OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA t‘.

OPIC CIPO

PROPERTY OFFICE

(72) Jones, Colin, GB
(72) Dhaliwal, Mandeep Singh, GB
(72) Kennedy, Peter, GB

(12) (19) (CA) Brevet-Patent

(CANADIAN INTELLECTUAL

(11) (21) (C) 2, 187,925
86) 1995/04/19
87) 1995/11/02
45y 2000/04/25

(73) British Telecommunications public limited company, GB

51) Int.C1.° GO6F 9/44
(30) 1994/04/21 (84302863.9) EP

54) DISPOSITIF ET PROCEDE CONCERNANT UNE INTERFACE

54) INTERFACE DEVICE AND METHOD

]

TERMINAL

[omw |
| svsTEM|
| | TABLES

MIDDLEWARE |
APPL | | APPL | [APPL
sw || sw || sw

: .

(57) Un dispositit d’interface, utilisable dans un systeme
de gestion de données, ctablit une interface entre
plusieurs programmes d’application, dont chacun
necessite un message dependant d’un dispositif pour
effectuer une transaction, et un dispositif client capable
de demander qu’une transaction soit effectuce. Ce
dispositif d’interface recoit des messages, independants
d’un dispositif, provenant d’un dispositif client, chaque
message contenant un mot-cle, et 1l les traduit en
messages dépendant d 'un dispositif qui sont envoyes aux
programmes d application. Le message dépendant d un
dispositif revenant du programme d’application est
traduit par 1'interface en un message mdependant d un
dispositif avant d’étre envoye au dispositif client.

I*I Industrie Canada Industry Canada

CMW CONTROL DBMS

APPLICATION DBMS
IDMS OR DB2

MVS

MIDDLEWARE

IDMS BATCH

AFPLICATION
BATCH

(57) An mterface device, for use 1n a data management
system, interfaces between a plurality of application
programs, each requining a device dependent message to
run a transaction, and a client device capable of
requesting a transaction to be run. The interface device
receives device independent messages, from a client
device, each containing a keyword, and translates these
into device dependent messages which are sent to
application programs. The device dependent message
returned from the application program 1s translated by
the interface mnto a device independent message before
being sent to the client device.

® PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © :
GO6F 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/29440

2 November 1995 (02.11.95)

(21) International Application Number: PCT/GB95/00881

(22) International Filing Date: 19 April 1995 (19.04.95)

(30) Priority Data: | N o
84302863.0 21 April 1994 (21.04.94) EP
(34) Countries for which the regional or

international application was filed: AT et al.

(71) Applicant (for all designated States except US): BRITISH
TELECOMMUNICATIONS PUBLIC LIMITED COM-
PANY [GB/GB]; 81 Newgate Street, London EC1A 7A]
(GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JONES, Colin [GB/GB]:
57 Swaisland Road, Dartford, Kent DA1 3DF (GB).
DHALIWAL, Mandeep, Singh [GB/GB]; 107 Collinwood
Gardens, Ilford, Essex ID5 GAL (GB). KENNEDY, Peter
{GB/GB}; Factorfield Limited, 33 Lancet Lane, Loose,
Maidstone, Kent ME1S 9SA (GB).

(74) Agent: YENNADHIOU, Peter, BT Group Legal Services,
Intellectual Property Dept., 13th floor, 151 Gower Street,
London WCIE 6BA (GB).

(81) Designated States: AU, CA, JP, KR, SG, US, European patent
(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,

NL, PT, SE).
- 2187925

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendnients.

(54) Title: INTERFACE DEVICE AND METHOD

1
PC
FRONT-END

OBJECT RQST.\ \ OBJECT RESULT
DCS
Y -

CLIENT
ME
QBJECT
RUN DCS
EXTRACT DATA
RUN DIX
EXTRACT DATA
RUN DCA
EXTRACT DATA
END-OBJECT

(57) Abstract

25

DUMB |
TERMINAL

RUN BCS
RUN DIX
RUN DCA

L
DCS

E
| 8.
DIALOGUE MANAGER |

-

An interface device, for use in a data management system, interfaces between a plurality of application programs, each requiring
a device dependent message to run a transaction, and a client device capable of requesting a transaction to be run. The interface device
receives device independent messages, from a client device, each containing a keyword, and translates these into device dependent messages
which are sent to application programs. The device dependent message returned from the application program is translated by the interface
into a device independent message before being sent to the client device,

- Sl -

v emm [— g— TS . GPUP AU A S G D SEER Py — j— P ——— A —— aamn amn sammn aan snan o g - e el B e BB e B AR A el ey e . aa . . o o o

10

15

20

25

30

35

2187925

INTERFACE DEVICE AND METHOD

-1 -

The present invention relates to an interface device

for, and to a method for interfacing between one or more
application programs of a data management system, each

application program requiring a device dependent message to

run a transaction, and a client device capable of requesting
a transaction to be run.

Large computer systems represent a significant
financial investment for the companies which have developed
them. Often the cost of developing the software utilised by
these computer systems is far greater than the cost of the
hardware, and for this reason while the hardware is often
upgraded or replaced, the software continues to be used, and
1s often reused in other computer systems, for many years.
A large computer system, for example a system for accessing
a database, typically includes software in the form of a
numper of application programs, which reside on a central

mainframe computer, and many client devices, or terminals,

which are remote from the mainframe and which are employed by

users or the computer system to request information from the
database. The application programs perform a number of
functions, for example they may speclfy the dialogue with the
client device, access the database (typically via a database
management system) and apply certain business rules, e.q.
specifying that a customer appointment can only be made once
a customer order has been taken, that only certain products
are avallable, etc. There are generally a large number of
application programs, each of which performs a specific
transaction in relation to the data stored on the database,
for example accessing a particular account, placing an order,
giving details of equipment at specific locations, billing

enquiries, etc. The application programs on large computer

Systems may comprise millions of lines of software code, and
thus represent a significant investment. The application
programs are generally designed to be modular, and are often

reused for example with different databases.

SN

WO 95/29440 2 1 8 7 g 2 5 "

10

15

20

25

30

33

PCT/GB95/00881 i~

Many application programs written in the 1980s were
designed to be accessed by so called "dumb" terminals, and
thus were designed to receive, and to output, a device
dependent datastrean. A dumb terminal requires that the
information sent to it includes hardware controls which are
specific to the particular device employed as the dumb
terminal, and which specify the manner in which any
information sent to the dumb terminal is to be displayed.

With the advent of low cost personal computers (PC)
many users of large computer systems utilise a PC as the
client device to gain access to the mainframe computer. This
can be achieved by running software on the PC which emulates
a dumb terminal. Furthermore, users of PCs, or any other
intelligent client device, wish to use the intelligence of
their terminals to access, and manipulate the data stored by
the mainframe computer in a more flexible manner than 1is
possible with a dumb terminal.

A known technique for achieving this 1is "screen
scraping", also known as "face lifting". Screen scraping
techniques employ a dumb terminal emulator, but rather than
requiring interaction with the user, a further program is run
on the PC which automatically drives the dialogue with the
mainframe computer, via the dumb terminal emulator, without
requiring interaction with the user. Once the required data
from the mainframe has been received at the PC, the data can
be combined and displayed in any format chosen by the user,
rather than being restricted to the screen format dictated by
the mainframe computer. PC users are thus able to specify a
more modern, user friendly screen interface. Furthermore the
screen scraping software on the PC can be programd to acquire
data from a number of formatted dumb terminal screens output
by the mainframe computer, and to display this data on a
single screen. For example, if the computer system comprises
the customer database for a telephone operator, the telephone
number of a customer input to the screen scraping program oOn

the PC could be used to acquire a profile of the customer

i e. his address, the telephone equipment he has installed,

e g SR} A 4o A 1 4 = ke S e mas e ebieate sand

b e eate e S Ay VRO I 1 133 AR D I ke s oy el LAV -

_ WO 95/29440 2187925 PCT/GB95/00881

the date of his last bill, etc. Thus the PC user can decide

on new functionality that he requires from the large computer
system, and achieve this functionality, by programming screen
scraping software local to the PC, far more rapidly than the

5 new functionality could be achieved by reprogramming the
large application programs resident on the mainframe
computer. Such screen scraping software can be purchased,
for example from Attachmate Corporation (Attachmate Sales UK
Ltd, Attachmate House, 102 Markham Mews, Broad Street,

10 Wokingham, Berkshire, RGl1 1AH) who sell screen scraping
software products called “Extra!"‘and "Extra! for Windows".
Although screen scraping rapidly solves the PC users

immediate requirements, a number of severe problems for the
computer system as a whole are created. Since the screen

15 scraping software relies on having intimate knowledge of the
device dependent datastream output by the application
programs, 1.e. 1t needs to know precisely where particular
items of data appear in the formatted screens sent by the
application programs, any change which is made to the

20 application programs which affects their output will affect
the operation of the screen scraping software. Thus whenever

a development 1is made to an application program all the
screen scraping software on all the intelligent client
devices served by the mainframe computer will need to be

25 altered, at the same time. This severe configuration
management problem may mean that there is pressure from the

PC users for the application programs not to be improved or
updated, so as to become out of step with their screen
scraping facilities. This results in the front end PC

30 clients constraining development of the back end mainframe.
A further problem is created due to the ease with

which many transactions may be requested via screen scraping
software Dby the PC client of the mainframe application
programs. Since these transactions are run serially by the

35 PC client, the response time at the PC is adversely affected,
and the network traffic between the PC and the mainframe is

increased substantially. Furthermore, use of screen scraping

- 2187925

— 4 —

by a significant number of PC clients may cause degradation
in the performance of the mainframe computer, which was
desligned and tuned to deal with the work rates of a user

interacting with a dumb terminal client.

S According to a first aspect of the present invention
there 1s provided an interface device for interfacing
between one or more application programs of a data

management system, each application program requiring a
device dependent message to run a transaction, and a client
10 device capable of requesting a transaction to be run, the
interface device comprising: -
first input means for receiving a device independent
message containing a keyword from the client device,
first output means for sending a device dependent

15 message to an application program,

second 1nput means for receiving a device dependent
message from an application program,

second output means for sending a device independent
message to the client device,

20 memory means for storing keywords, data ldentifying the
transaction(s) to which each of the keywords relates, and
the device dependent messages required to run each of the
transactions, and

processing means for extracting the keyword(s) from a

25 message received by the first input means, accessing the
memory means to determine the device dependent message (s)
associated with the keyword(s), sending said device dependent
message(s) via the first output means to the application
program(s), extracting data from a message received by the

30 second 1nput means, and sending said data within a device
1ndependent message to the client device via the second
output means.

Thus, embodiments of the present invention, by
providing an interface device which facilitates the

35 translation of a device independent message from the client
device, to a device dependent message as expected by the

application program, and vice versa, allow the client device

WO 95/29440 271879 75 PCT/GB95/00881

10

15

20

25

30

35

to be isolated from the precise requirements of the
applications program.

A PC client making a request of a data management
System comprising an interface device according to the
present invention thus does not need to know, for example the
Screen co-ordinates regquired by the particular applicétion
pbrogram to run a particular transaction. The PC client
simply needs to ldentify the relevant transaction, and data
required, via the keyword sent iln a device independent

program in the same manner via the same keyword, so that as
improvements are made to application programs no changes are
required to the many PC clients.

more than one device dependent message within the memory
means of the interface device. This allows a single request
from a client device to cause the interface device to run a
number of transactions, and to return information from a
plurality of formatted screens output by the application
program(s) to the client device via a device independent
message. Thus compared to screen scraping techniques
multiple serial communications between the client device and
the application program(s) have been replaced by a single
communication. The response times experienced by a user at
the client device are thus greatly improved, and the network
traffic between the client device and the central computing
resource 1s greatly reduced.

Preferably a data management system comprising a

central computing resource having an interface device

A ST S i de' e e

10

15

20

25

30

35

.- 2187925

according to the present invention also comprises a dialogue
manager ror receiving requests for transactions from client
devices, which dialogue manager 1is able to distinguish

between device independent messages, and device dependent

messages, and to pass device independent messages to the
interface device. This allows the data management system to
support both dumb terminals communicating with the central
computing resource via device dependent datastreams, and
intelligent client devices communicating with the central
computing resource via device independent messages.

According to a second aspect of the present invention

there 1is provided a method for interfacing between one or
more application programs of a data management system, each
application program requiring a device dependent message to
run a transaction, and a client device, the method comprising
the steps of: -

1) receiving from the <client device a device
independent message containing a keyword,

11) comparing the keyword from the device independent
message with stored keywords, each of which is
associated with one or more stored device
dependent messages, to find a matching keyword,

111) sending the device dependent message or messages
assoclated with the stored matching keyword to
the application program(s),

1V) recelving from one or more application programs
a device dependent message, which contains data
retrieved as a result of a transaction,

V) extracting data in accordance to the keyword (s)
from the device dependent message, and

Vi) sending the extracted data within a device
independent message to the client device.

Embodiments of the present invention will now be

described, by way of example only, and with reference to the
accompanying figures, in which: -

Figure 1 is a schematic diagram of a data management

system according to the present invention:

-_,,H.“mmwm ah Beleliliy by, mwummm‘mqmmph VU PR (S e e, g LERCEEEL TN "“""""“""—‘"Wﬂmm-‘""" . * e . LI s n ""“""‘m‘*“w”‘M'““l"l“l“‘“*‘ﬂ‘“ﬁ. .'“.-** p—)

ggggg

10

15

20

25

30

33

~ W0 95/29440 21879 25 PCT/GB95/00881

Figure 2 is a schematic diagram showing in greater
detail the middleware components of the data management
system of Figure 1;

Figure 3 is a schematic diagram of the screen-related
static tables employed in a data management system according
to an embodiment of the present invention;

Figure 4 is a schematic diagram of an embodiment of
the present invention showing the relationship between the
components of the data management system; and

Figure 5 is a schematic diagram showing an example of
multiple transactions run on a data management system
according to an embodiment of the present invention, and
according to a prior art technigque.

The embodiment of the present invention to Dbe

includes an interface device, according to the present
invention, which in the present embodiment is termed MMBI

(middleware message based interface). The data management
system comprises hardware and software. The hardware
components are IBM 3090 series mainframes. Standard IBM

software is utilised for the operating system (MVS), and the
teleprocessing monitor (CICS), and the database management
system i1s IDMS, sold by Computer Associates of Computer
Associates House, 183-187 Bath Road, Slough, Berkshire, SL1
4AA. The IBM hardware and software components can be
purchased from IBM UK Ltd, PO BOX 41, North Harbour,
Portsmouth, PO6 3AU. The system furthermore comprises a number
of software modules collectively known as middleware.
Middleware is a term known in the software field to describe
a layer of software which is positioned between application
programs, which are written for the specific requirements of
the operator of the computer System, and the proprietary
software purchased by the operator of the computer systenmn.
A key role of middleware is to insulate the application
prOgrams from the demands of the teleprocessing monitor, 1i.e.
IBM's CICS. CICS is a complex piece-of software produced by
IBM which is regularly updated. By using middleware the

WO 95/29440 2] 8 7 9 2 5 PCT/GB95/00881

10

15

20

25

30

35

application programers need know very little about CICS,
since they can rely on the middleware progtramers to deal with
the complexities of interfacing with CICS, and to incorporate
any changes necessary due to new versions of CICS.
Middleware also allows many routine functions such as sign-
on, menu, validation and abends to be handled centrally
rather than being reproduced in each of the application
programs.

Figure 1 and 2 show schematic diagrams of the software
of the data management system.

All input from terminals 1 is passed, via MVS 2, to
CICS 3 which i1n turn passes it to middleware 4. Middleware
4 performs certain functions on the data, such as access
control and validation, before passing it on to the
appropriate application program 5. Data is returned to the
terminal back via middleware 4, CICS 3 and MVS 2.

An integral part of middleware 4 are middleware tables
13. These tables 13 hold reference data that describes the
configuration of the on-line systemn. While the system 1is
running these tables are held within the machine’s memory
which belongs to MVS (the MVS private storage area associated
with the CICS address space). The data for the tables 13 is
held in a middleware database. This data is then used to
build linear datasets (LDS) which are loaded into memory when
the system i1s started. The data is entered and maintained in
the middleware database by middleware ancillary software 7.

Most application programs S5 are controlled Dby
middleware. A few are allowed to run in the CICS environment
outside the control of middleware. In general application
programs 5 do not use the services provided'by CICS except
temporary storage gueues (TSQ) and program control.
Middleware is made up of a number of different components
which are shown in Figure 2.

A description, with reference to Figure 2, of each
middleware component follows.
Middleware Tables

Each of the middleware components 6 accesses one Or

. . . S . . ee e em g e [T PSS carvin by
b M P AR B A PR A AW Car . " e me mneaih e hhad A PN § el A A s BoBLeceet, = Tt ate "M"WTan-Wuwa—ﬂTWWﬂru A e ot

LTt

WO 95/29440 71 87 9 25 PCT/GB95/00881

10

15

20

25

30

335

more of the middleware tables 13. Using ancillary software
7, the system can be reconfigured by adding and changing
certain elements in the tables. Any changes made to the
tables do not immediately become effective. The tables are
loaded into the machine’s memory during system start-up and
thus changes do not become effective until the tables are
reloaded, i.e. when the LDSs are next rebuilt and refreshed
or the CICS system is restarted.

Dialogue Manager
Dialogue manager 8 is the main middleware component.

Each time a terminal sends data, dialogue manager 8 is
executed. Dialogue manager 8 controls the processing of the
input, calling the various middleware components and
application programs 5 as necessary. After the application
program 5 has finished processing the data, dialogue manager
8 takes control of processing any output messages.
Access Control

Access control 9 is the main middleware security
feature. Before the on-line System can be used the user must
‘sign on’. Once a user has ‘signed on’ access control
determines whether the user can access a particular
transaction or application according to:

1. The user profile their user ID is in.

2. The terminal group their terminal is in (note
that access control based on terminal group can
be configured off).

Menu Management

Middleware developed systems are menu driven. When a
user ‘signs on’, the primary menu is displayed. This menu is
built by menu management 10 and 1t oﬁly shows the
applications that the user is allowed to use. If the user
selects a particular application, menu management 10 builds
an application menu showing only the transactions, belonging
to the selected application, that the user can access.

Routing Process |
"Routing’ is a process 11 used in transaction

switching. Its function is to examine screen input data

PCT/GBY95/00881
WO 95/29440 2187975

10

15

20

25

30

33

- 10 -

(telephone number, account number, or address data), and
identify the system where the transaction should run with
that data. In order to do this it uses routing tables to
"look up’ the incoming data and associate it with a system.

There are five routing tables: -

1. Telephone
2. Account number
3. Postcode
4. Posttown
S. Locality

In addition, there is the county table which is not
used for routing but to supplement the data contained within
the posttown table for use with enhanced routing.
Validation

Validation 12 is a large part of the processing of any
terminal input. Within the middleware tables 13 there is a
set of tables that specify the basic validation that is to be
performed on every field on every screen. Before the
terminal 1input 1s passed to the application program 5,
validation 12 validates each field on the screen according to
the rules specified in the tables 13.

The types of validation that are performed are for
format, ranges and specific values. There are no validation
checks against the application database or field
interdependency checks. These are the responsibility of the
application programs 5.

If any of the fields fails the validation, the current
screen 1s redisplayed to the user with an appropriate error
message. The data is not passed to the application program
5. |
MMBI (middleware message-based interface) server

MMBI 14 allows an intelligent front-end system (e.q.
PC client) to invoke back-end system functions via self-
defining type/length/value (TLV) messages.

The MMBI server 14 logically acts as an agent between
the front-end client and dialogue manager 8 (which runs

standard screen-based business transaction). It allows one

Cure e e b o b S PRI SIS T raw p r.c e ¢ e s e u..-.-u'onyuwwm-v-T - v hwwﬂm”'w-u""‘ NI SeSAem BN end acWN See S

PCT/GB95/00881
WO 95/29440 2] 8 7 9 2 5

10

15

20

23

30

35

aw Mwwmmwl'mmuww
=t A A AR PN b 3 YN A S

-~ 11 -

or more transactions to be executed under the control of an
object script language. The MMBI 14 1introduces new
middleware systems tables 13, themselves supported by new
linear datasets.

Any middleware or business function can be executed
using a self-defining datastream message rather than the
classic CICS screen presentation. The message, for both
input and output, 1is in a type, length and value (TLV)

format.
The MMBI server 14 processes the message, controls

transaction execution (via requests to dialogue manager) and
finally returns the resulting output in a self defining
format.
Error messages

Every error message output on a user’s screen 1S
allocated a unique 1d. The text associated with each message
is stored 1in one o0f the middleware tables 13. When
middleware, e.g. validation, or an application program wishes
to display a message to the user they only supply the unique
id to dialogue manager. The message 1s displayed, Dby
dialogue manager 8, using the text in the middleware table.
Operator Interface

With the inherent complexity of middleware developed
systems, there is a need for sites to be able to monitor and
control the teleprocessing environment, an operator interface
15 is thus provided. With this interface 15 the user can
monitor all messages produced by the system and monitor and

contreol items such as: -

¢ Users signed on

¢ Terminals

¢ Printers

¢ Background schedulers

Message Service
Message service 16 1is used to pass data between

systems that need to communicate whilst performing
transaction switching. There are two sides to message

services: -

B At e-didos dfmplpnbbinirol Slumn MO S st AR, PP 4

WO 95/29440 72 87 9 7 5 PCT/GB95/00881

10

15

20

25

30

35

-~ 12 -

¢ Local message service (LMS) - the process used in the
user’s home system to send and receijive data to/from
the remote system.

¢ Remote message services (RMS) - the process used in
the remote system to receive ang send data to/from the
home system.

Systems Statistics (SUST) 17

Report Printing (RP) Subsystem
Though CICS provides the ability to use remote

printers, the standard facilities provided are not very
sophisticated. The report printing subsystem 18 allows an
application to generate a report into the middleware database
from which the printing function within middleware controls
the actual printing of the report.

dialogue manager 8.
Abend Control

As middleware provides its own environment it 1is
important that any failures do not cause the user to drop out
of that environment and into native CICS. This could
potentially give the user confusing results.

Abend control 19 takes control in the event of any
failure. It displays an abend screen giving relevant
information which the user can print and pass on to the
support staff. Once the user has processed the abend screen
the user may continue (exceptionally, the usef may be forced
off).

Background Scheduler

Within any system there are a number of functions that
need to be executed straight away, 1.e. as the result of
terminal input, but are fairly heavy users of resources. If
these functions are executed from a terminal the terminal

would be unusable for an unacceptable amount of time. The

WO 95/29440

10

15

20

25

30

33

2187925

PCT/GB95/00881
- 13 -

background scheduler 20 facilitates these functions. It
controls the functions as they execute in CICS background.
The scheduler 20 is controlled by the operator interface 15.

Generally a transaction running from a terminal
submits data to the background scheduler 20 for processing.
It is left up to each application to determine whether or not
the dat has been processed.

Batch Job Submission
The batch job submission part of middleware 21 allows

an application program 5 to submit a job to JES (Job Entry
subsystem) the wuser can then monitor the jobs progress
through the system. A typical use of this facility is for an
application transaction to submit a batch job to create a
report into the report printing subsystem 18. Once the user
has found the Jjob has finished, by using a middleware
transaction, the report can be browsed online using the
report printing subsystem 18.
Ancillary Software

The reference data that is loaded into the middleware
tables 13 is held in the middleware database. The ancillary
software transactions are used to create and maintain this
data.

Screen-Related Tables
Middleware relies on a large amount of reference data

to provide the required functions. This reference data
describes the components of the on-line system and certain
control information.

The data for the tables is held in the middleware
database. To reduce the overhead of accessing the data it is
loaded into the machine’s memory. There are two types of

tables residing 1in the MVS private storage area; static
tables (protected against update) and dynamic tables

(unprotected for update).
The tables are loaded as part of the CICS STARTUP

process, or during an inflight tables reload. The data is
loaded from linear datasets (LDS) into the MVS private

storage area. A Database Control Table (DBCT) for middleware

WO 95/29440 2] 8 7 9 2 5 PCT/GB95/00881

10

15

20

235

30

33

- 14 -

contains information about whether the particular LDS data is
static or dynamic.

Other tables are read from sequential files via CICS
transient data queues.

The address of each table loaded is stored in the CICS
CWA (Common Work Area). |

Once loaded, the static tables cannot are modified.
The details in the dvnamic tables can be, and are, modified
by the system but no new elements can be added. The
SIGNON_MESSAGE and BROADCAST tables are loaded with empty
records which are updated during the CICS run.

Static Tables
The static tables are split into several parts as

follows: -

¢ Screen-related

¢ Access-related

¢ Transaction switching-related
¢ Configuration-related

¢ MMBI -related

Screen-Related Tables

Validation Tables
One of the middleware functions is to perform basic

validation on all application screens. To do this middleware
needs to know the details of every application screen, 1i.e.
field locations, sizes and validation rules.

The screen details are generated into the middleware
database when a screen is created as part of the application
development. When the load module for a screen is sent out
to a site, the screen details are also sent. The details are
loaded into the site’s database as part of the configuration
management system.

The screen details are loaded into four tables as
shown in Figure 3.

The purpose of each table is as follows: -

Map Headers 22 -~ Contains the name of every screen
in the systemn. It is used to

find the field details for each screen

WO 95/29440

10

15

20

25

30

Map Fields 23

Validation Values Ids

Validation Values

New Maps/Program Tables

2187925 PCT/GB95/00881

- 15 -

Contains the definitions of each
field on every screen. It
defines the start position,
length and validation type of
each field. If the validation
typre 1s a range check it also
contains the 1lower and upper
limits of the range.

When a field is to be validated
against a specific value or list
of values the value or list 1is
assigned an ID. Any particular
ID can be reference by more than
one field. This table contains
all valid IDs.

For each wvalid ID in the
validation type table this table
contains the specific value or
list of values.

The new maps/programs table is
used by the tables load manager
during the inflight reload to
determine which new maps have
been introduced since the last
system startup. This 1list of
maps and their associated
programs 1s used to drive an
automatic CICS newcopy which is
synchronised with the
introduction of the new versions
of a map mask and any validation
table information.

The validation types tables is not used during normal

processing. Its purposes

1s to provide a 1link to the

35 validation details table when the tables are loaded. After
the table load the table is not used:

100 4o L] e byt e T ARG IO SN tr (i Ler] | Ll e A e FTI MR 45

LD b -V il AL EA Pt 2 R AN, Ak - i v ew 34 Wi

PCT/GB95/00881
WO 95/29440 2 ‘ 8 7 9 2 5

10

15

20

25

30

35

- 16 -

Operation of MMBI
To gain access to the MMBI the client only needs

normal terminal access to the middleware systen.

Once connected the client signs on by normal screen
scraping techniques from the middleware sign-on screen.

If immediate MMBI access 1is required then the
transaction identity ‘' MMBI’' is entered on the sign-on screen.
Otherwise the transaction can be used at any time during the
signed-on session.

Invoking this transaction identifies the client as an
MMBI device and the terminal session is switched from
formatted screens into free form text.

All subsequent communication is made using valid MMBI
messages. The client’s order of communication will always
be: -

Send request message

Wait for response

Process MMBI response

Send request message

Etc.

Within the allowed set of MMBI requests there is one
that the clients can use to switch back to formatted screen
mode when necessary. Once there, transaction ‘ MMBI’ would be
used to again switch into MMBI mode.

MMBI Objects
In addition to standard transactions, MMBI objects can

be executed.
An object allows the client to pre-define a group of

one or more transactions to be run- in sequence. The

definition is written using a MMBI script 'language. The

definitions of all objects are loaded into the object table

at startup and accessed from there whenever one is executed.
The language can define: -

¢ A sequence of transactions (with or without
parameters) to be run (EXEC command).

o Conditional logic based on resultant screen id (ON-

EVENT command).

.rm--.. -wwmwmmerm~w1AM#MMMmewTMMMﬁMMAMT*'- -

PCT/GB95/00881

,,,,,,, WO 95/29440 2‘ 87925

- 17 -

Conditional logic based on data values (IF command).

ExXtraction of certain data (EXTRACT command)
Once the object has completed execution, the response
message to the client only contains the data specified by the
5 EXTRACT commands. For example an object running 10
transactions may only return 5 data values out of the
possible hundreds available from the transactions.
¢ Setting values of data fields on screens and internal
variables (SET command).

10 MMBI Mapview Table

When receiving or sending a message in MMBI mode
middleware needs to know the details of all the application
screens currently supported by the MMBI facility. These
details include the field’s standard name, location and size.

15 For one screen the details are collective known as a mapview.

The mapview are generated into the middleware -atabase
when one of the MMBI supported screens is created or modified
as part of the application development. When the load module
for a screen is sent out to a site, the screen details are

20 also sent.

The screen details are loaded into two tables, with a
relationship similar to that of the map headers and map
fields tables of Figure 3.

The purpose of each table is as follows: -

25 Mapview Headers Contains the name of every MMBI
supported screen. It is used to find
the mapview field details for each
screen.

Mapview Field Table Contains the definitions of each field

30 on all the MMBI supporﬁed screens. It

defines the start position, length and

standard name (actually the numeric
identify of the name in the standard
name dictionary) of each field.

35 MMBI-Related Tables
The standard name dictionary table is used to verify

all MMBI messages.

- mm-

WO 95/29440 2 ‘l 8 7 9 2 5 PCT/GB95/00881

10

15

20

25

30

35

- 18 -

The object table is used to execute supported objects
when requested by the client. It is actually two tables, the
header and detail tables.

The contents of the tables are: -

Standard name dictionary Contains all the standard names
which are supported by MMBI.
Each entry contains a unique
numeric subscript used in both
the mapview table and the object
table to identify the name.

Object header table Contains all the objects which
are supported by MMBI. Each
entry contains one or more events
to be handled by the object.
Each event ©points into the
details table, defining the
object language statement(s) to

. be executed for that event.

Object detail table Contains all the statements
needed to service all the events
of all the objects in the header
table.

MMBI (Middleware Message-Based Interface) Server

The MMBI server 14 is invoked when a request for
function or data is made via the message-based interface to
middleware.

Communication across the interface is made by a self-
defining message using the type/length/value (TLV) notation.
The contents of the message allow any client process (e. g.
PC) to make requests to and receive data from the server
process (middleware system).

MMBI Message Format .

The key rule of the syntax for both input and output
1s that apart from the first five characters (MMBI and one
blank) the entire message 1is in TLV format, separated by

delimiters.
This implementation of a TLV format is: -

10

15

20

25

30

35

W0 9529440 7187975 PCT/GBY5/00881

tttttttt; 1111; vvvvvvvvy;
where tttttttt a meaningful name for the data

item (max 31 chars)
; the delimiter, separating all
message elements
1111 the actual length of data sent
(max 4 digits)
VVVVVVVY the data value itself (max 9999
chars)
The format of the message is: -
MMRBI 'comtrol-TVL';'control~TL?';...;CTL-END;1;*;'data-

. TLV' ;" data-TLV’' ;... ; END; 1; *;

where MMBI 1s a process identifier. The actual

TLV message starts on the sixth
_ character.
control-TLV l1s a series of control word values
that request and report on actions and
control the flow of data e.g. "RUN-
TRNSN; 3; DCA; "
data-TLV is a series of TLV items that define
the data. These can be key data
needed to run a MW process or the data
returned by a process.
END; 1; *; denotes the end of the message, both
client and server knows there is no
more data to process after this point.
Example of a message sent by a client pProcess
requesting transaction DCA to be run with account number
10000000.

M MBI RUN-TRNSN; 3; DCA; CTL -
ND; 1; *; PARM; 8; 10000000; END; 1; *;
MMBI Server MMBI Functions

The server’'s 14 invocation and operation will now be
described, with reference to Figure 4.
¢ When the client is in normal screen mode

@ The client process requests a switch from normal
screen operation to MMBI mode.

BT B AL e -

WO 95/29440

10

15

20

25

30

33

2187925

PCT/GB95/00881

- 20 -

All the context data for the client is available

tOo transactions running in MMBI mode. The server

14 1s invoked and it prepares the initial message

acknowledging that the switch is complete. The

middleware system is now operating in MMBI mode

for that user (client).

When the client is in MMBI mode dialogue manager 8

invokes

the server 14 and passes the data it has

received over to the server 14. The server 14 decodes

the message and operates thus: -

Either

¢ The
keys,
processes

client has requested one of the MMBI

supported functions (e.g. run process, function

overflow data etec.). When executing

a standard transaction or an MMBI

object can be requested.

1.

The data items sent in the message are

converted into a standard screen.

To do this the server uses
two of the MMBI tables.

a.

Standard Name Dictionary Table

This contains all the names for data
ltems supported by the server. Each
name in the input message is searched
for in the table.

Mapview Table

This contains all the maps (screens)
of all the transactions supported by
the server. For each map the numeric
identities for all of its standard
names are listed (collectively called
a ' mapview’).

A virtual screen (as expected by the
application program) is built using
the relationship between the message
elements and the positional

information contained in the mapview

PCT/GB95/00881

WO 95/29440
- 21 - 2187925
and standard name dictionary.
If an object was requested the server accesses
the third table, the object table, which contains
all the supported objects. For each object the
5 transaction to be executed, data to be extracted
and logic control within the object are listed.
2. The virtual screen is passed to-20 dialogue
manager 8 along with the transaction details,
function key data etc. '

10 3. Dialogue manager 8 then executes the underlying
application code just aé if it had been requested
by a normal screen user.

4. Once the transaction is complete (if an object
was requested steps 1, 2 and 3 above will be

15 repeated for each transaction) the virtual screen
(result) is passed to the server 14.

5. The output data is converted into the TLV format
and returned to the client.

Or

20 @ The client wants to be switched from MMBI mode to
normal screen operation.
All the context data for the client is available to
screen-mode processing. Depending on the request made
the server will either request dialogue manager 8 to

25 send the primary menu or initiate a transaction and

30

allow dialogue manager 8 to handle the screen output.

Example of MMBI Object
Figure 5 1is illustrative of how an MMBI object,

containing multiple transactions, would run a set of
transactions by employing a single request from a PC client
1, and a single response from the MMBI server 14. Also shown
in Figure 5 1is the manner in which a dumb terminal 25 would

- 1nvoke the same set 0of transactions. It can be seen that for

35

each transaction required a pair of device dependent messages
must be exchanged between the dumb terminal 25 and the

dialogue manager 8. =
A specific example of the device independent messages

W A e vl ———— sy by aliress s4SneTE

WO 95/29440 PCT/GB95/00881

10

15

20

25

30

35

2187925

- 22 -

exchanged between a PC client 1 and the MMBI server 14, when
the MMBI object CRSSOl1 is requested will now be given.

The object CRSS0l1 contains the transactions DCS
(Display Customer Summary), DCA (Display Customer Account),
DCRD (Display Customer Rental Details), DMU (Display Metered
Usage) and DIX (Display Invoice).

The PC client issues:

MMBI RUN-OBJECT; 6; CRSS01; TKN-ID; 6; 123456; CTL-
END; *; PARM; 10; 0375814881; END; 1; *.

The MMBI server returns:

MMBI OBJECT-RSLT; 6; CRSS01; TKN-ECHO; 6; 123456; STS; 2; OK; OBJECT-
VER; 4; 0001; CTL-END; 1; *; CUST-NM(01); 16; JONES & HILT PLC; CUST-
ADDR(01);14; 200 BAULK LANE; CUST-ADDR(02); 5; SULLY; CUST-
ADDR(03); 9; RINGSHIRE; CUST-ADDR(04); 8; RF19 3CH; TEL-NR; 12; 037
581 4881;RCNT-ORD;3;YES;CURR-FAULT;2;NO{COMPLAINT;2;NO;FU-
RTNG; 1; D; EXCH-NM; 5; SULLY; LN(01); 75; 1 A10006 C EXCL EXCH LINE
ON SOCKET

22.55;LN(02);1; *; LN(03); 75; 2 A10118 C STATESMAN TELE SC 4. 00
8.00;LN(04);1;*;DIS-BL-ID(OI);4;8003;DIS-BL-
DTE(OI);B;15/01/87;DIS-BL-AMT(01);7;$308.00;DIS-BL-
ID(OZ);4;QOOZ;DIS-BL-DTE(02);8;30/12/86;DIS-BL—

AMT(02);7;8137. 80; DIS-BL-ID(03);4;i001;DIS-BL-

DTE(OB);B;15/12/86;DIS-BL-AMT(03);07;$137.BO;END;I;*
In this example, standard screen scraping would
require eight message pairs = 24 seconds
Using MMBI this takes only one message pair
= approx 4 seconds typically
Updating
It can be seen that updating either the mainframe or

the PC client has been simplified by divorcing the physical
information - e.g. which transaction, what data items, where
on the screen image to find the data items - from the PC
application. The PC application simply calls an "object".
At the mainframe end, this physical location information is

required, and it must be updated should the location of items

WO 95/29440 2 18 792 5 PCT/GB95/00881

10

15

- 23 -

on screens change. A file - the "map view" - is produced for
screen changes put through the map generation process. This
provides the link between the "external" message element and
the "internal" (positionally dependant) application program
view. In this way, every screen change which is introduced
to the operational environment, is accompanied by it’s own,
new, "map view". This is accessed by the MMBI server 14 at
run time, and thus changes to screens are automatically
accommodated.

Although an interface device according to the present
invention has been described for use in interfacing between
a PC client and a mainframe computer system, it will bDe
appreciated that it is equally suitable for interfacing
between a mainframe client, or a client comprising for
example a UNIX server (with LAN based PCs), to a mainframe
computer system. Furthermore it will be appreciated that the
communications link between the client and the mainframe may
be serial, for example IBM 3270, or parallel, for example
LU6. 2.

MWM --------
eemrmmmme e be Akt fertmatp s he Taad tutm w o * . R M R R P L ey e v STTRAR v 5 Ve P W—

10

15

20

25

30

LR b e o i a T o T

2187929

-4 .
CLAIMS
1. An interface device for interfacing between one or

more application programs of a data management system, the
or each application program requiring a device dependent
message Lo run a transaction, and a client device capable
of requesting a transaction to be run, the interface device
comprising: -

First 1nput means for receiving a device independent
message contalning a keyword from the client device,

first output means for sending a device dependent
message to an application program,

second output means for sending a device independent
message to the client device.

memory means for storing keywords, data identifying
the transaction(s) to which each of the keywords relates,
and the device dependent messages reguired to run each of

the transaction, and

processing means for extracting the keyword(s) from a
message recelived by the first input means, accessing the

memory means to determine the device dependent message (s)

assoclated with the keyword(s), sending said device
dependent message(s) via the output means to the
application program(s), extracting data from a message

received by the second input means, and sending said data
within a device independent message to the client device
via the second output means.
2. An 1interface device as claimed in c¢laim 1 in
combination with: -

a central computing resource having one or more

application programs,

10

15

20

25

30

. 2187925

and one or more client devices linked to the central
computing resource via a communications link.
3. An 1nterface as claimed in c¢laim 2, wherein the
central computing resource further comprises a dialogue
manager for receiving requests for transactions from the or
each client device and for sending results of transactions

to the or each client device.

4 . An 1interface as claimed in claim 3, wherein the
dialogue manager is configured to pass any request from a
client device comprising a device independent message to
the interface device, and passes any requests from a client
comprising a device dependent message to the relevant
applications program.

5. An interface as claimed in any one of claims 2, 3, or
4, wherein keywords stored in the memory means of the
interface device relate to a plurality of device dependent
messages.

6 . An interface device as claimed in any one of claims 2
to 5, wherein each device independent message comprises
three parts separated by delimiters.

7 . An interface device as claimed in claim 6, wherein the
three parts of the message have the characteristics of
respectively Type, Length and Value.

8 . An interface device as claimed in any one of claims 2

to 7, wherein the device dependent message contains data,
and information relating to the display of the data on a
display device.

9. A method for 1interfacing between one or more
application programs of a data management system, the or

each application program requiring a device dependent

10

15

20

P
L

a Y.
L P
2

2187925

- 26 -

message to run a transaction, and a client device capable
of requesting a transaction to be run, the method
comprising the steps of:-

1) receiving from the client device a device
independent message containing a keyword,

11) comprising the keyword from the device
independent message with stored keywords, each of which is
associated with one or more stored device dependent
messages, to find a matching keyword,

111) sending the device dependent message or messages
assoclated with the stored matching keyword to the
application programs(s),

iv) receiving from one or more application programs

a device dependent message, which contains data retrieved

as a result of a transaction,

V) extracting data in accordance to the keyword(s)
from the device dependent message, and
vi) sending the extracted data within a device

independent message to the client device.

2187925

.wo 95/29440 PCT/GB95/00881
1/3
1

TeRNAL Fig.1.

| [omw |
|| SYSTEM| MVS
TABLES

CMW
CMW CONTROL DBMS MIDDLEWARE

IDMS BATCH
MIDDLEWARE |

APPLICATION DBMS APPLICATION

IDMS OR DB2 BATCH
APPL | | APPL | | APPL
sw || sw]! sw

5
Fig.3.

MAP jz MAP 5> VALDATION 2
HEADERS FIELDS — DETALS —
HEADER | FIELD | VALIDATION

DETAILS - DETAILS |
HEADER 1 | | VALIDATION
FIELD > DETALS |
DETAILS VALIDATION
DETAILS
VALIDATION
TYPES i

VALIDATION
TYPES

VALIDATION
. TYPES

VALIDATION
TYPES

VALIDATION
TYPES

SUBSTITUTE SHEET (RULE 26)

PCT/GB95/00881

2187925

. WO 95/29440

2/3

el

—
WYHOO0Hd

NOLLVYOI'lddV

lc

q0r
HO1vd

JOV4HILNI

9 HO1VHA40

Gl

JOIAH3S
JOVSSIN

9l

SA1avl
MWO

AHVMLH0S
AHVTIIONY
0¢
ANNOUD
HOva

ddAH3S JOHLNOD
IHAW SS300V

61

W31SAS
ANIHd 1SS

61

TOHLINOD
UNJgV

vi

SdOVSSIN
H04d4d3

¢

ININWIOVNVYIN

v
WYHOOHd
NOILVOIddV

Ll

553004Hd
ONILNOY

NNIN

|

| o_\.\

HADVNVIA JNOOTVIA

8

1NdlnNO TVYNINHEL

JdVMI1AAIN

SOID

SAW

AR

LNdN] TVNIWHEL

SUBSTITUTE SHEET (RULE 26)

2187975
.wo 95/29440 PCT/GBY5/00881

3/3

|
PC :
Fig.4.

W

CSS AND OTHER
MIDDLEWARE
BASED SYSTEMS

SWITCHING
MIDDLEWARE (LU6.2)

MB! -e1» DIALOGUE |
SERVER MANAGER i

MBI

KNOWLEDGE
BASE

MAP VIEWS
OBJECTS
DICTIONARY
MESSAGE

Fig.5.

25

RUN DCS
RUN DIX
RUN DCA

OBJECT RQST.\ \ OBJECT RESULT
DCS

DUMB |
FRONT-E ND; TERMINAL |
>

DCS

CLIENT
MESSAGE

OBJECT |
RUN DCS DIALOGUE MANAGER
EXTRACT DATA

RUN DIX
EXTRACT DATA
RUN DCA

EXTRACT DATA i
END-OBJECT |
| " DCA

SUBSTITUTE SHEET (RULE 26)

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings

