PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

<table>
<thead>
<tr>
<th>(51) International Patent Classification</th>
<th>A61B 1/00, A61M 25/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11) International Publication Number</td>
<td>WO 94/12089</td>
</tr>
<tr>
<td>(43) International Publication Date</td>
<td>9 June 1994 (09.06.94)</td>
</tr>
</tbody>
</table>

(21) International Application Number	PCT/US93/10882
(22) International Filing Date	12 November 1993 (12.11.93)
(30) Priority Data	07/983,899 US
(71) Applicant: INTELLIWARE, INC. [US/US]; 995 Benicia Street, Sunnyvale, CA 94086 (US).	
(72) Inventor: IMRAN, Mir, A.; 731 Barron Drive, Palo Alto, CA 94306 (US).	

Published

With international search report.

Title: FLEXIBLE DEVICE HAVING ADJUSTABLE STIFFNESS

![Diagram of the flexible device having adjustable stiffness](image-url)
(57) Abstract

A device comprising a flexible elongate member having proximal (72) and distal extremities (41). A flexible coil spring is provided having proximal and distal extremities. The proximal extremity of the coil spring is secured to the distal extremity of the flexible elongate member. A shape memory alloy element (46) is disposed within and extends substantially longitudinally of the coil spring (36). The shape memory alloy element has a memory which makes it attempt to assume a straight shape when an electrical current is passed through and heats the same. The shape memory alloy element (46) also has a stiffness which increases with the temperature of the element. An electrical current supply (67) is provided for supplying an electrical current to the shape memory alloy element for changing the stiffness of the shape memory alloy element to thereby stiffen the distal extremity of the flexible elongate member.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom
AU	Australia	GE	Georgia
BB	Barbados	GN	Guinea
BE	Belgium	GR	Greece
BF	Burkina Faso	HU	Hungary
BG	Bulgaria	IE	Ireland
BJ	Benin	IT	Italy
BR	Brazil	JP	Japan
BY	Belarus	KE	Kenya
CA	Canada	KG	Kyrgyzstan
CF	Central African Republic	KP	Democratic People’s Republic of Korea
CG	Congo	CH	Switzerland
CI	Côte d’Ivoire	KZ	Kazakhstan
CM	Cameroon	LI	Liechtenstein
CN	China	LK	Sri Lanka
CS	Czech Republic	LU	Luxembourg
CZ	Czechoslovakia	LV	Latvia
DE	Germany	MC	Monaco
DK	Denmark	MD	Republic of Moldova
ES	Spain	MG	Madagascar
FI	Finland	ML	Mali
FR	France	MN	Mongolia
GA	Gabon	MR	Mauritania
MW	Malawi	NE	Niger
NL	Netherlands	NO	Norway
NZ	New Zealand	PL	Poland
PT	Portugal	RO	Romania
RU	Russian Federation	SD	Sudan
SE	Sweden	SI	Slovenia
SK	Slovakia	SN	Senegal
TD	Chad	TG	Togo
TJ	Tajikistan	TT	Trinidad and Tobago
UA	Ukraine	US	United States of America
UZ	Uzbekistan	VN	Viet Nam
FLEXIBLE DEVICE HAVING ADJUSTABLE STIFFNESS

This invention relates to a flexible elongate device having a distal extremity of adjustable stiffness and method which is particularly adapted for use as a catheter or a guide wire.

In certain medical procedures, as for example in angioplasty procedures, a catheter having an integral guide wire tip or a guide wire which is able to be deployed through the coronary arteries has been used until a stenosis is reached in the coronary artery that fully or substantially occludes the artery. In the past, it has been difficult if not impossible to negotiate such stenoses in the artery because the tip of the guide wire or catheter is very floppy and typically will buckle under the resistance provided by the stenosis. There is therefore a need for a device which will overcome this difficulty.

In general, it is the object of the present invention to provide a flexible elongate device having a distal extremity of adjustable stiffness and a method to make it possible to penetrate occlusions in vessels of a patient.

Another object of the invention is to provide a device and method of the above character in which the stiffness of the distal extremity can be adjusted during the time that the distal extremity is disposed in the coronary vessel.
Another object of the invention is to provide a device and method of the above character in which the distal extremity is steerable.

Another object of the invention is to provide a device and method of the above character in which a hand-held control mechanism is utilized to adjust the stiffness.

Another object of the invention is to provide a device and method of the above character which can be used in conjunction with the balloon dilatation catheter.

Additional objects and features of the invention will appear from the following description in which the preferred embodiments are set forth in detail in conjunction with the accompanying drawings.

In general, the flexible elongate device having a distal extremity of adjustable stiffness consists of a flexible elongate member having proximal and distal extremities. A flexible coil spring having proximal and distal extremities is provided. Means is provided for securing the proximal extremity of the coil spring to the distal extremity of the flexible elongate member. A shape-memory element is disposed within and extends substantially longitudinally of the coil spring. The shape-memory element has a memory which makes it assume a straight position when electrical current is passed through the same. The shape-memory element also has a stiffness which varies with temperature. Means is provided for supplying electrical current to the shape-memory element for changing the stiffness of the shape-memory element.

More in particular, the device of the present invention as shown in FIGS. 1, 2, 3 and 4 is in the form of a balloon dilatation catheter 11 which consists of a flexible elongate tubular member 12 formed of a suitable material such as plastic that is provided with proximal and distal extremities 13 and 14. A hand-held control mechanism 16 is mounted on the proximal extremity 13. The tubular member 12 is provided with a central lumen 18 free of obstructions extending the length thereof and which is in communication with a flexible tube 19 that extends out of the control
mechanism 16 and is provided with a male Luer fitting 21. An inflatable balloon 22 is coaxially mounted on the distal extremity 14 of the flexible elongate tubular member 12 and is provided with proximal and distal extremities 23 and 24 which are adhered to the exterior surface of the flexible elongate tubular member 12 by suitable means such as an adhesive (not shown). The interior 26 of the balloon 22 is in communication with a port 27 provided in the flexible elongate tubular member 12 underlying the interior space 26 to place it in communication with the lumen 18 so that the balloon can be inflated and deflated by the application of a syringe containing a fluid to the fitting 21 during an angioplasty procedure.

A braid 31 is incorporated into the wall of the flexible tubular member 12 and extends the length thereof. The braid 31 serves two purposes. It serves to increase the stiffness of the flexible elongate tubular member 12. It also serves to provide conductors which lead from the proximal extremity 13 to the distal extremity 14 to serve certain functions as hereinafter described. Insulated copper wires can be utilized to make up this braid 31. If a higher conductivity is desired, insulated silver-coated copper wire can be utilized. The braid 31 serves to improve the pushability and the stiffness of the flexible elongate tubular member and also serves to strengthen the tubular member 12.

A guide wire tip 36 is mounted on the distal extremity 14 of the flexible elongate member 12 by suitable means such as an epoxy 37. The tip 36 consists of proximal and distal extremities 38 and 39 and is provided with a slight taper from the proximal extremity to the distal extremity 39. The coil spring 36 is preferably formed of a radiopaque material such as a platinum-tungsten alloy. A rounded ball 41 is provided in the distal extremity 19 and is also of a radiopaque material. A safety ribbon 42 is provided which has one end secured in the epoxy 37 and has the other end secured to the ball 41.
A shape-memory alloy element 46 of a suitable material such as Nitinol extends longitudinally of the conical passage 43 provided within the coil spring 36 and has one end secured in the epoxy 37. The shape-memory element 46 is insulated and has its proximal extremity embedded in the epoxy 37. The distal extremity of the element 46 extends to a point adjacent the ball 41 and is connected to an insulated return conductor 47. The shape-memory alloy element 46 is programmed so that when electrical energy is supplied to the same it wants to become straight and stiff. The shape-memory alloy element 46 can be programmed so that its stiffness will vary over a predetermined temperature range as for example a temperature ranging from 40-50°C. It has been found that the stiffness variation over this temperature range is very linear. The proximal extremity of the shape-memory alloy element 46 is connected by a conductor 48 to one of the silver-coated copper wires of the braid 31. Similarly the insulated return conductor 47 is connected to another silver-coated copper wire of the braid 31.

Means is provided for steering the distal extremity of the guide wire tip 36 and consists of flexible elongate elements 51, 52 and 53 formed of a suitable material such as Nitinol which has a negative coefficient of expansion. The elements 51, 52 and 53 are circumferentially spaced-apart by a suitable angle as for example 120° and have their distal extremities connected to the return conductor 47. The proximal extremities are embedded in the epoxy 37 and are connected to additional silver-coated copper wires provided in the braid 31 extending to the proximal extremity of the flexible elongate member 12.

It should be appreciated that, if desired, the conductors for the pull elements 51, 52, and 53 can be provided in circumferentially-spaced lumens (not shown) provided in the flexible elongate tubular member 12 with or without the braid 31 therein. Also additional lumens (not shown) can be provided for the conductors 47 and 48 for the shape-memory alloy element 46. Such conductors also could
be run through the central lumen 18; however, generally it is desirable to save the central lumen 18 for the passage of fluid for inflating and deflating the balloon 22.

The control mechanism 16 forming a part of the balloon dilatation catheter 11 consists of a housing 56 which is formed of a suitable material such as plastic or metal and is sized so it is adapted to fit in a human hand, as for example with a diameter of 1" and a length of 5-6". The housing 56 is provided with an elongate recess 57 therein which is closed by a cover plate 58 which is secured to the housing 56 by suitable means such as screws 59. A linear potentiometer 61 serving as a control member which represents stiffness is mounted in the space 57 and is provided with a slider 62 movable longitudinally of the potentiometer extending through a longitudinally extending elongate slot 63 provided in the cover plate 58 and is secured to a control member 64 adapted to be grasped by the fingers of the same hand that is holding the control mechanism 16. The potentiometer 61 is connected by a cable 66 to a power supply 67. The potentiometer 61 is also connected to the conductors 47 and 48 through connections made to appropriate silver-coated copper conductors in the braid 31. The utilized conductors in the braid 31 are connected by a cable (not shown) extending through the housing 56 and connected to a connector 71. Connector 71 is connected to another connector 72 which is connected by a cable 73 to a connector 74 connected to a control console 76 provided with a joystick 77.

Another embodiment of a device incorporating the present invention is shown in the form of a guide wire 81. The guide wire 81 can be connected to a control mechanism 16 of the type hereinbefore described. Since a balloon does not form a part of the guide wire, the tube 19 can be omitted. The guide wire 81 is provided with a flexible elongate member 82 which can be in the form of a stainless steel tube 82 often called a hypotube which has a central flow passage or bore 83 extending therethrough from the proximal extremity (not shown) to the distal extremity 84.
A guide wire tip 86 substantially identical to the guide wire tip 36 hereinbefore described is secured to the distal extremity 84 of the flexible elongate tubular member 82 with the epoxy 37. In addition, the proximal extremity 38 of the spring 37 can also be secured to the stainless steel tubular member 84 by suitable means such as spot welding. In place of the conductors in the braid 31 utilized for making the connections to the guide wire tip 36, separate conductors 91, 92 and 93 (see FIG. 5) are provided for making contact to the elements 51, 52 and 53 with a negative coefficient of expansion. Separate conductors 94 and 96 are connected respectively to the shape-memory alloy element 46 and the return conductor 47. All of these conductors extend through the small diameter bore 83 provided in the hypotube 82.

The circuitry which is used in the power supply 67 and connected to the potentiometer 61 and to the shape-memory alloy element 46 is shown in FIG. 6. As shown therein, the resistor R1 represents schematically the potentiometer 61. The resistor R1 is connected between ground and a positive voltage identified as V+ through a resistor R2. The wiper arm 62 of the potentiometer 61 picks up a voltage which is proportional to the position of the wiper 62 as controlled by the control member 64. This voltage is supplied to a buffer amplifier A1 which supplies a low impedance output to a two-channel A/D (analog-to-digital) converter 101 which supplies the digital information to a microprocessor 102 controlled by a crystal 103. The microprocessor 102 is programmed by a ROM 104.

Means is provided for measuring the resistance of the shape-memory alloy element 46 and consists of a square wave generator 111 for generating a high frequency as for example 10 kHz which is supplied to a constant current source 112. The constant current source provides a very small amount of current which is insufficient to heat up the shape-memory alloy element 46. The voltage developed across the shape-memory alloy element 46 is supplied through the conductor 47 to the shape-memory alloy element 46. This small current is then capacitively-coupled through a capacitor C1 to an
amplifier filter block consisting of an amplifier A2 with the resistor R3 and the capacitor C1 serving as a high-pass filter so that any DC component of the voltage across the shape-memory alloy element 46 will be blocked out. The only interest is in the high frequency current which is used to measure the variance in the resistance value of the shape-memory alloy element 46 which is supplied to the input of an amplifier A2. The amplifier A2 has an output which is coupled to a feedback network consisting of a resistor R4 and a capacitor C2 working in conjunction with the blocking capacitor C3 and the resistor R5. This amplifier-filter combination serves as a band-pass filter with a gain determined by the ratio of the resistors R4 and R5. For example, for low frequency time constant pole is determined by the resistor R5 and capacitor C3. The time constant provided by the resistor R4 and the capacitor C2 determines the location of the pole for the high frequency corner. This amplification and filtering provided by this circuitry serves to eliminate extraneous noise and permits the square wave to pass through without substantial alteration of its shape. This square wave is supplied through a resistor R6 to a full-wave rectifier network consisting of amplifier A3 in series with a diode D1 with a resistor R7 coupled between the input of the amplifier 83 and the output of the diode D1 to provide a full-wave rectified signal. The full-wave rectified signal is supplied to the input of a buffer amplifier A4 whose output is connected to the second channel of the two-channel A/D converter 101. Essentially, the output of the amplifier A4 is a voltage which is proportional to the stiffness of the shape-memory alloy element 46.

Thus, the two signals supplied to the converter 101, one of which is the value supplied by the potentiometer 61 and the other is the value which represents the stiffness of the shape-memory alloy element 46 are sampled by the microprocessor 102 under the control of the ROM 104. The microprocessor 102 then based upon the signal supplied from the potentiometer 61 and the value of the resistance of the
shape-memory alloy element 46 utilizes an algorithm supplied by the ROM to calculate the amount of current to be supplied to the shape-memory alloy element 46. This value is supplied through a bus 116 to a D/A (digital-to-analog) converter 117. The output of the D/A (digital-to-analog) converter 117 is supplied to the input of an amplifier A5 and the output of amplifier A5 is connected to a transistor Q1 which serves as a current driver. The current from the current driver Q1 is supplied to the conductor 47 to the shape-memory alloy element 46 to heat up the shape-memory alloy element 46 to stiffen the same.

Operation and use of the balloon dilatation catheter 11 or the guide wire 81 incorporating the present invention may now be briefly described as follows. Depending upon the device desired, either the catheter 11 or the guide wire 81 can be deployed into a coronary artery by inserting the same in a conventional procedure through the femoral artery of the patient and then guiding the guide wire tip 36 or the guide wire tip 86 by the use of the joystick control 76 in the manner described in co-pending application Serial No. 07/793,858, filed November 18, 1991, now U.S. Patent No. 5,238,005. The movement of the guide wire tip 36 or the guide wire tip 86 can be observed under fluoroscopy during the procedure. During the time that the catheter 11 or the guide wire 81 is being advanced to the stenosis or lesion in the vessel, typically it is desired to have the tip be very floppy so that it can negotiate tortuous turns in the arterial vessels and also to prevent damage to the walls of the vessels or perforation of the walls of the vessels.

However, in many cases as hereinbefore pointed out with respect to angioplasty procedures, it has been difficult to traverse the lesion or stenosis because it fully occludes or at least substantially occludes the vessel being traversed. Assuming that a lesion or stenosis of this type has been encountered, the catheter 11 or guide wire 81 incorporating the present invention is used to traverse such a lesion or stenosis by increasing the stiffness of the guide wire tip 36 or the guide wire tip 86. To do so, it is merely
necessary to use one or more fingers of the hand grasping
the control mechanism 16 to engage the control member 64 to
move it forwardly from a "zero" or floppy position to a more
distal position to cause current to flow into the
shape-memory alloy element 46. As soon as this occurs, the
shape-memory alloy element 46 is heated and will attempt to
straighten itself out and at the same time will increase its
stiffness. As soon as the tip 36 or 86 has been stiffened,
the cardiologist performing the procedure can then push on
the control mechanism 16 to try to advance the guide wire
tip 36 of the catheter 11 or the guide wire tip 86 of the
guide wire 81 to cross the lesion or stenosis. If this
still cannot be accomplished, the control member 64 can be
still further advanced to cause further stiffening of the
shape-memory alloy element 46. The cardiologist can then
utilize the control mechanism 16 to again attempt to push
the tips 36 or 86 through the stenosis until they cross the
stenosis or lesion. Generally, this additional stiffness
which can be created in the shape-memory alloy element 46
should be more than enough to cause the tip 36 or 81 to
cross the lesion or stenosis.

The graph shown in FIG. 7 shows how the resistance and
stiffness of the shape-memory alloy element 46 changes with
respect to temperature or current. Two curves 121 and 122
are shown. Curve 121 represents stiffness versus
temperature, whereas curve 122 represents resistivity versus
temperature or current. From these two curves 121 and 122
it can be seen that as the temperature of the shape-memory
element is increased, the resistance decreases and the
stiffness increases. Thus it can be seen that, as pointed
out above, as the temperature or current is increased, the
stiffness increases.

In accordance with the present invention, when it is
desired to provide additional stiffness this can be
accomplished by the use of a shape-memory element having a
greater cross-sectional area. Also if desired, a plurality
of shape-memory elements rather than one can be utilized in
tandem or parallel.
By way of example, a guide wire 81 of a suitable diameter, as for example .014" could have a guide wire tip 86 having a shape-memory alloy element 46 therein having a suitable cross-sectional diameter, as for example .003 or .004". Similarly, for a larger diameter guide wire tip 36 for the catheter 11, the tip could have a diameter ranging from .030-.035" in which there could used a shape-memory alloy element 46 having a diameter ranging from .005-.010".

It is apparent from the foregoing that there has been provided a flexible elongate device having a distal extremity of adjustable stiffness and a method which is particularly applicable for angioplasty procedures as well as for other medical procedures where it becomes necessary to traverse lesions or stenoses which typically have been difficult to traverse with conventional guide wires and catheters.

After the stenosis has been crossed by the guide wire tip 36, the deflated balloon 22 can be advanced into the stenosis and then inflated. In connection with the conventional angioplasty procedure, the balloon will form an enlarged passage through the stenosis. The balloon can then be deflated and removed as in a conventional angioplasty procedure.

With the guide wire 81 crossing the stenosis, it is possible thereafter to pass a conventional balloon dilatation catheter over the guide wire and to cause it to pass through the stenosis to perform an angioplasty procedure.

In connection with the present invention it can be seen that means has been provided for measuring the resistivity of the shape-memory alloy element while it is in use or "on the fly," and that from the information obtained, the microprocessor can be utilized to precisely tailor the current which should be supplied to the shape-memory alloy element to achieve the desired stiffness as determined by the position of the potentiometer.
WHAT IS CLAIMED IS:

1. In a device, a flexible elongate member having proximal and distal extremities, a flexible coil spring having proximal and distal extremities, means securing the proximal extremity of the coil spring to the distal extremity of the flexible elongate member, a shape-memory alloy element disposed within and extending substantially longitudinally of the coil spring, said shape-memory alloy element having a memory which makes it attempt to assume a straight shape when an electrical current is passed through the same, said shape-memory alloy element also having a stiffness which increases with temperature of the element and means for supplying an electrical current to the shape-memory alloy element for changing the stiffness of the shape-memory alloy element to thereby stiffen the flexible coil spring.

2. A device as in Claim 1 wherein said means for supplying an electrical current including a potentiometer and low current, high frequency means for sensing the resistance of the shape-memory alloy element and means for controlling the stiffness of the shape memory alloy element in accordance with the sensed resistance and the desired stiffness as determined by the potentiometer.

3. A device as in Claim 1 wherein said device is in the form of a catheter together with a balloon formed on the distal extremity of the catheter and having an interior member, said flexible elongate member having a lumen extending therethrough free of obstructions and means for establishing communication through the flexible elongate member from the lumen to the interior of the balloon for inflating and deflating the balloon.

4. A device as in Claim 1 together with a plurality of flexible elongate elements disposed in the distal extremity of the coil spring and having a negative coefficient of expansion and means for supplying electrical
energy to the elements having a negative coefficient of
expansion to cause bending of the distal extremity of the
coil spring.

5. A device as in Claim 1 together with a
control mechanism secured to the proximal extremity of the
flexible elongate member, the control mechanism having a
housing sized so that it is adapted to be grasped by a human
hand and a finger-operated control member carried by the
housing adjusting the current supplied by the linear
potentiometer.

6. A device as in Claim 5 together with a linear
potentiometer mounted within the housing and having a slider
and means connecting said slider to said control member.

7. A device as in Claim 1 together with a
balloon mounted on the distal extremity of the flexible
elongate member, said flexible elongate member having a
lumen extending therethrough and means provided in the
flexible elongate member for establishing communication
between the lumen and the interior of the balloon to permit
inflation and deflation of the balloon.

8. A device as in Claim 1 together with a
plurality of circumferentially spaced-apart elements having
a negative coefficient of expansion disposed within the coil
and electrical means for supplying current to the elements
having a negative coefficient of expansion for steering the
distal extremity of the coil.

9. A device as in Claim 8 wherein said device is
in the form of a guide wire and wherein said flexible
elongate tubular member is formed of a metal tube.

10. A device as in Claim 9 wherein said tube
being provided with a bore extending therethrough and
conductors extending through said bore and connected to said
elements having a negative coefficient of friction and also to said shape-memory alloy element.

11. In a method for penetrating a lesion or stenosis in a vessel by the use of a flexible elongate member having a distal extremity and including a shape memory alloy element disposed in the distal extremity and being programmed so that when electrical energy is supplied to the same it desires to become straight and stiff, passing the flexible elongate element into the vessel so that the distal extremity is in the vicinity of the stenosis or lesion, supplying electrical current to the shape memory alloy element to cause stiffening of the distal extremity of the member and advancing the stiffened distal extremity of the member so that it crosses the stenosis or lesion.

12. In a balloon dilatation catheter a flexible elongate member having proximal and distal extremities, an inflatable balloon formed on the distal extremity of the flexible elongate member and having an interior, said flexible elongate member having a lumen extending therethrough free of obstructions, means for establishing communication through the flexible elongate member from the lumen to the interior of the balloon for inflating and deflating the balloon and guiding means secured to the distal extremity of the flexible elongate member distal of the balloon, said guiding means comprising a flexible coil spring having proximal and distal extremities, means securing the proximal extremity of the coil spring to the distal extremity of the flexible elongate member, a shape-memory element disposed within and extending substantially longitudinally of the coil spring, said shape-memory element having a memory which makes it attempt to assume a straight shape when an electrical current is passed through the same, said shape-memory element also having a stiffness which increases with temperature of the element and means for supplying an electrical current to the shape-memory element for changing the stiffness of the
shape-memory element to thereby stiffen the flexible coil spring.
INTERNATIONAL SEARCH REPORT

A. **CLASSIFICATION OF SUBJECT MATTER**

 IPC(S): A61B 1/00; A61M 25/00
 US CL: 128/45M; 604/281

 According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

 Minimum documentation searched (classification system followed by classification symbols):

 U.S.: 604/95, 164, 170, 264, 281, 282; 128/45M, 772

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:
 None

 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used):
 None

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 5,120,308 (Hess) 9 June 1992, see the entire document.</td>
<td>1, 3, 4, 8, 9</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,884,557 (Takehama et al.) 5 December 1989, see column 2 lines 21-26, and Fig. 1</td>
<td>1, 3, 4, 5, 7, 8, 9</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 5,114,402 (McCoy) 19 May 1992, note column 6, line 2.</td>
<td>4, 8, 9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

"*"	Special categories of cited documents:
"A"	Document defining the general state of the art which is not considered to be part of particular relevance
"E"	Earlier document published on or after the international filing date
"L"	Document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	Document referring to an oral disclosure, use, exhibition or other means
"P"	Document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 21 December 1993

Date of mailing of the international search report: MAR 14 1994

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks:
Box PCT
Washington, D.C. 20231

Authorized officer: JEROME L. KRUTER
Telephone No. (703) 308-2114

Form PCT/ISA/210 (second sheet)(July 1992)*