
USOO6073123A

United States Patent (19) 11 Patent Number: 6,073,123
Staley (45) Date of Patent: Jun. 6, 2000

54 METHOD AND APPARATUS FOR Primary Examiner James P. Trammell
DETECTING UNAUTHORIZED COPES OF
SOFTWARE

76 Inventor: Clinton A. Staley, 7440 Pinal Ave.,
Astascadero, Calif. 93422

21 Appl. No.: 08/807,047
22 Filed: Feb. 26, 1997

(51) Int. Cl. .. G06F 17/60
52 U.S. Cl. 705/58; 705/57; 705/51;

705/52; 705/59
58 Field of Search 705/1, 51, 52,

705/57, 58,59; 380/3, 4, 5

56) References Cited

U.S. PATENT DOCUMENTS

4,658,093 4/1987 Hellman 380/25
4,740,890 4/1988 William 713/200
5,592,651 1/1997 Rackman 711/163
5,754,864 5/1998 Hill 395/712
5,790,664 8/1998 Coley et al. ... 380/4
5,930,357 7/1999 Fukui 380/4
5,964,876. 10/1999 Shimomura et al. 713/200

OTHER PUBLICATIONS

Y. Malhotra, Controlling Copyright Infringements of Intel
lectual Property, Journal of Systems Management, v45 n7,
pp. 12-17.
D. Grover, The protection of Computer Software, 1989,
Cambridge University Press, Table of Contents and pp.
1-22, an Overview chapter.

—

22 ADD STO
CURRENSHD

GETNEXTSESSION
STAMPAFROMS

204

STAMPHISORES

200
GENESTAMPHISTORYS

FROM TRANSFERREDSHDDATA

SHDHASSAMPHISTORY
TMATCHINGSCENSE

SHDTRANSFERRED

ASSistant Examiner Nicholas David Rosen
Attorney, Agent, or Firm-Blakely Sokoloff Taylor &
Zafman, LLP

57 ABSTRACT

Amethod and apparatus for detecting unauthorized copies of
Software. Each copy of Software is uniquely identified by a
license number. Each use of each copy is termed a Session.
Each copy's Sessions are numbered Sequentially. Each Ses
Sion is assigned a random Session Stamp when it begins. For
each copy, a Stamp history is kept, giving the next Session
number and the Session Stamps for prior Sessions. If Software
copies having the same license number are used on two
different computers, their stamp histories will show different
next-Session numbers and/or different Session Stamps for
prior Sessions, indicating two copies of the Software exist,
which may be, e.g., a license violation. Each Software copy
maintains a stamp history database (SHD) comprising a
stamp history for itself and for other copies of software for
which it has received a stamp history. When a software copy
creates data files or transmits information over a network, it
attaches all or part of its SHD to the files or information, in
order to relay Stamp history data to other copies of Software.
When another software copy receives the data files or
information, it updates its own SHD using the attached SHD
information. In addition to protection of a Software copy, the
present method can be applied to protection of a data Set,
detecting old versions of Software that remain in use after
newer versions have been installed, and to limit the number
of times a copy of Software is executed.

27 Claims, 4 Drawing Sheets

20 CURRENT

T
SAMPDIFFERS

FROMA

RESPOND TOLICENSE
WIOLATION

6,073,123 Sheet 1 of 4 Jun. 6, 2000 U.S. Patent

<— TW101 SB1A3 #9 (N)
S&WWIS NOISSHSsawijis 40|_{\ººº

31 A8 1 INQ09 (INES

Z ÉA

U.S. Patent Jun. 6, 2000 Sheet 2 of 4 6,073,123

200
GET NEXT STAMPHISTORYS

FROM TRANSFERRED SHD DATA

08 ADD S To
CURRENT SHD

CURRENTN39
SHD HAS STAMPHISTORY
T MATCHINGS LCENSE

2

203 MERGE SEND COUNTS
OF S&T (FIG. 4)

210
SIS

HISTORY FORCURRENT
LCENSE AND HAS HIGHERLAST SESSION

NUMBER THANT

N

GET NEXT SESSION
STAMPA FROMS

STAMPDIFFERS
FROM A2 207

205 N N ADD ATOT NOTE LICENSE VOLATION

208
TQS ARE

HISTORES FORCURRENT
LCENSE?

209

RESPOND TO LCENSE
VIOLATION

U.S. Patent Jun. 6, 2000 Sheet 3 of 4 6,073,123

SORT STAMPHISTORIES 300
NSHD COUNT BY SEND COUNT

GET NEXT STAMPHISTORY
SINDECREASING ORDER OF 301

SEND COUNT

REDUCES's SEND COUNT
BYX, A FRACTION OF THE

SEND COUNT

302

ADD A COPY OFS, WITH 303
SEND COUNTX, TO THE

SHDTRANSFER

MORE
ROOM IN SHDTRANSFER

AND MORESTAMPHISTORIES
LEFT TO SEND

2

U.S. Patent Jun. 6, 2000 Sheet 4 of 4 6,073,123

400
S's LAST

SESSION NUMBERS
LARGER THAN

Ts?
SETT's SEND COUNT
TOS's SEND COUNT.

402
T's LAST

SESSION NUMBERS
LARGER THAN

S's 2
ADDS's SEND COUNT 4.03
TOT's SEND COUNT

f76, 4

6,073,123
1

METHOD AND APPARATUS FOR
DETECTING UNAUTHORIZED COPES OF

SOFTWARE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is related to the field of Software
copy protection and data copy protection.

2. Description of the Related Art
Existing methods for Software copy detection usually fall

in one of Several categories. The first category causes the
Software to detect Some property of the hardware on which
it runs, and to Stop running if that property is not present.
The “hardware property” varies with each method. Some
methods check the built-in CPU serial number that is
available on high-end WorkStations and mainframes. Others
check the number and type of I/O devices on the computer.
Both of these methods make it difficult to move the Software
from one computer to another. A third method that is
currently quite common for high-end Software requires the
user to attach a hardware key or "dongle' device to one of
the computer's ports. This approach works only for expen
Sive Software because of the added cost of the dongle, and
it becomes cumberSome when Several different programs
require different and incompatible dongles.

Another category of methods works on a computer net
work and uses a “license Server” program to check on
licensing. Each time the protected Software is run on a
computer, it requests permission from the license Server via
the network. The license server allows only a limited num
ber of Software copies to be running Simultaneously on the
network. This method is quite flexible, but requires users to
be on a common network, does not protect nonnetworked
Software copies, and is relatively easy to defeat. It is most
effective with trusted users who are simply Seeking a way to
conveniently ensure their adherence to the license agree
ment.

A third category of Software copy-protection methods that
often appears in publications, but which is presently not
widely used in industry, involves marking each individual
Software copy of the Software by making innocuous and
undetectable alterations in the code. It is generally possible
to find dozens of minor ways in which a Software program
can be altered without affecting its function, and each
Software copy can be “fingerprinted” or “watermarked” with
a unique Set of Such modifications. This makes it possible to
determine the original Source of an illegitimate Software
copy. This method could provide Strong disincentives for
piracy, but it generally requires the threat of legal action
against a user to make it effective. Also, this method does not
prevent Software copies from being made without the origi
nal licensee's knowledge (as is common in workplaces and
Schools, where workers or Students often make copies of
institutional software for home use.) What is needed is a
flexible, relatively inexpensive method for detecting copy
ing of Software by any user, licensee, or otherwise, regard
less of the computing environment in which the copied
Software is used.

BRIEF SUMMARY OF THE INVENTION

A method and apparatus for detecting copying of Software
is described. The method provides comprehensive protec
tion for any and all Software in any computing environment,
whether, e.g., a mainframe, WorkStation, desktop, or client/
Server computing environment. Each copy of Software is

15

25

35

40

45

50

55

60

65

2
given a unique license number. Each use of each Software
copy is termed a Session, and each copy's Sessions are
numbered Sequentially. Every use of the Software may thus
be uniquely identified by the license number of the software
copy and the Session number associated with each use of the
Software copy. Each Session is assigned a random Session
Stamp when it begins. For each Software copy, a Stamp
history is kept, giving the next Session number and the
Session Stamps for Some Subset of prior Sessions. Each time
a Session begins, the Stamp history associated with the
Software copy is updated with the Session number of the
Session. If Software copies having the same license number
are used on two different computers, their Stamp histories
will show different next-session numbers and/or different
Session Stamps for prior Sessions, indicating a potential
license violation. Each Software copy maintains a Stamp
history database (SHD) comprising the stamp history for
itself and the stamp histories for other copies of software of
which it is aware. When a Software copy creates data files or
transmits information over a network, it attaches all or part
of its SHD to the files or information, in order to relay stamp
history data to other copies of software. When another
Software copy receives the data files or information via the
network, it updates its own SHD using the attached SHD
information. This process is termed SHD transfer, and the
attached Stamp histories are said to be transferred.

In order to ensure reasonable distribution of a recently
updated Stamp history, the present invention provides for
each Stamp history to indicate a Send count, representing the
minimum number of other software copies to which the
Stamp history should be sent after an update to the Stamp
history occurs. The Send count is set to Some initial value
whenever the stamp history is updated. When a software
copy transferS the Stamp history as part of an SHD transfer,
it distributes between itself (the Sending copy) and the
software copy receiving the SHD transfer (the receiving
copy) the responsibility to send the stamp history to other
Software copies. The Sending copy does this by replacing the
current Send count with a fraction of the Send count in the
stamp history included in the SHD transfer, and writing the
remainder of the current Send count into the Stamp history in
its own SHD. Both the sending and receiving copies will
then have a portion of the responsibility to transfer the Stamp
history to Still other Software copies.

Protection of data Sets may be also be arranged by
encrypting the data, and using Software copy protected
according to the method described herein to view the data.
The data Set is encrypted using the license number of a
particular copy of the Software as the encryption key, So that
only that Software copy can decrypt and display the data Set.
(Separately encrypted versions of the data would be needed
for each Software copy that is to read the data set.) Since
only one copy of the Software can decrypt a given copy of
the data Set, and Since the Software itself is copy-protected,
duplicate copies of the data Set are of no value except for
backup purposes. Alternatively, the data Set can include, in
encrypted form, a list of the license numbers corresponding
to copies of Software that are permitted to read it, and the
Software can be designed So that the user is prevented from
displaying the data Set unless the license number of the
Software performing the display is one of those listed.
The method described herein may also be used to detect

outdated versions of Software that remain in use after newer
versions of Software have been installed. A new version of
a Software copy is assigned the Same license number as the
older version of the copy, and the older copy's Stamp history
is copied into the new version's SHD. If the older version

6,073,123
3

remains in use on the same or another computer, Session
Stamp conflicts will arise just as they would if two copies of
the newer Software were in use, Since the old and the new
version have the same license number.

The method described herein may also be used to limit the
number of times a copy of Software is executed by designing
the Software to cease executing once a certain Session
number has been reached.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a diagram of a data Structure for Storing a Stamp
history.

FIG. 2 is a flow chart depicting the algorithm by which a
Software copy receives and processes the Stamp histories in
an SHD transfer.

FIG. 3 is a flow chart showing how stamp histories are
selected for SHD transfer by a sending software copy.

FIG. 4 is a flow chart showing how send counts are
merged when an updated Stamp history is received via a
SHD transfer.

DETAILED DESCRIPTION OF THE
INVENTION

Described is a method for detecting copying of Software
to prevent the unauthorized duplication of Such Software. In
the following description, numerous Specific details are Set
forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one of
ordinary skill in the art that the present invention may be
practiced without these specific details. In other instances,
well-known algorithms, practices, and techniques have not
been shown to avoid unnecessarily obscuring the present
invention.

According to the present invention, a unique license
number is assigned to each copy of the Software to be
protected. This license number is installed in permanent
Storage in an encrypted form readable only by the Software.
(Under Microsoft Windows 95TM, for instance, a registry
entry may be utilized.) Identical license numbers for two
copies of the same Software is an indication that one or both
copies may be illegitimate or pirated.

Each Software copy maintains information on Sessions for
itself and for other Software copies on the same or other
computers from which it has received data files or informa
tion. The definition of a Session in one embodiment is a
Single execution of the Software. However, Sessions might
be defined as beginning every other time the Software is run,
or every time a new computation begins or a new file is
opened. The exact definition of a Session is not necessarily
important. Rather, each Software copy must Simply mark the
beginning of a new Session, however that Session is defined,
at reasonable intervals. Each Software copy's Sessions are
numbered Sequentially with a Session number.

Each Session is assigned a random Session Stamp when it
begins. This may be done by calling a random number
generator using the System clock of the computer to obtain
a seed value, or by any number of other methods well known
in the art. However, the method used to generate each
Session Stamp must produce independent random values
when two different copies of the software with the same
license number (thus pirated copies) generate Session stamps
for the same Session number. Session Stamps may be Small
values. In the preferred embodiment, Session Stamps range
from 0 to 14, So that each Session Stamp may be stored in a

1O

15

25

35

40

45

50

55

60

65

4
half-byte (i.e., 4 bits), with the value 15 reserved to indicate,
e.g., license violations as described below.

Each Software copy also maintains a Stamp history data
base (SHD), again in encrypted form in permanent Storage.
This Stamp history database contains a number of Stamp
histories, one for each of one or more Software copies,
including the Stamp history of the Software copy maintaining
the SHD. With reference to FIG. 1, a stamp history 100
includes the following information:

1. At 105, the license number of the software copy to
which the stamp history 100 applies;

2. At 110, the session number of the last session that was
run for this Software copy;

3. At 115, a send count, described below;
4. At 120, a reprieve count, described below; and
5. At 125, the number of session stamps N stored in the

Stamp history; and
6. At 130, the session stamps of N prior sessions that were

run for this Software copy.
The number of session stamps N is limited to keep the size

of the SHD manageable, e.g., 104 in the preferred
embodiment, so that each stamp history 100 occupies 64
bytes.

The set 130 of session stamps for N prior sessions may be
the stamps for the most recent N sessions of the software
copy, or they may be stamps for Some other well-defined
Subset of prior Sessions, e.g., Stamps for the most recent 10
Sessions, plus Stamps for those 100 Sessions prior to the most
recent 10 sessions whose session number is divisible by 5,
plus stamps for the 740 sessions prior to the last 110 whose
session number is divisible by 10. Maintaining a distributed
Sample of Session Stamps in this manner increases the
likelihood of detecting duplicate copies of Software.

Every time a Software copy writes to a file, transmits data
over a network, or otherwise creates data for use by other
Software, it appends to the data a Subset of the Stamp
histories in its SHD. The transferal of an SHD Subset via
attachment to a file or other data transmission is termed an
SHD transfer. The preferred embodiment appends stamp
histories from 10 licensed software copies selected from the
SHD, for a total of 640 bytes of data added to each file or
data transmission. The number of Stamp histories appended
may be adjusted to trade off between memory Space, net
work utilization, and effectiveness in catching violations.

Every time a Software copy reads a file with appended
Stamp histories, or receives a data transmission with
appended Stamp histories, it merges the Stamp histories into
its own SHD. In this manner, each software copy's SHD is
generally kept up to date with Stamp histories from other
Software copies.
When the SHD Subset is attached to a file rather than a

data transmission, the Software copy that reads the file may
immediately write back to the file a subset from its own
SHD. This provides for transfer of SHD data even when a
file is only read, and not created or modified.

If two copies of software with the same license number
are installed, they will generate conflicting Session Stamps
for the same Session numbers. Violations of, e.g., copyright,
license agreements, etc., can thus be detected by looking for
differences in Session Stamps for the Same Session number
when merging SHD information. Such violations are
marked, and become part of the database record. The pre
ferred embodiment uses a reserved Session Stamp value of
15 to identify Sessions for which a Session Stamp conflict has
been detected. Thus, when SHDSubsets are transferred from
copy to copy, they include data on violations.

6,073,123
S

FIG. 2 illustrates how an SHD transfer is processed by a
receiving Software copy. At 200, the receiving copy reads the
next stamp history 100 in the transferred SHD subset. At
201, for each transferred Stamp history S, the receiving copy
checks its SHD for a stamp history Thaving the same license
number as S. If T is not found, then, at 202, S is added to the
receiving copy's SHD, and the next Stamp history is then
read at 200. However, if T is found, the receiving copy first
merges the send counts for S and T at 203 as discussed below
with reference to FIG. 4. Then, at 210, the receiving copy
determines if the license number for S is the same as that
assigned to the receiving copy, and also determines if the last
session number for S exceeds the last Session number for T.
If So, then a license violation is detected. Otherwise, at 204,
for each Session Stamp A within S the receiving copy checks
to see if T also has a Session Stamp for that Session. If T has
no Session Stamp for that Session, then the Software simply
adds stamp A to T at 205. If T already has a session stamp
for the Session, then, at 206, the receiving copy checks to See
if T's session stamp differs from A. If T's session stamp
differs, then this indicates a potential violation, which is
noted at 207. A noted license violation may increase the
priority of T in Subsequent SHD transfers, as discussed
below with reference to FIG. 3. If at 208 the license number
for S and T is the same as that assigned to the receiving copy
performing the check, then at 209 the receiving copy takes
appropriate action, Such as locking or erasing itself.
The last session number from the transferred stamp his

tory S may differ from that of T without indicating that a
duplicate copy of Software is in use, Since different versions
of Stamp histories from the Same copy may be in circulation
at the same time. However, if the license numbers for S and
T are the same as the license number assigned to the
receiving copy, then T should be the most recent Stamp
history for that copy since it is drawn from the SHD for that
copy. In this case, a higher last Session number in Sindicates
the existence of a duplicate copy elsewhere.
A Software copy detecting a violation involving its own

license number indicates that another Software copy with
that license number is present on the same or other com
puter. The Software can then take whatever actions are
appropriate, Such as locking itself, or de-installing itself
from the computer. Even if the user removes the pirated
copy completely and reinstalls it, thereby erasing the SHD
asSociated with the pirated copy, the fact that violations have
occurred for the license will be still be evident in files and
in SHDS associated with other software copies and will
cause repeated detections of the violation, in a manner
Similar to Some computer viruses. In the preferred
embodiment, a copy of Software does not react to a detection
of a violation on a license number associated with other
Software, Since there is no guarantee that the violating copy
is owned by the same user.

In Summary, all of the copies of the Software collaborate
on checking for license violations through SHD transfer. It
is not necessary for the Software copies to be on a networked
System, or even to be at the same physical Site. Software
copies running on physically distant computers can transfer
SHD information just as easily as those linked via a network.
The method may be utilized any time files or other data are
generated by one Software copy and transferred to another
Software copy.
ASSuming the average SHD contains Stamp histories for

1000 other copies of Software, the SHD in the preferred
embodiment would occupy 64000 bytes-not a prohibitive
size. It is appreciated that the SHD Subset attached to files
or data transmissions should be kept shorter than this,

15

25

35

40

45

50

55

60

65

6
however. The preferred embodiment uses SHD subset sizes
of 10 Stamp histories, wherein each Stamp history occupies
64 bytes, for a total of 640 bytes. Because only a relatively
Small number of Stamp histories can be transferred at a time,
preference should be given to Stamp histories which indicate
a violation has occurred, and to those Stamp histories with
new Session Stamps that have yet to be widely distributed.
The preferred embodiment uses a counting Scheme that
guarantees a certain number of Software copies will receive
each new Session Stamp. Each Stamp history includes a Send
count that indicates the minimum number of other Software
copies that should receive a copy of this Stamp history. Each
time a Session history is modified by adding a new Session
Stamp, the Send count is Set to an initial value, Such as 4.
When choosing which stamp histories to include in an SHD
transfer, the Software picks those with the largest relative
send count. When a stamp history is included in an SHD
transfer, the Sending Software copy splits the Send count
between the copy of the stamp history remaining in the SHD
and the copy of the Stamp history being transferred as part
of the SHD transfer. This makes the software copy receiving
the transfer responsible in part for the notification to other
Software copies in turn.

FIG. 3 illustrates the process of Selecting Stamp histories
for an SHD transfer, and of splitting send counts. At 300, a
Software copy first sorts the stamp histories in its SHD in
decreasing order of Send count. The Software copy then
obtains the next Stamp history S in decreasing order of Send
count at 301 and reduces S's send count by some value X,
a suitable fraction of the send count, e.g., /3 or %, at 302. The
Software copy places S into the SHD Subset to be
transferred, with the reduced send count X (303). The
original send count is thus split between the S remaining in
the Software copy's SHD and the copy of S to be transferred.
If additional stamp histories exist in the SHD at 304, the
Software copy repeats steps 301-303 for each stamp history
in the SHD as long as there is still room in the SHD Subset
to be transferred.

During the sorting at step 300, several stamp histories
may have the same Send count. Stamp histories with the
Same Send count appear in a random order relative to one
another in the Sorted SHD, So that each has an equal
likelihood of being chosen for inclusion in the SHD transfer.
In particular, this ensures that if there is room in the SHD
transfer for Stamp histories with a 0 Send count, each Such
stamp history will be equally likely to be chosen for transfer.
With reference to FIG. 4, step 203 of FIG. 2 is further

described below, in which a software copy receives an SHD
Subset and merges Send counts. The Send count of a trans
ferred Stamp history S having the same license number as
Stamp history T is used to update the Send count of Stamp
history T in the receiving copy's SHD. Step 400 checks to
See if Stamp history S has a higher last Session number than
Stamp history T. If So, this indicates S is a more recent
version of the stamp history than T. In this case, at step 401
T'S Send count is replace with SS Send count, and decre
mented by one to indicate that S has been Successfully Sent
to a new Software copy, i.e., the receiving copy updating the
send count. At step 402, the method determines if the last
Session number for S is less than T, i.e., if T is a more recent
version of the Stamp history than S, in which case, TS Send
count is unchanged. Finally, if S and T have the same last
Session number, then S and T should be identical, barring
license violations, in which case, the receiving Software
copy adds S's send count to T's send count at step 403.
The algorithms described with reference to FIGS. 3 and 4

ensure that an initial Send count N in the most recent version

6,073,123
7

of a stamp history S must be transferred to N different copies
of Software in order for all copies of S to have a send count
of 0. It should be noted that the only time a send count is
reduced (as opposed to being divided between two copies)
is when a copy of S is newly added to an SHD. It is further
appreciated that to distribute information on license viola
tions more widely, a larger initial Send count can be assigned
to Stamp histories that show stamp conflicts (e.g., 15).

The described method will not detect Small numbers of
illegitimate Software copies at widely different locations,
between which data or files are not shared. This is not the
usual Scenario for copyright violations or the like, however.
The described method is well Suited for violations by
workers or Students taking private copies of Software home,
or for site Violations where multiple Software copies are
made for a cluster of computers in a lab or office. In the
egregious case of a single Software copy being duplicated
for widespread sale (common in countries with poor copy
right protections) the method produces widespread violation
detections, Since only a few license numbers would be in
existence for thousands of distributed Software copies,
assuming a good encryption Scheme is used to prevent
fabrication of license numbers, Such as the methods used to
prevent fabrication of credit card IDs.

The described method does not require that the cooper
ating copies of Software all be of the same program. Copies
of Software with widely varying purposes can Still cooperate
in maintaining SHDS and transferring them, as long as a
standard format is maintained for the SHD transfers and as
long as each copy is given a unique license number. The
method could be incorporated into an operating System, with
the SHD maintained by the operating system, and with SHD
transferS automatically added by the operating System to all
files or data transferS between computers.

Software embodying the present invention utilizes instal
lation Software termed the installer. The installer is not
essential to the Security of the method, but makes the method
much easier to use. The installer has its own SHD, held on
a disk or other storage media. The installer's SHD contains
Stamp histories for a set of license numbers which the
installer can install or remove from different computers. The
installer allows the user to install copies of the Software with
any of these license numbers on any computer, but prevents
the user from accidentally or deliberately installing multiple
copies of the Software with the same license numbers, by
tracking which numbers have been installed, and which are
still available for installation. Users may want to transfer
Software copies from one computer to another. Transferring
a Software copy to another computer requires transferring its
current Stamp history as well. To uninstall a Software copy,
the installer reads the Stamp history of the copy from the
copy's SHD and saves this stamp history in the installer's
SHD. The installer then removes the software copy and the
copy's SHD from the computer. When reinstalling the
Software copy, the installer transferS the copy's Stamp his
tory from the installer's SHD into the newly installed SHD
asSociated with the Software copy.
The installer will not install more than one software copy

at a time of a given license number until the present copy is
uninstalled. In two events this can present a problem for
honest users. First, an installed software copy or its SHD
may be accidentally destroyed. Even if a backup copy is
available, the backup will have an older version of the SHD,
which will have an out-of-date stamp history for the license
number in question. The restored Software copy will thus
generate new Session Stamps for already-used Sessions, and
show a violation with its own previously generated Stamps.

15

25

35

40

45

50

55

60

65

8
In another case, an honest user might find that the described
method detects a violation because Someone took an ille
gitimate copy without the user's knowledge. These prob
lems are alleviated by the use of reprieves.

ASSociated with each license number is a reprieve count,
initially set to a value of 0. The reprieve count is included
with the license number in each Stamp history, and is
transferred during SHD transfer. When a license number
shows a violation, the installer may be used to uninstall and
reinstall the same license number, with an incremented
reprieve count, up to Some maximum number of reprieves
permitted. With a new reprieve count, the Session numbering
starts again from 0, with no violations. When SHDS are
merged, more recent Stamp histories, i.e., Stamp histories
with a high reprieve count, replace Stamp histories for the
Same license number with a lower reprieve count, So that the
relatively older Stamp histories, i.e., the Stamp histories with
a lower reprieve count, are gradually eliminated. Thus, if an
illegitimate Software copy with an old, lower reprieve count
encounters a Stamp history with a higher reprieve count, this
indicates a license violation, and the Software reacts accord
ingly. Thus, the legitimate user can indirectly eliminate
illegitimate Software copies by increasing the reprieve count
and letting the increased reprieve count propagate via SHD
transfer.
The described method can be extended to permit protec

tion of data items, Such as a file, photograph, or audio clip.
To do this, encrypt the data item, and Supply viewing
Software that is able to decrypt and display the data. The
Viewing Software is copy-protected using the method
described. The data encryption is designed So that only
Selected copies of the viewing Software may decrypt the
data. According to the preferred embodiment of the present
invention, the license number of one copy of the viewing
Software is used as an encryption key, So that only that copy
of the Viewing Software has the information needed to
decrypt the data. According to an alternative embodiment,
the data is encrypted in Such a manner that any copy of the
Viewing Software can decrypt the data, but included in the
data is a list of the license numbers of the Viewing Software
that are permitted to use the data. The viewing Software is
designed to check this list and prevent the user from dis
playing the data if its corresponding license number is not in
the list.
The described method can also be used to detect contin

ued use of outdated versions of a copy of Software after a
newer version of the Software has been installed. When an
older version of a Software copy is replaced by a newer
version, the newer copy is assigned the Same license number
as the older copy, and the older copy's Stamp history is
placed in the newer copy's SHD, becoming the initial Stamp
history for the newer copy. If the older version remains in
use on the Same or another computer, Session Stamp conflicts
will arise Since the older and newer versions have the same
license number. The method can thus detect continued use of
an older version in the same way it detects use of duplicate
copies of the same versions. In addition, the reprieve count
described above can be used to automatically deactivate
older versions. The newer version is assigned a higher
reprieve count than the older version. When the older
version detects Stamp histories from the newer version,
which Stamp histories have a higher reprieve count, it treats
this as a license violation and erases or deactivates itself.
The described method can also be used to limit the

number of times a copy of Software is executed by designing
the Software to cease executing once a certain Session
number has been reached. The session number after which

6,073,123

execution will cease may be included with the encrypted
license number, and checked by the Software at the Start of
each Session. Backup and reinstallation of the Software copy
to reset the Session number will result in detection of Session
stamp conflicts if any SHD transfer data from the prior
installation remains in files or in other Software copies
SHDS.
What is claimed is:
1. A method of detecting duplicate copies of a computer

program, comprising:
assigning a first identifier to a copy of a computer pro

gram,
assigning a Second identifier to each Session of the copy;
assigning a stamp to each Session;
maintaining in a data structure for the copy the first

identifier assigned to the copy, a Second identifier to be
assigned to a next Session of the copy and the Stamps
assigned to previously initiated Sessions of the copy;
and

detecting duplicate copies of the computer program if two
copies of the computer program are assigned the same
first identifier, yet have a different second identifier or
different Stamps assigned to the previously initiated
Sessions, as determined from the maintained data Struc
ture.

2. The method of claim 1, wherein assigning a Second
identifier to each Session of the copy includes assigning a
Sequential number to each Session of the copy.

3. The method of claim 1, wherein assigning a Stamp to
each Session comprises:

generating a random Stamp; and
assigning the random Stamp to the Session.
4. The method of claim 1, wherein the first identifier is a

license number.
5. The method of claim 4, further comprising detecting a

duplicate copy if the license identifier in the Stamp history
from the first copy is identical to the license identifier in the
Stamp history maintained by the Second copy, and the
Sequential Session number in the Stamp history from the first
copy is greater than the Sequential Session number in the
Stamp history maintained by the Second copy, and the license
identifier in both the stamp history from the first copy and
the Stamp history maintained by the Second copy is identical
to the license identifier assigned to the first copy.

6. The method of claim 1, wherein previously initiated
Sessions comprise all of the previously initiated Sessions.

7. The method of claim 1, wherein previously initiated
Sessions comprise a Subset of all the previously initiated
Sessions.

8. A method of detecting multiple copies of a computer
program, comprising:

assigning a license identifier to each copy of a plurality of
computer programs,

assigning a Session identifier to each Session of each copy;
assigning a random Session Stamp to each Session;
maintaining a Stamp history for each copy, comprising the

license identifier assigned to the copy, the Session
identifier of a most recent Session of the copy, and a list
of the random Session Stamps assigned to previously
initiated Sessions of the copy;

transferring a Stamp history from a first copy to a Second
copy;

comparing the Stamp history from the first copy with a
Stamp history maintained by the Second copy; and

detecting a duplicate copy if the license identifier in the
Stamp history from the first copy is identical to the

15

25

35

40

45

50

55

60

65

10
license identifier in the Stamp history maintained by the
Second copy, and the Session identifier in the Stamp
history from the first copy is different from the session
identifier in the Stamp history maintained by the Second
copy or the random Session Stamp assigned to any
session identifier in the stamp history from the first
copy differs from the random Session Stamp assigned to
the same Session identifier in the Stamp history main
tained by the Second copy.

9. The method of claim 8, further comprising marking the
Stamp history from the first copy to indicate the duplicate
copy exists if the duplicate is detected.

10. The method of claim 9, wherein marking the stamp
history from the first copy to indicate the duplicate copy
exists comprises modifying the random Session Stamp
assigned to the Session identifier in the Stamp history from
the first copy to a value reserved to indicate the duplicate
copy exists.

11. The method of claim 10, wherein the stamp history for
each copy further comprises a Send count.

12. The method of claim 11, wherein transferring a stamp
history includes:

appending a plurality of the Stamp histories from the first
copy to data output by the first copy;

receiving at the Second copy the data output by the first
copy including the plurality of the Stamp histories from
the first copy appended to the data; and

updating each Stamp history maintained by the Second
copy according to the plurality of Stamp histories from
the first copy received by the Second copy.

13. The method of claim 12, wherein appending a plu
rality of the Stamp histories from the first copy to data output
by the first copy further comprises Selecting based on the
send count which of the plurality of the stamp histories from
the first copy are to be appended to data output by the first
copy.

14. The method of claim 8, wherein assigning a Session
identifier comprises assigning a Sequential Session number.

15. The method of claim 8, wherein transferring a stamp
history from a first copy comprises transferring a Stamp
history for the first copy.

16. The method of claim 8, wherein transferring a stamp
history from a first copy comprises transferring a Stamp
history for a third copy.

17. The method of claim 8, wherein previously initiated
Sessions comprise all of the previously initiated Sessions.

18. The method of claim 8, wherein previously initiated
Sessions comprise a Subset of all the previously initiated
Sessions.

19. The method of claim 8, wherein the stamp history
maintained by the Second copy includes a Stamp history for
the Second copy.

20. The method of claim 8, wherein the stamp history
maintained by the Second copy includes a Stamp history for
a third copy.

21. A method of limiting access to a data item, compris
ing:

assigning a first identifier to each copy of a plurality of
computer programs,

assigning a Second identifier to each Session of each copy;
assigning a stamp to each Session;
maintaining in a data Structure for each copy the first

identifier assigned to the copy, a Second identifier to be
assigned to the next Session, and the Stamps assigned to
previously initiated Sessions,

disabling one of two copies, if the two copies are assigned
the Same first identifier, yet have a different Second

6,073,123
11

identifier assigned to the next Session or different
Session Stamps assigned to the previously initiated
Sessions, as determined from the data structure main
tained for each copy.

22. The method of claim 21 further comprising:
encrypting a data item using the first identifier assigned to

a copy of the plurality of computer programs as a key;
and

denying access to the data item for each copy other than
the copy whose first identifier is provided as the key for
encrypting the data item.

23. An article of manufacture comprising a machine
readable medium having a plurality of machine readable
instructions Stored thereon, wherein the instructions, when
executed by a processor, cause the processor to:

assign a license identifier to a copy of a computer pro
gram,

assign a Session identifier to each Session of the copy;
assign a Session Stamp to each Session;
maintain for each copy in a data structure, the license

identifier assigned to the copy, a next Session identifier
to be assigned to the next Session of the copy and the
Session Stamps assigned to previously initiated Sessions
of the copy; and

detect if two copies are assigned the same license
identifier, yet have a different next Session identifier or
different Session Stamps assigned to the previously
initiated Sessions for the copy, as determined from the
data Structure maintained for each copy.

24. The article of manufacture of claim 23, wherein the
instructions that cause the processor to assign a Session
identifier to each Session of the copy comprise instructions

15

25

12
that when executed by the processor, cause the processor to
assign a Sequential Session number to each Session of the
copy.

25. The article of manufacture of claim 23, wherein the
instructions that cause the processor to assign a Session
Stamp to each Session comprise instructions that when
executed by the processor, cause the processor to:

generate a random Session Stamp, and
assign the random Session Stamp to the Session.
26. A method of detecting multiple copies of a computer

program comprising:
assigning a first unique identifier to each copy of a

plurality of computer programs,
assigning a Second identifier to each Session of each copy;
assigning a random Session Stamp to each Session;
maintaining in a central Stamp history database, a Stamp

history for each copy including the first identifier
assigned to the copy, a Second identifier to be assigned
to a next Session of the copy and the Stamps assigned
to previously initiated Sessions of the copy; and

detecting by the central Stamp history database duplicate
copies of the computer program if two copies of the
computer program are assigned the same first identifier,
yet have a different second identifier or different stamps
assigned to the previously initiated Sessions, as deter
mined from the centrally maintained Stamp history
database.

27. The method of claim 26, wherein the copies of the
plurality of computer programs need not be copies of the
Same program.

