并且采用了状态机控制策略，实现了变电站的空调的智能控制，从而提高了变电站的智能化能力。

附图说明
具体实施方式

如图1所示，本发明是一种变电站空调智能监控系统，包括若干个环境温湿度监测终端、若干个空调控制终端、若干个电能质量监测终端、一个控制分站40和一个控制服务器50；每个变电站都对应配备一个控制分站40；所述变电站的开关室和控制室中的每台空调都对应配备一个环境温湿度监测终端10，一个空调控制终端20和一个电能质量监测终端30；所述环境温湿度监测终端10、空调控制终端20和电能质量监测终端30通过控制分站40与控制服务器50连接。

所述的环境温湿度监测终端10包括第一单片机11、数字温湿度传感器15、第一RS485模块14、第一拨码开关12和第一电源13组成，所述数字温湿度传感器15与第一单片机11的SPI通信管脚相连接，所述的第一RS485模块14与第一单片机11的UART管脚相连接，所述的第一拨码开关12与第一单片机11的GPIO管脚相连接，所述的第一电源13与第一单片机11的电源管脚和第一RS485模块14的光耦隔离电路相连接。其中，所述的第一单片机11是基于ARM-CORTEX-M3内核的32位单片机STM32，所述的第一RS485模块14采用了MAX485芯片，所述的第一电源13为AC/DC开关电源，5-8V供电。

如图4所示，电能质量监测终端30包括第三单片机31、电能质量管理IC37、电压互感器36、电流互感器35、第三RS485模块34、第三拨码开关32和第三电源33组成，所述
的电能质量管理 IC37 与第三单片机 31 的 SPI 通信管脚相连接；所述的电压互感器 36 和电流互感器 35 的出线与电能质量管理 IC37 相连接；所述的第三 RS485 模块 34 与第三单片机 31 的 UART 管脚相连接；所述的第三拨码开关 32 与第三单片机 31 的 GP10 管脚相连接；所述的第三电源 33 与第三单片机 31 的电源管脚相连接。其中，第三单片机 31 是基于 ARM-CORETEX-M3 内核的 32 位单片机 STM32；所述的第三 RS485 模块 34 采用了 MAX485 芯片；所述的第三电源 33 为 AC/DC 开关电源，5-8V 供电；所述的电能质量管理 IC37 采用三相电能计量 IC ATT7026C 芯片；所述的电流互感器 35 型号为 H2009；所述的电压互感器 36 采用的型号为 DL-P702。

[0021] 如图 5 所示，所述的控制分站 40 包括第四单片机 41、以太网卡 45、第四 RS485 模块 44、第四拨码开关 42 和第四电源 43 组成；所述的以太网卡 45 与第四单片机 41 的 SPI 通信管脚相连接；所述的第四 RS485 模块 44 与第四单片机 41 的 UART 管脚相连接；所述的第四拨码开关 42 与第四单片机 41 的 GP10 管脚相连接；所述的第四电源 43 与第四单片机 41 的电源管脚和第四 RS485 模块 44 的光耦隔离电路相连接。其中，所述的第四单片机 41 是基于 ARM-CORETEX-M3 内核的 32 位单片机 STM32；所述的第四 RS485 模块 44 采用了 MAX485 芯片；所述的第四电源 43 为 AC/DC 开关电源，5-8V 供电；所述的以太网卡 45 型号为 ENC28J60。

[0022] 以下参照附图，进一步描述本发明的具体技术方案，以便于本领域的技术人员进一步地理解本发明，而不构成对其权利的限制。

[0023] 如图 1 所示，所述变电站智能监控系统包括环境温湿度监测终端 10、空调控制终端 20、电能质量监测终端 30、控制分站 40 和控制服务器 50 组成；所述环境温湿度监测终端 10 安装在变电站的开关柜内或室内墙壁上，与所述控制分站 40 之间采用 RS485 模块进行通信，用于上传开关柜内或室内环境的温湿度数据；所述空调控制终端 20 与控制分站 40 之间采用 RS485 进行通信，并将所述控制分站 40 下发的空调控制命令转换为红外控制信号传给目标空调；所述电能质量监测终端 30 与控制分站 40 之间采用 RS485 进行通信，用于分析当前空调所处的状态并上传给控制分站 40；所述控制分站 40 安装在变电站值班室内，与所述控制服务器 50 之间采用 MIS 网进行通信，功能为根据接收的温度与湿度数据计算各目标空调的工作方式并下发相应控制命令，并将温湿度数据、空调工作方式及状态上传至控制服务器 50。

[0024] 如图 2 所示，所述环境温湿度监测终端 10 由单片机 11、拨码开关 12、电源 13、RS485 模块 14 和数字温湿度传感器 15 组成。单片机 11 采用 STM32，数字温湿度传感器 15 采用 SHT71 与单片机 11 的 SPI 通信管脚相连接；RS485 模块 14 采用 MAX485 芯片，接光耦隔离电路与单片机 11 的 UART 管脚相连接；拨码开关 12 用于指定设备类型和终端 ID 号，与单片机 11 的 GP10 管脚相连接；电源 13 为 AC/DC 开关电源，5-8V 供电，隔离为两路电源，分别与单片机 11 的电源管脚和 RS485 模块 14 的光耦隔离电路相连接。

[0025] 如图 3 所示，所述空调控制终端 20 由单片机 21、拨码开关 22、电源 23、RS485 模块 24、红外接收管 25 和红外发射管 26 组成。单片机 21 采用 STM32；RS485 模块 24 采用 MAX485 芯片，接光耦隔离电路与单片机 21 的 UART 管脚相连接；红外接收管 25 和红外发射管 26 采用 PC638 与单片机 21 的 AD 采样管脚相连接；拨码开关 22 用于指定设备类型和终端 ID 号，与单片机 21 的 GP10 管脚相连接；电源 23 为 AC/DC 开关电源，5-8V 供电，隔离为两路电源，分别与单片机 21 的电源管脚和 RS485 模块 24 的光耦隔离电路相连接。
如图 4 所示，所述电能质量监测终端 30 由单片机 31、拨码开关 32，电源 33、RS485 模块 34、电流互感器 35、电压互感器 36 和电能质量管理系统 IC 模块 37 组成。单片机 31 采用 STM32；RS485 模块 34 采用 MAX485 芯片，接光耦隔离电路与单片机 31 的 UART 管脚相连接；电能质量管理系统 IC 模块 37 采用三相电能计量 IC ATT7026C，与单片机 31 的 SPI 通信管脚相连接；电流互感器 35 采用 HA2009 与电能质量管理系统 IC 模块 37 相连接；电能质量管理系统 IC 模块 37 相连接；拨码开关 32 用于指定设备类型和终端 ID 号，与单片机 31 的 GP10 管脚相连接；电源 33 为一路 AC/DC 开关电源，5-8V，与单片机 31 的电源管脚相连接。

如图 5 所示，所述控制分站 40 由单片机 41、拨码开关 42、电源 43、RS485 模块 44、和以太网卡 45 组成。单片机 41 采用 STM32；RS485 模块 44 采用 MAX485 芯片，接光耦隔离电路与单片机 41 的 UART 管脚相连接；以太网卡 45 采用 ENC28J60 与单片机 41 的 SPI 通信管脚相连接；拨码开关 42 用于指定控制分站 40 的 IP 地址及 ID 号，指明空调控制终端、电能质量监测终端和环境温湿度监测终端的个数以及数据上传周期，与单片机 41 的 GP10 管脚相连接；电源 43 为 AC/DC 开关电源，5-8V 供电，隔离为两路 5V 电源，分别与单片机 41 的电源管脚和 RS485 模块 44 的光耦隔离电路相连接。

如图 6 所示，所述控制分站根据每台空调对应的环境温湿度监测终端及电能质量监测终端监测数据，采用状态机控制策略，利用对应的空调控制终端来控制相应空调的工作状态。所述状态机控制策略是指将空调的工作状态划分为开机态、关机态、制热态、制冷态和除湿态。所述各类工作状态均存在触发条件，当触发条件满足时，空调可由当前工作状态向下一个允许的工作状态进行转移。所述开机态为状态机的初态，可向其他所有状态进行转移；所述关机态为状态机的终态，只能向开机态进行转移；所述制热态、制冷态和初始态可向除开机态之外的所有状态进行转移。

如图 7 所示的是本变电站空调智能监控系统的控制策略流程：程序首先读取空调的电能质量监测终端的数据判断当前空调的运行状态；然后从 1 号空调开始，以轮询的方式分别读取每台空调对应的环境温湿度监测终端的数据并依次判断此台空调是否需要开机、关机、制热、制冷和除湿；若满足某状态转移的条件，则控制分站下发相关的控制命令，空调控制终端将控制信号转化为红外信号通过红外发光管 PC638 向对应空调发送红外信号以完成相关命令的操作，若不满足此状态转移的条件，程序转入下一个状态转移的判断，完成当前空调所有状态的判断后程序对下一台空调重复上述操作，从而实现对空调的分布式控制。

由上可知，本发明实现了变电站的空调的智能控制，从而提高了变电站的智能化能力。
图3

图4
空调工作状态判断

读取1号空调数字温湿度传感器数据，判断是否需要开机？

Y
分站下发开机命令

N
读取1号空调数字温湿度传感器数据，判断是否需要关机？

Y
分站下发关机命令

N
判断空调是否需要制冷？

Y
分站下发制冷命令

N
判断空调是否需要制热？

Y
分站下发制热命令

N
判断空调是否需要除湿？

Y
分站下发除湿命令

N
读取2号空调数字温湿度传感器数据，判断是否需要开机？

......

图7