0O 02/50666 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 June 2002 (27.06.2002)

PCT

(10) International Publication Number

WO 02/50666 A2

(51) International Patent Classification’: GO6F 9/32

(21) International Application Number: PCT/US01/50506

(22) International Filing Date:
20 December 2001 (20.12.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/745,104 20 December 2000 (20.12.2000) US

(71) Applicants: INTEL CORPORATION [US/US]; 2200
Mission College Boulevard, Santa Clara, CA 95052 (US).
ANALOG DEVICES, INC. [US/US]; One Technology
Way, P.O. Box 9106, Norwood, MA 02062-9106 (US).

(72) Inventors: INOUE, Ryo; 10521 Redmond Road, Austin,
TX 78739 (US). SINGH, Ravi, P.; 12349 Metric Boule-
vard, #3829, Austin, TX 78758 (US). ROTH, Charles,
P.; 13305 Tichester Court, Austin, TX 78729 (US).
OVERKAMP, Gregory, A.; P.O. Box 163442, Austin,
TX 78716 (US).

(74) Agent: HARRIS, Scott, C.; Fish & Richardson PC, 4350

La Jolla Village Drive, Suite 500, San Diego, CA 92122

(US).

(81) Designated States (national): CN, JP, KR, SG.
Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: RESOURCE EFFICIENT HARDWARE LOOPS

2
N
. 3
CONTROL
cangL UNIT SIGNALS PIPEI‘.IINES
HARDWARE
LOOP UNIT |« -
z
_ _

(57) Abstract: In one embodiment, a programmable processor is adapted to support hardware loops. The processor may include
hardware such as a first set of registers, a second set registers, a first pipeline, and a second pipeline. Furthermore, the processor may
include a control unit adapted to efficiently implement the hardware when performing a hardware loop.

10

15

20

WO 02/50666 PCT/US01/50506

RESOURCE EFFICIENT HARDWARE LOOPS

BACKGROUND

In designing a programmable processor, such as a
digital signal processing (DSP) system, two competing
design goals are processing speed and power consumptién.
Conventional processors include a variety of hardware
designed to increase the speed at which software
instructions are executed. The additional hardware,
however, typically increases the power consumption of the
processor.

One technique for increasing the speed of a
programmable processor is a “hardware loop,” which may be
dedicated hardware designed to expedite the execution of
software instructions within a loop construct. Hardware
loops may reduce the number of clock cycles used to execute
a software loop by caching the instructions in local
registers, thereby reducing the need to fetch the same
instruction from a memory device or instruction cache a

plurality of times.

WO 02/50666 PCT/US01/50506

DESCRIPTION OF DRAWINGS

Figure 1 is a block diagram illustrating an example of
a programmable processor adapted according to an embodiment
of the invention.

5 Figure 2 is a block diagram illustrating a pipeline in
accordance with an embodiment of the invention.

Figure 3 is flow diagram illustrating an example
process of loading early registers in accordance with an
embodiment of the invention.

10 Figure 4 is a block diagram illustrating the efficient
use of one or more pipelines in accordance with an
embodiment of the invention.

Figure 5 is a flow diagram illustrating one example
use of a loop setup instruction to determine early register

15 values in accordance with an embodiment of the invention.

Figure 6 is a circuit block diagram illustrating one
embodiment of a hardware loop unit.

Figure 7 is a flow diagram illustrating the reuse of
hardware in accordance with an embodiment of the invention.

20 DESCRIPTION

FIG. 1 is a block diagram illustrating a programmable

processor 2 arranged to support efficient hardware loops in

10

15

20

WO 02/50666 PCT/US01/50506

accordance with an embodiment of the invention. Processor
2 may include a control unit 6 that sends control signals
to pipelines 4. Control unit 6 may include hardware loop
unit 8 that may facilitate fast hardware loops without
significantly increasing power consumption of processor 2.

In order to support hardware loops, a processor 2 may
support a loop setup instruction that initializes hardware,
such as a hardware loop unit 7, by setting entry and exit
conditions for the loop. Entry and exit conditions may be
defined by loop conditions: top, bottom and count. The top
condition may define a first instruction (or top) of the
loop. The bottom condition may define a last instruction
(or bottom) of the loop. And the count condition may
define a number of iterations of the loop.

Entry of a hardware loop may occur at the first “top
match.” A top match may occur when a program counter (PC)
points to the top instruction of the loop. Exit of the
hardware loop may occur at the last “bottom match,” which
may occur when the PC points to the bottom instruction of a
loop.

By initializing the count at the first top match and
decrementing the count at each bottom match, the hardware

may keep track of when it has encountered the last bottom

10

15

20

WO 02/50666 PCT/US01/50506

match. In this manner, the loop conditions top, bottom and
count may define the entry and exit conditions of the
hardware loop.

Processor 2 may include one or more pipelines 4 and a
control unit 6. By way of example, the pipelines 4 may
include one or more system pipelines, one or more data
address generation pipelines, one or more execution unit
pipelines, and one or more additional pipelines as may be
desired for a particular implementation. Control unit 6
may control the flow of instructions and/or data through
the pipelines 4 during a clock cycle. For example, during
the processing of an instruction, control unit 6 may direct
the various components of the pipelines to decode the
instruction and correctly perform the corresponding
operation including, for example, writing the results back
to memory.

Instructions may be loaded into a first stage of one
or more pipelines 4 and processed through subsequent
stages. A stage may process concurrently with the other
stages. Data may pass between the stages in pipelines 4
during a cycle of the system. The results of an
instruction may emerge at the end of the pipelines 4 in

rapid succession.

10

15

20

WO 02/50666 PCT/US01/50506

FIG. 2 is a block diagram illustrating an example
pipeline in accordance with an embodiment of the invention.
A pipeline 10 has multiple stages that may facilitate
execution of multiple instructions during a single clock
cycle. 1In pipeline 10, an instruction may enter the
instruction fetch (IF) stage 12 during a first clock cycle.
The instruction may then continue down the pipeline during
subsequent clock cycles. Typically, another instruction
enters the IF stage 12 during a subsequent clock cycle and
then continues down the pipeline during subsequent clock
cycles. Similarly, additional instructions enter the IF
stage 12 during subsequent clock cycles respectively. The
number of stages in the pipeline may define the number of
instructions that the pipeline may service simultaneously.

The different stages of the pipeline may operate as
follows. Instructions may be fetched during the IF stage
12 by a fetch unit 13 and decoded from instruction
registers 15 during the DEC stage 14. During the AC stage
18, one or more data address generators 19 may calculate
any memory addresses used to perform the operation. A data
address generator 19 may contain one or more arithmetic

logic units (ALU’s) to facilitate the calculation.

10

15

20

WO 02/50666 PCT/US01/50506

During the execution stages (EX 1 - EX n) 22A - 22N,
execution units 23 and 29 may perform specified operations
such as, for example, adding or multiplying two numbers.
Execution units may contain specialized hardware for
performing the operations including, for example, one or
more ALU’s, floating-point units (FPU) and barrel shifters,
although the scope of the invention is not limited in this
respect. A variety of data may be applied to the execution
units such as the addresses generated by data address
generators, data retrieved from memory or data retrieved
from data registers. During write back stage (WB) 30, the
results may be written to a memory location or data
registers external to the pipeline or to data registers in
the pipeline such as architectural registers 32. The
stages of pipeline 10 may include one or more storage
circuits, such as a flip-flop, for storing data.

As mentioned above, processor 2 may support a loop
setup instruction. The loop setup instruction may
initialize a hardware loop by writing the boundaries of the
hardware loop (e.g. top and bottom) to architectural
registers 32. The loop setup instruction may also
initialize a count in architectural registers 32,

indicating the number of times the loop is to be completed.

10

15

20

WO 02/50666 PCT/US01/50506

In addition, the loop setup instruction may define an
offset, indicating the number of instructions that follow
the loop setup instruction before the top of the loop is
reached. After the hardware loop is initialized, the
hardware loop may operate in the pipeline 10 until the exit
condition of the loop has been satisfied (e.g. a bottom
match with count equal to zero).

Architectural registers 32 are generally loaded once
an instruction has committed, e.g., when the loop setup
instruction exits the WB stage 30. Therefore, the entry
and exit conditions stored in architecture registers 32 may
not be updated until several clock cycles have passed from
when the loop setup instruction enters pipeline 10.
Because the entry and exit conditions may not be updated
until several clock cycles have passed, delays on setting
up hardware loops may exist. For example, if the first
instruction in the loop enters pipeline 10 before the loop
setup instruction has committed, the architectural
registers may not be set up to identify the instruction as
part of a loop. Moreover, this may increase as the depth
of the pipeline increases.

In one embodiment, processor 2 may address these

issues by maintaining a set of early regisfers 34 in the

WO 02/50666 PCT/US01/50506

pipeline. As shown in FIG. 2, early registers ETop 34A and
EBot 34B may reside in the decode stage while ECnt 34C may
reside in AC stage.

Implementing a set of early registers 34 may increase
processing speed of processor 2 by reducing or avoiding
loop set up penalties. As described above, several clock
cycles may pass between the time a loop setup instruction
enters the pipeline and the time the architectural
registers are written. However, the early registers may be
loaded long before the loop setup instruction writes to the
architectural registers. For this reason, implementing
early registers may reduce the time it takes to setup
hardware loops.

The early registers may be speculative registers used
to predict or speculate the value of architectural
registers. Unlike the architectural registers, the
speculative registers may not be supported by the system’s
instruction set. Therefore, program code may not be used
to access the speculative registers. For this reason, a
programmer may not be able to move data in or out of the
speculative registers the same way that he or she could

with architectural registers.

10

15

20

WO 02/50666 PCT/US01/50506

Loading early registers may be done in several
different ways. For instance, the early registers may be
loaded simply as a result of performing a regular
instruction register move to the architectural registers.
In other words, the system may instruct the architectural
registers to load the contents of some other register, and
as a result, the early registers may be updated. Yet
another way to load the registers is to load them from
memory. In other words, the system may fetch the data from
memory, load the architectural registers with that data,
and update the early registers.

The problem with regular register moves or loads from

‘memory, however, is that they may introduce loop setup

penalties. These penalties may occur because the system
may stall the pipeline until the data is available to be
written. To avoid these penalties, a loop setup
instruction may be used to load the early registers before
the architectural registers get written.

The following example illustrates the syntax for

invoking an exemplary loop setup machine instruction:

LSETUP (PC Relative Top, PC Relative Bottom) Counter = X

10

15

20

WO 02/50666 PCT/US01/50506

The PC Relative Top specifies the distance from the current
instruction to the start of the loop (the Start Offset).
The PC Relative Bottom specifies the distance from the
current instruction to the end of the loop (the End
Offset). 1In addition, the Counter variable may specify a
counter register and a loop count indicating the number of
iterations in the loop.

FIG. 3 is a flow diagram illustrating the timing of
loading early registers in accordance with an embodiment of
the invention. As described, the loop setup instruction
may contain loop conditions in the form of a count value, a
top value, and a bottom value. Collectively, these three
values may define entry and exit conditions of a hardware
loop.

The count value may represent the number of iterations
that the loop will make. Once the loop setup instruction
enters AC (38), the count value may be written to the ECnt
register (39). Initially writing to the ECnt register may
be done via a register move from data registers. In one
mode of operation, the ECnt register may be written with
data contailned in pointer registers (PREGS) of a data

address generation (DAG) pipeline. If necessary, an ALU in

- 10 -

10

15

20

WO 02/50666 PCT/US01/50506

one of the pipelines may be used to calculate the count
value from the loop setup instruction.

The top and bottom values may indicate which
instruction is the top of the loop, and which instruction
is the bottom of the loop. The top and bottom values in
the loop setup instruction, however, may be program counter
(PC) relative. Therefore, a calculation (40) in AC stage
may be used to obtain the top and bottom values that will
be written to ETop 34A and EBot 34B registers respectively.
After the loop setup instruction enters EX 1 (41), the top
and bottom values may be written to the ETop 34A and EBot
34B registers (42).

In accordance with an embodiment of the invention,
systém resources may be efficiently implemented. 1In this
manner, the need for additional system hardware to handle
hardware loops may be avoided. As mentioned above, the
loop conditions of a hardware loop may be contained in a
loop setup instruction. By efficiently reusing available
ALU’ s contained in the processor, hardware loops may be set
up without the need for dedicated hardware loop ALU’s.

FIG. 4 is a block diagram illustrating the efficient
use of one or more pipelines in accordance with an

embodiment of the invention. A loop setup instruction may

- 11 -

10

15

20

WO 02/50666 PCT/US01/50506

be fetched during the IF stage by a fetch unit and decoded
from instruction registers (not shown) during the DEC stage
14. At this point, the loop setup instruction may be
piped to available ALU’s (50, 51) in different pipelines so
that the loop conditions may all be calculated in parallel.

For instance, in one particular embodiment, an ALU 52
in a first pipeline (e.g. a first DAG pipeline 60) may be
used to pass the count value and may perform any necessary
shifting or calculation. In addition, an ALU 50 in a
second pipeline (e.g. a second DAG pipeline 62) may be used
to calculate the bottom value of a loop from the loop setup
instruction. Moreover, an ALU 51 in a third pipeline (e.g.
one contained in the branch unit 54 of a system pipeline
64) may be used to calculate the top value of a loop from
the loop setup instruction. In this manner, the loop
conditions may be calculated in parallel. Moreover, the
respective ALU’s may all be resources that are available
whether or not the system is configured to handle hardware
loops. Thus, by reusing these available resources, the
forgoing implementation may avoid unnecessary increases in
hardware to handle hardware loops.

After the loop conditions have been calculated, these

conditions may be written to a set of early (or

- 12 -

10

15

20

WO 02/50666 PCT/US01/50506

speculative) registers 34. The ETop register 34A may be
loaded to point to the first instruction of the loop (or
top of the loop). The EBot register 34B may be loaded to
point to the last instruction of the loop (or bottom of a
loop). The ECnt register 34C may be loaded to specify the
number of times that the loop is to be repeated. In one
embodiment, ECnt 34C counts downward, decrementing each
time a bottom match is encountered.

In addition to writing the calculated loop conditions
to the early registers 34, this data may also be piped to a
set of architectural registers 32 that may get written in
the write back stage. In accordance with another
embodiment of the invention, this data may be piped down a
number of available pipelines. In this manner, two or more
of the architectural registers 32 may be written in
parallel. Moreover, additional storage hardware (such as
additional flip-flops) may be unnecessary to carry the loop
conditions to WB.

In one particular embodiment, a first pipeline (e.g.,
DAG pipeline 60) may be used to carry the count variable to
an architectural register 32A. 1In addition, a second
pipeline (e.g., DAG pipeline 62) may be used to carry the

top variable to an architectural register 32B. Moreover, a

- 13 -

10

15

20

WO 02/50666 PCT/US01/50506

third pipeline (e.g., system pipeline 64) may be used to
carry the bottom variable to an architectural register 32C.
These respective pipelines may all be resources that are
avallable whether or not the system is arranged to handle
hardware loops. Thus, by reusing these available
resources, the forgoing implementation may avoid
unnecessary increases in hardware to handle hardware loops.

Reusing the pipelines realizes several advantages. For
instance, if only a single pipeline were used to calculate
the loop conditions, it might take several clock cycles to
perform all necessary calculations using a single ALU.
Moreover, if only a single pipeline were used to propagate
the loop conditions, it may take additional clock cycles to
pass the data to WB. For these reasons, the reuse of
additional pipelines may provide for improved system
performance by avoiding these additional loop setup
penalties. In addition, as described above, reusing
existing pipelines may realize a reduction in hardware
within the processor. Moreover, it may facilitate writing
loop conditions to two or more registers in parallel.

FIG. 5 is a flow diagram illustrating one mode of
operation of calculating early register values in
accordance with an embodiment of the invention. According

to one format, the loop setup instruction may specify

- 14 -

10

15

20

WO 02/50666 PCT/US01/50506

several setup variables including a Start Offset (S-Offset)
and an End Offset (E-Offset). The S-Offset may specify the
distance in the instruction stream from the loop setup
instruction to the first instruction in the loop.
Similarly, the E-Offset may specify the distance in the
instruction stream from the loop setup instruction to the
last instruction in the loop.

For instance, if the first instruction in the loop is
the instruction immediately following the loop setup
instruction, then the S-0ffset would be the width of the
loop setup instruction. If, in the instruction stream,
there is one instruction betweeﬁ the loop setup instruction
and the first instruction in the loop, then the S-0Offset
would be the width of the loop setup instruction and the
one instruction. Similarly, if there are two instructions
between loop setup and the first instruction, then the S-
Offset would be width of the loop setup instruction and the
two instructions.

As shown in FIG. 5, the S-Offset and E-Offset are
typically specified by a loop setup instruction (74).
However, the loop-setup instruction specifies the offsets
relative to the program counter (PC). Therefore, the PC

value may also be determined (75). The PC value and S-

- 15 -

10

15

20

WO 02/50666 PCT/US01/50506

Offset may then be used to calculate ETop register data
(76) . Moreover, the PC value and E-Offset may be used to
calculate EBot register data (77). Once calculated, the
early register data may be written to the early registers
(78) . Again, by reusing available ALU’s in the system, the
early register data may be calculated in parallel, and done
so without an unnecessary hardware increases.

Comparing FIG. 5 with FIG. 2 illustrates exemplary
timing when writing the ETop and EBot registers. Steps
(74) and (75) may occur in DEC stage 14. Calculations
steps (76) and (77) may occur in AC stage 18. Therefore,
the write step (78) may occur in EX 1 stage 22A.

Once loaded, the early registers may be used to set up
hardware loops. FIG. 6 is a block diagram illustrating one
embodiment of a hardware loop unit 7 connected to an
instruction fetch (IF) unit 13 and a decoder unit 17 of
pipeline 10. 1In one embodiment, the early registers may be
used to detect a loop in the stream of instructions 84.
Loop hardware 86 may then be loaded with one or more loop
instructions. Once loaded, the loop instructions may be
issued again and again from loop hardware. Thus, if a

hardware loop is detected, then one or more of the loop

16

10

15

20

WO 02/50666 PCT/US01/50506

instructions may be fetched only once by IF unit 13, and
then issued repeatedly from hardware loop unit 7.

FIG. 7 is a flow diagram illustrating the reuse of
hardware in accordance with an embodiment of the invention.
Using available hardware, when a loop setup instruction is
received, a first loop condition and a second loop
condition may be calculated in parallel (102 and 104).
These conditions may be calculated, for instance, using
first and second arithmetic logic units (ALUs). Moreover,
these ALUs may reside in different pipelines.
Alternatively, additional loop conditions may be calculated
using additional ALUs residing in other available
pipelines.

Once the loop conditions have been calculated (102 and
104), they may be written to speculative registers (106)
and used to set up a hardware loop. In addition, the loop
conditions may be propagated to a set of architectural
registers via a first pipeline and a second pipeline
respectively (108 and 110). If additional loop conditions
need to be propagated, additional pipelines may be used.
Once propagated, the loop conditions may be written to a

set of architectural registers (112).

- 17 -

10

15

20

WO 02/50666 PCT/US01/50506

Calculating loop conditions from a loop setup
instruction may require the use of one or more ALUs.
Moreover, propagating the calculated conditions to a set of
architectural registers may require storage circuitry (e.g.
a flip flop) at every pipe stage, for every loop condition.
By efficiently implementing available system resources,
hardware loops may be setup without the need for additional
hardware loop ALUs and flip-flops.

Various embodiments of the invention have been
described. For example, the reuse of hardware not
traditionally used in a hardware loop context has been
described for implementation within a processor. The
processor may be implemented in a variety of systems
including general purpose computing systems, digital
processing systems, laptop computers, personal digital
assistants (PDA’s) and cellular phones. In this context,
the reuse of hardware discussed above may be readily used
to facilitate efficient hardware loops. In such a system,
the processor may be coupled to a memory device, such as a
FLASH memory device or a static random access memory (SRAM)
that stores an operating system and other software
applications. These and other embodiments are within the

scope of the following claims.

- 18 -

WO 02/50666 PCT/US01/50506

What is claimed is:
1. A method comprising:
propagating a first loop condition of a hardware loop
via a first pipeline of a pipelined processor; and
propagating a second loop condition via a second

pipeline of the pipelined processor.

2. The method of claim 1, further comprising:
writing the loop conditions to a first set of
registers prior to propagating the loop conditions, and
writing the loop conditions to a second set or

registers after propagating the loop conditions.

3. The method of claim 1, wherein the first and second

loop conditions are propagated in parallel.

4. A method of claim 1, further comprising propagating a

third loop condition via a third pipeline.

5. The method of claim 2, further comprising generating

the loop conditions of the hardware loop prior to writing

the loop conditions to the first set of registers.

- 19 -

WO 02/50666 PCT/US01/50506

6. The method of claim 5, wherein generating the loop
conditions comprise calculating at least one of the loop
conditions from program counter relative data in a loop

setup instruction.

7. A method comprising:

calculating a first loop condition of a hardware loop
from a loop setup instruction using a first arithmetic
logic unit in a first pipeline; and

calculating a second loop condition of the hardware
loop from the loop setup instruction using a second

arithmetic logic unit in a second pipeline.

8. The method of claim 7, further comprising writing the
first and second loop conditions to a first set of

registers.

9. The method of claim 7, further comprising:

calculating a third loop condition of the hardware
loop from the loop setup instruction using a third
arithmetic loéic unit in a third pipeline; and

writing the first, second and third loop conditions to

a first set of registers.

- 20 -

WO 02/50666 PCT/US01/50506

O R T TR SR VPR

10. The method of claim 7, wherein calculating the first
loop condition and calculating the second loop condition

occur in parallel.

11. The method of claim 8, further comprising propagating
the first loop condition to a second set of registers via a

first pipeline.

12. The method of claim 11, further comprising propagating
the second loop condition to the second set of registers

via a second pipeline.

13. An apparatus comprising:

a first pipeline including a first arithmetic logic
unit and a second pipeline including a second arithmetic
logic unit, and

a control unit coupled to the pipelines, the control
unit adapted to:

calculate a first loop condition of a hardware
loop from a loop setup instruction using the first

arithmetic logic unit in the first pipeline; and

21

10

11

12

WO 02/50666 PCT/US01/50506

calculate a second loop condition of the hardware
loop from a loop setup instruction using the second

arithmetic logic unit in-the second pipeline.

14. The apparatus of claim 13, the apparatus further
comprising a first set of registers coupled to the control
unit, wherein the control unit is further adapted to write
the first and second loop conditions of the hardware loop

to the first set of registers.

15. The apparatus of claim 14, the apparatus further
comprising a third pipeline coupled to the control unit,
the third pipeline including a third arithmetic logic unit,
the control unit further adapted to:

calculate a third loop condition of the hardware loop
from the loop setup instruction using the third arithmetic
logic unit in the third pipeline; and

write the first, second and third loop conditidns of

the hardware loop to the first set of registers.
16. The apparatus of claim 14, the apparatus further
comprising a second set of registers coupled to the control

unit, wherein the control unit is further adapted to

- 22 -

WO 02/50666 PCT/US01/50506

propagate at least one of the loop conditions to the second

set of registers via the first pipeline.

17. The apparatus of claim 16, the control unit further
adapted to propagate at least one of the loop conditions to

the second set of registers via the second pipeline.

18. The apparatus of claim 15, the apparatus further
comprising a second set of registers coupled to the control
unit, the control unit further adapted to:

propagafe at least one of the loop conditions to the
second set of registers via the first pipeline;

propagate at least one of the loop conditions to the
second set of registers via the second pipeline; and

propagate at least one of the loop conditions to the

second set of registers via the third pipeline.

19. The apparatus of claim 14, wherein the first set of

registers are speculative registers.

20. The apparatus of claim 13, wherein at least one of the

pipelines is a data address generation pipeline.

- 23 -

WO 02/50666 PCT/US01/50506

21. The apparatus of claim 13, wherein at least one of the

pipelines is a system pipeline.

22. An apparatus comprising a set of registers, a first
pipeline, and a second pipeline; and

a control unit coupled to the set of registers, the
first pipeline and the second pipeline, the control unit
adapted to:

propagate at least one loop condition of a hardware
loop to the set of registers via the first pipeline; and

propagate at least one loop condition of the hardware

loop to the set of registers via the second pipeline.

23. The apparatus of claim 22, wherein the set of
registers are a second set of registers, the apparatus
further including a first set of registers coupled to the
control unit, wherein the control unit is further adapted
to:

write the loop conditions of the hardware loop to the
first set of registers prior to propagating at least one of

the loop conditions to the second set of registers.

24.

10

11

12

13

14

WO 02/50666 PCT/US01/50506

24. The apparatus of claim 22, wherein at least one of the

pipelines is a data address generation pipeline.

25. The apparatus of claim 22, wherein at least one of the

pipelines is a system pipeline.

26. A system comprising:

a static random access memory device;

a processor coupled to the static random access memory
device, wherein the processor includes a first set of
registers, a first pipeline, a second pipeline, and a
control unit adapted to:

calculate a first loop condition of a hardware loop
from a loop setup instruction using a first arithmetic
logic unit in the first pipeline,

calculate a second loop condition of the hardware loop
from the loop setup instruction using a second arithmetic
logic unit in the second pipeline; and

write the first and second loop conditions of the

hardware loop to the first set of registers.

27. The system of claim 26, the processor including a

third pipeline, the control unit further adapted to:

- 25 -

10

11

12

WO 02/50666 PCT/US01/50506

calculate a third loop condition of the hardware loop
from the loop setup instruction using a third arithmetic
logic unit in the third pipeline; and

write the first, second and third loop conditions of

the hardware loop to the first set of registers.

28. A system comprising:

a static random access memory device;

a processor coupled to the static random access memory
device, wherein the processor includes a first set of
registers, a second set of registers, a first pipeline, a
second pipeline, and a control unit adapted to:

write loop conditions of a hardware loop to the first
set of registers;

propagate at least one of the loop conditions to the
second set of registers via the first pipeline; and

propagate at least one of the loop conditions to the

second set of registers via the second pipeline.

29. The system of claim 28, the processor further
including a third pipeline, the control unit further
adapted to propagate at least one of the loop conditions to

the second set of registers via the third pipeline.

- 26 -

WO 02/50666 PCT/US01/50506

30. The system of claim 28, the control unit further
adapted to:

calculate a first loop condition of the hardware loop
from a loop setup instruction using a first arithmetic
logic unit in the first pipeline; and

calculate a second loop condition of the hardware loop
from the loop setup instruction using a second arithmetic

logic unit in the second pipeline.

27.

WO 02/50666

1/7

PCT/US01/50506

2
N
/
CONTROL
CONTRgL UNIT SIGNALS PIPEI;lINES
HARDWARE
LOOP UNIT | .
z
_ Y,

FIG. 1

WO 02/50666

2/7

PCT/US01/50506

10

13~\[FETCH INSTRUCTION FETCH
UNIT) ~_,,
. Y ,
DECODER - 348 DgJCE%?E
19 ' 340
ADDRESS
DATA ADDRESS _{_____/
GENERATOR CAQ%{;}T/ON
Y
23, ¥ ' _7 8
| ExecuTion uniT EXE%T’
Y
| | \22/1
A
I A\ 2 ,
324 ; 328
EXECUTE 1
200 (EXE. T
29~ v \
EXECUTION UNIT 29N
[\ J ,
Y

WRITE BACK

(WB)
\-30

FIG. 2

WO 02/50666 PCT/US01/50506

3/7

(- STRT ’

LOOP SETUP
INSTRUCTION
ENTER AC

A

368

YES
39’\‘

WRITE COUNT VALUE TO EARLY
COUNT REGISTER (ECNIT)

40—\
y

CALCULATE PC RELATIVE TO TOP
AND BOTTOM VALUES

LOOP SETUP
ENTER EX. 1

42 —\
WRITE TOP VALUE TO ETOP AND
BOTTOM VALUE TO EBOT

END

FIG. 3

WO 02/50666 PCT/US01/50506

4/7

60 DAGPIPELINE 1 6o DAGPIPELINE2 o, SYSTEM PIPELINE
N N N
ETCH UNT IF
34A
[DECODER] FJ.L DEC
N
34C l—"—l 343'/ |—*—| [I__L—|
| A | | A | | I
E< , -52 y 50 y 51
L ALY | ALU ALU AC
—54
A y Y
| R | | IR | | I |
20 28 EX (1)
. Y l_____y M
| A | RN | O |
| IR | | M | | D |
[l:j : EX (N)
A 1 7 r"""! L—"ll F—V—_—T r—'"‘['_l
324 wB
A\ Y \4

FIG. 4

WO 02/50666 PCT/US01/50506

5/7
74 DETERMINE
N\ S- OFFSET AND
E- OFFSET FROM LOOP
SETUP INSTRUCTION
A\
DETERMINE vadl
PROGRAM COUNTER
(PC) VALUE
y y
76 CALCULATE ETOP CALCULATEEBOT | ~77
N REGISTER VALUE FROM REGISTER VALUE FROM |~
S-OFFSET AND PC E-OFFSET AND PC
VALUE. VALUE,
\ 4
/8
N WRITE TO EARLY
REGISTERS

FIG. 5

WO 02/50666

/-84
13 \

6/7

FETCH
UNIT

PCT/US01/50506

LOOP HARDWARE

/"7
17
/_
|
> DECODER
/—86

FIG. 6

WO 02/50666 PCT/US01/50506

7/7

B

Y Y

102\ CALCULATE A FIRST CALCULATE A SECoND|/~ 704
LOOP CONDITION LOOP CONDITION
USING A FIRST ALU USING A SECOND ALU

y

WRITE THE FIRST AND SECOND |/~ 706
LOOP CONDITIONS TO
SPECULATIVE REGISTERS

y y

108~\| PROPAGATE A FIRST PROPAGATE A SECOND|/~710
LOOP CONDITION VIA A LOOP CONDITION VIA A
FIRST PIPELINE SECOND PIPELINE

4

112 ~\| WRITE THE FIRST AND SECOND
LOOP CONDITIONS TO
ARCHITECTURAL REGISTERS

(=)

FIG. 7

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

