Title: NON-FLAMMABLE COMPOSITIONS AND USE OF THESE COMPOSITIONS

Abstract: The invention relates to certain non-flammable compositions containing 1,1,1,3,3-pentafluorobutane (R365mfc), 1,2-dichloroethylene and a hydrofluoroether, to mixtures containing these compositions and to the use of these non-flammable compositions or these mixtures, especially as precision cleaning agents for solid surfaces and for flushing, especially of refrigeration systems.
Non-flammable compositions and use of these compositions

This application claims priority to European application No. 13158510.1 filed on March 11, 2013, 13194066.0 filed on November 22, 2013, and 14150496.9 filed on January 08, 2014 as well as to International Application EP2013/077835 filed on December 20, 2013, the whole content of these applications being incorporated herein by reference for all purposes.

The invention relates to certain non-flammable compositions comprising 1,1,1,3,3-pentafluorobutane (R365mfc), 1,2-dichloroethylene and a hydrofluoroether, preferably the hydrofluoroether is selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7100), to mixtures comprising these non-flammable compositions and to their use, especially as cleaning and/or drying agents for solid surfaces and for flushing, especially of refrigeration systems.

Fully halogenated chlorofluorinated hydrocarbons (CFCs), in particular 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113), were widely used as solvents in industry for degreasing and cleaning various surfaces. In addition to their use in electronics in cleaning soldering, they were also conventionally used for degreasing metal components or for cleaning mechanical components of high quality and of high precision. In these various applications, CFC-113 was most often used in combination with other organic solvents, preferably in the form of azeotropic or pseudo-azeotropic compositions. For example, CFC-113 was used in combination with trans-1,2-dichloroethylene in compositions formerly known as Freon® MCA and Freon® SMT. Such compositions could also be used as cleaning agents in the refrigeration industry.

However, CFC-113, as well as other fully halogenated chlorofluoroalkanes, was suspected of being involved in the destruction of the stratospheric ozone layer.

Consequently, compositions with reportedly lower ozone-layer destruction potential were disclosed in WO 2000/56833 and include compositions of 1,1,1,3,3-pentafluorobutane and 1,1,1,2,3,4,4,5,5,5-decafluorpentane or nonafluoromethoxybutane with the optional addition of trans-1,2-dichloroethylene (tDCE), npropyl bromide (nPb), acetone, methanol, ethanol or isopropanol.
In applications where the potential of fire is of concern, it is desirable for the cleaning compositions to be non-flammable in both liquid and vapour phase, during usage. Accordingly, one of the objectives of the present invention is to provide non-flammable compositions.

During usage and/or when discharged to the atmosphere, a composition of a mixture may change, what might cause the composition remaining or the composition being discharged to become flammable or to exhibit unacceptable performance. Accordingly, it is another objective of this invention to provide compositions forming azeotropes or pseudo-azeotropes.

The HFCs that have been proposed as replacement for CFCs might have not sufficient solvency for electronics soils such as hydrocarbon or silicon oils and flux residues, or soils of the refrigeration industry. Accordingly, it is yet another object of the present invention to provide HFC-based cleaning compositions that exhibit acceptable solubility for electronics soils notably suited for cleaning printed circuit boards and/or soils in the refrigeration industry, notably as flushing agents for cleaning air conditioning systems.

Additionally, it is an objective of the present invention to provide compositions with a low global warming potential (GWP) and/or with a low ozone-depletion potential.

There is still a need in the electronics and refrigeration industry for compositions that provide advantageous compositions with regard to the aforementioned problems.

The compositions of the present invention solve one or more of at least the aforementioned problems confronting the cleaning and refrigeration industries.

Consequently, the present invention relates to non-flammable compositions comprising, consisting or consisting essentially of 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of 1 - <10 wt %, 1,2-dichloroethylene in a concentration of >60 - 98 wt %, and a hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7 100), in a concentration of 1 - 30 wt %, preferably comprising, consisting or consisting essentially of 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of 2.5 - <10 wt %, 1,2-dichloroethylene in a concentration of >70 - 95 wt %, and a hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7 100), in a concentration of 2.5 - 20 wt %,
more preferably comprising, consisting or consisting essentially of 1,1,1,3,3-
pentafluorobutane (R365mfc) in a concentration of 5 - <10 wt %, 1,2-dichloroethylene in a concentration of >82.5 - 92.5 wt %, and a
hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7100), in a concentration of 2.5 - 7.5 wt %, and
even more preferably comprising, consisting or consisting essentially of
1,1,1,3-pentafluorobutane (R365mfc) in a concentration of 6.5 - 8.5 wt %, 1,2-dichloroethylene in a concentration of 86.5 - 88.5 wt %, and a
hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7100), in a concentration of 4 - 6 wt %.

In a particularly preferred embodiment, the inventive composition consists or consists essentially of 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of around 7.5 wt %, 1,2-dichloroethylene in a concentration of around 87.5 wt %, and ethoxynonafluorobutane (HFE-7200) in a concentration of around 5 wt %.

Unless specified otherwise, the weight percentages in the present specification are all relative to the total weight of the composition.

The term "flammable" is meant to denote any flammability determined according to any applicable standard, and is preferably as defined in DIN/EN/ISO 13736.

The term "consisting essentially of" as used herein is intended to denote a composition comprising the components as specified as well as other components in trace amounts wherein the presence of the other components does not change the essential characteristics of the specified subject matter.

HFE-7200 is commercially available from 3M and consists of the two isomers \((\text{CF}_3)_2\text{CFCF}_2\text{OC}_2\text{H}_5\) (CAS No. 163702-06-5) and \(\text{CF}_3\text{CF}_2\text{CF}_2\text{CF}_2\text{OC}_2\text{H}_5\) (CAS No. 15 163702-05-4). HFE-7100 is also commercially available from 3M.

The term "a hydrofluoroether" is used herein is intended to denote a hydrocarbon, which is fluorinated and which comprises at least one "C-O-C" moiety. Furthermore, the term "a hydrofluoroether" is intended to denote the presence of a single compound selected from the class of hydrofluoroethers or a mixture of two or more compound from the class of hydrofluoroethers. Thus, the term "a hydrofluoroether" comprises for example a mixture of HFE-7200 and HFE-7100.

1,2-Dichloroethylene exists in two isomeric forms, cis-1,2-dichloroethylene and trans-1,2-dichloroethylene. For the purposes of the present invention,
1,2-dichloroethylene is understood to mean, without distinction, one or the other isomer or a mixture of these. In a preferred embodiment, the 1,2-dichloroethylene consists essentially of trans-1,2-dichloroethylene.

In another preferred embodiment, the compositions of the present invention are azeotropic or pseudo-azeotropic. An azeotrope as used herein is a specific system containing at least two components in which, at a given temperature and a given pressure, the composition in the liquid phase is equal to the composition in the vapour phase. A pseudo-azeotrope as used herein is a specific system containing at least two components in which, at a given temperature and a given pressure, the composition in the liquid phase is substantially equal to the composition in the vapour phase. In practice, their composition remains substantially constant in solvent cleaning operations, as well as in operations for recovering spent solvents by distillation.

In another preferred embodiment, the non-flammable compositions have a GWP of < 500, preferably < 350, more preferably < 250, most preferably < 150. The Global Warming Potential (GWP) as used herein is determined using the 100-yr ITH, IPCC2001 method.

The invention also relates to mixtures comprising the inventive non-flammable compositions as described above and further comprising at least one stabilizer and/or at least one propellant.

The stabilizer can be present in an amount of up to or equal to 5 wt %, preferably up to or equal to 2 %, more preferably up to or equal to 0.5 wt % relative to the total weight of the mixture. The stabilizer is intended to stabilize the components of the composition against undesired side reactions during storage, transportation or use. Examples of suitable stabilizers are epoxides, unsaturated hydrocarbons, nitroalkanes, diketones, brominated compounds, and alcohols. A preferred stabilizer is isopropanol.

The propellant assists in the delivery of the composition to the point of use. Representative propellants comprise air, nitrogen, carbon dioxide, difluoromethane, trifluoromethane, fluorinated ethanes, especially 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, and pentafluoroethane. The propellant may be included in the composition in an amount of > 0, preferably equal to or more than 5 parts, more preferably equal to or more than 10 parts by weight per 100 parts by weight of the composition according to the invention. Preferably, the amount of the propellant is equal to or less than 40 parts, preferably equal to or less than 30 parts.
by weight per 100 parts by weight of composition according to the invention. Mixtures wherein the propellant is comprised in an amount of 1 to 25 parts per 100 parts of the composition according to the invention are especially suitable for flushing.

5 The compositions according to the invention can be used in the same applications and according to the same techniques as the prior compositions based on CFC-113.

The compositions can be used, for example, as cleaning agents in general, especially as surface cleaning agent, e.g. for cleaning parts, for example, precision parts, made of plastics or inorganic material. The term "cleaning" includes, for example, cleaning textiles, degreasing in general, for example, degreasing animal hides, surface cleaning, for example cleaning, especially degreasing of metal, glass, or ceramics parts; for example, cleaning of optical lenses, cleaning of electronic devices, e.g. printed circuit boards contaminated by a pickling flux and residues from this flux, or cleaning solid chemicals insoluble in the composition. Solid objects can be desiccated to remove the water adsorbed at the surface of solid objects.

Accordingly, the present invention also relates to method of use of the non-flammable compositions or the mixtures as described above as cleaning agents, preferably as precision cleaning agents, or as degreasing agents. Preferably, non-flammable composition or the mixture is in the vapour phase during the cleaning. Especially preferred is a method of use as a cleaning agent or as a degreasing agent for printed circuit boards contaminated by a pickling flux and residues from this flux or as desiccating agent for removing water adsorbed at the surface of solid objects. Alternatively, they also can be used as mold-release agents or for defluxing electronic components and for degreasing metals.

Preferably, the propellant-containing mixtures are used for flushing of refrigeration equipment. The interior surface of compression refrigeration equipment, for example, used for climatisation of rooms, space for storing goods, or automobiles (mobile air conditioning, MAC) sometimes needs cleaning from residues, for example, when the refrigerant has to be changed, or had evaporated because of a leakage or has to be removed for repair. The residue be located in lines or other parts of the apparatus, e.g. in the compressor. The residue comprises refrigerant, compressor lubricant, e.g. mineral oil, naphthenes or polyol ethers, metal particles or rust. By contact with the composition according to the present invention, the inner surface of the equipment is recovered substantially free of
residue. The way of contacting is not critical. The composition preferably is
flushed in liquid phase through the equipment. The vapour pressure of the
propellant moves the composition through the equipment.

Accordingly, the present invention also relates to a method of use of the
non-flammable compositions as described above and preferably the mixtures as
described above for cleaning of interior surfaces of refrigeration equipment,
especially by flushing the refrigeration equipment. More preferably the
refrigeration equipment is an air-conditioner.

The non-flammable compositions and the mixture of the present invention
can even be applied as blowing agents for preparing plastic foams or for
spraying liquids or as refrigerants.

The compositions, with or without a propellant, can be prepared in a very
simple manner by mixing the constituents. Constituents which are gaseous at
ambient pressure and temperature can be added in liquid form under pressure or by
adding them to the other constituents under condensation.

The invention advantageously provides compositions which are
non-flammable, despite a content of 1,2-dichloroethylene which per se is
flammable. Unexpectedly, even compositions comprising R365mfc
and 1,2-dichloroethylene and flammable stabilizers, for example, isopropanol, are
non-flammable even though these compounds might have a flash point.

Should the disclosure of any patents, patent applications, and publications
which are incorporated herein by reference conflict with the description of the
present application to the extent that it may render a term unclear, the present
description shall take precedence.

The examples below, without implied limitation, illustrate the invention in a
more detailed way.

Examples

Example 1: Preparation of a ternary composition

Trans-1,2-dichoroethylene was mixed with 1,1,1,3,3-pentafluorobutane and
ethoxynonafluorobutane (HFE-7200) in a weight ratio of 87.5:7.5:5.

Flammability test with the composition of example 1:

The flammability test was performed according to DIN/EN/ISO 13736 in a
closed cup of 75 ml inner volume. The cup also comprised a stirrer and a probe
to determine the temperature of the liquid to be tested, and means to rise the
temperature. In the lid of the cup, a device was contained which allows to direct
a test flame to the surface of the liquid the combustibility of which has to be
determined. The apparatus used had a thermo detector which responds to fast rise of the measured temperature (indicating that a flame occurred).

The stirrer rotated slowly (about 30 rpm). The liquid in the cup was slowly warmed up. Whenever the temperature rose by 0.5°C, the test flame was ignited and it was checked if the thermo sensor responded. The tested composition is non-flammable, i.e. no flashpoint was detected.

Example 2: Use of the composition of example 1 for vapour degreasing

Metal parts can be greased on the surface to protect them against corrosion. Adhering grease can also be caused by the application of drawing wax, drawing grease or drawing oil during shaping the metal parts. The step of cleaning high-precision metal parts is performed in a vapour degreaser.

A vapour immersion unit which has two solvent-filled sumps can be applied. A boil cleaning tank comprises a solvent mixture which, additional to a higher-boiling solvent component additionally comprises the non-flammable composition described above. A rinsing tank only comprises the non-flammable composition described above.

The metal parts are assembled in a basket and immersed into the boil cleaning tank to dissolve adhering grease. They are then removed and immersed into the rinsing tank wherein adhering solvent mixture from the boil cleaning tank is rinsed. The parts then are covered with the lower-boiling composition of the rinsing tank. The basket is then removed from the rinsing tank and kept in the gas space above tanks. The solvent adhering on the surface of the metal parts passes into the vapour phase. Near the top of the vapour degreaser are three sets of cooled coils where the vapour condenses before it can escape from the unit. The condensed vapour flows back to a clean condensate tank and can be reused. A part of the vapour is fed to a drying unit to remove water from it. The degreased dry metal parts can then be removed from the vapour degreaser.

Example 3: Preparation of a mixture comprising a stabilizer and a propellant

7.5 wt % 1,1,1,3,3-pentafluorobutane (R365mfc), 87.5 wt % 1,2-trans-dichloroethylene which comprises about 0.5 wt % isopropanol as stabilizer, and 5 wt % ethoxynonafluorobutane (HFE-7200) are mixed. This basic composition is filled into a container, and 10 parts 1,1,1,2-tetrafluoroethane are condensed into the container.

Example 4: Flushing MAC apparatus using the composition of the present invention
The mixture of example 3 is applied in a method for flushing a mobile air conditioning apparatus.

The refrigerant is removed beforehand. A storage tank containing the composition is connected to the apparatus, and respective valves are opened. The composition is flushed through the lines and parts of the apparatus including the compressor. Residual oil and solids are removed during the treatment. The composition after leaving the apparatus is collected in a tank and can be conditioned for reuse by distillation. The flushed apparatus is clean and degreased and can be refilled with refrigerating agent.
1. A non-flammable composition comprising, consisting or consisting essentially of

(a) 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of 1 - <10 wt %,
(b) 1,2-dichloroethylene in a concentration of >60 - 98 wt %, and
(c) a hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7100), in a concentration of 1 - 30 wt %.

2. The non-flammable composition of claim 1 comprising, consisting or consisting essentially of

(a) 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of 2.5 - <10 wt %,
(b) 1,2-dichloroethylene in a concentration of >70 - 90 wt %, and
(c) a hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7100), in a concentration of 2.5 - 20 wt %.

3. The non-flammable composition of claim 2 comprising, consisting or consisting essentially of

(a) 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of >5 - <10 wt %,
(b) 1,2-dichloroethylene in a concentration of >82.5 - 92.5 wt %, and
(c) a hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7100), in a concentration of 2.5 - 7.5 wt %.

4. The non-flammable composition of claim 3 comprising, consisting or consisting essentially of

(a) 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of 6.5 - 8.5 wt %,
(b) 1,2-dichloroethylene in a concentration of 86.5 - 88.5 wt %, and

c) a hydrofluoroether, preferably selected from ethoxynonafluorobutane (HFE-7200) and methoxynonafluorobutane (HFE-7100), in a concentration of 4 - 6 wt %.

5. The non-flammable composition of claim 4 consisting or consisting essentially of

(a) 1,1,1,3,3-pentafluorobutane (R365mfc) in a concentration of around 7.5 wt %,

(b) 1,2-dichloroethylene in a concentration of around 87.5 wt %, and

(c) ethoxynonafluorobutane (HFE-7200) in a concentration of around 5 wt %.

6. The non-flammable composition of any one of claims 1 to 5 which is azeotropic or pseudo-azeotropic, preferably azeotropic.

7. The non-flammable composition of any one of claims 1 to 6 which has a GWP of < 500, preferably < 350, more preferably < 250, most preferably < 150.

8. The non-flammable composition of any one of claims 1 to 4, 6 or 7 wherein the hydrofluoroether is ethoxynonafluorobutane (HFE-7200).

9. The non-flammable composition of any one of claims 1 to 4, 6 or 7 wherein the hydrofluoroether is methoxynonafluorobutane (HFE-7100).

10. A mixture comprising the non-flammable composition of any one of claims 1 to 9 and further comprising at least one stabilizer and/or at least one propellant.

11. The mixture of claim 10 further comprising at least one stabilizer wherein the stabilizer is isopropanol.

12. A method of use of the non-flammable composition of any one of claims 1 to 9 or the mixture of claims 10 or 11 as a cleaning agent, preferably as precision cleaning agent, or as degreasing agent.
13. The method of use of claim 12, wherein the non-flammable composition is in the vapour phase.

14. The method of use of any one of claims 12 to 13 as a cleaning agent or as a degreasing agent for printed circuit boards contaminated by a pickling flux and residues from this flux or as desiccating agent for removing water adsorbed at the surface of solid objects.

15. A method of use of the non-flammable composition of any one of the claims 1 to 9 or the mixture of claims 10 or 11 for cleaning of interior surfaces of refrigeration equipment, especially by flushing the refrigeration equipment.
A. CLASSIFICATION OF SUBJECT MATTER
INV. C11D7/50 C23G5/028
ADD.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C11D C23G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 2 929 956 A1 (ARKEMA FRANCE [FR]) 16 October 2009 (2009-10-16) page 3, line 18 - page 4, line 20 page 7, line 6 - line 30; table 4</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 937 049 A1 (ARKEMA FRANCE [FR]) 16 April 2010 (2010-04-16) the whole document</td>
<td>1-15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered new or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "A" document member of the same patent family

Date of the actual completion of the international search 25 March 2014
Date of mailing of the international search report 01/04/2014

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer Grittern, Albert
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 2929956 A 1</td>
<td>16-10-2009</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2003224956 A 1</td>
<td>04-12-2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>FR 2937049 A 1</td>
<td>16-04-2010</td>
<td>CN 102177231 A 07-09-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2334779 A1 22-06-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2937049 A1 16-04-2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012505945 A 08-03-2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011195890 A1 11-08-2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010043796 A1 22-04-2010</td>
<td></td>
</tr>
</tbody>
</table>