发明名称
用于控制炎症反应的系统和方法

摘要
一种用于在患者的内部组织部位处控制炎症反应的方法和系统使用了减压治疗装置。控制炎症反应可通过涉及处理炎症环境的多种方式实现。处理炎症环境包括移除或缓解促炎刺激物，例如流体，增强对于内部组织部位处或附近的组织的灌流或提供减压治疗。减压治疗装置被设置于内部组织部位处或附近，且流体地耦合到外部减压源。减压治疗装置提供邻近组织部位的减压并处理炎症环境。用于控制炎症反应的减压治疗装置可以是微创治疗装置。
1. 一种用于控制炎症反应的系统，用于在患者的内部组织部位处控制炎症反应，所述系统包括：

减压治疗装置，其用于部署成邻近内部组织部位，所述减压治疗装置包括微创治疗装置，且还包括：

封装的支柱构件，所述封装的支柱构件具有支柱歧管构件，所述支柱歧管构件包括第一支柱歧管构件和第二支柱歧管构件。

中心连接部位，所述中心连接部位由所述第一支柱歧管构件和所述第二支柱歧管构件的交叉形成，封装包封物，其形成有穿孔且包括包封所述第一支柱歧管构件，所述第二支柱歧管构件以及所述中心连接部位的外部层，且其中所述穿孔允许流体流入内部部分，和

连接接口，其耦合到所述封装的支柱构件且流体地耦合到所述支柱歧管构件；

密封构件，其用于布置在患者的表皮的一部分上，且可操作以形成内部组织部位上的气动密封；

外部减压源，其用于提供减压；以及

减压传送导管，其用于流体地耦合所述外部减压源和所述连接接口；

其中所述外部减压源、减压传送导管和减压治疗装置可操作以将减压从所述外部减压源提供到所述减压治疗装置，并缓解促炎刺激物。

2. 如权利要求1所述的用于控制炎症反应的系统，其中所述封装的支柱构件具有大于3.0的长宽比。

3. 如权利要求1所述的用于控制炎症反应的系统，其中所述封装的支柱构件具有大于4.0的长宽比。

4. 如权利要求1所述的用于控制炎症反应的系统，其中所述封装的支柱构件具有大于5.0的长宽比。

5. 如权利要求1所述的用于控制炎症反应的系统，其中所述第一支柱歧管构件和所述第二支柱歧管构件形成两个钝角和两个锐角。

6. 一种用于控制炎症反应的系统，用于在患者的内部组织部位处控制炎症反应，所述系统包括：

减压治疗装置，其用于部署成邻近内部组织部位，所述减压治疗装置包括微创治疗装置；

密封构件，其用于布置在患者的表皮的一部分上，且可操作以形成内部组织部位上的气动密封；

外部减压源，其用于提供减压；以及

减压传送导管，其用于流体地耦合所述外部减压源；

其中所述外部减压源、减压传送导管和减压治疗装置可操作以将减压从所述外部减压源提供到所述减压治疗装置，并缓解促炎刺激物；并且

其中所述减压治疗装置还包括：

多个封装的支柱构件，每个封装的支柱构件具有带支柱歧管构件的内部部分且形成有可操作以允许流体流入所述内部部分的穿孔，且每个封装的支柱构件具有第一端和第二端。

其中所述多个封装的支柱构件中的每个在所述第一端上具有连接接口；
多个连接导管, 每个连接导管具有第一端和第二端; 以及
接口导管, 其具有第一端和第二端, 所述接口导管的所述第一端耦合到所述减压传送
导管;
其中所述多个连接导管中的每个的所述第一端被耦合到所述接口导管的所述第二端;
并且
其中所述多个连接导管中的每个的所述第二端在所述连接接口处耦合到所述多个封
装的支柱构件。
用于控制炎症反应的系统和方法

[0001] 相关申请


[0003] 本发明一般涉及医疗系统，且更具体地，涉及用于控制患者炎症反应 (inflammatory response) 的系统和方法。

[0004] 背景

[0005] 一种类型的炎症反应是全身性炎症反应综合症 (SIRS)。SIRS 已被定义为对疾病（外伤、传染、烧伤，等）的严重全身性反应，该疾病引发由一组症状中的两个或更多个的存在所表明的急性炎症反应，该组症状包括异常增加或降低的体温、心率大于每分钟 90 次跳动、呼吸率大于每分钟 20 次、呼吸或动脉血中的二氧化碳浓度减小，以及白细胞数大大减少或增加或包括多于百分之十的未成熟中性白细胞。Merriam-Webster’s Medical Dictionary (Springfield, Mo. ; Merriam-Webster 公司，2006)，参见，“Systemic inflammatory response syndrome。”SIRS 是非特异性的，且可由局部缺血、炎症、外伤、感染或多种损伤的组合导致。除了记载的或推测的感染外，脓毒症是 SIRS 的子范畴，其可被定义为 SIRS 的出现。

[0006] 不论病因学如何，SIRS 通常在引起炎症或炎症级联反应中具有相同的病理生理特性，具有很小的差异。炎症级联反应是可能涉及体液和细胞反应、补体 (complement) 以及细胞因子级联反应的复杂过程。认为，促炎刺激物 (pro-inflammatory stimuli) 可直接与组织相互作用以促进 SIRS。未经检查的 SIRS 可能导致腹腔间隔室综合症 (ACS)、器官功能障碍、多器官功能障碍综合症 (MODS)、多器官衰竭 (MOF) 以及死亡。

[0007] 在很多情况下，如果 SIRS 足够严重，介入 (intervention) 变得必要。例如，如果 SIRS 导致或开始导致 ACS，则可使用手术减压。手术减压涉及剖腹术，在剖腹术中外科医生会制造从患者的胸骨到接近耻骨的前面的正中切口。然后腹部内容物被释放以扩展到腹腔之外。考虑到与这样的程序、增加的发病率和死亡率相关的长的住院期，这种类型的介入是高代价的，而结果是，由于介入的严重性，用剖腹术介入的决定常常被尽可能长地延迟。

[0008] 期望控制 SIRS 和其他类型的炎症反应。另外，通常期望尽可能快且尽可能成本有效地控制炎症反应。

[0009] 概述

[0010] 关于医疗系统和方法的问题由本文所描述的说明性实施方式的系统和方法来解决。依照一个说明性实施方式，用于在患者腹腔内控制全身性炎症反应的方法包括步骤：将治疗装置部署到患者的腹腔中；将外部压缩源流体地耦合到治疗装置以提供腹腔内的减压；将减压从外部压缩源提供到治疗装置；以及从腹腔移除促炎刺激物以控制全身性炎症反应。

[0011] 依照另一个说明性实施方式，用于在患者腹腔内控制全身性炎症反应的系统包括用于部署到患者的腹腔内的治疗装置。治疗装置可以是微创治疗装置
(minimally-invasive treatment device), 且还包括：封装的支柱构件，该封装的支柱构件具有支柱歧管构件；封装包封物，其形成有穿孔且包封支柱歧管构件；和连接接口，其耦合到封装的支柱构件且流体地耦合到支柱歧管构件。用于在患者腹腔内控制全身性炎症反应的系统还包括：密封构件，其用于布置在患者的表皮的一部分上且可操作以形成腹腔上的气动密封；外部减压源，其用于提供减压；以及减压传送导管，其用于流体地耦合减压源和连接接口。外部减压源、减压传送导管和治疗装置可操作以将减压从外部减压源提供到治疗装置，并且从腹腔去除促炎刺激流体。

[0012] 依照另一个说明性实施方式，用于在患者腹腔内控制全身性炎症反应的方法包括以下步骤：将减压治疗装置部署到患者腹腔内，将外腹减压源流体地耦合到减压治疗装置以提供腹腔内的减压。用于控制全身性炎症反应的方法还包括：将减压从外部减压源提供到减压治疗装置；以及将促炎刺激流体从腹腔移除，并在腹腔内提供减压治疗以控制全身性炎症反应。

[0013] 依照另一个说明性实施方式，本发明提供了一种用于控制炎症反应的方法，用于在患者的内部组织部位处控制炎症反应，该方法包括以下步骤：

[0014] 邻近内部组织部位部署减压治疗装置；
[0015] 将外部减压源流体地耦合到减压治疗装置，以邻近内部组织部位提供减压；
[0016] 将减压从外部减压源提供到减压治疗装置；以及
[0017] 在内部组织部位处理促炎环境，以控制炎症反应。

[0018] 依照另一个说明性实施方式，本发明提供了一种用于控制炎症反应的系统，用于在患者的内部组织部位处控制炎症反应，该系统包括：

[0019] 减压治疗装置，其用于部署成邻近内部组织部位，该减压治疗装置包括微创治疗装置；
[0020] 密封构件，其用于布置在患者的表皮的一部分上，且可操作以形成内部组织部位上的气动密封；
[0021] 外部减压源，其用于提供减压；
[0022] 减压传送导管，其用于流体地耦合减压源和连接接口；并且
[0023] 其中减压源、减压传送导管和减压治疗装置可操作以将减压从外部减压源提供到减压治疗装置，并缓解促炎刺激物。

[0024] 通过参考以下的附图和详细描述，说明性实施方式的其他目的、特征和优势将变得明显。

[0025] 附图简述
[0026] 图 1A 是用于在患者的腹腔内控制全身性炎症反应的系统的说明性实施方式的示意图，其中一部分被示出为块图；
[0027] 图 1B 是图 1A 的用于在患者的腹腔内控制全身性炎症反应的系统的封装的支柱构件 (encapsulated leg member) 的一细部；
[0028] 图 1C 是封装的支柱构件沿着图 1A 中的线 1C–1C 取的横向截面图；
[0029] 图 1D 是图 1A 的用于在患者的腹腔内控制全身性炎症反应的系统的一部分的截面图；
[0030] 图 2 是图 1A 的用于在患者的腹腔内控制全身性炎症反应的系统的一部分的示意
性透视图；
[0031] 图 3A 是用于控制全身性炎症反应的系统中使用的减压治疗装置的说明性实施方式的示意性平面图；
[0032] 图 3B 是图 3A 的减压治疗装置的说明性实施方式的沿着线 3B–3B 取的示意性截面图；
[0033] 图 4 是减压治疗装置的说明性实施方式的示意性平面图；
[0034] 图 5A 是减压治疗装置的说明性实施方式的示意性透视图；以及
[0035] 图 5B 是图 5A 的减压治疗装置的说明性实施方式的沿着平面 5B–5B 取的示意性截面图。
[0036] 说明性实施方式详述
[0037] 在说明性实施方式的以下详细描述中，参照形成其一部分的附图。这些实施方式被充分详细地描述以使本领域技术人员能够实践本发明，且应理解可使用其他的实施方式且对做出逻辑结构的、机械的、电的和化学的改变而不偏离本发明的精神或范围。为了避免对本领域技术人员能够实践本文所描述的实施方式来说不必要的细节，本描述可省略本领域技术人员已知的某些信息。因此，以下的详述不被认为具有限制性意义，且说明性实施方式的范围仅由所附的权利要求限定。
[0038] 本文的说明性的系统和装置允许在内部组织部位处控制包括全身性炎症反应和局部炎症反应的炎症反应。如本文中所使用的“炎症反应的控制”包括防止或缓解炎症反应。控制炎症反应可利用涉及处理炎症环境的许多方式来实现。处理炎症环境可包括移除或缓解促炎刺激物，例如流体，增强对内部组织部位处或邻近内部组织部位的组织的灌流，或提供减压治疗。除非另有说明，否则如本文所使用的，“或”不需要相互排他性。作为更加具体的通知性例子，控制炎症反应可通过将细胞因子、趋化因子和其他刺激物从内部组织部位附近移除来实现。该方法涉及提高清除率。作为另一个更加具体的、说明性的例子，控制炎症反应可通过提高局部组织的健康例如通过增强灌注以减少促炎信号发送从而切断级联的源并防止生理反应来实现。该方法涉及降低出现率。作为另一个更加具体的说明性的例子，控制炎症反应可通过增加抗炎信号和细胞因子的生成以充当促效剂（agonist）或对抗物或通常阻挡受体部位的促炎细胞因子来实现。这个例子将有助于恢复体内的平衡且钝化炎症生理反应，并且涉及中和反应。
[0039] 说明性的系统和装置可用于处理可以是任何人、动物或其他有机体的身体组织的内部组织部位。内部组织部位可以是组织空间，例如体腔，如腹腔。内部组织部位还可位于其他组织空间例如患者的臂、腿、颅骨或其他部位中。关于组织空间，可使用许多部署和移除说明性的系统和装置的方法。例如，说明性的系统和装置可以被：（1）穿过开放式伤口部署和移除，参见，例如图 1；（2）穿过开放式伤口部署，并穿过一个或多个装置切口（device incision）而移除，参见，例如图 3A–5B；或者（3）穿过一个或多个装置切口部署和移除，参见，例如图 3A–5B。
[0040] 现参考图 1A–1D，呈现了用于在内部组织部位 104 例如在患者的腹腔 103 中控制炎症反应例如全身性炎症反应的系统 100 的说明性实施方式。系统 100 包括治疗装置 102。用于在患者的腹腔 103 中控制炎症反应的系统 100 提供控制包括全身性炎症反应综合症的炎症反应的治疗，且可有助于防止腹腔间隔室综合症。虽然炎症反应可在腹内压没有升高
时发生，但在一个特定的非限制性的例子中，控制炎症反应可涉及完全防止腹腔103中的压力升高或至少将腹内压维持在15mmHg以下且优选地在13mmHg以下且甚至更优选地在10mmHg以下。正常的腹内压据说是在约0-5mmHg的范围内。腹内压可直接地通过将导管插入腹部隔室或间接地通过监测膀胱、胃或其他腔内的压力来监测。

【0041】系统100通过处理与患者的内部组织部位104相关联的炎症环境来控制炎症。处理炎症环境可包括前述的方法，包括移除促炎刺激物，增强内部组织部位104或其附近的组织的灌流，或提供减压治疗。在一个实施方式中，系统100可操作以移除实质上所有的炎症刺激物，其可包括移除腹腔103内的大部分流体，以便干扰炎症环境或改善局部组织健康。在另一个说明性实施方式中，系统100可操作以缓解炎症刺激物，以便干扰炎症环境或改善局部组织健康。使用部署在腹腔103内的治疗装置102以提供治疗可减少炎症刺激物，或介质（mediator），例如白细胞介素-6（IL-6）和TNF-α的如在腹膜导管流体中测量的水平。治疗装置102可用于在-1持续时间（T）内将作为促炎刺激物的流体从内部组织部位104附近移除的系统和方法。可以进行治疗的时间可在从半小时到50小时或更久的范围。通过处理呈炎环境（pro-inflammatory milieu），例如缓解促炎刺激物，炎症反应的发作被控制，例如被避免或推迟，且严重性可被减小。

【0042】治疗装置102实现腹部流体或促炎刺激物的移除，且具有很高的可靠性。系统100通常不会阻塞或以其他方式具有使用时的效率降低。由治疗装置102提供的减压治疗可为腹腔103中的组织提供更好的灌流，且这可说明对炎症反应的控制的另外的测量。除此之外，治疗装置102还有助于管理流体、减小水肿，以及降低发生于炎症反应的多器官功能障碍（MODS）的风险。治疗装置102可用于腹腔103内的应用中，以及用于治疗肠水肿。治疗装置102还可在实施局部剖腹术时使用。

【0043】所治疗的内部组织部位104可以是任何人、动物或其他有机体的身体组织。在这样的说明性的实施方式中，内部组织部位104包括体腔内的组织，且特别是腹腔103，且包括接近腹腔的腹部内容物或组织。在其他的说明性应用中，内部组织部位可位于患者的臂、腿、颅骨或其他部位的组织空间或间隔内。

【0044】如所示，治疗装置102被布置在患者的腹腔103内以帮助控制炎症反应—局部的或全身的。在这个实施方式中，治疗装置102通过开放的腹部进行部署和移除。治疗装置102包括由腹部内容物支撑的多个封装的支柱构件106，腹部内容物构成了一表面，多个封装的支柱构件106位于该表面上。多个封装的支柱构件106中的一个或多个可位于第一结肠旁沟（paracolic gutter）108内或位于第二结肠旁沟110内或位于第二结肠旁沟110。多个封装的支柱构件106被耦合到中心连接构件112，且多个封装的支柱构件106和中心连接构件112之间有流体相通。多个封装的支柱构件106和中心连接构件112两者都可形成有允许腹腔103中的流体通过的穿孔（fenestration）114、116、118、120。穿孔114、116、118、120可采取任何形式，例如圆孔、矩形开口、多边形，等，但在本说明性实施方式中被呈现为狭缝或线型切口。在可选的实施方式中一个或多个穿孔114、116、118、120可被省略。

【0045】歧管122或歧管垫向治疗装置102分配减压。可选地，连接接口（例如图3A中的连接接口220）可被耦合到治疗装置102以提供减压（并移除流体）。密封构件124提供腹腔103或腔体开口126上的气动密封。一个或多个皮肤密封装置（skin closure device）
可被置于患者的表皮 134 或腹壁（未示出）上。减压通过减压接口 128 传送到歧管 122，减压接口 128 撙合到减压传送导管 130。外部减压源 132 将减压传送到减压传送导管 130。如本文中所使用的，术语“耦合”包括通过独立的物体耦合和包括直接耦合。术语“耦合”还包括借助于每个部件由相同块的材料形成而成为相互连续的两个或多个部件。而且，术语“耦合”包括通过化学的例子通过化学键、机械的、热的或电的耦合。流体耦合意思是在指定的部分或位置之间相通。

减压可被应用到内部组织部位 104 以有助于促进促炎刺激物的从内部组织部位 104 的移除，促炎刺激物包括腹水、细胞因子、分泌物、血液（在外伤的情况下）或其他流体。如本文中所使用的，“减压”通常是指比受到治疗的组织部位的周围压力小的压力。在大多数情况下，该减压将小于患者位于的大气压力。可选地，减压可小于组织部位的静水压力。除非另有说明，本文所阐述的压力的值是计示压力。

歧管 122 定位成接近中心连接构件 112。歧管 122 可采用多种形式。如本文中所使用的术语“歧管”通常是指被提供来帮助向内部组织部位 104 施加减压、向内部组织部位 104 传送流体或从内部组织部位 104 移除流体的物理或结构。歧管 122 通常包括相互连接的多个流体通道或路径，通过高通过中心连接构件 112 提供到歧管 122 周围的内部组织部位 104 的流体的分布和通过中心连接构件 112 从歧管 122 周围的内部组织部位 104 移出的流体的分布。歧管 122 可以是生物相容的材料，其能够被放置成与内部组织部位 104 相接触且内部组织部位 104 分配减压。歧管 122 的例子可以包括但不限于，具有被布置以形成流体的结构元件的装置，多孔状泡沫体例如开孔泡沫、多孔组织收集、流体、凝胶和包括或固化以包括流体通道的泡沫。歧管 122 可以是多孔的且可由泡沫、纱布、毯垫或适合于特定的生物应用的任何其他材料制成。在一个实施方式中，歧管 122 是多孔泡沫且包括充当流体通道的多个相互连接的室或者孔。多孔泡沫可以是聚氨甲酸酯、开孔的网状泡沫，例如由 Texas，San Antonio 的 Kinetic Concepts 公司制造的 GranuFoam®材料。其他的实施方式可包括“闭孔”。在一些情况下，歧管 122 还可用于向内部组织部位 104 分配流体，例如药物、抗菌药、生长因子以及多种溶液。在歧管 122 内或歧管 122 上可包括其他层，例如吸收材料、芯吸材料（wicking material）、疏水材料和亲水材料。

密封构件 124 位于体腔开口 126 例如腹腔 103 上，并为开放腔减压系统 100 提供足以保持内部组织部位 104 处的减压的气动密封。密封构件 124 可以是用于将歧管 122 固定在中心连接构件 112 上的覆盖物。密封构件 124 可以是不可渗透的或可半渗透的。密封构件 124 能够在将密封构件 124 安装在体腔开口 126 上之后维持内部组织部位 104 处的减压。密封构件 124 可以是柔性可上消毒盖布（over-drape）或膜，柔性的上消毒盖布或膜由基于硅的复合物、丙烯酸物质（acrylic）、水凝胶或水凝胶形成的材料，或包括如向组织部位 104 应用减压所期望的不可渗透性或可渗透性特征的任何其它生物相容的材料形成。

密封构件 124 还可以包括附接装置 131 以将密封构件 124 固定到患者的表皮 134。附接装置 131 可采用多种形式；例如，粘性层 136 可沿着密封构件 124 的周边或密封构件 124 的任何部分定位，以直接或间接地为患者的表皮 134 提供气动密封。粘性层 136 还可被预先应用于密封构件 124 且覆盖有可在应用时被移除的可释放的背衬（backing）或构件（未示出）。

作为一个例子，减压接口 128 可以是端口或连接 138，其允许流体从歧管 122 到减
压力传送导管 130 的通过，反之亦然。例如，使用歧管 122 和治疗装置 102 从内部组织部位 104 收集的流体可通过接头 138 进入减压传送导管 130。在另一个实施方式中，开放腔减压系统 100 可省略接头 138，且减压传送导管 130 可被直接插入密封构件 124 和歧管 122。减压传送导管 130 可以是医疗导管或管子或用于传送减压和流体的任何其他工具。减压传送导管 130 可以是易于传送减压和移除流体的多腔构件。在一个实施方式中，减压传送导管 130 是两腔导管，其中一个腔用于减压和流体传送，而一个腔用于向压力传感器传送压力。

【0051】减压通过外部减压源 132 供应到减压传送导管 130。减压的宽范围可由外部减压源 132 产生或提供。在一个实施方式中，该范围包括 -50mmHg 到 -300mmHg 的范围，且在另一个实施方式中，该范围包括 -100mmHg 到 -200mmHg。在一个说明性的实施方式中，外部减压源 132 包括 -100mmHg, -125mmHg 和 -150mmHg 的预置选择器。外部减压源 132 还可包括多种警报，例如堵塞警报、溢流警报或电量低警报。外部减压源 132 可以是便携式的源、壁式源或用于腹腔的其他单元。外部减压源 132 可以选择性地传送恒定压力、间歇压力，或具有动态或设定模式的压力。通过减压传送导管 130 从腔移除的流体可以是每天差不多 5L 或更多。

【0052】许多不同的装置例如代表性装置 140 可被添加到减压传送导管 130 的中间部分 142。例如，代表性装置 140 可能是流体储存器，或罐收集构件、压力反馈装置、体积检测系统、血液检测系统、感染监测系统、过滤器、带有过滤器的端口、流动监测系统、温度监测系统等。可包括多个代表性装置 140。这些装置中的一些，例如流体收集构件，可与外部减压源 132 整体形成。例如，外部减压源 132 上的减压端口 144 可包括包含一个或多个过滤器的过滤器构件（未示出），且可包括防止液体进入外部减压源 132 的内部空间的疏水性过滤器。

【0053】现参考图 1D 和图 2，治疗装置 102 包括非粘合的消毒盖布 148。非粘合的消毒盖布 148 可由有助于防止组织粘合到非粘合的消毒盖布 148 的任何非粘合的膜材料形成。在一个实施方式中，非粘合的消毒盖布 148 由可透气的聚氨酯甲酸酯膜形成。非粘合的消毒盖布 148 形成有多个穿孔 150。多个穿孔 150 可采用任何形状，例如圆形开口、矩形开口、多边形形状的开口，等，但是在图 2 中被示出为狭缝或线型切口。

【0054】治疗装置 102 包括中心连接构件 112，多个封装的支柱构件 106 联合到中心连接构件 112。中心连接构件 112 除在支柱联合区域 152 之外由第一连接封装构件 186 和第二连接封装构件 192 封装，这允许中心连接元件 112 和多个封装的支柱构件 106 之间的流体相通。中心连接构件 112 具有允许连接歧管构件 154 和歧管 122 之间的流体相通的穿孔 118。多个封装的支柱构件 106 中的每个可形成有或没有多个限定的支柱模块，例如支柱模块 156。邻近的支柱模块 156 彼此流体地耦合且在其中间具有操纵区域 158。

【0055】再参考图 1A-1D，多个封装的支柱构件 106 中的每个具有支柱歧管构件 160，支柱歧管构件 160 可以是支柱模块 156 之间运行的单个歧管构件，或可以是构成支柱歧管构件 160 的歧管材料的分离部件。支柱歧管构件 160 被布置在封装的支柱构件 106 中的每个的内部部分 162 内。每个支柱歧管构件 160 具有第一侧 164 和第二面向组织的侧 166。形成有穿孔 114 的第一支柱封装构件 168 被布置在支柱歧管构件 160 的第一侧 164 上。类似地，具有穿孔 116 的第二支柱封装构件 170 被布置在支柱歧管构件 160 的第二面向组织的侧 166 上。第二支柱封装构件 170 可以是非粘合的消毒盖布 148 的一部分。如在图 1B 的
纵向截面中由箭头172所示，流体在邻近的支管模块156之间朝向中心连接构件112流动。如由箭头174所示，流体能够进入穿孔114和116并流入支管歧管构件160，且然后流向中心连接构件112，如由箭头172所示。

[0056] 参考图1C，封装的支管构件106的一部分的横向截面被呈现。如前，可看到支柱歧管构件160的第一侧164被覆盖有第一支管封装构件168，且支柱歧管构件160的第二面向组织的侧166被第二支管封装构件170覆盖，第二支管封装构件170在本例子中是非粘合的消毒盖布148的一部分。因此，在这个说明性的实施方式中，穿孔116可以是非粘合的消毒盖布148中的多个穿孔150中的一些。在这个说明性的实施方式中，支柱歧管构件160的外围边缘（Peripheral edge）176由第二支管封装构件168的一部分覆盖。外围边缘176包括第一横向边缘（Lateral edge）177和第二横向边缘179。第一支管封装构件168覆盖第一侧164和周围边缘176且延伸到非粘合的消毒盖布148的第一表面178上并形成延长部分180。延长部分180通过焊接（焊缝182）耦合到第二支管封装构件170。但是，第一支管封装构件168可使用任何已知的技术耦合到第二支管封装构件170，包括焊接（例如超声波焊接或RF焊接）、结合、粘合剂、胶合剂等。

[0057] 再参考图1D和图2，中心连接构件112包括封装在具有穿孔118的第一连接封装构件186内的连接歧管构件154。第一连接封装构件186被布置在连接歧管构件154的第一侧188上。第二连接封装构件192被布置在连接歧管构件154的第二面向组织的侧190上。第二连接封装构件192形成有穿孔120。第一连接封装构件186具有外周区域或边缘194，如图2所示。以类似的方式，第二连接封装构件192具有与外周边缘194对齐的外周区域或边缘（未明确示出）。第一连接封装构件186的外围边缘194被耦合到第二连接封装构件192的外围边缘，除在支柱耦合区域152之外，以允许多个封装的支柱构件106中的流体流入连接歧管构件154，如在图1D中由箭头196所示。流体还通过流经穿孔120来直接进入连接歧管构件154，如箭头198所示。歧管122被布置成接近第一连接封装构件186，且当向歧管122施加减压时，减压导致流体从连接歧管构件154流经穿孔118且流入歧管122，如箭头199所示。流体继续在减压接口128的方向流动，流体通过该减压接口128被移除到减压传送管130。

[0058] 参考图1A-1D和图2，在操作中，可首先通过切割到应有尺寸的方式制定治疗装置102的大小，来使用说明性的系统100。带有多个封装的支柱构件106的非粘合的消毒盖布148被穿过体腔开口126布置在腹腔内，且被贴着腹部内容物分布。这可包括将至少一个封装的支柱构件106置于第一结肠旁沟108或第二结肠旁沟110内或接近第一结肠旁沟108或第二结肠旁沟110。一旦治疗装置102被分布，歧管122被放置成邻近第一连接封装构件186的第一侧184。然后密封构件124可被应用在体腔开口126上以提供体腔开口126例如腹腔103上的气动密封。

[0059] 除了密封构件124之外，体腔开口126可使用机械封闭工具例如U形钉（staple）或使用减压封闭系统来进一步封闭或加固。可以采用多种方式施加密封构件124，但是依照一个说明性的实施方式，移除位于密封构件124的粘性层136上的可释放的背衬构件，且然后贴着患者的体腔开口126周围的表皮134放置密封构件124。然后将减压接口128例如接头138附接到密封构件124，以使得减压可由减压接口128传送通过密封构件124且传送到歧管122。减压传送管130流体地耦合到减压接口128且耦合到外部减压源132上的减
压两端口 144。

[0060] 外部减压源 132 被激活，且从向减压传送导管 130 提供减压，减压传送导管 130
将减压传送到减压接口 128 并进入岐管 122。岐管 122 分配减压并将流体从连接岐管构件
154 通过穿孔 118 抽出。连接岐管构件 154 将包括促炎刺激物的流体从腹腔 103 通过穿孔
120 抽出，且从多个封装的支柱构件 106 汲取流体，如箭头 196 所示意。来自腹腔 103 的流
体通过第一支柱封装构件 168 上的穿孔 114 和通过第二支柱封装构件 170 上的穿孔 116 流
入多个封装的支柱构件 106，且然后通过多个封装的支柱构件 106 流向连接岐管构件 154，
如箭头 172 所示意。然后流体流动通过岐管 122、减压接口 128，并进入减压传送导管 130。

[0061] 参考图 3A 和 3B，治疗装置 200 的另一个说明性实施方式被呈现。治 疗装置 200
是微创治疗装置，因为治疗装置 200 被调整大小且被配置为通过装置切口被引入，例如长
度在 0.3 厘米到 4.0 厘米的范围内的装置切口。在一些情况中，装置切口可以更大，例如长
度为 4.0 到 8.0 厘米或更多。治疗装置 200 可被形成为一体型设计以促进治疗装置 200 的
放置和从腹腔的移除。

[0062] 治疗装置 200 被形成为封装的支柱构件 205 且具有第一端 202 和第二端 204。封
装的支柱构件 205 的第一端 202 和第二端 204 尤其很好地适合于安置在腹腔的最部分中，
例如结肠旁沟。治疗装置 200 形成有被包封在封装包封物 (encapsulating envelope) 208
中的支柱歧管构件 206。支柱歧管构件 206 可以是任何的歧管材料，例如以上所提到用于歧
管 122 和支柱歧管构件 160 的那些。支柱歧管构件 206 可具有足够的硬度以有助于促进封
装的支柱构件 205 的安置。

[0063] 封装包封物 208 可由第一支柱封装构件 210 和第二支柱封装构件 212 形成。每个
支柱封装构件 210, 212 具有外围边缘 214。第一支柱封装构件 210 和第二支柱封装构件 212
的外围边缘 214 使用任何技术来耦合，该任何技术包括但不限于焊接（例如超声波焊接或
RF 焊接）、结合、粘合剂、胶合剂，等。在这个说明性的方式中，外围边缘 214 被示出为
通过焊缝 216 耦合。支柱封装构件 210 和 212 可由穿孔的膜或覆盖物或以上被提及用于密
封构件 124 的任何材料形成。

[0064] 多个穿孔 218 被形成在第一支柱封装构件 210 和第二支柱封装构件 212 上，且因
此穿孔 218 被形成在封装包封物 208 上。连接接口 220 或减压接口被耦合到封装包封物
208 且与支柱歧管构件 206 流体相通。减压传送导管 222 可被耦合到连接接口 220。减压
传送导管 222 具有第一端 224 和第二端 226。配件 228 可被置于第二端 226 上以用于快速
连接到外部减压源（例如图 1A 中的外部减压源 132）。减压传送导管 222 的第一端 224 流
体地耦合到连接接口 220。导管夹 230 可被置于减压传送导管 222 上。

[0065] 封装的支柱构件 205 具有长 (L) 232 和宽 (W) 234。对于图 3A 中示出的治疗装置
200，在说明性的实施方式中，长宽比 (aspect ratio) (L/W) 可以在 1.5 到 6.0 的范围内。形
状的长宽比是该形状的较长的尺寸与其较 短的尺寸的比。其可应用于三维形状的两个特
征尺寸，例如最长轴与最短轴的比，或者用于仅用两个测量值例如杆的长和直径描述的对
称物体。圆环的长宽比是长轴 R 与短轴 r 的比。对于实质上平的支柱构件，例如图 3A 中示
出的治疗装置 200，长宽比是 L/W 比。

[0066] 压力传感器 238 可被包括在治疗装置 200 中或可选地附接到治疗装置 200。传感
器引线 240 可被耦合到压力传感器 238 且可在支柱歧管构件 206 内或沿着支柱歧管构件
206 延伸到连接接口 220，且可在减压传送导管 222 内或沿着减压传送导管 222 延伸到患者外部的位置，在该位置传感器引线 240 可被耦合到仪器以提供对于腹腔内的如由压力传感器 238 所受到的压力的显示。

【0067】现将描述治疗装置 200 的使用。治疗装置 200 可穿过开放腹部（见图 1A）或者经由皮肤地穿过患者的表皮（见图 1A 中的表皮 134）来部署。治疗装置 200 的使用类似于本文所描述的其他装置。无论使用套管穿过装置切口还是穿过开口的腹部应用，健康服务提供者都将治疗装置 200 置于腹腔内，且优选地第一端 202 被置于腹腔内容物上，且可被放置成邻近结肠肠沟，且类似地，第二端 204 被置于腹部内容物上且优选地在结肠旁沟处。减压传送导管 222 从腹腔内延伸到腹腔外部的位置，且被耦合到外部减压源，例如图 1A 中的外部减压源 132。装置切口可被密封（例如，通过密封构件，如图 1A 中的密封构件 124）。减压通过减压传送导管 222 传送到连接接口 220。

【0068】连接接口 220 流体地耦合到支柱歧管构件 206 且将减压传送到支柱歧管构件 206。因此，流体被吸取到支柱歧管构件 206 中，被传送到连接接口 220，且被传送到减压传送导管 222 上。减压传送导管 222 将流体传送到腹腔外部的位置，以用于存储、处理或治疗。移除的流体包含腹水、细胞因子和来自腹腔的包括促炎刺激物的其他流体。当流体从腹腔移出时，炎症反应被控制。

【0069】与治疗装置 200 相关联的压力传感器 238 可使用传感器引线 240 耦合到用于测定腹腔内压力的装置。腹腔内的压力可被监测以确定是否应部署另外的治疗装置 200 或者其他的介入是否必要。使用治疗装置 200 进行的 促炎刺激物的移除和腹腔内的减压治疗可持续范围在从 0.5 小时到多于 40 小时的时间段 (T)。

【0070】一旦健康服务提供者判定利用治疗装置 200 的治疗的需要结束，作为微创治疗装置的治疗装置 200 可被穿过装置切口移除。通过在减压传送导管 222 上施力的方式将治疗装置 200 穿过装置切口移除。一旦治疗装置 200 被从装置切口移除，装置切口可通过任何已知的技术封闭，例如通过缝合、结合、缝扎、U 形钉等，或被允许自然愈合。图 4 中的治疗装置 300 的使用类似于治疗装置 200 的使用，但是提供了用单个装置进行治疗的更大区域。

【0071】现参考图 4。治疗装置 300 的另一个说明性的实施方式被呈现。治疗装置 300 也是微创治疗装置，因为治疗装置 300 可被穿过装置切口部署和移除，例如长度在 0.3 厘米到 4.0 厘米范围内的装置切口。治疗装置 300 形成有一支柱歧管构件 302 和第二支柱歧管构件 304。第一支柱歧管构件 302 和第二支柱歧管构件 304 交叉以形成中心连接部位 305。第一支柱歧管构件 302 和第二支柱歧管构件 304 可由一整块歧管构件材料（参见，例如以上关于歧管 122 所提到的歧管材料）形成，或两块歧管材料可通过任何技术例如胶粘来耦合。而且，治疗装置 300 可以是整体设计，以促进其部署和移除。

【0072】第一支柱歧管构件和第二支柱歧管构件 302 和 304 可被封装在可形成有穿孔 308 的封装包封物 306 内。封装包封物 306 可利用膜或覆盖物形成，例如关于图 1A 中的密封构件 124 所提到的材料。第一支柱歧管构件 302 和第二支柱歧管构件 304 可交叉以形成角，其可采取多种尺寸中的任何一种。换句话说，治疗装置 300 可形成“X”形状。在示出的实施方式中，角包括两个钝角 310 和两个锐角 312。在封装包封物 306 内的第一支柱歧管构件 302 和第二支柱歧管构件 304 的端促进腹腔内多个位置中的流体收集。

【0073】连接接口 314 可被耦合到中心连接部位 305 且流体地耦合到第一支柱歧管构件。
302 和第二支柱肢管构件 304。连接接口 314 到中心连接部位 305 的耦合以及减压传送导管 320 到连接接口 314 的耦合允许通过初始地在减压传送导管 320 上施力的方式，将治疗装置 300 穿过装置切口移除，例如长度在 0.3 厘米到 4.0 厘米的范围的装置切口。

【0074】 封装包封物 306 可利用第一封装构件 316 和第二封装构件（第一支柱肢管构件 302 和第二支柱肢管构件 304 的相对侧）形成。第一封装构件 316 和第二封装构件形成围绕和覆盖第一支柱肢管构件 302 和第二支柱肢管构件 304 的外层。第一封装构件 316 和第二封装构件可使用任何已知的技术例如前述的那种技术在外周部分 318 或外周边缘处耦合。在所示出的实施方式中，RF 焊缝 322 被用于耦合第一封装构件 316 和第二封装构件的外周部分 318。减压传送导管 320 可流体地耦合到连接接口 314 和外部的减压源（例如图 1A 中的外部减压源 132）。

【0075】参考图 5A 和 5B，治疗装置 400 的另一个说明性的实施方式被呈现。治疗装置 400 包括多个封装的支柱构件 402。每个封装支柱构件 402 具有第一端 404 和第二端 406。每个封装的支柱构件 402 可被置于腹腔中的不同位置，例如结肠旁沟内或附近、肝的后面等。每个封装的支柱构件 402 具有形成有穿孔 410 的外壁层 408。外壁层 408 形成封装包封物 412，封装包封物 412 限定了包括支柱肢管构件 416 的内部空间 414。外壁层 408 可由例如关于密封构件 124 所提到的那种的膜或覆盖物形成。

【0076】在每个封装的支柱构件 402 的第一端 404 上是连接接口 418。多个连接导管 420 以一对一的方式被耦合到连接接口 418。每个连接导管 420 具有第一端 422 和第二端 424。连接导管 420 的第二端 424 被耦合到相关的封装的支柱构件 402 的连接接口 418。第一连接导管 420 的第一端 422 被耦合到接收导管 426。接收导管 426 具有第一端 428 和第二端 430。每个接收导管 426 的第二端 430 被耦合到连接导管 420 中的一个的第二端 422。接收导管 426 的第一端 428 被耦合到减压传送导管（未示出）或直接耦合到外部减压源。在图 5A 中示出的实施方式中，多个封装的支柱构件 402 包括第一封装的支柱构件 432 和第二封装的支柱构件 434。应理解可按照具体需要增加任意数量的另外的封装的支柱构件。

【0077】现将描述治疗装置 400 的使用。治疗装置 400 可穿过开口的腹部或使用套针经由皮肤地安装。外科医生可制造装置切口，并将单个封装的支柱构件 402，例如第一封装的支柱构件 432 连同其连接导管 420，插入到患者的腹腔内。外科医生可视情况制造其他的装置切口并插入带有其相关的连接导管 420 的其他封装的支柱构件 402。

【0078】当期望数量的封装的支柱构件 402 已被置于腹腔内，且其连接导管 420 延伸通过装置切口时，连接导管 420 的第一端 422 可被耦合到接头 438。接头 438 连接到接收导管 426。接收导管 426 可被耦合到外部减压源，例如图 1A 中的外部减压源 132。然后可开始使用一个或多个治疗装置 400 的治疗。

【0079】使用治疗装置 400 的治疗可被执行一期望的时间段 (T)。当终止治疗并期望移除治疗装置 400 时，接头 438 被移除以使多个连接导管 420 仍保持从最初从患者延伸出的状态。然后每个连接导管 420 可被拉动，以从其对应的装置切口移除相关的封装的支柱构件 402。应意识到通过治疗装置 400，任何数量的封装的支柱构件 402 可被使用，而不需要用于安装或移除的开口的腹部。

【0080】关于在腹腔的背景下可使用微创技术来部署的说明性的系统和装置，与剖腹术相
比，介入可较早地发生。这实际上可以发生，因为外科医生可更有可能在剖腹术更早的管理阶段实施微创治疗装置的使用，因为微创治疗装置的使用不涉及如很多剖腹术的情况中的30厘米或更长的切口。通过为外科医生提供在伤后的较早阶段使用一个或多个微创装置来介人的机会，腹内脏被暴露于允许炎症刺激物持续直到减压（decompression）时的逐步有害的影响的时间可能被相当大地减少，且因此实际上减少了疾病的严重性和程度。

虽然说明性的实施方式和方法优势已在某些说明性的非限制性的实施方式的上下文中被公开，但是应理解可作出各种改变、替代、交换和变更，而不偏离本发明如由所附权利要求限定的范围。应理解到，关于任何一个实施方式所描述的任何特征也可应用于任何其他的实施方式。
图 1B
图 1C
图 2