Office de la Propriete Canadian CA 2480906 C 2014/01/28

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 480 906
e e 1 BREVET CANADIEN
CANADIAN PATENT
(13) C
(22) Date de depot/Filing Date: 2004/09/09 (51) Cl.Int./Int.Cl. GO6F 9/44 (2006.01),
L : : _ GO6F 1/00 (2006.01), GO6F 12/14 (2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2005/04/24 GOGF 15/76 (2006.01), GOGF 3/00 (2006.01),
(45) Date de delivrance/lssue Date: 2014/01/28 GOG6F 9/46 (2006.01)
(30) Prioritée/Priority: 2003/10/24 (US10/693,749) (72) Inventeurs/Inventors:

RAY, KENNETH D., US;

PEINADO, MARCUS, US;

ENGLAND, PAUL, US;

KURIEN, THEKKTHALACKAL VARUGIS, US

(73) Propriéetaire/Owner:
MICROSOFT CORPORATION, US

(74) Agent: SMART & BIGGAR

(54) Titre : INTEGRATION DE CARACTERISTIQUES D'ASSURANCE DE NIVEAU ELEVE DANS UNE APPLICATION PAR LA
FACTORISATION D'APPLICATION
(54) Title: INTEGRATION OF HIGH-ASSURANCE FEATURES INTO AN APPLICATION THROUGH APPLICATION FACTORING

Environment 502(1) Environment 502(2)
Processor Processor
504(1) 504(3)
Processor Processor
504(2) 504(4)
Labeled
cdata 506
Base component 508 Reference monitor 510

(57) Abrege/Abstract:

Application factoring or partitioning Is used to integrate secure features into a conventional application. An application's functionality
IS partitioned into two sets according to whether a given action does, or does not, involve the handling of sensitive data. Separate
software objects (processors) are created to perform these two sets of actions. A trusted processor handles secure data and runs
IN a high-assurance environment. VWhen another processor encounters secure data, that data is sent to the trusted processor. The
data Is wrapped In such a way that allows it to be routed to the trusted processor, and prevents the data from belng deciphered by
any entity other than the trusted processor. An infrastructure Is provided that wraps objects, routes them to the correct processor,
and allows thelr integrity to be attested through a chain of trust leading back to base component that is known to be trustworthy.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

CA 02480906 2004-09-09

ABSTRACT OF THE DISCLOSURE

Application factoring or partitioning is used to integrate secure features into a conventional
appliéation. An application’s functionality 1s partitioned into two sets according to whether a given
action does, or does not, involve the handling of sensitive data. Separate software objects
(processors) are created to perform these two sets of actions. A trusted processor handles secure
data and runs in a high-assurance environment. When another processor encounters secure data, that
data 1s sent to the trusted processor. The data is wrapped in such a way that allows it to be routed to
the trusted processor, and prevents the data from being deciphered by any entity other than the
trusted processor. An infrastructure 1s provided that wraps objects, routes them to the correct

processor, and allows their integrity to be attested through a chain of trust leading back to base

component that 1s known to be trustworthy.

— “..ﬁmw-ww-m.mx;mvﬁrw?mw«pm PO

CA 02480906 2012-07-10

51050-103

INTEGRATION OF HIGH-ASSURANCE FEATURES INTO AN APPLICATION
THROUGH APPLICATION FACTORING

FIELD OF THE INVENTION
[0001] The present invention relates generally to the field of computing. More particularly,

the invention provides a mechanism that supports the partitioning or factoring of applications in a

manner that allows operations requiring a measure of trust or security to be integrated into ordinary,

non-secure software.

BACKGROUND OF THE INVENTION
[0002] In the field of computing, there is a tension between systems that provide a high

degree of security on the one hand, and systems that provide large number of functional features and
a high degree of extensibility on the other hand. Security in the field of computing depends on the

ability to understand and predict the behavior of a computer system (that 1s, the behavior of both the
software and the hardware) with a high degree of certainty — i.e., the ability to ensure that the

system will not, through inadvertent misuse or deliberate attack, behave in some manner other than
that for which it was designed. For example, a computer system that 1s designed to protect
copyrighted material from copying is only trustworthy to the extent that we can be assured’the

system will aCtually do what it was designed to do. Large, open architectures, however, tend to be

. unwieldy and complex, which makes it difficult to analyze their behavior, since there are a large

number of variables that can affect that behavior. At the present time, it seems unlikely that a large
complex program such as a full-service operating system or word processor could have its behavior
verified to a high degree of certainty. It 1s possible to write a small program whose behavior can be

tested and verified under a wide variety of conditions and classes of attack, but such a program

would only be able to perform a limited set of functions. Thus, a tension exists between providing a
large amount of functionality and providing a high degree of security.
[0003] One solution that has been proposed 1s to run two systems side by side — one large

system that has a high degree of functionality, and another small system that has a high degree of

. v a ®
security. Thus, a full-service operating system such as WINDOWS XP could be run along side a

1

CA 02480906 2012-07-10

51050-103

small, high-assurance operating system. Whenever an event occurred in the full-service operating
system that needed to be performed in a tightly-controlled manner with a high-degree of trust, the
task could be passed to the high-assurance operating system. ’

[0004] Operating systems provide environments in which other programs can execute.
However, the mere fact that two operating systems can exist side by side does not address the
problem of how a given application can make use of both environments. It would be desirable for an
application to use the full-featured environment to perform most functions (i.e., those not requiring
a high degree of security), and to use the high-assurance environment to perform functions that do
require a high degree of security. Moreover, it is desirable to use these two environments in a way
that provides an integrated user experience.

[0005] In view of the foregoing, there is a need for a system that overcomes the drawbacks

of the prior art.

SUMMARY OF THE INVENTION

[0006] Some embodiments of the present invention provide a mechanism whereby the

functionality of an application can be factored or partitioned into multiple parts — i.e., those actions that
require some degree of security or protection, and those that do not. In accordance with some embodiments
of the invention, an application is embodied as at least two software objects: one software object that runs in

a full-featured (but low-assurance) environment, and another software object that runs in a high-assurance

(but limited-featured) environment. As the object in the full-featured environment executes, it méy
- encounter data that requires some degree of protection (e.g., the data may require secrecy, or it may
need to be verifiable in the sense of determining that the data has not been tampered with). When
the software object that runs in the full-featured environment encounters such data, that software
object causes the data to be passed to the high-assurance environment. The software object
operating in the high-assurance environment then operates on the data. Any Input, output, or storage
of the data that is required while the data is being processed is performed using the high-assurance
environment, in order to resist interception or tampering with the data by events arising outside of
the high-assurance environment.

[0007] The two environments are hosted by a base component that provides the

infrastructure (or “plumbing”) needed for the two environments to communicate. For example, a

2

10

15

20

25

30

CA 02480906 2012-07-10

51050-103

data object that needs to be processed in a high-assurance environment may have a
wrapper generated by the base component. This wrapper may identify the
environment to which the data object is to be routed for processing, and may also
provide a seal that enables verification of the fact that the data object has not been
modified since it was wrapped by the base component. Thus, a software object can
pass the data object to the base component, and the base component will be able to:
(1) determine which environment the data object should be passed to, and (2) verify
that the data object has not been tampered with since it was created. This latter
action provides the infrastructure that allows the trustworthiness of an object to be
established across platforms: If an object is created on a first machine (having a first
base component), then the first base component signs the object as an attestation
that the object is the exact object that was generated in a high-assurance
environment known to that base component. When the object is then opened on
another machine, the other machine can then verify the signature and make a
decision about whether they trust the signer. (E.g., some machines and/or base
components may be better at ensuring correct behavior of their hosted environments
than other machines; each machine can decide for itself whether it trusts the platform

on which a given data object was created.)
[0008] Other features of the invention are described below.

According to one aspect of the present invention, there is provided a
system that manages partitioning of an application comprising: a base layer that
hosts the operation of a first environment and a second environment, the application
comprising: a first software object that executes in said first environment, said first
software object handling a plurality of data and including logic to identify a first of said
plurality of data as not processable by said software object; and a second software
object that executes in said second environment and that processes said first of said
plurality of data in a manner that resists tampering with said first of said plurality of
data, said base layer comprising or hosting logic that receives said first of said
plurality of data from said software object and routes said first of said plurality of data

to said second environment.

10

15

20

25

30

CA 02480906 2013-02-01

>1050-103

According to another aspect of the present invention, there is provided a
computer-implemented method of handling data to which a policy applies, the method
comprising: a first software object which executes in a first environment on a computer
encountering the data; the first software object determining that the data is not processable by
the first software object; the first software object causing the data to be provided to a second
software object that executes in a second environment on a computer that provides a first level
of assurance that actions performed in the second environment will be performed correctly,
wherein the second software object processes the data in a manner that uses said assurance to

create resistance to tampering with the data by acts arising outside of the second environment.

According to still another aspect of the present invention, there is provided a
computer-readable storage medium having stored thereon processor-executable instructions
that, when executed by a processor, cause the processor to allow a user to operate on first and
second classes of data, said second class of data requiring a relatively higher level of
protection from tampering than said first class of data, said instructions comprising: a first
software object associated with a first specification that describes a behavior of said first
software object, said first software object comprising instructions to: operate on members of
said first class of data; recognize a member of said second class of data as not being
processable by said first software object; and cause said member ot said second class of data
to be routed to a second software object; and said second software object, which is associated
with a second specification that describes a behavior of said second software object, there

being a relatively higher level of assurance that said second software object will conform to

sald second specification than that said first software object will conform to said first
specification, said second software object comprising instructions to operate on members of

said second class of data.

According to yet another aspect of the present invention, there 1s provided a
system that supports partitioning of an application into at least a first software object and a
second software object, the system comprising a computer-readable storage medium having
stored thereon computer-executable instructions that, when executed by one or more
computers, cause the one or more computers to host a first environment and a second

environment, the first software object running in the first environment, the second software
3a

10

15

20

25

CA 02480906 2013-02-01

51050-103

object running in the second environment, the instructions further causing the one or more
computers to implement an application programming interface that exposes at least one of the
following methods: a first method that receives {from the first software object a first data
object that comprises: (1) data processable by the second software object, and (2) a first
1dentifier assigned by the system to the second environment; and that routes said first data
object to said second environment based on said first identifier; a second method that creates a
second data object that comprises: (1) data processable by the second software object; (2) said
first identifier; (3) authentication data that allows a subsequent determination that said second
data object has not been tampered with since being created by said second method; a third
method that receives, from the first environment, a second identifier associated with the
second software object, and that directs that an instance of the second software object be
created; and a fourth method that receives, from the first software environment: (1) a third
data object, and (2) a third identifier associated with said first software object, and that directs
that an instance of said first software object be created based on having received said third

identifier, and that directs that said first software object operate on said third data object.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The foregoing summary, as well as the following detailed description of
preferred embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of illustrating the invention, there 1s shown in the drawings
exemplary constructions of the invention; however, the invention is not limited to the specific

methods and instrumentalities disclosed. In the drawings:

[0010] FIG. 1 is a block diagram of an example computing environment in

which aspects of the invention may be implemented;

10011]) FIG. 2 is a block diagram of an application that is factored into

constituent functionalities;

[0012] FIG. 3 is a block diagram showing the routing of data to ditferent

components of an application;

3b

CA 02480906 2004-09-09

[0013] FIG. 4 is a block diagram of an example of a user interface for a factorable
application;

[0014] FIG. 5 is a block diagram of an example architecture that supports the use of
factored applications;

[0015] FIG. 6 is a block diagram of an example hierarchy of environments in which a
factored application may be used;

[0016] FIG. 7 is a block diagram of an example data object for use 1n an environment that
supports the use of a factored application;

[0017] FIG. 8 is a flow diagram of an example process by which data may be processed in

a factored application.

DETAILED DESCRIPTION OF THE INVENTION

Overview

[0018] The present invention provides a mechanism that allows application to be
partitioned or “factored” into secure and non-secure components, and that allows these components
to work together to provide an integrated user experience with respect to the application. For
example, a word processing program could be partitioned into a non-secure component that
performs most of the layout, editing, printing, spell-checking, grammar-checking, etc., functions
that one associates with a word processor, and a secure component that enables the display and
editing of data objects that need some manner of protection. The non-secure component could run in
an ordinary, open environment such as a typical commercial operating system. The secure
component could run in a high-assurance environment that allows certain types of software to run
with a high assurance that the software will behave correctly. The invention provides various
features with respect to such a scenario. First, the invention provides for an integrated user
experience across the two-components, so that, from the user’s perspective, the user appears as
much as possible to be using a single application. Second, the invention provides the infrastructure
or “plumbing” that allows an application to handle both secure and non-secure data, and for such

data to be used across partitions.
[0019] With respect to the user experience, it is generally the case that the user starts out

using the non-secure portion of the application. Data that arises in the course of such use (e.g.,

-4 -

T wA T N ST i ST e g 00 WY | SN T T e AT e B A, 0 SRS Swg a R LTy S A w oo Sl . "
oo TR R N S LT N RN A T S b %W_ A e AN S R LA A “ﬁh‘i’a*‘:»!—-{z@;»V~=.,3MS}’E-??&WQWW%Z}@§:5‘.-1.‘>f<‘>?#¢wft¥}§?f-.;ﬁ?mf-wam;%ﬂm‘wrm:@w» A ANE AN T RS A DT E N G R e A ARAD e T AT AL e A A AT AT A Y e i e o SRS A VA - e e S AR «1 B veee

CA 02480906 2004-09-09

sensitive text items in a word processing document, sensitive financial figures in a spreadsheet,
etc.), is preferably integrated into the user experience in some way by the non-secure portion of the
application, even though the data cannot actually be displayed by the non-secure portion. For
example, if a sensitive or secret text item in a word processing document, the non-secure portion of
the word processor may be able to display a box that represents the item, together with some type of
graphic (e.g., squiggly lines indicative of text) that represent the fact that the text exists even though
it cannot be displayed. In one example, the user could click on the box or graphic, and the secure
portion of the application would then be invoked to display the text in the same location on the
screen where the box occurs. Thus, the secure and non-secure portions of the application are
integrated with respect to the user experience.

[0020] With respect to the infrastructure, the invention provides mechanisms that allow
data objects in one environment to be routed to another environment. Typically, a data object that is
secret or sensitive — and thus needs to be processed by the secure portion — will be encrypted so that
the non-secure portion cannot read it. Thus, such an object will typically be wrapped in a series of
wrappers by each component that played a part in generating the data object. Each wrapper
preferably contains an 1dentifier of the component that attached the wrapper, as well as a seal that
allows the integrity of the data inside the wrapper to be verified. The outer wrapper is preferably
attached by the root of trust on the machine that created the wrapper — i.e., a base component that
hosts the various environments on a single machine, and that has been verified by some well known
authority to be trustworthy in its behavior. This outer wrapper allows the base component to serve
as a router. Thus, when the non-secure portion encounters the object, it may not be able to read the
object but can i1dentify the object as one that needs to be sent to another environment for processing.
Thus, the non-secure portion sends the object to the base component, which then routes the object to
the correct environment based on which environment is identified in the wrapper.

[0021] Additionally, if the object is created on a first machine and opened on a second
 machine, the second machine can determine the trustworthiness of the object by checking the
signature that is part of the outer wrapper. It should be understood that when the base component
wraps and seals an object, the base component is essentially attesting that, during the creation of the
object, the base component correctly performed its functions in terms of protecting the creation

process from outside tampering. (The base component typically provides the mechanisms that allow
-5 .

. . R . R - AN A T e i3 e o A A AV e 8 Y W AR == gy £ S T A Y —— AmAgettn e Y4 Yy s Admaes e
-~ e A A e g N VA, ol gl WA T e A AT i g4, G S LN ST s TS VR S L L AT N A e R A O VTR AL N\ WA Q\‘"’W LA PN N 2 A NG YT SR UMY TR T A A e WV, 1 e et M T bt £ SN N 4 . ¥ A iy Wl ——— SNV A ~ "i

CA 02480906 2004-09-09

a high-assurance environment to protect itself from tampering — e.g., a trusted processor module
(TPM), a memory isolation mechanism, etc.) Some base components may perform this function
better than others, so any machine on which the data object is opened can make a decision about
whether to trust that the object was actually created according to the security requirements that
apply to that object. For example, if the object constitutes text that was entered by the keyboard, the
high-assurance environment may receive input from the keyboard in a secure manner, but that
environment’s ability to receive keyboard input securely may depend on the base component’s
ability to protect the path from the keyboard to the high-assurance environment. Since the wrapper
contains a seal or signature generated by a particular base component, the wrapper supports a trust
model in which different machines can make decisions about how reliable a data object is based on
the presumed security of the machine on which the data object was created.

[0022] The following describes systems, methods, and mechanisms that support the use of

factored or partitioned applications.

Exemplary Computing Arrangement
{0023] FIG. 1 shows an exemplary computing environment in which aspects of the

invention may be implemented. The computing system environment 100 is only one example of a
suitable computing environment and 1s not intended to suggest any limitation as to the scope of use
or functionality of the invention. Neither should the computing environment 100 be interpreted as
having any dependency or requirement relating to any one or combination of components illustrated
in the exemplary operating environment 100.

[0024] The invention 1s operational with numerous other general purpose or special
purpose computing system environments or configurations. Examples of well known computing
systems, environments, and/or configurations that may be suitable for use with the invention
include, but are not limited to, personal computers, server computers, hand-held or laptop devices,
multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, embedded systems, distributed
computing environments that include any of the above systems or devices, and the like.

[0025] The invention may be described 1n the general context of computer-executable

instructions, such as program modules, being executed by a computer. Generally, program modules
-6 -

CA 02480906 2004-09-09

include routines, programs, objects, components, data structures, etc. that perform particular tasks or

implement particular abstract data types. The invention may also be practiced in distributed
computing environments where tasks are performed by remote processing devices that are linked
through a communications network or other data transmission medium. In a distributed computing
environment, program modules and other data may be located in both local and remote computer
storage media including memory storage devices.

' [0026] With reference to FIG. 1, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a computer 110. Components of
computer 110 may include, but are not limited to, a processing unit 120, a system memory 130, and
a system bus 121 that couples various system components including the system memory to the
processing unit 120. The processing unit 120 may represent multiple logical processing units such
as those supported on a multi-threaded processor. The system bus 121 may be any of several types
of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA)
bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus (also known as Mezzanine bus). The system bus 121
may also be implemented as a point-to-point connection, switching fabric, or the like, among the
communicating devices.

[0027] Computer 110 typically includes a variety of computer readable media. Computer
readable media can be any available media that can be accessed by computer 110 and includes both
volatile and nonvolatile media, removable and non-removable media. By way of example, and not
limitation, computer readable media may comprise computer storage media and communication
media. Computer storage media includes both volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information such as
computer readable instructions, data structures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other

medium which can be used to store the desired information and which can accessed by computer
-7 -

CA 02480906 2004-09-09

110. Communication media typically embodies computer readable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier wave or other transport
mechanism and includes any information delivery media. The term “modulated data signal” means
a signal that has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be
included within the scope of computer readable media.

[0028] The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to
transfer information between elements within computer 110, such as during start-up, is typically
stored in ROM 131. RAM 132 typically contains data and/or program modules that are immed:ately
accessible to and/or presently being operated on by processing unit 120. By way of example, and
not limitation, FIG. 1 illustrates operating system 134, application programs 135, other program
modules 136, and program data 137.

[0029] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard disk
drive 140 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152, and an optical
disk drive 1535 that reads from or writes to a removable, nonvolatile optical disk 156, such as a CD
ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer
storage media that can be used in the exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state
RAM, solid state ROM, and the like. The hard disk drive 141 1s typically connected to the system
bus 121 through a non-removable memory interface such as interface 140, and magnetic disk drive
151 and optical disk drive 155 are typically connected to the system bus 121 by a removable
memory interface, such as interface 150.

[0030] The drives and their associated computer storage media discussed above and

illustrated in FIG. 1, provide storage of computer readable instructions, data structures, program
-8

° e T A S 7 1 AN N a1 A R N D e L R T S 3R T AR R RS2 5 07 WK, P T i Vv S AN VT A AU AR 7 - € T TN I S ATAN S 0 © A WA

A W R P W g = RN vy — —-\-N‘?w L T

CA 02480906 2004-09-09

modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is
illustrated as storing operating system 144, application programs 145, other program modules 146,
and program data 147. Note that these components can either be the same as or different from
operating system 134, application programs 135, other program modules 136, and program data
137. Operating system 144, application programs 145, other program modules 146, and program
data 147 are given different numbers here to illustrate that, at a minimum, they are different copies.
A user may enter commands and information into the computer 20 through input devices such as a
keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball or touch pad.
Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often connected to the processing unit 120
through a user input interface 160 that is coupled to the system bus, but may be connected by other
interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A
monitor 191 or other type of display device is also connected to the system bus 121 via an interface,
such as a video interface 190. In addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer 196, which may be connected through an
output peripheral interface 195

[0031] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote cbmputer 180. The remote
computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of the elements described above relative
to the computer 110, although only a memory storage device 181 has been illustrated in FIG. 1. The
logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area
network (WAN) 173, but may also include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

[0032] When used in a LAN networking environment, the computer 110 is connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet. The modem 172, which may be internal
or external, may be connected to the system bus 121 via the user input interface 160, or other

appropriate mechanism. In a networked environment, program modules depicted relative to the
-9 .

Mo SAVEES i a IR L Ry ""‘"""‘"“""'""'“"‘"""‘"’"-"“"*"“”f‘””-w‘*"wﬁ”:"-N?-'J*’s'v‘»"-"'-'.mwf'm‘ﬁ‘iﬂmmH'N'ﬁ\lw'-'-"F(-?@"-M{W.M:W.mn:.wmmlh\s-ﬂ'wnw-wwwtanumwm A s, (A AR i d e S W & 1Py Nl e s

CA 02480906 2004-09-09

computer 110, or portions thereot, may be stored in the remote memory storage device. By way of
example, and not limitation, FIG. 1 illustrates remote application programs 185 as residing on
memory device 181. It will be appreciated that the network connections shown are exemplary and

other means of establishing a communications link between the computers may be used.

Partitioned or “Factored” Application
[0033] Software, such as an application program, typically performs various different

functions and operates on various different types of data. In this sense, an application can be viewed
as a collection of different functionalities. It may be useful to break an application down into its .
various different functionalities, so that these different functionalities can be performed separately
(e.g., assigned to environments providing different levels of security). FIG. 2 shows how an
application can be broken down into its various different functionalities.

[0034] Application 135 comprises various different functionalities 202(1), 202(2), ...,
202(n), 202(n+1), 202(n+2), ..., 202(n+m). For example, application 135 may be a word processing
program, and the separate functionalities may be editing, viewing, printing, tracking changes, etc. It
should be noted that, while FIG. 2 shows application 135 as having n+m discrete functionalities,
there 1s some discretion in deciding what 1s a discrete functionality. For example, all printing
operations may be viewed as a single functionality, or else printing may be viewed as comprising
two or more different functionalities (e.g., printing a page versus printing the entire document).
Additionally, as further discussed below, the same basic operation may be viewed as multiple
functionalities depending upon what type of data 1s being operated upon. (E.g., the basic operation
of viewing a document may be considered to be one of two different functionalities, depending
upon whether the data being viewed is secure or non-secure. Thus, there could be two separate
viewing functionalities, one that is secure in some respect, and one that is not. Essentially, breaking
down a program into its constituent functionalities is a matter of drawing boundaries around the
various things that the program does (and/or the various different types of data on which the
program operates), and, in general, there 1s no particular requirement as to how these boundaries are
drawn. ‘

[0035] In one example, functionalities may be grouped together such that functionalities
202(1) through 202(n) are part of a first “partition” 206(1), and functionalities 202(n+1) through

-10 -

CA 02480906 2004-09-09

202(n+m) are part of a second partition 206(2). It may be convenient to group functionalities in this
manner, so that functionalities in the same partition can be treated similarly. For example, partition
206(1) may include the functionalities of application 135 that involve ordinary, non-secure data,
while partition 206(2) may include the functionalities of application 133 that involve secret or
secure data (or data that otherwise requires some level of protection). Thus, functionalities in
partition 206(1) can be performed in an ordinary open environment (e.g., the environment provided
by an ordinary commercial operating system), while the functionalities in partition 206(2) can be
run in a high-assurance environment. (High assurance environments are more particularly discussed
below.)

[0036] FIG. 3 shows an example of how partitions can be used to allow a single
application 135 to handle both secure and non-secure data. In the example of FIG. 3, application
135 performs operations 302 that require a high degree of protection (e.g., operations involving
secret data), and also performs operations 304 that require a lower-degree of protection or no
protections (e.g., operations that do not involve secret data). (“Operations™ on data, in this example,
can include any type of handling of data, such as performing input or output of the data, performing
a calculation on the data, etc.) In this example, the functionality that does not involve operating on
secret data is handled by partition 206(1) of application 135, and the functionality that involves
operating on secret data (or data that other requires some type of proiection) 1s handled by partition
206(2). For example, if application 135 is a word processing program, then displaying an ordinary
(non-protected) document may be performed by partition 206(1), and displaying a secret document
may be performed by partition 206(2). As another example, if application 135 is a stock-trading
program, partition 206(1) may contaih functionality that allows a user to look up the current price of
a stock, while partition 206(2) may allow the user to buy and sell shares of the stock after
authenticating the user (in this case, the user’s authentication credentials, and the details of his or
her financial accounts, are a type of secret data).

[0037] It should be understood that FIG. 3 demonstrates that different partitions of an
application can be used to handle secret and non-secret data, but that FIG. 3 is not limited to any
particular mechanism for implementing or using a partitioned application. An example architecture
is discussed below in connection with FIGS. 4-8 that supports the partitioning of an application, and

the use of the partitions in a way that provides an integrated user experience.
- 11 -

- - AN L QU T N ATVE YL S, SV NN, - v ae- -y ——— e . . - Cr s -
e T B N e o R T AN U S AR A3, oy o T N NPy L0 T8 o T e T WA 724 Vs AT T 2 SR MR W AR, 50 R 0L L T Y, Y M R 1 05 0T 12 M0 TR TN T 448 oy vl AR R o '

IR e e N S L N e —— ATV Sas Ve s e . R ST S S Sl VAR N -
i - - i TR B AR AR N A el TR R TN VR T e e e et e A R N ST TR S R T R IR M T 6 SV vt R W RDENHAR T ey, o ST AT, TR NN ST e - AT W AT MRS Ve R A | SRS N00% AL B BT T A w e VA A M B

CA 02480906 2004-09-09

Example Partitioned Application
[0038] As discussed above, the various functionalities of an application may be partitioned

according to any criteria. In the example of FIG. 3, the functionality of an application 1s partitioned
according to whether the application is handling secure or non-secure data. When an application is
partitioned, it is desirable to integrate the various partitions into a single user experience. FIG. 4
shows an example user interface for a partitioned application. (It should be understood that “secure”
data refers to data that requires some type of protection, although the invention is not limited to any
particular type of protection. For example, the data may require protection in the sense of “secrecy,”
in which case the data may be encrypted. As another example, the data may require protection in the
sense of being verifiable — i.e., the ability to determine that the data has not been modified since
some reference point in time — in which case the data may be signed.)

[0039] User interface 400 is an interface for a word processing program. (It should be
understood that a word processing program is a convenient example of an application, although it is
by no means the only example.) In the éxample of FIG. 4, user interface 400 displays various items
402(1) through 402(5) that are part of a word processing document. Item 402(1) is ordinary non-
secure text. Item 402(2) is a non-secure graphic 404. Items 402(3), 402(4), and 402(5) are items of
secure text. The non-secure partition of the application performs all processing that does not involve
the handling of secure data. In this example, this processing includes the display (and possible
editing, printing, saving, etc.) of non-secure items 402(1) and 402(2), as well as the layout of all
items (even secure items). The non-secure partition is able to lay out secure items because it 1s
presumed that, while the content of items 402(3), 402(4), and 402(5) may be secret, the existence of
these items is not secret. Thus, the non-secure partition is capable of displaying items 402(3)
through 402(5) as indecipherable squiggles 405, thereby providing the user with at least some user
experience with respect to content that the non-secure partition is not able to process.

[0040] If the user wishes to view content items 402(3), 402(4), and 402(5), the user may,
for example, click on the squiggles 405 that represent a given content item. This action may cause
the secure partition to be invoked. The content contained in one of the secure items can then be
passed to the secure partition for handling. In one example, the secure partition may then display the

actual content item in a window that 1s superimposed over the place for the content that was laid out
-12 -

CA 02480906 2004-09-09

by the non-secure partition — e.g., when the secure partition displays content item 402(3), it may do
so by placing an image of that content item on top of the region where the squiggles 405 that
represent content item 402(3) had been previously shown. Although the above-described scenario
involves the user’s interacting with two different pieces of software (i.e., the secure and non-secure
partitions), it may appear to the user that he is interacting with a single application, thereby
providing an integrated user experience across the two partitions.

[0041] FIG. 4 shows an example in which the partitioned application is a word processing
program. Other examples 1nclude:

[0042] A spread sheet, where the user can enter formulas and build tables, etc., in the non-
secure partition but where the actual data to be operated on 1s available only to the secure partition.
Thus, the non-secure partition displays some placeholder data (e.g., “xxxx’’) in each cell. Evaluation
and rendering of the data in the cells is performed by the secure partition of the application. When
the user pushes the “calculate” button, a window (generated by the secure partition) pops up and
displays the cell values in the appropriate rows and columns, which are calculated based on the
underlying data that is available to the secure partition. In this implementation, the secure partition
will have an evaluation engine and a (trivial) rendering routine, but will not need to incorporate
other aspects of the spreadsheet’s user interface, help windows, formula builders, etc.

[0043] A securities trading application, where functions are assigned to the secure and
non-secure partitions accordingly. For example, displaying trading graphs and stock information
(which is publicly available) can be performed by the non-secure partition. The secure partition, on
the other hand, allows the user to enter the stock trading symbol, the price and number of shares to
be bought or sold by the user, and sends this information to a remote trading server, after first
verifying the identity of the server.

[0044] A word processor that outputs a document 1n an image format (e.g., Portable
Document Format, or “PDF”). The secure partition 1s capable of reading and displaying the image.
This rendering of the document 1s called the “facsimile” of the document. The underlying word
processing document (1.e., the version of the document that contains formatting codes and text
characters, instead of just an image) and 1ts facsimile are sent by the non-secure partition to the
secure partition, and the secure partition displays the facsimile. The user signs the facsimile (or a

digest of the document and the facsimile) using a secure signing agent in a secure environment. The
- 13 -

CA 02480906 2004-09-09

signed facsimile (called “facsimile-0”) and the underlying document are returned in a blob to the
non-secure partition. When a verifier receives the blob containing the document, facsimile-0 and the
signature of the facsimile, the verifier first renders a new copy of the facsimile (called facsimile-1)
based on the underlying word processing document. The verifier transmits, facsimile-0, facsimile-1,
the Word document and the signature over to the secure partition, which verifies that the facsimiles
are identical, and that the signature over facsimile-0 1s valid. While this model does not provide for
secrecy of the document (since facsimile-1 of the document can still be rendered by the non-secure
partition), it does serve to verify the integrity of the document — 1.e., the fact that the document is the
one that was originally created, and has not been modified. '

[0045] FIG. 5 shows an architecture that supports the partitioning of an application. In
FIG. 5, there are two environments 302(1) and 502(2) in which software can run. In this example,
there are four separate processors 504(1), 504(2), 504(3), and 504(4). In this context, “processor”
refers not to a microprocessor, but rather to a software component that in some way processes data
for the application. Processors 504(1) and 504(2) run in environment 502(1), and processors 504(3)
and 504(4) run 1n environment 502(2). For example, processors 504(1) and 504(3) may be the non-
secure and secure portions, respectively, of a single word processing application. A base component
508 hosts the environments 502(1) and 502(2), so that the two environments can co-exist on a single
machine. The invention is not limited to any particular type of base component 508; some examples
of base component 508 are a virtual machine monitor (VMM), an exokernel, a microkernel, or a
hypervisor. For example, environments 502(1) and 502(2) may be separate operating systems '
hosted by a VMM or a hypervisor. As another example, base component 508 could be one of the
operating systems — e.g., a high-assurance operating system that provides some user functionality,
and also enforces the separation between itself and the other (low-assurance) operating system.

[0046] One component that runs as part of base component 508 is a reference monitor 510.
Reference monitor 510 performs the function of routing a given data object to the correct
environment for processing. For example, labeled data 506 may be encountered (or generated, or
inputted) during the running of an application, and reference monitor 510 causes labeled data 506 to
be routed to the correct environment. Labeled data 506 1s associated with an identifying tag that
allows reference monitor 510 to determine which environment the labeled data should be routed to.

Additionally, labeled data 506 may also contain additional tags that allow the destination
-14 -

AT L R R A L N S A s s LA Y VA e . P S maam \ [— .
B R e B e N R T R PP o e leo U L SUARY A T B B o TR e T L I AT, Ry Yo AR T a1 A T TR T ML 252 A W =, 1, A o Py 3™ £ e AT 4% 4 o = gAY 8 4P AT 8 & 1 Wl 5 12 s o it + = %o e oee e mm e

CA 02480906 2004-09-09

environment to determine which processor the data should be given to for processing. An example
structure of labeled data 506 is discussed below in connection with FIG. 7.

[0047] Labeled data 506 may be encountered (or generated, or inputted) in any location,
although most typically labeled data will be encountered in one environment and will be passed to
another environment. For example, the non-secure portion of a word processing application may
encounter labeled data that contains some secret text. The word processing application can then
display a representation of the text in the manner shown 1n FIG. 4 (e.g., as indecipherable
squiggles). Should the user desire to display the actual text (e.g., by clicking the area reserved for
the data), the non-secure partition of the application (e.g., processor 504(1) running in environment
502(1)) can provide the labeled data 506 to reference monitor 510, which will then provide the data
to environment 502(2). Environment 502(2) can then route the data to the correct processor (e.g.,
processor 504(3)), which can then display the data in the appropriate location on the screen in the
manner described above in connection with FIG. 4.

[0048] It should be understood that, within the model of FIG. 5, applications are
essentially made of processors — i.e., components that can handle different specified types of data or
perform certain categories of tasks — and different partitions of an application use different
processors. For example, processors 504(1) and 504(3) may represent the secure and non-secure
processors of a single application (e.g.; a word processing application), where the data is routed to
either one of processors 504(1) or 504(3) depending on whether the data is secure or non-secure
data.

[0049] It should also be understood that there is no requirement as to what types of
environments are available, but it may be particularly useful for one environment to be a high
assurance operating system, and for the other environment to be an ordinary, full-service open
operating system. A “high assurance” operating system is one that provides a relatively high level of
assurance that it will perform its expected functions correctly. Given that all software (including an
operating system) is associated with a specification that describes the expected function of the
software, and given that all software is subject to some level of bugs or attacks that cause the
software to behave in an unexpected manner, a “high-assurance” operating system 1s one that
provides a relatively high level of trust that the operating system will behave according to its

specification. (Most commercial software comes with an explicit, written specification, although a
-15 -

WY me— w swe A gAY B, Y T e O g Ay e = s U e S SO0, L ST AR B Y RS W ot A T L e R T A A

CA 02480906 2012-07-10

51050-103

specification in this context can also constitute an implicit, unwritten understanding as to how the
software -should behave.) High assurance is not the same thing as security, although high assurance
can be used to achieve security. For example, a processor for secret data can be designed to run in
the high-assurance operating system; to the extent that the processor’s ability to protect secret data
depends on the correct behavior of the environment in which it runs (e.g., the correct execution of
system (calls, correct process isolation, etc.), the processor can provide a level of security that might
not be achievable if the processor were to run in an ordinary, full-service operating system. (The
trade-off for high assurance is that a high assurance environment may have a very limited scope of
functionality; the larger a program is, the more difficult it is to verify that the program will behave
correctly in a wide variety of circumstances. Thus, a full-service commercial operating system such
as WINDOWS XI@WOuld typically not be considered high assurance.)

[0050] In the context of the above description of high-assurance, it can be appreciated that

it is often useful to partition an application into a low-security processor that handles data that does

not require significant security, and a high-security processor that handles data requiring more
security. The high security processor can run 1n a high-assurance environment, and the low-security

processor can run in a low-assurance environment.

Example Architecture to Support a Partitioned Application

[0051] - FIG. 6 shows an example architecture 600 in which a partitioned application can
execute. Architecture 600 includes a base component 508, whose function is to host the various
environments in which partitions of an application will execute. Base component 508, as noted

above, can take various forms, such as a VMM, an exokernel, a microkernel, a hypervisor, etc. Base

component 508 has the functionality to host plural environments (e.g., operating systems), and also
manages (and limits) the interaction between these environments. The hosting of plural ‘
environments can be performed using various techniques. For example, base component 508 may
expose, to each of a plurality of dperating systems, a self-;:ontained “virtual machine”; the operating
systems then control the virtual machine “virtual hardware,” and the base component 508 i1ssues
instructions to the “real” hardware that are based on (but not necessarily identical to) the
instructions that the operating systems have given to the virtual machines. (Generally speaking, this

1s how a traditional VMM works.) As another example, base component 508 may assign certain
16

10

19

20

25

30

CA 02480906 2012-07-10

51050-103

devices and certain segments of the machine’s physical address space to the different
operating systems, and may enforce the assignment by permitted each operating system to
control only its assigned devices and its assigned portion of the address space. The
Invention is not limited to any particular embodiment of a base component; it is merely
assumed, for the purpose of FIG. 6, that there is a base component that is capable of hosting
plural environments so that these plural environments can co-exist on a single machine in

some degree of isolation to one another.

[0052] In the example of FIG. 6, base component 508 hosts operating
systems 602(1) through 602(4). Operating system 602(1) is an instance of the
WINDOWS XP® operating system, or another general-purpose operating system; operating
system 602(2) Is an instance of the Linux® operating system; operating system 603(3) is a
‘nexus’ - i.e., a high-assurance operating system (within the meaning described above),
which may provide limited functionality but a high-assurance that this functionality will be
carried out correctly; operating system 602(4) may be another general-purpose operating
system, such as OS/2. In general, base component 508 can host an arbitrary number of

operating systems (or other types of environments), and the four operating systems shown in

FIG. 6 are merely an example.

[00563] Within a given operating system, it Is possible to run a piece of
application-level software. For example, the MICROSOFT WORD® word processing
program (604) and the MICROSOFT EXCEL® spreadsheet program (606) run under the
WINDOWS XP® operating system 602(1). The Linux® operating system 602(2), nexus
602(3), and the OS/2 operating system 602(4) may also run their own application programs.
In this example, programs called “Word-let” (608) and “Excel-let” (610) run under nexus
602(3). Word-let 608 is the secure program that works with WORD 604 when WORD®
needs to handie secure data. Similarly, Excel-let 610 handles secure data for EXCEL 606.
Thus, in the example of FIG. 4, WORD 604 may be the program (or “processor’) that handles
non-secure data items, lays out data items within a window, and displays the indecipherable
squiggles that represent secure items. Word-let 608 may be the program that opens a
secure item and renders the item in the region of the window that WORD 604 reserves for
the item. Essentially, WORD 604 and Word-let 608 together represent a partition (or
“factoring”) of the functionality of a word processing application across different processors
that execute in different environments. Similarly, EXCEL 606 and Excel-let 610 may have a

similar relationship - 1.e.,

17

CA 02480906 2012-07-10

51050-103

EXCEL 606 handles most spreadsheet functions that do not involve secure data, and Excel-let 610

®
handles secure data on behalf of EXCEL.

[0054] As discussed above, nexus 602(3) is a high-assurance operating system that can
provide an environment in which a trusted application (i.e., an application whose behavior is
sufficiently certain that it can be trusted with sensitive operations such as opening secret data) can
execute. However, nexus 602(3) is likely to provide very limited functionality. Thus, it 1s usetul to
partition a word processing application, for example, into WORD 604 and Word-let 608 so that
WORD can use the extensive features available in a general-purpose operating system to provide
broad functionality, and Word-let can use the high-assurance nature of the environment provided by
nexus 602(3) to.perform a (probably limited) set of sensitive functions with a high degree of
trustworthiness. _'

[0055] FIG. 6 shows a base component that provides the infrastructure to support the
partitioning of applications. The following is a description of some of the features that the
infrastructure may include:

[0056] Registration and directory service: The base component may provide an interface
by which environments hosted by the base component can register with the base component. The
base component may also provide methods by which hosted environments can be started (or the
base component may be one of the hosted environments). The assurance level of an environment 1s
meta-information associated with the environment, and the base component may provide an
optional service to access and lookup this information in a structured way.

[0057] Separation: Hosted environments have a security context assigned to them by the

base component. The security context of an environment may contain such components as:
a. DAC context e.g., the code-id of an environment.
b. MAC context: In case of MAC, the MAC context of an environment consists of a
sensitivity label and a category.
[0058] Communication: Inter-environment communication is regulated by the base

component by using uni-directional transports owned by the base component.

a. Transports provide in-sequence and reliable message delivery between

environments. A synchronization object is provided for notifying an environment of arrival of data

on a transport.
18

CA 02480906 2004-09-09

b. Access Control: Transports are objects owned by the base component, and the

ability of a hosted environment to read from or write onto a transport is regulated by the access

control model enforced by the base component. In case of DAC, this is controlled by an ACL on the

transport for the actions “read” and “write”. In the case of MAC, this is controlled by the label
attached to the transport. In order to provide for export to multi-level devices, the base component
provides implementations of front-end security filters. Front-end security filters (FESF) are
functions registered to the base component that can be attached to the write or read ends of
transports. In case of a write(read)-FESF, the write FESF 1s called by the VMM before data is
written (read) to (from) the transport by a VM. An example of a write-FESF is Seal() that is
typically applied to data in a high-assurance environment before that data is written to an ordinary
(non-high-assurance) environment if MAC 1s in force. If MAC is not in force, an environment will
have to encrypt data that it considers privacy sensitive before sending it to another environment.

[0059] Messages: Transports carry messages across different environments. A message is
a data blob created by the base component that is structured as follows:

a. Security context assigned by the base component: Contains a DAC and MAC
context. The DAC context contains the subject-1d of the creating environment. The MAC context
contains the sensitivity label and category of the creating environment.

b. Content: Data (including security context assigned by a creating environment).

[0060] Higher level abstractions: Environments (or applications or other software objects
running in an environment) may implement an RPC interface by themselves by using the
communications abstraction exposed by the base component. This may be a Service provided by an
environment, or simply library code. Another abstraction that may be exposed is a socket call

interface between environments, which need not be implemented by the base component.

[0061] Focus management: In many of the examples of partitioned applications, arrival of

a message from one environment to the other may cause a change in the current owner of the secure

input or output device. Focus management is provided by the base component on request by
environments — €.g., an environment may request a change in focus upon arrival of a message from
another environment. An environment then has a session with the secure input/output device and
then relinquishes control. The base component can force termination of an I/0 session by an

environment.
-19 .

VAL 8 e S o e Y VL (LFNV Y

CA 02480906 2004-09-09

Example Data Object for Use with Partitioned Applications
[0062] FIG. 7 shows an example structure of a data object, that allows the data object to be *

used with partitioned applications. As described above, when an application is partitioned, a first
partition of the application may encounter a data object that cannot be processed by that partition
but needs to be sent to a second partition. In the case where the first partitibn 1s the “non-secure”
part of the application and the second partition is the “secure” part, it 1s preferably that the first
partition can recognize that the data object needs to be sent elsewhere for processing, even if the
first partition cannot determine anything else about the object (e.g., even 1f the first partition cannot
read the object’s contents). Additionally, in some circumstances 1t may be important to verify that
the data object was, in fact, created under secure circumstances and has not been modified since
(e.g., it should be possible to determine whether the data was entered in an environment in which
data on its way from the keyboard to the I/O stream of an application 1s protected from spooting).
Thus, it is also preferable that the data object be represented in a manner that allows its chain of
handling to be verified.

[0063] Data object 700 includes a data item 702. Data item 702 1s the underlying
substantive content that data object 700 exists for the purpose of carrying — e€.g., a secret word
processing document (or portion thereof), sensitive financial data for a spreadsheet, password
information to authenticate a user in a financial transaction, etc.

[0064] Data item 702 is wrapped in a series of wrappers by each layer of the architecture
that handles the data. Each wrapper serves two purposes: (1) the wrapper 1dentifies the entity (e.g.,
an application, an environment, etc.) that placed the wrapper on the item, which assists in later
routing the item to that entity; (2) the wrapper seals the item in a manner that later allows one to
verify that the item has not been modified since it was wrapped. For example, 1if Word-let 608
creates data item 702, then Word-let can attach both a digital signature of data item 702, as well as a
header that identifies Word-let as the processor to which data item 702 should later be routed when
it needs to be handled in some manner. The signature and header thus constitute a wrapper 704. It
should be noted that wrappers are not limited to signatures and headers, or to any particular
embodiment, and there are various known techniques that allow an item to be 1dentified, and that

allow the item’s integrity (i.e., non-modification) to be verified.
-20 -

SR, WA AT g i SRS =, WAy 2 AV M WA AV ey d A - S i, N, W AW W 8 Sy Va7 SN I mrmpln 0 W S O S W = e e A P sl e s S SR

AN GO gm LAt PR AN Y v AR L - L, e s e R

CA 02480906 2004-09-09

[0065] As described above, security of a proceésor such as Word-let is based on a
hierarchy of trusted components — i.e., Word-let is trustworthy because it relies on the high-
assurance of the nexus; the nexus is trustworthy because it relies on the isolation capabilities of the
base component, etc. Thus, each component in the hierarchy that is in the chain leading up to the
application that creates data item 702 wraps the item in its own wrapper. The data item 702, which
is already wrapped by Word-let’s wrapper, is then wrapped by the nexus’s wrapper 706. This
(doubly-wrapped) item is then wrapped by the base component’s wrapper 708. Each wrapper
essentially identifies the wrapping component and also constitutes a verifiable assertion (to the
extent that the wrapping component is trustworthy) that the wrapped contents have not been
changed since they were wrapped.

[0066] Additionally, since the wrappers are nested according to the order of the hierarchy,
each wrapper is useful for routing purposes. Thus, when data object 700 1s encountered by an
application, the outer wrapper 708 identifies the object as one that needs to be routed to another
processor, so the object is sent to the base component. The base component then uses the wrapper to
verify the integrity of the contents inside the wrapper, and uses the next-level wrapper 706 to
determine which environment the contents needs to be routed to (in this case, to the nexus). The
nexus then verifies the integrity of the contents inside wrapper 706, and also uses wrapper 704 to
determine which software object (in this case, Word-let) will handle contents. Word-let then verifies
the integrity of the contents inside wrapper 704. This contents 1s data item 702. Thus, the structure
of data object 700 allows data item 702 to be routed and verified at each step in the chain leading up

to the processor that will handle data item 702.

Example Process of Using Partitioned Application
[0067] FIG. 8 shows an example process by which a partitioned application is used. It is

assumed, for the purpose of the example of FIG. 8, that an application has two processors, referred
to as processor 1 and processor 2.

[0068] Initially, processor 1 is running; during the time the processor 1 is running,
processor 1 encounters a data object (802). As discussed above, processor 1 may not be able to read
the data object, but may be able to recognize the data object as something that needs to be sent

elsewhere for processing. Thus, processor 1 sends the data object to the reference monitor (804).
-21 -

CA 02480906 2013-02-01

51050-103

[0069] The reference monitor uses the outer-most wrapper of the data object to determine
where the data object needs to be sent. As discussed above, the reference monitor (which is
preferably part of the above-discussed base component) also uses the outer-most wrapper to verify
the mtegrity of that wrapper’s contents. In this example, it is assumed that that the integrity of the
contents has been maintained, and that the reference monitor determines that the data object needs
to be processed by processor 2 (806). (As discussed above, the reference monitor may not be
directly aware of processor 2’s existence, but rather may use the wrapper to route the object to a
particular environment, where the object is subsequently routed to processor 2 by the receiving
environment. Since the use of nested wrappers in this manner is discussed above in connection with
FIG. 7, for the sake of simplicity the example of FIG. 8 merely assumes that the data object can be
routed to processor 2 in some manner without regard to the intermediate routing steps that may be
involved in routing the object to processor 2.)

[0070] When the determination has been made that the data object is destined for
processor 2, 1t 1s determined (808) whether processor 2 is running. For example, this defermination
may be made by the environment in which processor 2 is intended to run (e.g., the nexus, in prior
examples). If processor 2 is not running, then processor 2 is started (810). After processor 2 has
been started (or otherwise determined to have been already running), then processor 2 is given focus
(1.., the ability to perform I/O on input and output devices) if processor 2 is to handle any input or
output.

‘ [0071] It is noted that the foregoing examples have been provided merely for the purpose
of explanation and are in no way to be construed as limiting of the present invention. While the

invention has been described with reference to various embodiments, it is understood that the words
which have been used herein are words of description and illustration, rather than words of
limitations. Further, although the invention has been described herein with reference to particular

means, materials and embodiments, the invention is not intended to be limited to the particulars

disclosed herein; rather, the scope of the claims should be given the broadest interpretation

consistent with the description as a whole.

22

10

15

20

25

CA 02480906 2013-02-01

5>1050-103

CLAIMS:

1. A system that manages partitioning of an application comprising;:

a base layer that hosts the operation of a first environment and a second

environment, the application comprising:

a first software object that executes in said first environment, said first software
object handling a plurality of data and including logic to identity a first of said plurality of

data as not processable by said software object; and

a second software object that executes 1n said second environment and that

processes said first of said plurality of data in a manner that resists tampering with said first of

said plurality of data,

said base layer comprising or hosting logic that receives said first of said plurality of data

from said software object and routes said first of said plurality of data to said second

environment.

2. The system of claim 1, wherein said first software object causes a
representation of said first of said plurality of data to be displayed on a display device, said

representation comprising one or more indecipherable tokens.

3. The system of claim 2, wherein said one or more indecipherable tokens are

either: (1) the same size as each other, or (2) of sizes that are unrelated to content of said first

of said plurality of data.

4, The system of claim 1, and wherein a resistance to tampering provided by said
second software object comprises said second environment resisting interference with the
display of said first of said plurality of data by writing a representation of said first ot said
plurality of data into a video memory associated with a display device so as to cause said

representation to supersede any image at a location on said display device at which said

representation 1s to be displayed.

23

10

15

20

25

CA 02480906 2013-02-01

51050-103

5. The system of claim 1, wherein said first of said plurality of data 1s entered on
a keyboard, and wherein a resistance to tampering provided by said second software object
comprises resisting tampering with said first of said plurality of data in transit from said

keyboard to an input stream of said second software object.

6. The system of claim 5, wherein said second application signs said first of said

plurality of data to prevent subsequent tampering with said first of said plurality of data.

7. The system of claim 6, wherein said second environment signs said first of said
plurality of data and a signature created by said second application is an indication that said

first of said plurality of data and said signature were created in said second environment.

8. The system of claim 1, wherein said base layer comprises a component that

assigns a first identifier to said second environment.

9. The system of claim 8, wherein said first of said plurality of data includes, or 1s
accompanied by, said first identifier and a second identifier that identifies said second

software object.

10. The system of claim 1, wherein said first environment is associated with a first
specification that describes a behavior of said first environment, wherein said second
environment is associated with a second specification that describes a behavior of said second
environment, wherein there is a higher level of assurance that said second environment will

conform to said second specification than that said first environment will conform to said first

specification.

11. The system of claim 10, wherein said second software object relies upon the

behavior of the second environment in order to resist tampering with said first of said plurality

ot data.

12. The system of claim 1, wherein said base layer 1s said second environment, or

is included within said second environment.

24

10

15

20

25

CA 02480906 2013-02-01

51050-103

13. A computer-implemented method of handling data to which a policy applies,

the method comprising:

a first software object which executes in a first environment on a computer

encountering the data;

the first software object determining that the data 1s not processable by the first

software object;

the first software object causing the data to be provided to a second software
object that executes in a second environment on a computer that provides a first level of
assurance that actions pertormed in the second environment will be performed correctly,
wherein the second software object processes the data in a manner that uses said assurance to

create resistance to tampering with the data by acts arising outside of the second environment.

14. The method of claim 13, wherein the resistance to tampering comprises a

resistance to a change 1n said data.

15. The method of claim 14, wherein said data 1s to be displayed on a visual
display device, and wherein the resistance to tampering comprises displaying a representation
of said data in a location on satd visual display device and superseding any image other than

said representation that is rendered at said location.

16. The method of claim 13, wherein said first sottware object causes a
representation of the data to be displayed on a visual display device, said representation

comprising one or more indecipherable tokens.

17. The method of claim 16, wherein said representation are either: (1) a same size

as each other, or (2) of sizes that are unrelated to content of said first of said plurality of data.

18. The method of claim 16, wherein said first software object or said second
software object, or a combination of said first software object and said second software object,
cause items displayed on said visual display device to be changed in at least one respect to

permit viewing of an image of the data produced by said second software object.

25

10

15

20)

25

CA 02480906 2013-02-01

51050-103

19. The method of claim 14, wherein said data is provided using a keyboard, and

wherein the resistance to tampering comprises resisting a change to the data in transit from the

keyboard to the input stream of the second software object.

20. The method of claim 13, wherein said security policy specifies that said data 1s

to be handled by said second software object.

21. The method of claim 13, wherein said data includes, or 1s associated with, a

first label that identifies said second environment as a location in which said data 1s to be

processed.

22. The method of claim 21, wherein said data includes, or is associated with, a
second label that identifies said second software object as a processor for said data, and

wherein said second environment routes said data to said second software object based on said

second label.

23. The method of claim 13, wherein said second environment is associated with a
first specification that describes a behavior of said second environment, and wherein said

assurance provides that said second environment will conform to said specitication.

24, The method of claim 13, wherein said first environment is associated with a
second specification that describes a behavior of said first environment, and wherein said first
environment provides a second level of assurance that actions performed in the first
environment will be performed correctly, said second level of assurance being relatively lower

than said first level of assurance.

25. A computer-readable storage medium having stored thereon processor-
executable instructions that, when executed by a processor, cause the processor to allow a user
to operate on first and second classes of data, said second class of data requiring a relatively

higher level of protection from tampering than said first class of data, said instructions

comprising:

a first software object associated with a first specification that describes a

behavior of said first software object, said first software object comprising instructions to:

26

10

15

20

23

CA 02480906 2013-02-01

51050-103

operate on members of said first class of data;

recognize a member of said second class of data as not being processable by

said first software object; and

cause said member of said second class of data to be routed to a second

software object; and

said second software object, which 1s associated with a second specification
that describes a behavior of said second software object, there being a relatively higher level
of assurance that said second sotftware object will conform to said second specification than
that said first software object will conform to said first specification, said second software

object comprising instructions to operate on members of said second class of data.

26. The computer-readable medium of claim 25, wherein said first software object
operates 1n a first environment, wherein said second software object operates in a second
environment, wherein said first environment 1s associated with a third specification that
describes the behavior of said first software environment, wherein said second environment is
assoclated with a fourth specification that describes the behavior of said second environment,
wherein the level of assurance that said second environment will conform to said fourth
specification is relatively higher than the level of assurance that said first environment will
conform to said first specification, and wherein the assurance that said second software object
will conform to said second specification derives from said second software object's reliance

on the behavior of the second environment.

27. The computer-readable medium of claim 25, wherein each member of said
second class of data comprises: (1) a first label indicating that said member of said second
class is to be processed in said second environment, and (2) a second label assigned by said

second environment indicating that said member of said second class 1s to be processed by

sald second software object.

28. The computer-readable medium of claim 27, wherein said first software object

causes said member of the second class to be routed to said second software object by sending

27

10

15

20

25

CA 02480906 2013-02-01

51050-103

said member of the second class to a base component, said first label being assigned by said

base component, said second label being recognizable by said second environment and not by

said base component.

29. The computer-readable medium of claim 25, wherein said first software object
displays output on a visual display device, said output including one or more locations on said
visual display device in which said member of said second class is to be displayed, and

wherein said second software object displays a representation of said data of said second class

in said one or more locations.

30. The computer-readable medium of claim 29, wherein said representation is
displayed 1n said one or more locations by said second environment causing said

representation to be written into a video memory associated with said visual display device.

31. The computer-readable medium of claim 25, wherein said member of said
second class comprises data to be entered using a keyboard, and wherein causing said member
of said second class of data to be routed to said second software object comprises said second
environment transporting saild member of said second class from said keyboard to said second

software object in a manner that resists tampering with said member of said second class by

events arising outside of said second environment.

32. A system that supports partitioning of an application into at least a first

software object and a second software object, the system comprising a computer-readable
storage medium having stored thereon computer-executable instructions that, when executed
by one or more computers, cause the one or more computers to host a first environment and a
second environment, the first software object running in the first environment, the second
software object running in the second environment, the instructions further causing the one or

more computers to implement an application programming interface that exposes at least one

of the following methods:

a first method that receives from the first software object a first data object that

comprises: (1) data processable by the second software object, and (2) a first identifier

28

10

15

20

CA 02480906 2013-02-01

51050-103

assigned by the system to the second environment; and that routes said first data object to said

second environment based on said first identifier:;

a second method that creates a second data object that comprises: (1) data
processable by the second software object; (2) said first identifier; (3) authentication data that

allows a subsequent determination that said second data object has not been tampered with

since being created by said second method;

a third method that receives, from the first environment, a second 1dentifier

associated with the second software object, and that directs that an instance of the second

software object be created; and

a fourth method that receives, from the first software environment: (1) a third
data object, and (2) a third 1dentifier associated with said first software object, and that directs
that an instance of said first software object be created based on having received said third

identifier, and that directs that said first software object operate on said third data object.

33. The system of claim 32, wherein said first environment 1s associated with a
first specification that describes a behavior of said first environment, wherein said second
environment is associated with a second specification that describes a behavior of said second
environment, wherein there 1s a first level of assurance that said first environment will
conform to said first specification, wherein there 1s a second level of assurance that said

second environment will conform to said second specification, and wherein said second level

of assurance 1s relatively higher than said first level of assurance.

34, The system of claim 33, wherein said second software provides assurance that

said second software object will protect data, said assurance being provided at least in part by

relying on the behavior of the second environment.

29

CA 02480906 2004-09-09

000000 | 1O

EQ

081
d31NdINOD

J1ONW3d

58l SNVY90dd

NOILVOT1ddV
JIOW3Y

191

20| PIeoqAs) 3snop

e

L6}

1/6

161 JOHUOWN

v
vivd

ErXSeto]y

} OId

ShL

NVH9O0Hd

001 JustutuoliAUg bunpnduio)

WYHO0dd

SWVHd90dd

d3dH10

NOILYOIddVY | ONILvd3dO

I.
’
iQ
[4

‘.
L 4
.
" g
L 4
[4

Ii!!ill‘llli\litlIllliiill

AR Y i}

LEL

“
w
|
“ 0L 091 1v,o.w.,..m 0EHalU] o¥l adeliaju|
NiOMPN | a5ea| CRITIEN Kioway KIOWSIN
ealy [e207] ._,v NIOMISN InaurIasn a|l}BJOA-UON S|IEJOA-UCN
_ 9|JEACUIBY S|GEACWISY-UON
_ A -
1 A
| :
, | shg Wals
SE VT I . | |21 sng wel wﬁ
.)4 —
| T — Zi
. . " 6l s5emEI] fﬂﬂ
961 Jajuiid - - » [EIBUJSd SOPIN Tg!
- | A0 | BUISSa301g

Bleq)
weibold

otl SaMpon
weIboid o0

Gl sweIboig
uonesidaay

Illiiiilll

Iiiill!tllii!llliilll

CA 02480906 2004-09-09

2/6

Functionality
202(1)

Functionality
202(2)

3

lication 135

Functionality
202(n+1)

"

Functionality
202(n+2)

"

|

| Functuonahty
202(n)

h_—(

Functionality
202(n+m)

W

- R N ke chile s w—— kn S Smm Smm SR N ARV R Y v VR AR wmh fm h W WA EA W N O v G W SR G e A G alc e e wes gun e

"Y__‘"—'J
206(1) 206(2)

Application 135
I 206(1 206(2)

f
¢
!
¢
t
|
!
¢
§
t
t
{
i
i
i

PP

n ;

304

Operations
requiring less or
no protection

302
I Operations S
requiring more
protection |

e N I AU R AN s e ST M ey . e A A s AV, wp =3 AN AP AS R . .
> e T NSNS T e L l:?v.mw’,‘v AT Gt e 1 R TN A T e N A O i AT AL A L BN B LN A A A P P ey T "
. . o NS e . . et G ARl O . 2FNNE, o .“#;Q:-‘-%&-’; i$--$ A 4 ,"K!‘.N ! .8 {, NYYall -.-’g i RISk e'n{"?-u"l"r\g\ww-'.w-v sare g Qs PP TP AR sl . . . I
FRTRTATAE AN NS A A S A B S il ""’"""3"-'3\\&:?{'*‘.;;‘\- A R R N A Ay R NN R N P VL ™ TR T i B2 AT R LSRR T BISID Sea gt o m R R R s et

R e o2 mh‘wwwﬂ‘sﬂo?m'mww-ﬂ.mh“- P R e b Vg Mg VY PR A TN 3 8 o AN AN PR

402(3)

405

CA 02480906 2004-09-09

3/6

402(1)

00

The quick brown fox jumps over the
lazy dog. The quick brown fox
jumps over the lazy dog. The quick
brown fox jumps over the lazy dog.
The quick brown fox jumps over the
lazy dog. The quick brown fox
jumps over the lazy dog. The quick

AVAV AV AV AV A A N aY YU e Ve
A VAVAYAVAVA VA ~ NN TSN S TN
\/\/\N\N\ \/"_/’“_/\/'_/"\/\
AVAVAVAVAVA VA e N e
AVAVAVAV AV AN A R NV a Y U U aWa Ve
AVaAVAVAVAVA VA RV W e Ve
EaVaVaVAVAVA LY B W W a W \Uale Ve
AVAVAVAVAVA VAR BV a YV a W \UaWWe Vel
NNANANNN SO TS NN
NNANANNSNS j I Wa e W Vo
aVAVAYAVAVA VAR ~ N TSN
AVAVAVAVAVAN A VAV U aWa Ve
AVAVAVAVAV AN A N Y AU U aWe Ve
AVAVAVAVAVA VAR NV o U UaWe Ve
AVAVAVAVA WA Ve ' ~_ N TN\
|
AVAVAVAVAVAVE L

402(4)
405

N i e - o

i

CA 02480906 2012-07-10

4/6
Environment 502(1)] Environment 502(2)
| Processor | Procg——ssor
504(1) 504(3)
Processor | Processor
504(2) 504(4)

Labeled
data 506
Base component 508 Reference monitor 510 l

FIG. 5

CA 02480906 2012-07-10

5/6

04 06
— %} . J_G
Word Excel

let

502(1) ~602(2)

Ij Linux

6081 Word-

Excei:m jm :

Nexus

let

|

Base component 508

Word-i;:[wrgpger 704

Base component wrapper 708

P

Nexus wrapper 706

502(3)

S

0S/2 |

]

02(4)

;-810

Start —

processor 2 |
|

NO

CA 02480906 2004-09-09

6/6

Begin

Processor 1 i rnnng; 802
| sees data object
Data object sent to 304

reference monitor

Reference monitor sees JSO(a
' object is for processor 2

808
Processor 2 running
?

Yes

812
Give processor 2 focus

Processing continues
with processor 2

FIG. 8

: .

-~ ettt SINALANE T M Y ey, e N 4 A NN DT Py 0] 0, AN WL S A, = ey b o AP T A S el e sme s s s s e .

|

. ""'""""'"‘“'““'""“"‘“"“"‘“"‘NJ*"-‘*W?EN,FFF;QE

Environment 502(1)

m

Processor
504(1)

Processor
504(2)

|Labeled
data 506 k

Environment 502(2)

| 'P}ocessor
504(3)

Processor
504(4)

I

Base component 508

Reference monitor 51 I

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - abstract drawing

