
US 2008O167124A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0167124 A1

Korchemniy et al. (43) Pub. Date: Jul. 10, 2008

(54) SYSTEMAND METHOD FOR ADDING Related U.S. Application Data
N-GAME FUNCTIONALITY

(60) Provisional application No. 60/878,822, filed on Jan.
5, 2007. (76) Inventors: Alex P. Korchemniy, Sandpoint, ID

(US); Charles F. Manning,
Sandpoint, ID (US); Jason Publication Classification
Sanchez, Sandpoint, ID (US) (51) Int. Cl.

A63F 9/24 (2006.01)
Correspondence Address:
CALFEE HALTER & GRISWOLD, LLP (52) U.S. Cl. .. 463/31
800 SUPERIORAVENUE, SUITE 1400 (57) ABSTRACT
CLEVELAND, OH 44114

A system and method for adding, accessing and/or using
(21) Appl. No.: 11/969,531 software modules within the context of an active computer

game are provided. The system and method include overlay
(22) Filed: Jan. 4, 2008 ing graphics/video on top of the game.

200
Y

206

208 s 214

210

212

202

204

Patent Application Publication Jul. 10, 2008 Sheet 1 of 18 US 2008/O167124 A1

100

User
A 110

102 Application

112
Graphics Libraries

Kernel wn

104 Kernel-Mode Graphics - 114
Subsystem

Original/Native 116
Display Driver

Physical rewYo-Yoo-woppopoarooverpoo 108

106 Display

PRIOR ART

FIG. 1

Patent Application Publication Jul. 10, 2008 Sheet 2 of 18 US 2008/O167124 A1

206

208 s 214

210

212

200

204

FIG 2

Patent Application Publication Jul. 10, 2008 Sheet 3 of 18 US 2008/O167124 A1

3 O 2
aaaaaaaa

FIG. 3

Patent Application Publication Jul. 10, 2008 Sheet 4 of 18 US 2008/O167124 A1

302

FIG. 4

Patent Application Publication Jul. 10, 2008 Sheet 5 of 18 US 2008/O167124 A1

302

ki. ? 'G s & g) Exp ; g f SOE, ^ E t
Cast Tunes C3bgle its head Ciagrash:3 kis irrit PX FT3ry ::it: it EF3 TriSpik

308

FIG. 5

Patent Application Publication Jul. 10, 2008 Sheet 6 of 18 US 2008/O167124 A1

302

Spiti. She

o:c051 - D II

FIG. 6

Patent Application Publication Jul. 10, 2008 Sheet 7 of 18 US 2008/O167124 A1

THOTTBOT e E.

FIG. 7

Patent Application Publication Jul. 10, 2008 Sheet 8 of 18 US 2008/0167124 A1

302

THOTTBON | s
: 'vard

F.G. 8

Patent Application Publication Jul. 10, 2008 Sheet 9 of 18 US 2008/O167124 A1

302
Y

318

TH OTTBOT Sigarc 3.

expres: Atlasia:
* Psssssssst wasir Axis if fifty is is sist

Eack items creatures Celects Cuests Uncategorized Spells

sS: tissetti
keystopsis it is

keyblosed
it's Sills St.

FIG. 9

Patent Application Publication Jul. 10, 2008 Sheet 10 of 18 US 2008/O167124 A1

318

THOTTBO Skri:

ret or Bruts short
disa Eile
sists

23.338 Larse
84 diffrage Fersecchi
rays BS

Refeatist
engai 2.

FIG 10

Patent Application Publication Jul. 10, 2008 Sheet 11 of 18 US 2008/0167124 A1

302

.. - - - ;: Performance indicatorsi,
^ - . ga

S. : Memory
14 lists is sigges;

kinary usici:5Daha ,
Awas lik:no. 384-E

(R) f El

FIG. 11

Patent Application Publication Jul. 10, 2008 Sheet 12 of 18 US 2008/O167124 A1

302

322

Performance indicators: Fix
Disks
- - 326

-
:

piss C,
22, GEFree from 293,033

(t e t, El

FIG. 12

Patent Application Publication Jul. 10, 2008 Sheet 13 of 18 US 2008/O167124 A1

302

322
M

B-X- Performance indicators
328

FIG. 13

Patent Application Publication Jul. 10, 2008 Sheet 14 of 18 US 2008/O167124 A1

tertariants indicales. Exp
apich is usic exist: nois

sis
38

cs?taa Trissari iii.
windoor. B42

tax.
schoslovo 1zasad

sychosley - S -

s'; this.exe s
Sisy.: i4537E815

9.5
: y : "r ry: lyrr.

FG, 14

Patent Application Publication Jul. 10, 2008 Sheet 15 of 18 US 2008/O167124 A1

A

EX
*; Counter strike Pig Players

SERVERS

Bay Area CS:S 8

the Canadian 3) i4S

AM unloaded 7s

Seattle Alpha 87

The New Think 9.

Third legian 203

WestCoastboyz 205

(pl. CSS play 205

Bettiner Fight c 216

carning Servati 49 27

:- World of Warcraft

2. Arnarica's Army: Special Forces
FERS:
BY REPuTArlo N

in Yi-LAYER styLE
DEFINE FILTERS

FIG. 15

Patent Application Publication Jul. 10, 2008 Sheet 16 of 18 US 2008/O167124 A1

302

ex FAYKFERT assingers:
a... .

circrgwiness
Ajitg reissha: dagu ready hate new bics
35g. trialis rails exts."

a
Buipe, jusly kily tal: the te::::it: H.E.:h
deniwa orcup, paris fifthti racity
ethic-size

aris retacrit: it it:it: it an inst rii is
st littik's risk oxes at hitti et attrits:

are: tims
ries clever
fixel SS

kickers and idy
se

336

FG 16

Patent Application Publication Jul. 10, 2008 Sheet 17 of 18 US 2008/O167124 A1

302

st Beihilisi
i:S raday

F.G. 17

Patent Application Publication Jul. 10, 2008 Sheet 18 of 18 US 2008/O167124 A1

400

USer 110
102 Core Executable Application
404

User-Mode Interface 112

406 for SDD

kshel Kernel-Mode Graphics -
w Subsystem

402

I/O Control

Original/Native 116
Display Driver

Physical
106

FIG. 18

US 2008/O1671 24 A1

SYSTEMAND METHOD FOR ADDING
N-GAME FUNCTIONALITY

RELATED APPLICATION

0001. The present application is being filed as a non-pro
visional patent application claiming priority under 35 U.S.C.
S 119(e) from, and any other benefit of U.S. Provisional
Patent Application No. 60/878,822 filed on Jan. 5, 2007, the
entire disclosure of which is herein incorporated by reference.

FIELD

0002 The invention relates generally to software modules
and, more particularly, to a system and method for adding,
accessing and/or using software modules within the context
of an active computer game, as well as overlaying images and
Video on the game.

BACKGROUND

0003 Video games include software that is installed on a
computer. An operating system (OS) of the computer can then
execute (i.e., “run”) the game. In general, the operating sys
tem running the computer game causes a graphics card/pro
cessor of the computer to display images and video on a
display (e.g., an LCD monitor) of the computer. The operat
ing System running the computer game can also cause an
audio card/processor of the computer to output Sounds and/or
music through speakers of the computer. An input device
(e.g., a keyboard and/or a mouse) of the computer can be used
to allow a user to interact with the computer game.
0004 Some computer games Support on-line play, i.e.,
exchanging data with other computers (e.g., a client, a server)
over a network (e.g., the Internet, a LAN) so that a first user at
a first computer can play the game with (e.g., cooperatively or
competitively) a second user at a second computer. Further
more, a Massively Multiplayer Online Game (MMOG) is one
type of on-line computer game that is capable of Supporting
hundreds or thousands of players simultaneously and is
played over the Internet. Accordingly, a computer game may
provide built-in functions that facilitate the on-line playing of
the particular computer game.
0005 For example, the computer game may have a built in
chat function wherein the first user can type a text message or
speak a voice message that is then transferred over the net
work and displayed/played to the second user, and vice versa.
In this manner, the first and second users can communicate
with one another in the on-line game that they are both play
ing.
0006. As another example, the computer game may have a

built-in server browser wherein a list of servers that are host
ing an on-line session of the computer game are displayed to
the first user and/or the second user. Information on each
session, Such as the type of session (e.g., deathmatch, capture
the flag), the number of users present in the session, the
current latency (e.g., ping) of the session, etc. can be dis
played in the server browser. The server browser allows the
first user and/or the second user to join a desired session (e.g.,
by clicking on its name).
0007. These built-in functions are limited to the specific
game in which they reside, are relatively limited in Scope and
fail to address many of the issues that arise in the context of
on-line gaming. For example, on-line games often give rise to
communities of players (e.g., groups, clans, guilds, etc.) that
like to play together and may assist one another in and out of

Jul. 10, 2008

the context of a game. As a result, a community of players will
often generate a web page for purposes of recruiting mem
bers, sharing information among members, etc. The conven
tional computer games do not have a built-in function that
members of a community can use to visit their own web page.
Instead, the members must exit out of the game (e.g., in the
WINDOWS, a registered trademark of Microsoft, Inc., oper
ating system, change the focus from the game screen/window
to another window running a web browser) to navigate to the
web page.
0008. One conventional program that attempts to expand
in-game functionality is XFIRE (a registered trademark of
XFIRE, Inc.). XFIRE is a computer application that allows a
user to send and receive messages from within an active
computer game screen/window. XFIRE is not limited to a
single game but instead supports messaging in many different
games. XFIRE evolved to include other functions such as a
clan tool that allows users to register clans and associate users
with the clans.
0009. Another conventional program that attempts to
expand in-game functionality is PLAYLINC (a registered
trademark of Super Computer International, Inc.). PLAY
LINC is a computer application that allows a user to send and
receive messages from within an active computer game?
screen window. PLAYLINC is not limited to a single game
but instead Supports messaging in many different games.
PLAYLINC supports additional functions such as server
browsing, buddy tracking and server hosting.
0010. These conventional programs, however, have draw
backs. For example, both XFIRE and PLAYLINC fail to
intrinsically support inter-network messaging from within a
computer game. Users of XFIRE must send and receive mes
sages via the XFIRE network. Users of PLAYLINC must
send and receive messages via AOL (America On-Line) or
ICO (also owned by AOL) user accounts. Thus, users are
unable to use (messaging) networkS/accounts, which they
may have previously used for years, to send messages in
XFIRE or PLAYLINC.

(0011. Furthermore, neither XFIRE nor PLAYLINC pro
vides a full range of in-game functions to facilitate on-line
gaming and the communities that result therefrom. For
example, neither XFIRE nor PLAYLINC includes a plugin
model which among other things visualize extended interac
tive tools within a game, for readily extending the functions
provided therein.
0012 Consequently, there is a need in the art for a system
and method that Supports inter-network in-game messaging,
adds in-game functions to facilitate on-line gaming and the
communities that result therefrom, and is readily extensible to
provide additional interactive tools that are visualized within
a game.
0013 Additionally, in expanding in-game functionality, it
may be useful to overlay images and video on top of an active
game, which is hereinafter referred to as “video overlay.”
Conventional techniques for performing video overly on a
game, such as those used by XFIRE and PLAYLINC, how
ever, suffer from numerous drawbacks.
0014 FIG. 1 shows a conventional system 100 for per
forming video overlay on top of a game running under an
operating system of a computer, wherein the system 100
includes a user layer 102, a kernel layer 104 and a physical
layer 106. Applications, subsystems, etc. in the user layer 102
(i.e., user-mode) have limited access to system resources
(e.g., central processing unit (CPU), system memory, external

US 2008/O1671 24 A1

devices). Applications, Subsystems, etc. in the kernel layer
104 (i.e., kernel-mode) have unrestricted access to the system
resources. A primary purpose of the kernel layer 104 is to
manage and prioritize use of the system resources and allow
other programs to run and use these system resources. The
physical layer 106 includes the physical system resources,
Such as a keyboard (not shown), a display device 108 (e.g., an
LCD monitor) and speakers (not shown).
0015. An application programming interface (API) must
be provided by the developer of an application 110 for per
forming the video overlay (such as XFIRE) to a publisher of
a game on which the application will perform video overlay.
The publisher of the game must conform to the API to give the
application 110 direct access to the graphics context of the
game.
0016. The application 110 replaces/bypasses a graphics
library 112 provided by the operating system (e.g.,
OpenGL32.dll) in order to intercept graphics calls before they
are sent to a graphics subsystem 114 of the kernel layer 104.
In particular, the game's executable files are modified (i.e.,
patched) in memory to reroute graphics calls to the applica
tion 110. After the game's graphics have been rendered by a
graphics device (e.g., a video card) of the computer using a
graphics driver (e.g., the display device driver 116) associated
with the video card, the video overlay is performed using a
graphics operation (i.e., a bit blit (BitBlt) operation). The bit
blit operation combines several bitmap patterns into one
using a raster operator.
0017. As noted above, this conventional video overlay
technique has many drawbacks. For example, performance
penalties arise from performing the BitBlt operation, which is
non-optimal and requires the system 100 to wait until the
video commands have been rasterized by the video card.
During a standard rendering operation in a game, the game
renders to one or more backbuffers while presenting a single
front buffer to the user. The game attempts to flip these buffers
at a regular frequency, although the frequency is sometimes
defined by a refresh rate of the display device 108. Game
developers design games to maximize the time interval
between a present function call and a flip function call during
normal operations, in order to allow the video card adequate
time to process the next scene. While the video card is ren
dering the scene, games are designed to perform game logic
processing. By attempting to perform post rendering changes,
the system 100 deprives the game of CPU time for processing
game logic by blocking the processor until the video card has
finished the rendering.
0018. Additionally, compatibility barriers exist in the con
ventional system 100 because the system 100 relies on game
publishers conforming to an API. For example, XFIRE
requires that game publishers expose access points for their
games. As a result, XFIRE does not workin all games but only
in those games for which the publisher chose to Support
XFIRE

0019. Further still, security penalties arise in the conven
tional system 100. For example, the practices of patching a
game's executable files and replacing or otherwise bypassing
a graphics library provided by an operating system are often
performed by individuals interested in cheating in a game.
Technologies like PUNKBUSTER (a trademark of Even Bal
ance, Inc.) have been developed to prevent Such individuals
from modifying a game. Since the practice of modifying the
graphics Subsystem is the same for both game hackers/cheat
ers and the system 100, the system 100 may be identified as a

Jul. 10, 2008

cheating tool resulting in its users being expelled from the
games they are playing. Users who are expelled from game
play are likely to be dissatisfied with the system 100.
0020 Consequently, there is a need in the art for a system
and method for overlaying images and video on an active
application, which don’t give rise to the performance penal
ties, compatibility barriers and/or security penalties
described above.

SUMMARY

0021. In view of the above, it is an exemplary aspect to
provide a system and a method for adding functions that are
usable within an active computer game.
0022. It is another exemplary aspect to provide a user
interface for accessing the added functions from within the
active computer game.
0023. It is still another exemplary aspect to provide a sys
tem and method for delivering advertisement information in
an active computer game.
0024. It is yet another exemplary aspect to provide a sys
tem and method for performing video overlay within an active
application, Such as a computer game.

BRIEF DESCRIPTION OF THE DRAWINGS

0025. The above aspects and additional aspects, features
and advantages will become readily apparent by describing in
detail exemplary embodiments thereof with reference to the
attached drawings, wherein like reference numerals denote
like elements, and:
0026 FIG. 1 is a diagram of a conventional system for
performing in-game video overlay.
0027 FIG. 2 is a diagram of a system for adding in-game
functionality, according to one exemplary embodiment.
0028 FIGS. 3-17 are drawings of a screen for describing
an implementation of an exemplary user interface for the
system of FIG. 2.
0029 FIG. 18 is a diagram of a system for performing
in-game video overlay, according to one exemplary embodi
ment.

DETAILED DESCRIPTION

0030. While the general inventive concept is susceptible of
embodiment in many different forms, there are shown in the
drawings and will be described herein in detail specific
embodiments thereof with the understanding that the present
disclosure is to be considered as an exemplification of the
principles of the general inventive concept. Accordingly, the
general inventive concept is not intended to be limited to the
specific embodiments illustrated herein.
0031. A system 200 for adding functionality to a game
running on a first computer 202 of a first user 204 and/or a
game running on a second computer 206 of a second user 208,
according to one exemplary embodiment, is shown in FIG. 2.
The system 200 includes a server 210 (or multiple servers)
that communicates with a client program (not shown)
installed and running on the first computer 202 and/or the
second computer 206. The server 210 communicates with the
client program over a network 212 (e.g., the Internet). The
server 210 may be connected to a data store 214 (or multiple
data stores), such as a relational database. The server 210
includes a set of web services that can exchange data with the
client program to facilitate server-managed aggregation of
data Such as user registration data, clan management data,

US 2008/O1671 24 A1

reputation management data, etc. The server 210 may also
include a Jabber-based chat interface for connecting to other
client programs of other users and other chat programs such
as MSN, Yahoo!, Gmail, etc. In this manner, the server 210
facilitates messaging/chatting between two or more users
(e.g., the first user 204 and the second user 208), wherein the
user can send and receive messages while actively playing a
game running on their respective computers (e.g., the first
computer 202 and the second computer 206).
0032. The client program running on the computer (e.g.,
the first computer 202) of a user (e.g., the first user 204)
provides a user interface 300 for the user to access and use the
additional functionality from within an active game running
on the computer. See also FIGS. 3-17. In particular, the user
interface 300 is overlaid upon a game screen or display 302 of
the active game, as described below, when the user wants to
access and use the additional functionality. In one exemplary
embodiment, the client program interfaces with the graphics
card, processor, driver, etc. of the computer running the game
in order to overlay information on the game screen/window
and process user interaction with the overlaid information. In
this manner, the client program can overlay information in
any game without requiring permission from the publisher of
the game and without modifying the game itself.
0033. The additional in-game functionality is provided
through one or more software modules, hereinafter referred to
as widgets. Each widget provides additional functionality that
can be accessed by the user, without requiring the user to
leave a game that the user is currently playing. Leaving the
game, for example, refers to exiting out of the game or chang
ing from a window? screen in which the game is running to a
different window or area (e.g., a desktop).
0034. An exemplary user interface 300 for use in the sys
tem 200 will be described with reference to FIGS. 3-17.
0035 A representation of a screen or display 302 of a
computer running a game (e.g., WORLD OF WARCRAFT,
which is a registered trademark of Blizzard Entertainment,
Inc.) is shown in FIG. 3. In one exemplary embodiment, the
visual output of the game (e.g., application 110) fills the entire
display 302. Accordingly, in describing the general inventive
concept, the visual output of the game is merely represented
by an “X” spanning the four corners of the display 302. A
portion of the display 302 is designated as a hot spot 304. In
one exemplary embodiment, the size of the hot spot 304 is
relatively small when compared to the overall size of the
display 302 of the computer. If the hotspot 304 is activated for
a predetermined period of time, an activation icon 306
appears on the game display 302, as shown in FIG. 4. In one
exemplary embodiment, the hotspot 304 is activated by hold
ing a mouse pointer within its borders.
0036. Once the activation icon 306 is overlaid onto the
display 302 of the game running on the computer, the user can
select the activation icon 306 to cause the user interface 300 to
be overlaid onto the display 302 of the game in place of the
activation icon 306, as shown in FIG. 5. In one exemplary
embodiment, the activation icon 306 is selected by double
clicking on it using an input device (e.g., a mouse).
0037. As seen in FIG. 5, the user interface 300 extends
from a lower right corner of the in-game display 302 and
includes a menu bar 308 with various (textual) menu choices
310. It will be appreciated that the user interface 300 can have
any shape or size and can be located anywhere on the in-game
display 302. Similarly, the menu choices 310 can be graphical
in addition to, or instead of textual. Furthermore, the user can

Jul. 10, 2008

configure preferences for the various widgets, such as a size
for the widget, a location (on the in-game display 302) to
place the widget, a transparency level of the widget, etc.
0038. Each menu choice 310 corresponds to a widget or a
sub-menu (not shown) with additional menu choices 310. The
user can select a desired one of the menu choices 310, for
example, by clicking on it using a mouse. It will be appreci
ated that other means of accessing the user interface 300
and/or selecting/activating a widget are encompassed by the
general inventive concept. For example, a hotkey (e.g., the
“C” key) can be associated with a particular widget (e.g., a
“CHAT widget), such that if the user presses the C key, the
CHAT widget is launched.
0039. If the user selects the “TUNES’ menu choice 310, a
corresponding “TUNES’ widget 312 is loaded. The
“TUNES’ widget 312 adds the in-game functionality of play
ing music from an external source (e.g., C.D., MP3 file)
within the game. As shown in FIG. 6, a “TUNES’ interface
314 of the “TUNES’ widget 312 is overlaid on the display
302 of the game and replaces the user interface 300. The
“TUNES’ interface 314 facilitates the selecting and playing
of the music from the external source.

0040. If the user selects the “THOTTBOT” menu choice
310, a corresponding “THOTTBOT” widget 316 is loaded.
The “THOTTBOT” widget 316 adds the in-game functional
ity of accessing a third-party repository of information
extracted from and/or relating to the WORLD OF WAR
CRAFT MMOG (see, www.thottbot.com) from within the
game. As shown in FIG. 7, a “THOTTBOT” interface 318 of
the “THOTTBOT” widget 316 is overlaid on the display 302
of the game and replaces the user interface 300. The
“THOTTBOT” interface 318 facilitates navigating the
THOTTBOT database, for example, inputting a query to be
used to obtain relevant information from the THOTTBOT
database. See FIGS. 8-10. In this manner, the user can lookup
the location of an item needed to complete a quest in the game
without leaving the game, even though the information on the
location of the item is stored in a remote database only acces
sible via the Internet.

0041 An electronic advertisement 320 is also shown over
laid onto the game display 302 in FIG. 7. In one exemplary
embodiment, Such advertisements will appear periodically
(when the client program is running on the computer) and
disappear after a predetermined period of time. As in the case
of a widget, the user can interact with the advertisement
without leaving the game.
0042. Thus, with the system 200, interactive ads can be
integrated into a game without modifying the game. The ads
can be presented in a manner that does not distract from the
game play experience. Such as by overlaying billboards with
ads next to a road on the game display 302 in a driving game.
The ads can be update periodically, whereas if they were
embedded in the game itself they could become stale as the
game ages. The ads overlaid on the game display 302 can be
selected based on game play achievements or actions and/or
external criteria (e.g., current date).
0043. If the user selects the “DIAGNOSTICS’ menu
choice 310, a corresponding “DIAGNOSTICS' widget 322 is
loaded. The “DIAGNOSTICS” widget 322 adds the in-game
functionality of accessing a repository of information
extracted from and/or relating to the computer on which the
game (and the client program) are running, from within the
game. See FIGS. 11-14. As shown in FIG. 11, a “memory”
interface 324 of the “DIAGNOSTICS” widget 322 is overlaid

US 2008/O1671 24 A1

on the display 302 of the game and replaces the user interface
300. The “memory” interface 324 provides details on the
memory of the computer (e.g., the total system memory, the
available system memory, the system cache and the used
system memory). As shown in FIG. 12, a “disks’ interface
326 of the “DIAGNOSTICS” widget 322 is overlaid on the
display 302 of the game and replaces the user interface 300.
The “disks’ interface 326 provides details on the disk-based
storage devices of the computer (e.g., total size, free space).
As shown in FIG. 13, a “processes' interface 328 of the
“DIAGNOSTICS” widget 322 is overlaid on the display 302
of the game and replaces the user interface 300. The “pro
cesses’ interface 328 provides details on the processes cur
rently running on the computer (e.g., the percentage of CPU
capacity being used by user processes and system processes).
A portion330 of the “processes’ interface 328 can be selected
by the user to show details 332 (e.g., names) of the processes
currently running on the computer, as shown in FIG. 14.
0044. If the user selects the “SERVERS’ menu choice
310, a corresponding “SERVERS' widget 334 is loaded. The
“SERVERS' widget 334 adds the in-game functionality of
obtaining a list of servers hosting sessions for one or more
different on-line games (e.g., WORLD OF WARCRAFT),
from within the game. As shown in FIG. 15, a “SERVERS'
interface 336 of the “SERVERS' widget 334 is overlaid on
the display 302 of the game and replaces the user interface
300. The “SERVERS’ interface 334 facilitates displaying
and filtering (e.g., by player style, user reputation) the list of
servers. Additionally, the user can use the "SERVERS’ inter
face 334 to select one of the servers (e.g., via a single mouse
click) in order to join the game being hosted by the selected
SeVe.

0045. If the user selects the “FRIENDS' menu choice 310,
a corresponding “FRIENDS' widget 338 is loaded. The
“FRIENDS' widget 338 adds the in-game functionality of
obtaining a list of users that have been marked as friends of
the user currently playing the game, from within the game. As
shown in FIG. 16, a “FRIENDS' interface 340 of the
“FRIENDS' widget 338 is overlaid on the display 302 of the
game and replaces the user interface 300. The “FRIENDS'
interface 340 facilitates displaying the list of friends (e.g., the
friends can be grouped by clans, etc.). Furthermore, clicking
on the name of a particular friend in the “FRIENDS' interface
340 may cause a “CHAT widget 342 to load, in a manner
similar to if the user had selected the “CHAT menu choice
31 O.

0046. The “CHAT widget 342 adds the in-game function
ality of establishing a chat session for exchanging messages
between the parties involved in the chat session, from within
the game. As shown in FIG.16, a “CHAT interface 344 of the
“CHAT widget 342 is overlaid on the display 302 of the
game and can be on the display 302 at the same time as the
“FRIENDS” interface 338. In one exemplary embodiment,
the “CHAT interface 344 can be positioned anywhere on the
display 302 by the user (e.g., by dragging with a mouse). The
“CHAT interface 344 facilitates the creation of messages to
be sent to other users and the display of messages received
from other users.

0047 FIG. 17 shows an “ITEMBAY widget 346that adds
the in-game functionality of establishing a connection to the
third-party ITEMBAY web site (www.itembay.com), from
within the game. The ITEMBAY web site allows players of
various MMOGs to exchange actual physical currency (e.g.,
U.S. dollars) for virtual items or currency used in the respec

Jul. 10, 2008

tive MMOG. As shown in FIG. 17, an “ITEMBAY' interface
348 of the “ITEMBAY' widget 346 is overlaid on the display
302 of the game. The “ITEMBAY interface 348 facilitates
use of the ITEMBAY services from within the game, and
shows the use of a non-English language.
0048. Other widgets can be used to achieve additional
in-game functionality. Furthermore, in one exemplary
embodiment, a software development kit (SDK) and/or an
application programming interface (API) will be made avail
able so that third-parties can create widgets to further extend
the additional in-game functionality provided by the client
program.

0049. As noted above, conventional techniques (e.g., as
shown in System 100) for performing video overlay in a game
Suffer from drawbacks that make Such techniques unsuitable
for use in the system 200 for adding in-game functionality.
Accordingly, the general inventive concept encompasses a
system and method for performing video overlay on top of an
application (e.g., a game) running under an operating System
of a computer. In one exemplary embodiment, a system 400
for performing video overlay on top of a game running under
an operating system of a computer includes a user layer 102.
a kernel layer 104 and a physical layer 106, while the oper
ating system is the WINDOWS operating system.
0050. Device drivers are software that allow higher-level
programs (e.g., the application 110) to interact with a com
puter hardware device (e.g., the display 108). Such as through
graphics libraries 112 in the user layer 102 and a graphics
subsystem 114 in the kernel layer 104 (see FIG. 18). In the
WINDOWS operating system, display device drivers do not
adhere to the same model that non-display device drivers
follow, i.e., the filter model. For example, file system driver
commands (e.g., in packets) are sent down a chain of filter
drivers, which are managed by the operating system, and
wherein each filter driver in the chain can complete, defer or
modify an I/O packet. In addition to and distinct from defer
ring a packet, a filter driver can pass the packet down to the
next filter driver in the chain.

0051. On the other hand, display device drivers are
designed according to a function pointer model. In WIN
DOWS, a GDI (graphics device interface) subsystem 114 is a
kernel-level subsystem that interacts directly with a display
device driver (e.g., display device driver 116) to represent
graphical objects and transmit them to output devices such as
a monitor (e.g., represented by the display 108 in FIG. 18).
Conversely, user-level services, such as those provided by the
graphics library 112, do not interact directly with a display
device driver. The GDI subsystem 114 is responsible for tasks
Such as drawing lines and curves, rendering fonts and han
dling palettes. In the function pointer model, the GDI sub
system 114 queries the initial entry point of the display device
driver image and the initial entry point is responsible for
returning a table of other entry points. The GDI subsystem
114 then proceeds to call these other entry points directly for
various purposes. Thus, in the function pointer model, there is
no opportunity to implement OS-managed chaining. Addi
tionally, in WINDOWS, display device drivers (e.g., display
device driver 116) have a very restricted set of system services
that they are allowed to use, which further complicates imple
mentation of a non-native video overlay system. Display
device drivers do not typically have access to standard WIN
DOWS NT (new technology) system services, such as regis
try services and driver communication methods, and have
only provisional access to memory mapping services. The NT

US 2008/O1671 24 A1

system services represent routines, which ran entirely in the
kernel mode. Further still, buffered I/O, which is the only
mode that is directly supported by the GDI subsystem 114,
requires the use of an escape code. Other modes, i.e., "direct’
and “neither,” are only indirectly available to display device
drivers.

0052. In view of the above, the system 400 includes a
supplanting display driver (SDD) 402 located in the kernel
layer 104 that supplants the existing display device driver
116, such that the display device driver 116 is subordinate to
the SDD 402. In one exemplary embodiment, a special sec
tion name (e.g., “.SDDN) is added in the image of the SDD
402 at compile time, wherein a dynamic linker can look for
the special section name. Driver images (e.g., according to a
Portable Executable (PE) file format as set out in the
Microsoft Portable Executable and Common Object File For
mat Specification, revision 8.0 dated May 16, 2006, the entire
disclosure of which is herein incorporated by reference) have
a specific format, wherein all code and data in the image is
stored in a number of sections. Each of the sections has a
name, an address, a length and page protection characteristics
that describe whether the section can be read, written and/or
executed once loaded by a loader service.
0053. Upon identifying the special section name, the
dynamic linker writes a vendor's display device driver name
(as a global variable) directly into the special section. The
WINDOWS Registry is modified to set the display device
driver to be the dynamically linked SDD image. The SDD
image refers to the SDD binary executable as it appears in
memory after having been loaded by the loader. For example,
the relevant registry keys in WINDOWS can include the
“Installed DisplayDrivers' multistring value of the HKEY
LOCAL MACHINE\SYSTEM\CurrentControlSet\
Control\Class\{4D36E968-E325-11CE-BFC1
08002BE10318}\0000 key. One of ordinary skill in the art
will appreciate that different keys might need to be adjusted
(e.g., any O of the HKEY_LOCAL
MACHINE\SYSTEMACurrentControlSet\
Control\Classi{4D36E968-E325-11CE-BFC1
08002BE10318}\nnnn keys). In order to determine which
key, in particular, must be modified, the “EnumnDisplayDe
vices’ function is called, and the “DeviceKey member of the
resulting DISPLAY DEVICE data structure is used to deter
mine the specific path to the device key that must be opened.
Thereafter, the “MatchingDeviceId' key is opened to extract
a four-digit number that when combined with the class path
provides the full device key to be modified.
0054 The SDD 402 operates by using a callback thunking
system, which gives the SDD 402 the opportunity to control
the behavior of the original/native graphics system (e.g.,
original display device driver 116) being Supplanted. A
thunking system is a system wherein function calls are for
warded directly to Some other system, without any required
inspection or processing of the contents of the function calls.
Thus, the thunking system allows the contents of the function
calls to be viewed, if desired, while dramatically improving
performance when the system is inactive. Once the GDI sub
system 114 loads the SDD 402 and calls an SDD entry point,
the SDD 402 loads the original vendor display device driver
116 (e.g., using a custom written Portable Executable (PE)
loader, written in compliance with the PE specification).
Assuming the role of the GDI subsystem 114, the SDD 402
records all entry points of the original display device driver

Jul. 10, 2008

116. In return, the SDD 402 reports a modified set of entry
points to the GDI subsystem 114.
0055. In order to implement video overlay services, the
SDD 402 can use the function groups listed below. For these
functions, the SDD 402 records the original entry points and
reports altered points to the GDI subsystem 114, thereby
creating a thunk, which as noted above is a function that
generally calls another function. Because it is not necessary to
monitor most other entry points, the SDD 402 simply reports
these entry points to the GDI subsystem 114 without modifi
cations.

0056. At runtime, the SDD402 monitors various functions
(see, e.g., the WINDOWS Driver Kit (WDK), RTM Build
6000.16386, released on Nov. 3, 2006, the entire disclosure of
which is herein incorporated by reference; see also the WDK
documentation accessed at http://www.microsoft.com/whdc/
DevTools/WDK/WDKdocs.mspx on Jan. 2, 2007, with a date
of last updating of Dec. 12, 2007, the entire disclosure of
which is herein incorporated by reference). The WDK details
all of the functions that a display device driver written for the
WINDOWS 2000/XP display driver model is expected to
implement. The functions monitored by the SDD 402 can
include: PDEV creation (wherein a PDEV is a logical repre
sentation of the physical device); PDEV enabling/disabling:
driver load/unload; Direct|Draw enable/disable requests
(wherein DirectIDraw is part of Microsoft's DirectX API and
is used to rendergraphics in applications); Direct3D context
creation/destruction (wherein Direct3D is part of the DirectX
API and is used to render three dimensional graphics in appli
cations); DirectX exclusive mode notifications (wherein
DirectX is a collection of APIs for handling tasks related to
multimedia, especially game programming and video, in
WINDOWS); surface creation within Direct3D; and all
Direct3D drawing operations.
0057. In order to display a video overlay, the SDD 402
monitors, alters, and injects new tokens into the DirectX
command stream. As documented by Microsoft in its WDK,
DirectX operates by encapsulating a series of commands in
predefined tokens and sending them to the video hardware
that executes the rendering operation in compliance with the
DirectX specification. For example, the SDD 402 uses mem
bers of the D3DHAL DP2COMMAND enumeration to
specify commands to DirectX's Direct3D subsystem. One or
more D3DHAL DP2COMMAND structures are parsed by
the Direct3D subsystem, wherein each structure specifies
either a primitive to draw or a state change to process.
0.058 A desired video overlay is drawn by creating a
Direct3D command stream in memory. Since DirectX allows
for a variety of rich graphics Scenes to be constructed, the
SDD402 is agile and can take into account the current state of
the video hardware before constructing a new stream to inject.
First, the stream constructed by the SDD 402 requires some
state transitions to be drawn properly. For example, the fol
lowing states should be properly set before video overlay
rendering starts: cull mode; Z-enable; alpha blending; Source
blending; destination blending; alpha testing and separate
alpha testing; Z-function; fog; vertex colors; clipping; light
ing (e.g., specular, ambient, diffuse); stencil; multi-sample
aliasing; Scissor testing; viewport; all matrix transformations;
flexible vertex format; vertex shaders; pixel shaders; and all
texture stage state information (see, e.g., the WDK). At the
end of the video overlay operation, the states of the video
hardware (i.e., the state recorded by the display device driver

US 2008/O1671 24 A1

116) must be restored to the previous state to avoid altering
the operations of other applications (e.g., the application 110)
in user mode.

0059. In order to inject additional command stream
tokens, the SDD 402 implements a command stream monitor
that interprets each token in accordance with the DirectX
specification (see, e.g., the DirectX SDK, version 9.21.1148
published on Oct. 26, 2007, the entire disclosure of which is
herein incorporated by reference before the tokens are sent to
the display device driver 116. The token stream includes
handles to vertex buffers, index buffers, n-dimensional tex
tures, and tokens that alter the state of the display device
driver 116. It is necessary to determine when to inject the
SDD-created overlay stream into the rendering sequence. The
SDD 402 is able to make this determination by detecting
when DirectX is finished rendering a scene of the application
110, and is about to start the rendering of a next scene of the
application 110. In a standard double buffered system, two or
more separate buffers are used in parallel, such that while a
first buffer is read a second buffer is written, and while the
second buffer is later read the first buffer can be written. Using
a double-buffered system, DirectX selects one of two or more
buffers for presenting a current scene (i.e., displaying the
contents of the buffer to the user in the form of pixel data on
the display device 108), while one or more of the unselected
buffers are used for rendering a next scene. When DirectX
selects one of the other buffers in the primary display chain,
the SDD 402 knows that the current scene is finished and that
it can render the overlay on top of the previously active buffer.
The system 400 waits for another member of the flipping
chain to become active, as opposed to simply waiting for the
selection of any other Surface for rendering, since Some appli
cations will use secondary contexts to render dynamic ele
ments of the application. A flipping chain is any ordered
sequence of buffers containing at least two buffers, in which
a front buffer is currently being presented and at least one
back buffer is being actively modified (e.g., for later presen
tation).
0060. In the system 400, the command stream monitor
also records all state transition information in a complete
record known as a state block, which is stored in the SDD 402
as a global variable. The state block is used to determine the
state of the display device driver 116 prior to rendering the
Video overlay command stream and to properly restore the
state of the display device driver 116 once video overlay
rendering for the current frame is complete.
0061 Since display device drivers are often designed with
low tolerance for error and since the SDD 402 supplants the
original display device driver 116 using a method that the
original display device driver 116 is unaware of small devia
tions can cause system failures. Accordingly, in one exem
plary embodiment of the system 400, the SDD 402 adheres
not only to the documented DirectX behaviors, but to undocu
mented behaviors as well. For example, during Surface cre
ation, the state of output fields (i.e., fields the display device
driver 116 is expected to fill in) in all structures passed to the
display device driver 116 is undefined according to the
DirectX specification; however, these states are frequently
default-initialized to values that can be determined diagnos
tically. Some display device drivers depend on these struc
tures being initialized this way and fail when they are not.
Consequently, the system 400 performs the default initializa
tion of the states.

Jul. 10, 2008

0062. In the system 400, the SDD 402 resides in the kernel
layer 104, while a core executable 404 and a user interface for
the SDD 406 reside in the user layer 102. The user interface
406 enables an application to interact with the SDD 402. The
system 400 can be implemented as a client program running
ona computer (e.g., the first computer 202) to provide the user
interface 300 that allows a user (e.g., the first user 204) to
access and use additional functionality, Such as the widgets
described above, from within an active game running on the
computer. Operation of the SDD 402, the core executable 404
and the user interface for the SDD 406 is transparent to the
application 110 (e.g., the active game).
0063. The above description of specific embodiments has
been given by way of example. From the disclosure given,
those skilled in the art will not only understand the general
inventive concept and its attendant advantages, but will also
find apparent various changes and modifications to the struc
tures and methods disclosed. For example, although exem
plary embodiments described herein refer to the WINDOWS
operating system, one of ordinary skill in the art will appre
ciate that the general inventive concept can be applied to other
operating systems. It is sought, therefore, to cover all Such
changes and modifications as fall within the spirit and scope
of the general inventive concept, as defined in the claims, and
equivalents thereof.

1. A system for overlaying image data, the system com
prising:

a first application running under an operating system;
a second application running under the operating System;
a first device driver located in a kernel of the operating

system;
a second device driver located in the kernel of the operating

system; and
a display device,
wherein the first application is operable to use the first

device driver to display a first image on the display
device; and

wherein the second application is operable to use the sec
ond device driver to display a second image within at
least a portion of a first image displayed on the display
device.

2. The system of claim 1, wherein the second device driver
is operable to modify a command stream being sent to the first
device driver by a graphics subsystem located in the kernel of
the operating system.

3. The system of claim 2, wherein the operating system is
a version of Microsoft Windows.

4. The system of 2, wherein the graphics Subsystem is
operable to interact directly with the first device driver.

5. The system of claim 1, wherein the first application is a
Video game.

6. The system of claim 5, wherein the first application is a
multiplayer online game.

7. The system of claim 1, wherein the second image is an
advertisement.

8. The system of claim 1, wherein the second application is
operable to add a function that is accessible from within the
first application without modifying the first application.

9. The system of claim 8, wherein the function is at least
one of a chat module for sending and receiving data over a
network; a music function for playing music from a source
other than the first application; an information function for
accessing information from a source other than the first appli
cation; a diagnostics function for accessing information on a

US 2008/O1671 24 A1

computer on which the first application is running; a server
function for displaying at least one server providing an on
line feature for the first application; a friends function for
displaying at least one user having been previously associated
with a user of the first application; and an e-commerce func
tion for accessing a sales or auction site.

10. The system of claim 8, wherein the first application and
the second application are installed on a first computer,

wherein a second computer is operable to exchange data
with the first computer over a network, and

wherein the data is associated with the function that is
accessible from within the first application.

11. A method of overlaying image data, the method com
prising:

using a first device driver located in a kernel of an operating
system to display a first image on a display device; and

using a second device driver located in the kernel of the
operating system to modify a command stream being
sent to the first device driver.

12. The method of claim 11, wherein the command stream
is being sent to the first device driver by a graphics Subsystem
located in the kernel of the operating system.

13. The method of claim 11, wherein the first device driver
displays a composite image on the display device based on the
modified command stream, and

wherein the composite image includes the first image and a
second image within at least a portion of the first image.

14. The method of claim 13, wherein the first image is
associated with a first application running under the operating
system and outside the kernel, and

wherein the second image is associated with a second
application running under the operating system and out
side the kernel.

15. The method of claim 14, wherein the first application is
a Video game.

16. The method of claim 14, further comprising using the
second application to add a function that is accessible from
within the first application without modifying the first appli
cation.

17. The method of claim 16, wherein the function is at least
one of a chat module for sending and receiving data over a
network; a music function for playing music from a source

Jul. 10, 2008

other than the first application; an information function for
accessing information from a source other than the first appli
cation; a diagnostics function for accessing information on a
computer on which the first application is running; a server
function for displaying at least one server providing an on
line feature for the first application; a friends function for
displaying at least one user having been previously associated
with a user of the first application; and an e-commerce func
tion for accessing a sales or auction site.

18. An article of manufacture comprising a computer-read
able medium tangibly embodying instructions readable by a
computer for performing a method of overlaying image data,
the method comprising:

using a first device driver located in a kernel of an operating
system to display a first image on a display device;

installing a second device driver in the kernel of the oper
ating System; and

using the second device driver to modify a command
stream being sent to the first device driver.

19. The article of manufacture of claim 18, wherein the
command stream is being sent to the first device driver by a
graphics Subsystem located in the kernel of the operating
system.

20. The article of manufacture of claim 18, wherein the first
device driver displays a composite image on the display
device based on the modified command stream, and

wherein the composite image includes the first image and a
second image within at least a portion of the first image.

21. The article of manufacture of claim 20, wherein the first
image is associated with a first application running under the
operating system and outside the kernel, and

wherein the second image is associated with a second
application running under the operating system and out
side the kernel.

22. The article of manufacture of claim 21, further com
prising using the second application to add a function that is
accessible from within the first application without modify
ing the first application.

c c c c c

