(54) 发明名称
一种鸡腿菇栽培基及其制备方法
(57) 摘要
本发明涉及一种鸡腿菇栽培基由下列重量份的物料制备而成：棉籽壳 60-70, 麦麸
8-10, 豆饼 10-25, 紫薯粉 4-5, 石膏 1-2, 改性草木灰 10-15, 沸石粉 8-10, 人参叶粉 8-10, 枸杞粉
8-10, 枸杞子粉 8-10, 并按每立方米栽培基中添加 200-500g 营养土。用此培养基栽培出的鸡腿菇具
有矿物质、微量元素、维生素 B、维生素 C, 氨基酸含量高的特点, 同时降低了重金属的污染, 长期食
用具有养颜补血的功效; 且生长速度快, 产量高, 原料成本低。
1. 一种鸡腿菇栽培基，其特征在于，包括下列重量份的组成：棉籽壳 60-70，麦麸 8-10，豆饼 10-25，紫薯粉 4-5，石膏 1-2，改性草木灰 10-15，沸石粉 8-10，人参叶粉 8-10，枸杞粉 8-10，红枣粉 8-10，并按每立方米栽培基质添加 200-500g 营养土。

所述的营养土由下列组分配制而成，每 1000g 营养土中包括以下重量（克）的组分：硫酸钙 4-5，硫酸镁 10-15，硫酸铵 4-5，硫酸锌 1-2，硫酸铜 0.5-1.5，硫酸亚铁 20-30，钼酸钠 0.05-0.15，维生素 A 0.01-0.03，维生素 B1 0.01-0.02，维生素 B2 0.01-0.03，维生素 B6 0.01-0.02，余量为 β-环糊精。

使用时先将微肥、维生素溶解在水里，然后再和其它组分拌匀，配成含水量为 20-30%的湿润营养土。

改性草木灰的制备方法：
向草木灰中加入草木灰 3-4%的耐酸粉，1-1.5% 木质素磺酸钠，1-3% 双(二氧基焦磷酸酯)乙拌酸，0.8-1.5% 的羧甲基纤维素钠，2-4% 的桑叶粉，8-10% 的木薯粉，适量的水，在 900-1000rpm 的转速下充分搅拌 1-2 小时后，造粒，粒径为 4-5mm，即可。

2. 根据权利要求 1 所述的鸡腿菇栽培基的制备方法，其特征在于，包括以下步骤：
(1) 将棉籽壳、麦麸放入 1-3% 的石灰水中浸 10-12 小时后，捞出，沥干，破碎成 1-3mm 的颗粒，待用；
(2) 向草木灰中加入草木灰 3-4% 的耐酸粉，1-1.5% 木质素磺酸钠，1-3% 的双(二氧基焦磷酸酯)乙拌酸，0.8-1.5% 的羧甲基纤维素钠，2-4% 的桑叶粉，8-10% 的木薯粉，适量的水，在 900-1000rpm 的转速下充分搅拌 1-2 小时后，造粒，粒径为 4-5mm，即可；
(3) 按配方比配制营养土；
(4) 按配方比例，将上述所得物料和配方中的所有原料混合，再加入适量的水充分混合均匀，得到栽培料，栽培料的含水量为 55-64%；
(5) 装袋；将拌好的栽培料装入食用菌袋，每袋重 1.7-2.1kg；
(6) 灭菌；常压 100-105℃下蒸汽灭菌 12-15 小时，得到鸡腿菇栽培基。
说明 书

一种鸡腿菇栽培基及其制备方法

技术领域
[0001] 本发明涉及食用菌栽培技术，具体涉及一种鸡腿菇栽培基及其制备方法。

背景技术
[0002] 随着工业化程度的加深，发展经济的同时，也带来了环境的污染，特别是重金属污染在加剧，食用菌栽培原料也受到了不同程度的污染，如果我们还是按照传统方法进行栽培的话，所栽培出的食用菌，可能也会或多或少的含有污染物质，导致食用菌的营养价值下降，降低了食用菌的保健功能，因此迫切需要一种新的栽培方法，来克服现有技术的不足。
[0003] 草木灰的价值，早已被人们认可，应用最多的情况是将其作为肥料直接加入到农田中，但是由于草木灰的飞散性，遇到大风天气，施用时，会造成浪费，也带来了环境的污染。

发明内容
[0004] 为解决现有技术中存在的问题，本发明提供了一种鸡腿菇栽培基及其制备方法。本发明的鸡腿菇栽培基，克服了重金属的污染，同时增加了功能营养。
[0005] 为实现上述目的本发明采用的技术方案如下：
一种鸡腿菇栽培基，其特征在于，包括下列重量份的组分，棉籽壳 60-70，麦麸 8-10，豆饼 10-25，紫薯粉 4-5，石膏 1-2，改性草木灰 10-15，沸石粉 8-10，人参叶粉 8-10，枸杞粉 8-10，并按每立方米栽培基质添加 200-500g 营养土。
所述的营养土由下列组分配制而成，每 1000g 营养土中包含以下重量（克）的组分：硫酸钙 1-2，硫酸镁 10-15，硫酸锰 4-5，硫酸锌 1-2，硫酸铜 0.5-1.5，硫酸亚铁 6-10，氯化钾 0.5-1.5，氨水 0.1-0.25，维生素 A 0.01-0.03，维生素 B1 0.01-0.02，维生素 B2 0.01-0.03，维生素 D3 0.01-0.02，余量为 β-环糊精。
在使用时先将微肥，维生素溶液溶解在水里，将然后再和其它组分拌匀，配成含水量为 20-30%的湿润营养土。
改性草木灰的制备方法：
向草木灰中加入草木灰重量 3-4%的蒙脱石粉，1-1.5%木质素磺酸钠，1-3%双（二辛基焦磷酸酯基）乙撑钛酸酯，0.8-1.5%的羧甲基纤维素钠，2-4%的桑叶粉，8-10%的木薯粉，适量的水，在 900-1000rpm 的转速下充分搅拌 1-2 小时后，造粒，粒径为 4-5mm，即可。
[0006] 所述的鸡腿菇栽培基的制备方法，其特征在于，包括以下步骤：
(1) 将棉籽壳，麦麸放入 1-3%的石灰水中浸 10-12 小时后，捞出，沥干，破碎成 1-3mm 的颗粒，待用；
(2) 向草木灰中加入草木灰重量 3-4%的蒙脱石粉，1-1.5%木质素磺酸钠，1-3%双（二辛基焦磷酸酯基）乙撑钛酸酯，0.8-1.5%的羧甲基纤维素钠，2-4%的桑叶粉，8-10%的木薯粉，适量的水，在 900-1000rpm 的转速下充分搅拌 1-2 小时后，造粒，粒径为 4-5mm，即可；
(3) 配制营养土；
（4）按配方比例，将上述所得物料和配方中的所有原料混合，再加入适量的水充分混合均匀，得到栽培料，栽培料的含水量为 55~64%；
（5）装袋：将拌好的栽培料装入食用菌袋，每袋重 1.7~2.1kg；
（6）灭菌：常压 100~105℃下蒸汽灭菌 12~15 小时，得到鸡腿菇栽培基。

本发明的优点是：
本发明的栽培基中，在常规栽培基的基础上添加有沸石粉克服了重金属的污染，配方中的人参叶粉、枸杞粉、红枣粉具有补气养血功效；
将草木灰进行改性造粒，有效改善了草木灰的风散性和碱性，减少了草木灰的风化损失，实现了废物利用的经济效益，所得的栽培基营养丰富，用此栽培料栽培出的鸡腿菇，克服了重金属的污染，更健康；营养土的加入提高了鸡腿菇的矿物质、维生素、微量元素的含量，进一步提高了鸡腿菇的保健功效，因此，用此培养基栽培出的鸡腿菇具有矿物质、微量元素、维生素、氨基酸含量高的特点，同时降低了重金属的污染，长期食用具有补气养血功效，且生长速度快，产量高。每公斤本发明的栽培基收获鸡腿菇量，比现有的栽培基增产 0.5~0.8 倍。

具体实施方式

【0008】实施例 1

一种鸡腿菇栽培基，由下列重量（kg）的组分原料制备而成：
棉秆壳 65, 麦秸 9, 饱口粉 18, 茄粉 4~5, 石膏 1, 改性草木灰 15, 沸石粉 9, 人参叶粉 8, 枸杞粉 9, 红枣粉 9, 并按每立方米栽培基质添加 300g 营养土。
其中，每 1000g 营养土中包括以下重量(g) 的组分：硫酸钙 5, 硫酸镁 12, 硫酸铵 4, 硫酸锌 2, 硫酸铜 0.8, 硫酸亚铁 25, 钼酸 0.08, 维生素 A 0.02, 维生素 B1 0.01, 维生素 B2 0.01, 维生素 B6 0.01, 其余为 β-环糊精。
使用时先将微肥、维生素溶解在水里，然后再和其它组分拌匀，配成含水量为 25% 的湿润营养土，
改性草木灰的制备方法：
向草木灰中加入草木灰重量 3% 的石粉、1% 木屑素硫酸钠、2% 双（二辛氧基焦磷酸酯）乙撑钛酸酯、1.0% 的羧甲基纤维素钠、3% 的桑叶粉、9% 的木薯粉，适量的水，在 1000rpm 的转速下充分搅拌 2 小时后，造粒，粒径为 4~5mm，即可。

【0009】鸡腿菇栽培基的制备方法，包括以下步骤：
（1）将棉秆壳、麦秸放入 2% 的石灰水中浸 11 小时后，捞出，沥干，破碎成 1~3mm 的颗粒，待用；
（2）向草木灰中加入草木灰重量 3% 的银矿石粉、1% 木屑素硫酸钠、2% 的双（二辛氧基焦磷酸酯）乙撑钛酸酯、0.8% 的羧甲基纤维素钠、3% 的桑叶粉、9% 的木薯粉，适量的水，在 1000rpm 的转速下充分搅拌 2 小时后，造粒，粒径为 4~5mm，即可；
（3）按配方比配制营养土；
（4）按配方比例，将上述所得物料和配方中的所有原料混合，再加入适量的水充分混合均匀，得到栽培料，栽培料的含水量为 60%；
（5）装袋：将拌好的栽培料装入食用菌袋，每袋重 1.8kg；
（6）灭菌：常压 100°C 下蒸汽灭菌 13 小时，得到鸡腿菇栽培基。

[0010] 用本发明的栽培基栽培鸡腿菇的的具体过程为：在无菌室内将鸡腿菇菌种播到本发明的鸡腿菇栽培基空棒上，每棒上只能选 5 个穴播点，接种好的栽培基就称为菌棒。将菌棒放在室内培养，室内温度控制在摄氏 25°C，待鸡腿菇长出 3cm 高的幼苗后，移放到果园树荫中的阴暗地面上，让鸡腿菇自然生长，等鸡腿菇长大，采收即可。

[0011] 实施例 2

本实施例的成分与实施例 1 基本一样，只是在配制栽培基时，每 1000kg 栽培基中，添加有 0.1kg 的辣木籽、0.3kg 冰糖蓝粉、0.3kg 洋葱粉等比例混合的混合粉。

[0012] 实验数据

用本发明的鸡腿菇栽培基与常规的鸡腿菇栽培基栽培鸡腿菇比较结果见下表

<table>
<thead>
<tr>
<th>比较项目</th>
<th>每 kg 栽培基出菇量（kg）</th>
<th>鸡腿菇外形</th>
<th>再生能力强弱</th>
<th>转茬快慢</th>
</tr>
</thead>
<tbody>
<tr>
<td>本发明的鸡腿菇栽培基</td>
<td>0.90</td>
<td>菇柄长，菇体大，肉厚</td>
<td>强</td>
<td>快</td>
</tr>
<tr>
<td>常规的鸡腿菇栽培基</td>
<td>0.55</td>
<td>菇柄短，菇体小，肉薄</td>
<td>弱</td>
<td>慢</td>
</tr>
</tbody>
</table>

[0013] 从表中可以得出：本发明提供的鸡腿菇栽培基，经过试验种植，每公斤鸡腿菇栽培基收获鸡腿菇量，比常规的栽培基增产一倍，而且鸡腿菇的菇柄长、长短整齐，菇肉质量高，再生能力强，转茬快。