

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0186359 A1

Vosshall et al. (43) Pub. Date:

Oct. 2, 2003

(54) GENES ENCODING INSECT ODORANT RECEPTORS AND USES THEREOF

(76) Inventors: Leslie B. Vosshall, New York, NY (US); Hubert O. Amrein, Durham, NC (US); Richard Axel, New York, NY

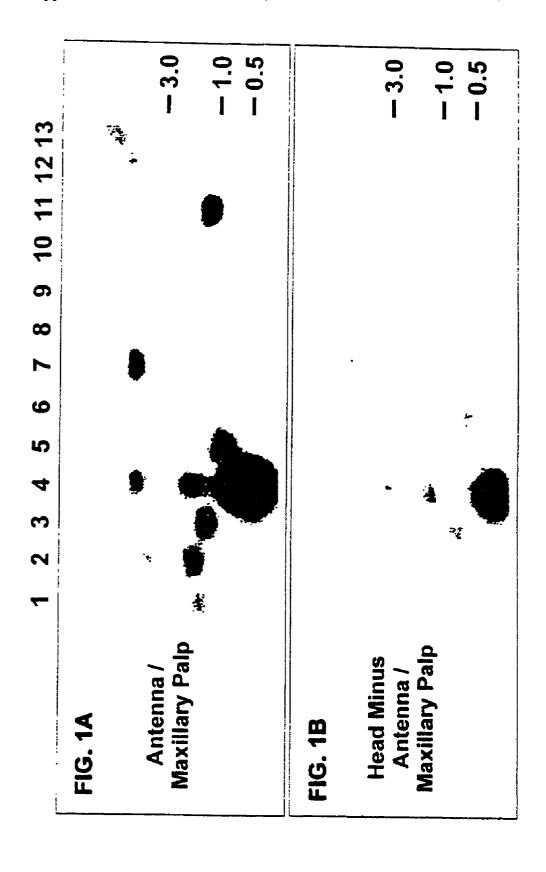
> Correspondence Address: John P. White Cooper & Dunham LLP 1185 Avenue of the Americas New York, NY 10036 (US)

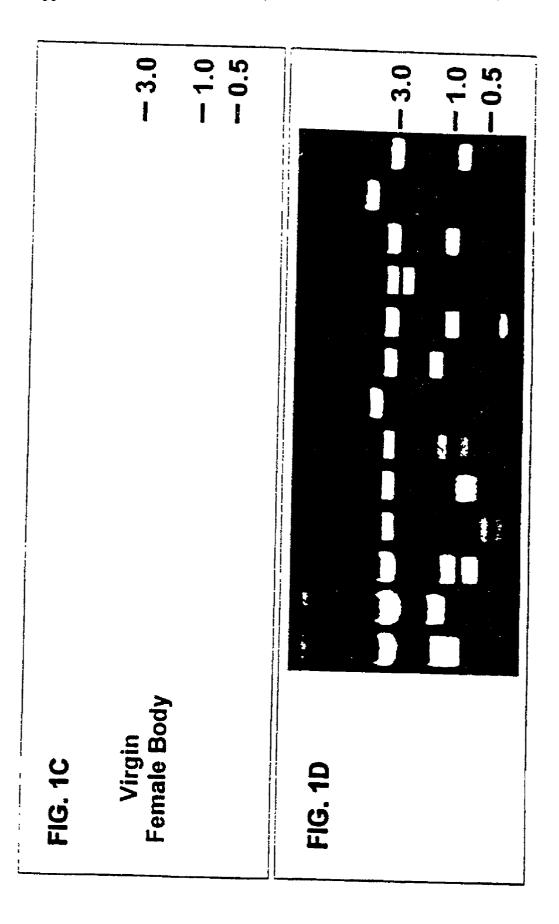
09/932,227 (21) Appl. No.:

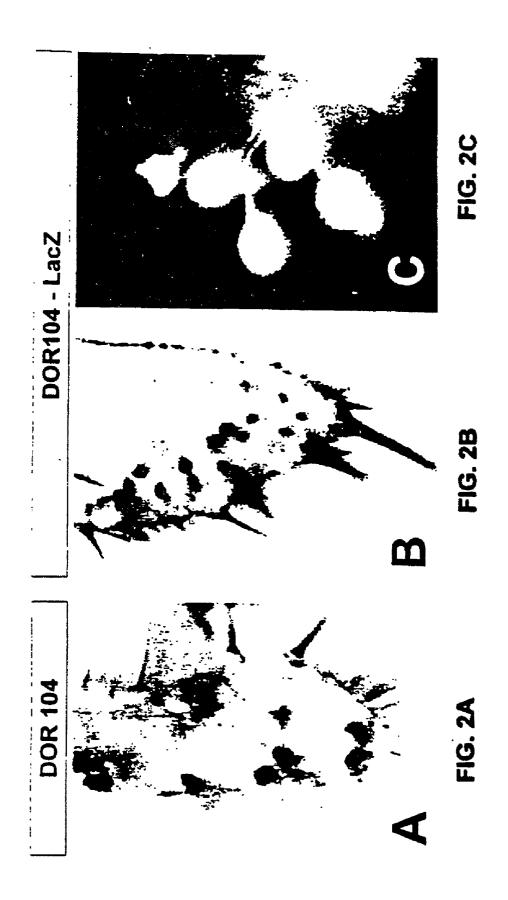
(22) Filed: Aug. 17, 2001

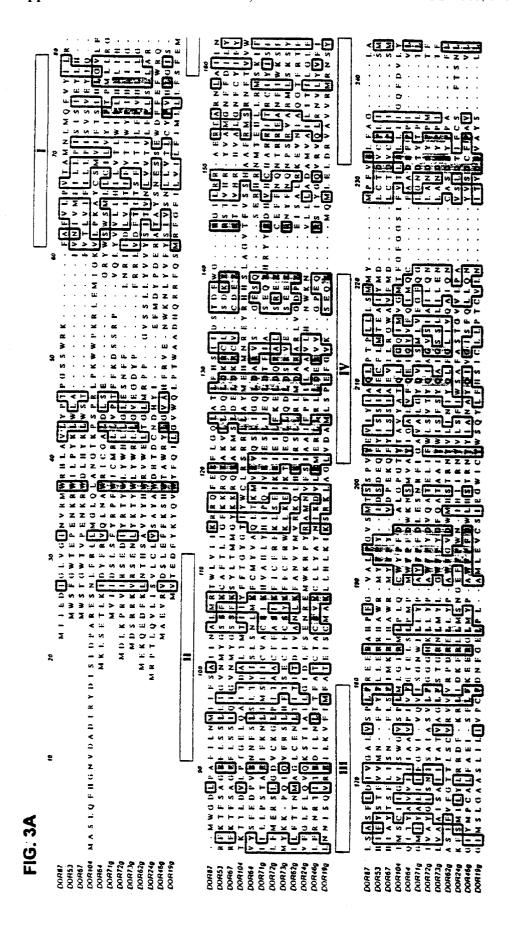
Related U.S. Application Data

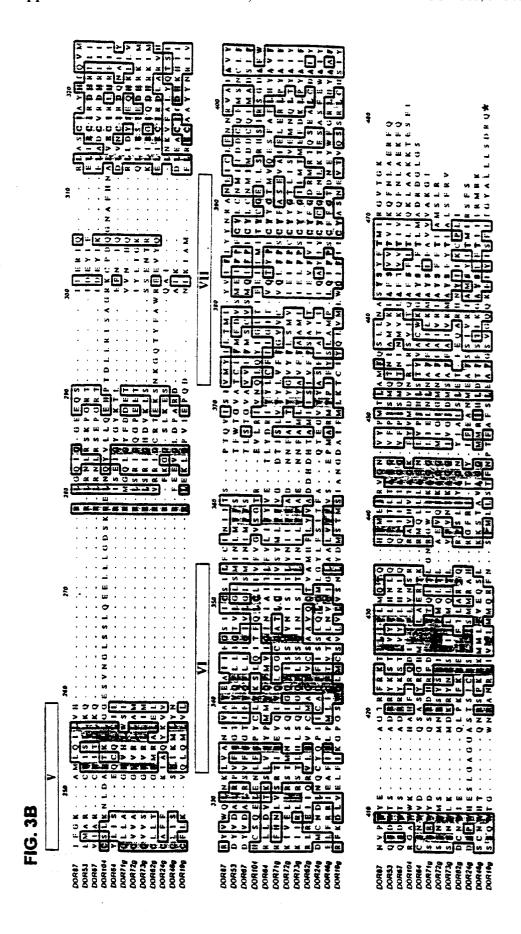
Continuation of application No. PCT/US00/04995, filed on Feb. 25, 2000, which is a continuation-in-part of application No. 09/257,706, filed on Feb. 25, 1999, now abandoned.

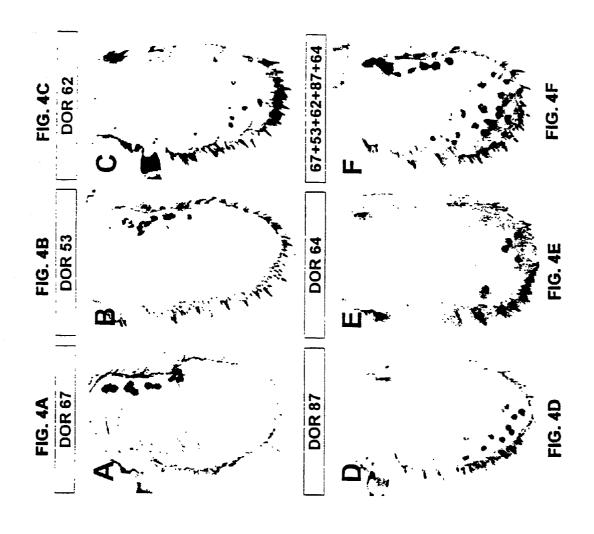

Publication Classification

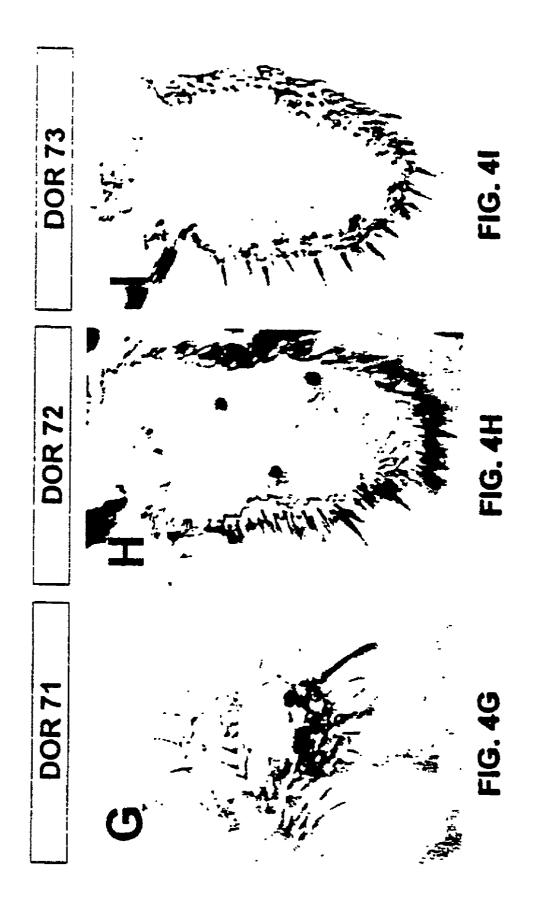

(51) Int. Cl.⁷ C07K 14/705; C12N 5/06; C12P 21/02; C07H 21/04

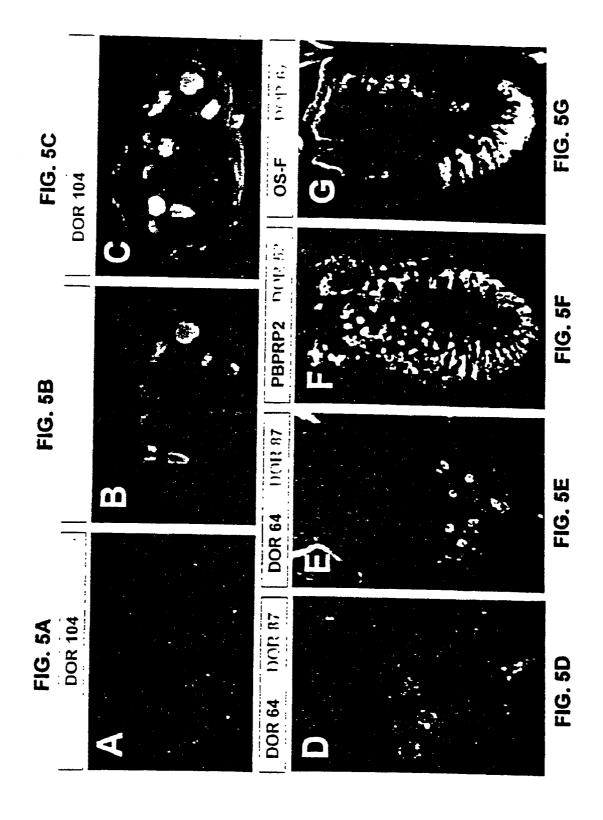

530/350; 536/23.5; 514/12

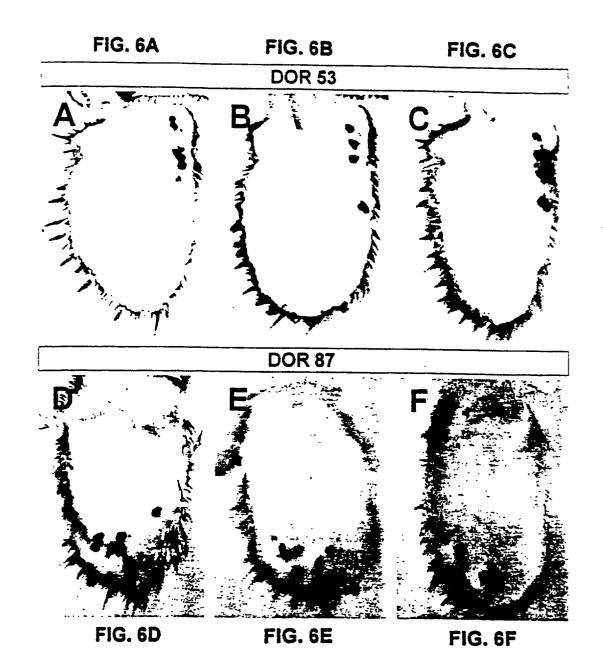

ABSTRACT (57)


This invention provides an isolated nucleic acid molecule encoding an insect odorant receptor. This invention provides a nucleic acid molecule of at least 12 nucleotides capable of specifically hybridizing with the nucleic acid molecule encoding an insect odorant receptor. This invention also provides a purified, insect odorant receptor. This invention provides an antibody capable of specifically binding to an insect odorant receptor. This invention provides a method for identifying cDNA inserts encoding an insect odorant receptors. This invention provides a method of identifying a compound capable of specifically bind to an insect odorant receptor. This invention also provides a method of identifying a compound capable of activating the activity of an insect odorant receptor.









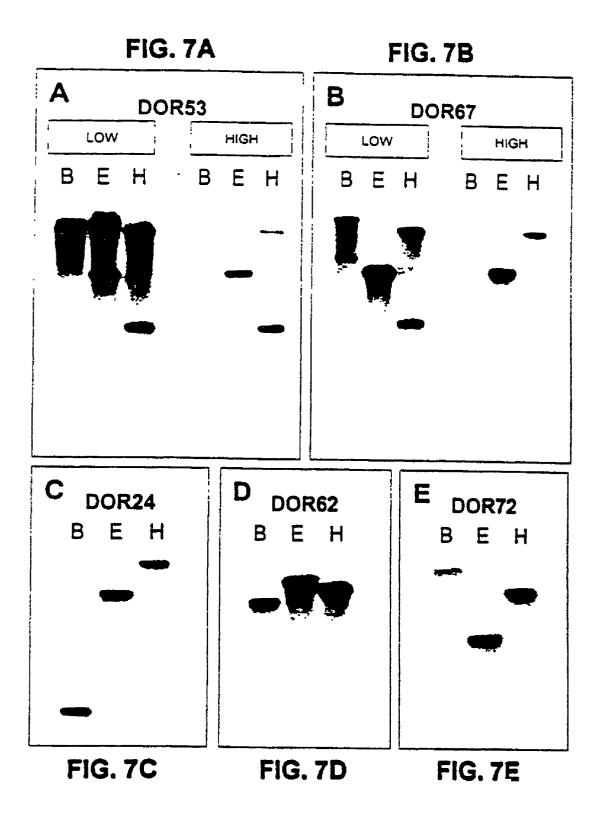


FIG. 8A

DOR62 [AF127921]

```
XXXXX
LOCUS
                          553 bp
                                   mRNA
                                                     INV
                                                               02-FEB-1999
DEFINITION Drosophila melanogaster putative odorant receptor DOR62 mRNA.
             partial cds.
ACCESSION
             AF127921
KEYWORDS
SOURCE
             fruit fly.
  ORGANISM Drosophila melanogaster
             Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
             Pterygota: Diptera: Brachycera: Muscomorpha: Ephydroidea:
            Drosophilidae: Drosophila.
REFERENCE
             1 (bases 1 to 553)
            Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
  AUTHORS
            Rzhetsky, and Richard Axel.
  TITLE
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
            Antenna
  JOURNAL
            Cell (1999) In press
REFERENCE
            2 (bases 1 to 553)
            Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and
  AUTHORS
            Axel, Richard.
  TITLE
            Direct Submission
            Submitted (02-FEB-1999) Department of Biochemistry and Molecular
  JOURNAL
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
FEATURES
                      Location/Qualifiers
     Comment:
                   /product='odorant receptor DOR62'
                   /tissue_type='adult antenna'
                   /note='putative seven transmembrane G protein coupled
                   receptor; genomic DNA sequenced by the European Drosophila
                   Genome Project and given accession number 62D9.q'
     source
                     1..553
                     /organism="Drosophila melanogaster"
                     /strain="Oregon R"
                     /db_xref="taxon:7227"
                     /chromosome="X"
                     /map="2F"
                     <1..553
     gene
                     /note="Drosophila melanogaster odorant receptor DOR62"
                     /gene="DOR62"
     CDS
                     <1..459
                     /gene="DOR62"
                     /note="odorant receptor"
                     /codon_start=1
                     /product="DOR62"
/translation="QELIECIRDLARVHRLREIIQRVLSVPCMAQFVCSAAVQCTVAM"
HFLYVADDHDHTAMIISIVFFSAVTLEVFVICYFGDRMRTQSEALCDAFYDCNWIEQL
PKFKRELLFTLARTQRPSLIYAGNYIALSLETFEQVMRFTYSVFTLLLRAK*
                        145 c
BASE COUNT
               141 a
                                  132 g
ORIGIN
        1 caggaactca togagtgcat cogcgatotg gogcgggtcc atoggotgag ggagatoatt
       61 cagegggtee titeagigee eigeaiggee cagilegiet geleegeege egiceagigi
     121 accytogoca tycacticot ytacytaycy gatyaccacy accacaccyc catyatcate
      181 togatiguat tittotoggo ogtoacotig gaggigitig taatotgota tittoggggac
      241 aggatgegga cacagagega ggegetgtge gatgeettet aegattgeaa etggatagaa
      301 cagetgeeca agtteaageg egaactgete tteaccetgg ecaggaegea geggeettet
      361 cttatttacg caggeaacta categeacte tegetggaga cettegagea ggteatgagg
      421 ttcacatact ctgttttcac actcttgctg agggccaagt aagaacttta taatctcttt
      481 ttggggagaa aaattttaaa gcacaatagc agaaaaatat atcagataat ataacaaaaa
      541 aaaaaaaaaa aaa
```

FIG. 8B-1

DOR104[AF127922]

```
1493 bp
                                   mRNA
                                                    INV
LOCUS
                                                              02-FEB-1999
DEFINITION Drosophila melanogaster odorant receptor DOR104 mRNA, complete
cds.
ACCESSION AF127922
KEYWORDS
            fruit fly.
SOURCE
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota; Diptera; Brachycera; Muscomorpha: Ephydroidea;
            Drosophilidae; Drosophila.
REFERENCE
            1 (bases 1 to 1493)
           Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
           Rzhetsky and Richard Axel.
           A Spatial Map of Olfactory Receptor Expression in the Drosophila
  TITLE
            Antenna
            Cell (1999) In press
  JOURNAL
            2 (bases 1 to 1493)
REFERENCE
  AUTHORS Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
           Direct Submission
  TITLE
            Submitted (02-FEB-1999) Department of Biochemistry and Molecular
  JOURNAL
            Biophysics, HHMI-Columbia University, 701 W. 168th Street, New
            York, NY 10025, USA
                     Location/Qualifiers
FEATURES
                  /tissue_type='adult maxillary palp'
     Comment:
                  /note='putative seven transmembrane G protein coupled
                  receptor'
                     1..1493
     source
                     /organism="Drosophila melanogaster"
                     /strain="Oregon R"
                     /db_xref="taxon:7227"
                     /chromosome="III"
                     /map="85B"
                     1..1493
     gene
                     /note="odorant receptor"
                     /gene="DOR104"
                     21..1421
     CDS
                     /gene="DOR104"
                     /note="odorant receptor"
                     /codon_start=1
                     /product="DOR104"
/translation="MASLQFHGNVDADIRYDISLDPARESNLFRLLMGLQLANGTKPS
PRLPKWWPKRLEMIGKVLPKAYCSMVIFTSLHLGVLFTKTTLDVLPTGELQAITDALT
```

MTIIYFFTGYGTIYWCLRSRRLLAYMEHMNREYRHHSLAGVTFVSSHAAFRMSRNFTV VWIMSCLLGVISWGVSPLMLGIRMLPLQCWYPFDALGPGTYTAVYATQLFGQIMVGMT FGFGGSLFVTLSLLLLGQFDVLYCSLKNLDAHTKLLGGESVNGLSSLQEELLLGDSKR ELNQYVLLQEHPTDLLRLSAGRKCPDQGNAFHNALVECIRLHRFILHCSQELENLFSP YCLVKSLQITFQLCLLVFVGVSGTREVLRIVNQLQYLGLTIFELLMFTYCGELLSRHS lrsgdafwrgawwkhahfirqdiliflvnsrravhvtagkfyvmdvnrlrsvitqafs FLTLLOKLAAKKTESEL" 332 a 373 c 407 g 381 t BASE COUNT

FIG. 8B-2

1	ggcacgagca	gtcgatggcc	agtcttcagt	tccacggcaa	cgtcgatgcg	gacatcaggt
61	atgatattag	cctggatccg	gctagggaat	cgaatctctt	ccgtctgcta	atgggactcc
121	agttggcgaa	tggcacgaag	ccatcgccgc	ggttacccaa	atggtggcca	aagcggctcg
181	aaatgattgg	taaagtgctg	cccaaagcct	attgttccat	ggtgattttc	accrecere
241	atttgggtgt	cctgttcacg	aaaaccacac	tggatgtcct	gccgacgggg	gagetgeagg
301	ccataacgga	tgccctcacc	atgaccataa	tatacttttt	cacgggetac	ggcaccacc
361	actggtgcct	gcgctcccgg	cgcctcttgg	cctacatoga	.gcacatgaac	COCCACCAC
421	gccatcattc	gctggccggg	gtgacctttg	tgagtagcca	tgcggccttt	aggagaga
481	gaaacttcac	ggtggtgtgg	ataatgtcct	acctactaga	cgtgatttcc	tagaagaatt
541	cgccactgat	gctgggcatc	cggatgctgc	COCECCAAEG	ttggtatccc	trearesee
601	tagateceaa	cacatataco	acaatctata	CTACACAACT	tttcggtcag	a to
661	gcatgacctt	togattcoog	gaggaaaag	tratacaact	ccccggccag	accatggtgg
721	22550055	cadacccada	ggaccaccgc	cogcoacce	gagcctgcta	ctcctgggac
701	aaccegatge	getetaetge	ageetgaaga	acctggatgc	ccataccaag	ttgctgggcg
/81	gggagtctgt	aaatggcctg	agttcgctgc	aagaggagtt	gctgctgggg	gactcgaaga
841	gggaattaaa	tcagtacgtt	ttgctccagg	agcatccgac	ggatctgctg	agattgtcgg
901	caggacgaaa	atgtcctgac	caaggaaatg	cgtttcacaa	cgccttggtg	gaatgcattc
961	gcttgcatcg	cttcattctg	cactgctcac	aggagttgga	gaatctattc	agtccatatt
1021	gtctggtcaa	gtcactgcag	atcacctttc	agctttgcct	gctggtcttt	gtagacattt
1081	cgggtactcg	agaggtcctg	cggattgtca	accagctaca	gtacttggga	CEGACCATCE
1141	tcgagctcct	aatgttcacc	tattgtggcg	aactcctcag	toggcatagt	attogatoro
1201					tttcatccgc	
1261					tgccggcaag	
					cagcttcttg	
1381						
					tggtaccacg	
TAAT	caccagaga	arteeeaaaa	ayıcyayıaa	aagcaaadaa	aaaaaaaaa	aaa

FIG. 8C-1

DOR87 [AF127926]

```
XXXXX
                         1556 bp
                                   mRNA
LOCUS
                                                    INV
                                                               02-FEB-1999
DEFINITION Drosophila melanogaster odorant receptor DOR87 mRNA, complete
cds.
            AF127926
ACCESSION
KEYWORDS
SOURCE
            fruit fly.
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota: Diptera; Brachycera; Muscomorpha: Ephydroidea:
            Drosophilidae; Drosophila.
REFERENCE
            1 (bases 1 to 1556)
           Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
  AUTHORS
            Rzhetsky and Richard Axel.
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
  TITLE
            Antenna
           Cell (1999) In press
  JOURNAL
            2 (bases 1 to 1556)
REFERENCE
 AUTHORS Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
  TITLE
           Direct Submission
            Submitted (02-FEB-1999) Department of Biochemistry and Molecular
  .TOURNAL
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
                     Location/Qualifiers
FEATURES
                  /tissue='adult antenna'
     Comment:
                  /note='putative seven transmembrane G protein coupled
                  receptor'
                     1..1556
     source
                     /organism="Drosophila melanogaster"
                     /strain="Oregon R"
                     /db_xref="taxon:7227"
                     /chromosome="II"
                     /map="43B1-2"
                     1..1556
    gene
                     /note="odorant receptor"
                     /gene="DOR87"
     CDS
                     30..1157
                     /gene="DOR87"
                     /note="odorant receptor"
                     /codon_start=1
                     /product="DOR87"
/translation="MTIEDIGLVGINVRMWRHLAVLYPTPGSSWRKFAFVLPVTAMNL
```

MOFVYLLRMWGDLPAFILNMFFFSAIFNALMRTWLVIIKRRQFEEFLGQLATLFHSIL DSTDEWGRGILRRAEREARNLAILNLSASFLDIVGALVSPLFREERAHPFGVALPGVS MTSSPVYEVIYLAQLPTPLLLSMMYMPFVSLFAGLAIFGKAMLQILVHRLGQIGGEEQ SEEERFQRLASCIAYHTQVMRYVWQLNKLVANIVAVEAIIFGSIICSLLFCLNIITSP TQVISIVMYILTMLYVLFTYYNRANEICLENNRVAEAVYNVPWYEAGTRFRKTLLIFL MQTQHPMEIRVGNVYPMTLAMFQSLLNASYSYFTMLRGVTGK" BASE COUNT 329 a 413 c 408 g 406 t

FIG. 8C-2

ORIGIN

```
1 ggcacgaggc ttatagaaag tgccgagcaa tgacaatcga ggatatcggc ctggtgggca
  61 tcaacgtgcg gatgtggcga cacttggccg tgctgtaccc cactccgggc tccagctggc
 121 gcaagttcgc cttcgtgctg ccggtgactg cgatgaatct gatgcagttc gtctacctgc
 181 tgcggatgtg gggcgacctg cccgccttca ttctgaacat gttcttcttc tcggccattt
 241 traacgeest gatgegraeg tggetggtca taatcaageg gegecagtte gaggagttte
 301 teggecaact ggecactetg trecattega tretegaete cacegaegag teggggegtg
 361 geatectgeg gagggeggaa egggaggete ggaacetgge cateettaat tigagtgeet
 421 cetteetgga cattgteggt getetggtat egeegetett cagggaggag agageteate
 481 cetteggegt agetetacca ggagtgagea tgaccagtte accegtetac gaggttatet
 541 acttggccca actgcctacg cocctgctgc tgtccatgat gtacatgcct ttcgtcagcc
 601 tttttgccgg cctggccatc tttgggaagg ccatgctgca gatcctggta cacaggctgg
 661 gccagattgg cggagaagag cagtcggagg aggagcgctt ccaaaggctg gcctcctgca
 721 ttgcgtacca cacgcaggtg atgcgctatg tgtggcagct caacaactg gtggccaaca
 781 tigiggeggt ggaageaatt attitigget egataatetg eteaetgete tietgtetga
 841 atattataac ctcacccacc caggigatet cgatagigat gtacattetg accatgetgt
901 acgttctctt cacctactac aatcgggcca atgaaatatg cctcgagaac aaccgggtgg
961 cggaggctgt ttacaatgtg ccctggtacg aggcaggaac tcggtttcgc aaaaccctcc
1021 tgatcttctt gatgcaaaca caacaccga tggagataag agtcggcaac gtttacccca
1081 tgacattggc catgttccag agtctgttga atgcgtccta ctcctacttt accatgctgc
1141 gtggcgtcac cggcaaatga gctgaaagac cgaaaaaacc ggagtatccc cttccatatr
1201 coccetgete etttattte ettteetttt ecettteegt ttteccatte getttteeag
1261 caatcogggt aatgcaaaaa gttgttgctg gctgtggtcc tggctgcttg tttggcattt
1321 gcatatgett gtegtttgaa aggatttaat eggaetgetg geaeggagte ggeateetgg
1381 ctcctggatc ctggcatgca aatagttggc ttcttagatt gttacacaaa atagattgta
1441 gattgcaget gaatgttgtg ettggaataa agtcaaaagg atgtggagte ggcccaagge
1501 totgoccatt otgittgoto gggatgooog aaagtatgaa aaaaaaaa aaaaaa
```

FIG. 8D-1

BASE COUNT

```
DOR53 [AF127923]
                        1305 bp
                                  mRNA
                                                    INV
                                                              06-FEB-1999
LOCUS
DEFINITION Drosophila melanogaster putative odorant receptor DOR53 mRNA.
           complete cds.
           AF127923
ACCESSION
KEYWORDS
           fruit fly.
SOURCE
 ORGANISM Drosophila melanogaster
           Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea;
            Drosophilidae; Drosophila.
           1 (bases 1 to 1305)
REFERENCE
           Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
 AUTHORS
           Rzhetsky and Richard Axel.
           A Spatial Map of Olfactory Receptor Expression in the Drosophila
 TITLE
           Antenna
           Cell (1999) In press
 JOURNAL
           2 (bases 1 to 1305)
REFERENCE
 AUTHORS Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
           Direct Submission
 TITLE
          Submitted (06-FEB-1999) Department of Biochemistry and Molecular
 JOURNAL
           Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
FEATURES
                     Location/Qualifiers
     source
                     1..1305
                     /organism="Drosophila melanogaster"
                     /strain="Oregon R"
                     /db_xref="taxon:7227"
                  /note="_tissue_type='adult antenna' _note='putative seven
                     transmembrane G protein coupled receptor';"
                     /chromosome="II"
                     /map="22A2-3"
                     1..1305
     gene
                     /note="odorant receptor"
                     /gene="DOR53"
                     79..1179
     CDS
                     /gene="DOR53"
                     /note="odorant receptor"
                     /codon_start=1
                     /product="DOR53"
/translation="MWSFGWTEPENKRWILPYKLWLAFVNIVMLILLPISISIEYLHR
FKTFSAGEFLSSLEIGVNMYGSSFKCAFTLIGFKKRQEAKVLLDQLDKRCLSDKERST
VHRYVAMGNFFDILYHIFYSTFVVMNFPYFLLERRHAWRMYFPYIDSDEQFYISSIAE
CFLMTEAIYMDLCTDVCPLISMLMARCHISLLKQRLRNLRSKPGRTEDEYLEELTECI
RDHRLLLDYVDALRPVFSGTIFVQFLLIGTVLGLSMINLMFFSTFWTGVATCLFMFDV
SMETFPFCYLCNMIIDDCQEMSNCLFQSDWTSADRRYKSTLVYFLHNLQQPITLTAGG
VFPISMQTNLAMVKLAFSVVTVIKQFNLAERFQ*
```

331 a 286 c 279 g 409 t

FIG. 8D-2

ORIGIN

```
1 ttttttcccc acataaaaga aaagccattg agcgagcggg ttaagtcccg agatgccttc
 61 atttacttgg atcgggtgat gtggtccttt ggctggacag agcctgaaaa caaaaggtgg
121 atcettectt ataaactgtg gttagegtte gtgaacatag taatgeteat cettetgeeg
181 atctcgataa gcatcgagta cctccaccga tttaaaacct tctcggcggg ggagttcctt
241 agttccctcg agattggagt caacatgtac ggaagctctt ttaagtgcgc cttcaccttg
301 attggattca agaaaagaca ggaagctaag gttttactgg atcagctgga caagagatgc
361 cttagegata aggagaggte cactgtteat egetatgteg ceatgggaaa etttttegat
421 attitigatio acattitita otocacctic giggiaatga acticoogta tittotigoti
481 gagagacgoc atgottoggog catgtacttt coatatatog attoogacga acagttttac
541 atotocagea tegeogagtg tittetgatg aeggaggeea tetacatgga tetetgtaeg
601 gacgtgtgtc ccttgatctc catgcttatg gctcgatgcc acatcagcct cctgaaacag
661 cgactgagaa atctccgatc gaagccagga aggaccgaag atgagtactt ggaggagctc
721 accgagtgca ttcgggatca tcgattgcta ttggactatg ttgacgcatt gcgacccgtc
781 tittegggaa ceattitigi geagticete etgateggia etgtaetggg teteteaatg
841 ataaatctaa tgttcttctc gacattttgg actggtgtcg ccacttgcct ttttatgttc
901 gacgtgtcca tggagacgtt ccccttttgc tatttgtgca acatgattat cgatgactgc
961 caggaaatgt ccaattgcct ctttcaatcg gactggacct Ctgccgatcg tcgctacaaa
1021 tocactttgg tatactttct tcacaatctt cagcaaccca ttactctcac ggctggtgga
1081 gtgtttccta tttccatgca aacaaatttg gctatggtga agctggcatt ttctgtggtt
1141 acggtaatta agcaatttaa cttggccgaa aggtttcaat aagttgagag ggacgagctc
```

FIG. 8E-1

DOR67 [AF127924]

```
XXXXX
                        1321 bp
                                 mRNA
                                                    INV
                                                             06-FEB-1999
DEFINITION Drosophila melanogaster putative odorant receptor DOR67 mRNA,
           complete cds.
ACCESSION AF127924
KEYWORDS
SOURCE
           fruit fly.
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea;
            Drosophilidae; Drosophila.
REFERENCE
           1 (bases 1 to 1321)
  AUTHORS Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
           Rzhetsky and Richard Axel.
           A Spatial Map of Olfactory Receptor Expression in the Drosophila
  TITLE
           Antenna
  JOURNAL Cell (1999) In press
REFERENCE 2 (bases 1 to 1321)
  AUTHORS Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
  TITLE
           Direct Submission
           Submitted (06-FEB-1999) Department of Biochemistry and Molecular
  JOURNAL
           Biophysics, HHMI-Columbia University, 701 West 168th Street, New
           York, NY 10032, USA
FEATURES
                     Location/Qualifiers
    Comment:
                  /tissue_type='adult antenna'
                  /note='putative seven transmembrane G protein coupled
                  receptor'
     source
                    1..1321
                     /organism="Drosophila melanogaster"
                     /strain="Oregon R"
                     /db_xref="taxon:7227"
                     /chromosome="II"
                     /map="22A3"
                    1..1321
    gene
                    /note="odorant receptor"
                    /gene="DOR67"
    CDS
                    102..1202
                     /gene="DOR67"
                     /note="odorant receptor"
                     /codon_start=1
                     /product="DOR67"
/translation="MWSFGWTVPENKRWDLHYKLWSTFVTLVIFILLPISVSVEYIOR
FKTFSAGEFLSSIQIGVNMYGSSFKSYLTMMGYKKRQEAKMSLDELDKRCVCDEERTI
VHRHVALGNFCYIFYHIAYTSFLISNFLSFIMKRIHAWRMYFPYVDPEKQFYISSIAE
VILRGWAVFMDLCTDVCPLISMVIARCHITLLKQRLRNLRSEPGRTEDEYLKELADCV
RDHRLILDYVDALRSVFSGTIFVQFLLIGIVLGLSMINIMFFSTLSTGVAVVLFMSCV
SMQTFPFCYLCNMIMDDCQEMADSLFQSDWTSADRRYKSTLVYFLHNLQQPIILTAGG
VFPISMQTNLNMVKLAFTVVTIVKQFNLAEKFQ"
BASE COUNT
               348 a
                        281 c
                                 294 g 398 t
```

FIG. 8E-2

ORIGIN

```
1 ggcacgagga aatgttaagc cagttettte eccacattaa agaaaagcca ttgagegage
 61 gggttaagtc ccgagatgcc ttcgtttact tagatcgggt gatgtggtcc tttggctgga
121 cagtgcctga aaacaaaagg tgggatctac attacaaact gtggtcaact ttcgtgacat
181 tggtgatatt tatccttctg ccgatatcgg taagcgttga gtatattcag cggttcaaga
241 ccttctcggc gggtgagttt cttagctcaa tccagattgg cgttaacatg tacggaagca
301 gctttaaaag ttatttgacc atgatgggat ataagaagag acaggaggct aagatgtcac
361 tggatgaget ggacaagaga tgcgtttgtg atgaggagag gaccattgta catcgacatg
421 togocotggg aaacttttgc tatattttct atcacattgc gtacactagc tttttgattt
481 caaacttttt gtcatttata atgaagagaa tccatgcctg gcgcatgtac tttccctacg
541 togaccoga aaagcaattt tacatotota gcatogooga agtcattott agggggtggg
601 cogtetteat ggatetetge acggatgtgt gteetttgat etceatggta atagcacgat
661 gccacatcac ccttctgaaa cagcgcctgc gaaatctacg atcggaacca ggaaggacgg
721 aagatgagta cttgaaggag ctcgccgact gcgttcgaga tcaccgcttg atattggact
781 atgregacge attgegatee grettttegg ggacaatttt tgrgcagtte etettgateg
841 gtattgtact gggtctgtca atgataaata taatgttttt ctcaacactt tcgactggtg
901 togoogtigt cotttttatg tootgogtat ctatgoagac gttccccttt tgctattigt
961 graacatgat tatggatgac tgccaagaga tggccgactc cctttttcaa tcggactgga
1021 catctgccga tcgtcgctac aaatccactt tggtatactt tcttcacaat cttcagcagc
1081 ccattattct tacggctggt ggagtctttc ctatttccat gcaaacaaat ttaaatatgg
1141 tgaagctggc ctttactgtg gttacaatag tgaaacaatt taacttggca gaaaagtttc
1201 aataagttaa gatatgcaag ctctgctatt ataaacctac actcgagaaa atatttcttc
1261 acattaataa accttcagta cttactgctt gtggcgcccc cggaaaaaaa aaaaaaaaa
1321 a
```

FIG. 8F-1

DOR64 [AF127925]

```
1308 bp
                                  mRNA
                                                    INV
                                                              06-FEB-1999
DEFINITION Drosophila melanogaster putative odorant receptor DOR64 mRNA,
            complete cds.
ACCESSION
            AF127925
KEYWORDS
SOURCE
            fruit fly.
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea;
            Drosophilidae: Drosophila.
            1 (bases 1 to 1308)
REFERENCE
           Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
  AUTHORS
            Rzhetsky and Richard Axel.
  TITLE
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
            Antenna
          Cell (1999) In press
  JOURNAL
            2 (bases 1 to 1308)
REFERENCE
           Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
  AUTHORS
  TITLE
            Direct Submission
            Submitted (06-FEB-1999) Department of Biochemistry and Molecular
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
FEATURES
                     Location/Qualifiers
     Comment:
                  /tissue_type='adult antenna'
                  /note='putative seven transmembrane G protein coupled
                  receptor'
     source
                    1..1308
                     /organism="Drosophila melanogaster"
                    /strain="Oregon R"
                     /db_xref="taxon:7227"
                    /chromosome="II"
                    /map="23A1-2"
     gene
                    1..1308
                    /note="odorant receptor"
                     /gene="DOR64"
     CDS
                    22..1158
                    /gene="DOR64"
                    /note="odorant receptor"
                    /codon_start=1
                    /product="DOR64"
/translation="MKLSETLKIDYFRVQLNAWRICGALDLSEGRYWSWSMLLCILVY
LPTPMLLRGVYSFEDPVENNFSLSLTVTSLSNLMKFCMYVAQLTKMVEVQSLIGQLDA
RVSGESQSERHRNMTEHLLRMSKLFQITYAVVFIIAAVPFVFETELSLPMPMWFPFDW
KNSMVAYIGALVFQEIGYVFQIMQCFAADSFPPLVLYLISEQCQLLILRISEIGYGYK
TLEENEQDLVNCIRDQNALYRLLDVTKSLVSYPMMVQFMVIGINIAITLFVLIFYVET
LYDRIYYLCFLLGITVQTYPLCYYGTMVQESFAELHYAVFCSNWVDQSASYRGHMLIL
AERTKRMQLLLAGNLVPIHLSTYVACWKGAYSFFTLMADRDGLGS"
```

331 a

BASE COUNT

314 c

305 g

FIG. 8F-2

ORIGIN

```
1 ggcacgagcc aagaattcaa aatgaaactc agcgaaaccc taaaaatcga ctattttcga
 61 gtccagttga atgcctggcg aatttgtggt gccttggatc tcagcgaggg taggtactgg
 121 agttggtcga tgctattgtg catcttggtg tacctgccga cacccatgct actgagagga
 181 gtatacagtt tcgaggatcc ggtggaaaat aatttcagct tgagcctgac ggtcacateg
 241 ctgtccaatc tcatgaagtt ctgcatgtac gtggcccaac taacaaagat ggtcgaggtc
301 cagagtetta ttggtcaget ggatgeeegg gtttetggeg agageeagte tgagegteat
 361 agaaatatga ccgagcacct gctaaggatg tccaagctgt tccagatcac ctacgctgta
 421 gtottcatca tigotgcagt tocottogtt titogaaactg agotaagott accoatgece
 481 atgtggtttc ccttcgactg gaagaactcg atggtggcct acatcggagc tctqqttttc
 541 caggagattg gctatgtctt tcaaattatg caatgctttg cagctgactc gtttcccccg
 601 ctcgtactgt acctgatctc cgagcaatgt caattgctga tcctgagaat ctctgaaatc
 661 ggatatggtt acaagactot ggaggagaac gaacaggato tggtcaactg catcagggat
 721 caaaacgcgc tgtatagatt actcgatgtg accaagagtc tcgtttcgta tcccatgatg
 781 gigcagitta iggitatigg catcaacatc gccatcaccc tattigtect gatattitac
 841 gtggagacct tgtacgatcg catctattat ctttgctttc tcttgggcat caccgtgcag
 901 acatatecat tgtgetaeta tggaaceatg gtgeaggaga gttttgetga getteaetat
961 geggtattet geageaactg ggtggateaa agtgeeaget ategtgggea catgeteate
1021 ctggcggagc gcactaagcg gatgcagctt ctcctcgccg gcaacctggt gcccatccac
1081 ctgagcacct acgtggcctg ttggaaggga gcctactcct tcttcaccct gatggccgat
1141 cgagatggcc tgggttctta gtagcccagt catttcactc acattctaca tcaagtagta
1201 ctaccactga acacgaacac gaatatttca aaagtaaaca cataatattc acaatagtgt
1261 attactttaa taaaattttt ggttaccatg aaaaaaaaa aaaaaaaa
```

```
FIG. 8G-1
```

DOR71q

```
INV
                                                                07-FEB-1999
            XXXXX
                         1252 bp
                                    DNA
LOCUS
DEFINITION Drosophila melanogaster odorant receptor DOR71g, GENSCAN
predicted complete cds.
ACCESSION
KEYWORDS
            fruit fly.
SOURCE
  ORGANISM Drosophila melanogaster
             Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
             Pterygota: Diptera: Brachycera: Muscomorpha: Ephydroidea:
            Drosophilidae; Drosophila.
            1 (bases 1 to 1252)
REFERENCE
 AUTHORS Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
            Rzhetsky and Richard Axel.
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
  TITLE
            Antenna
            Cell (1999) In press
  JOURNAL
           2 (bases 1 to 1252)
REFERENCE
  AUTHORS Celniker, S.E., Agbayani, A., Arcaina, T.T., Baxter, E., Blazej, R.G.,
            Butenhoff, C., Champe, M., Chavez, C., Chew, M., Ciesiolka, L.,
            Doyle, C.M., Farfan, D.E., Galle, R., George, R.A., Harris, N.L.
            Hoskins, R.A., Houston, K.A., Hummasti, S.R., Karra, K., Kearney, L.,
            Kim, E., Lee, B., Lewis, S., Li, P., Lomotan, M.A., Mazda, P.,
            Moshrefi, A.R., Moshrefi, M., Nixon, K., Pacleb, J.M., Park, S.
             Pfeiffer, B., Poon, L., Punch, E., Sequeira, A., Sethi, H., Snir, E.,
             Svirskas, R.R., Twomey, B., Wan, K.H., Weinburg, T., Zhang, R.,
             Zieran, L.L. and Rubin, G.M.
            Sequencing of Drosophila melanogaster
  TITLE
  JOURNAL Unpublished
REFERENCE 3 (bases 1 to 1252)
            Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
  AUTHORS
            Direct Submission
  TITLE
             Submitted (07-FEB-1999) Department of Biochemistry and Molecular
  JOURNAL
             Biophysics, HHMI-Columbia University, 701 West 168th Street, New
             York, NY 10032, USA
                      Location/Qualifiers
FEATURES
                   /tissue_type='adult maxillary palp'
     Comment:
                    /note= putative seven transmembrane G protein coupled
                    receptor'
                    /note='sequence annotation for BDGP P1 clone DS07071;
                    predicted using GENSCAN; join (26150-24899)
                      1..1252
      source
                       /organism="Drosophila melanogaster"
                       /db_xref="taxon:7227"
                       /chromosome="II"
                      /map="33B1-2"
                       1..731
      exon
                       /gene="DOR71g"
                       /note="exon"
                       join(1..731,811..1234)
      mRNA
                       /gene="DOR71g"
                       join(1..731,811..1234)
      CDS
                       /gene="DOR71g"
                       /note="odorant receptor"
                       /codon_start=1
                       /product="DOR71g"
```

FIG. 8G-2

/translation="MVIIDSLSFYRPFWICMRLLVPTFFKDSSRPVQLYVVLLHILVT LWFPLHLLLHLLLPSTAEFFKNLTMSLTCVACSLKHVAHLYHLPQIVEIESLIEQLD TFIASEQEHRYYRDHVHCHARRFTRCLYISFGMIYALFLFGVFVOVISGNWELLYPAY FPFDLESNRFLGAVALGYQVFSMLVEGFQGLGNDTYTPLTLCLLAGHVHLWSIRMGQL GYFDDETVVNHQRLLDYIEQHKLLVRFHNLVSRTISEVQLVQLGGCGATLCIIVSYML FFVGDTISLVYYLVFFGVVCVQLFPSCYFASEVAEELERLPYAIFSSRWYDQSRDHRF

```
DLL:FTQLTLGNRGWIIKAGGLIELNLNAFFATLKMAYSLFAVVVRAKGI
                     1..1234
     gene
                     /note="odorant receptor"
                     /gene="DOR71g"
     intron
                     732..810
                     /gene="DOR71q"
                     /note="intron"
                     811..1231
     exon
                     /gene="DOR71g"
                     /note="exon"
                     1246..1252
    polyA_signal
                     /note="polyA_signal"
                        299 c
              269 a
                                  305 g
BASE COUNT
                                           379 t
ORIGIN
        1 atggtcatta togacagtot tagtttttat ogtocattot ggatotgcat gogattgctq
       61 gtaccgactt tetteaagga tteettaegt cetgteeage tgtacgtggt gttgetgeae
      121 atcctggtca ccttgtggtt tccactgcat ctgctgctgc atcttctgct acttccatct
      181 accgctgagt tctttaagaa cctgaccatg tctctgactt gtgtggcctg cagtctgaag
      241 catgtggccc acttgtatca cttgccgcag attgtggaaa tcgaatcact gatcgagcaa
      301 tragacacat traftgecag cgaacaggag caregtract atogggatca cgracattge
      361 catgotagge getttacaag atgtetetat attagetttg geatgateta tgegetttte
      421 ctgttcggcg tcttcgttca ggttattagc ggaaattggg aacttctcta tccagcctat
      481 treccatteg actiggagag caategetti eteggegeag tageetiggg etateaggia
      541 treageatgt tagttgaagg ettecagggg etgggeaacg atacetatae eccaetgace
      601 ctatgccttc tggccggaca tgtccatttg tggtccatac gaatgggtca actgggatac
      661 trogatgacg agacggtggt gaatcatcag cgtttgctgg attacattga gcagcataaa
      721 ctcttggtgc ggtaagcttt gattaactaa cttttgacaa gaagtttatt cactttaact
      781 ggttccaaaa acgatgcact caatgtgcag attccacaac ctggtgagcc ggaccatcag
      841 cgaagtgcaa ctggtgcagc tgggcggatg tggagccact ctgtgcatca ttgtctccta
      901 catgetette tittgiggeg acacaatete getggtetae taetiggigt tettiggagt
      961 ggtctgcgtg cagctctttc ccagctgcta ttttgccagc gaagtagccg aggagttgga
     1021 acggctgcca tatgcgatct tctccagcag atggtacgat caatcgcggg atcatcgatt
     1081 cgatttgctc atctttacac aattaacact gggaaaccgg gggtggatca tcaaggcagg
     1141 aggictiate gagetgaatt tgaatgeett tittegeeace etgaagatgg cetatteeet
     1201 ttttgcagtt gtggtgcggg caaagggtat atagagagtc tgtttaatta aa
```

FIG. 8H-1

DOR72g

```
LOCUS
            XXXXX
                         1321 bp
                                    DNA
                                                     INV
                                                               08-FEB-1999
DEFINITION Drosophila melanogaster odorant receptor DOR72g, GENSCAN
predicted complete cds.
ACCESSION
KEYMORDS
SOURCE
            fruit fly.
 ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota: Diptera: Brachycera: Muscomorpha: Ephydroidea;
            Drosophilidae; Drosophila.
REFERENCE
            1 (bases 1 to 1321)
            Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
 AUTHORS
            Rzhetsky and Richard Axel.
 TITLE
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
            Antenna
           Cell (1999) In press
 JOURNAL
            2 (bases 1 to 1321)
REFERENCE
            Celniker, S.E., Agbayani, A., Arcaina, T.T., Baxter, E., Blazej, R.G.,
 AUTHORS
            Butenhoff, C., Champe, M., Chavez, C., Chew, M., Ciesiolka, L.,
            Doyle, C.M., Farfan, D.E., Galle, R., George, R.A., Harris, N.L.,
            Hoskins, R.A., Houston, K.A., Hummasti, S.R., Karra, K., Kearney, L.,
            Kim, E., Lee, B., Lewis, S., Li, P., Lomotan, M.A., Mazda, P.,
            Moshrefi, A.R., Moshrefi, M., Nixon, K., Pacleb, J.M., Park, S.,
            Pfeiffer, B., Poon, L., Punch, E., Sequeira, A., Sethi, H., Snir, E.,
            Svirskas, R.R., Twomey, B., Wan, K.H., Weinburg, T., Zhang, R.,
            Zieran, L.L. and Rubin, G.M.
 TITLE
            Sequencing of Drosophila melanogaster
 JOURNAL
            Unpublished
REFERENCE
           3 (bases 1 to 1321)
 AUTHORS
          Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
 TITLE
            Direct Submission
 JOURNAL
            Submitted (08-FEB-1999) Department of Biochemistry and Molecular
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
FEATURES
                     Location/Qualifiers
     Comment: .
                  /tissue_type='adult antenna'
                  /note='putative seven transmembrane G protein coupled
                  receptor'
                  /note='sequence annotation for BDGP P1 clone DS07071;
                  predicted using GENSCAN; join (27938-26618)'
                     1..1321
     source
                     /organism="Drosophila melanogaster"
                     /db_xref="taxon:7227"
                     /chromosome="II"
                     /map="33B1-2"
                     join(1..728,910..1321)
     mRNA
                     /gene="DOR72g"
     gene
                     1..1321
                     /note="odorant receptor"
                     /gene="DOR72g"
                     1..728
     exon
                     /gene="DOR72g"
                     /note="exon"
                     join(1..728,910..1321)
     CDS
                     /gene="DOR72g"
                     /note="odorant receptor"
                     /codon_start=1
                     /product="DOR72g"
```

1321 a

FIG. 8H-2

```
/translation="MDLKPRVIRSEDIYRTYWLYWHLLGLESNFFLNRLLDLVITIFV
TIWYPIHLILGLFMERSLGDVCKGLPITAACFFASFKFICFRFKLSEIKEIEILFKEL
DQRALSREECEFFNQNTRREANFIWKSFIVAYGLSNISAIASVLFGGGHKLLYPAWFP
YDVQATELIFWLSVTYQIAGVSLAILQNLANDSYPPMTFCVVAGHVRLLAMRLSRIGQ
GPEETIYLTGKQLIESIEDHRKLMKIVELLRSTMNISQLGQFISSGVNISITLVNILF
FADNNFAITYYGVYFLSMVLELFPCCYYGTLISVEMNQLTYAIYSSNWMSMNRSYSRI
```

```
LLIFMQLTLAEVQIKAGGMIGIGMNAFFATVRLAYSFFTLAMSLR"
                    729..909
                    /gene="DOR72g"
                    /note="intron"
                    910..1321
    exon
                    /gene="DOR72g"
                    /note="exon"
               361 a
BASE COUNT
                        255 c
                                 283 g 422 t
ORIGIN
       l atggacttaa aaccgcgagt cattcgaagt gaagatatct acagaaccta ttggttatat
      61 tggcatcttt tgggcctgga aagcaatttc tttctgaatc gcttgttgga tttggtgatt
      121 acaattttcg taaccatttg gtatccaatt cacctgattc tgggactgtt tatggaaaga
      181 tetttggggg atgtetgeaa gggtetacca attacggeag catgettttt egecagettt
     241 aaatttattt gttttcgctt caagctatct gaaattaaag aaatcgaaat attattaaa
     301 gagctggatc agcgagcttt aagtcgagag gaatgcgagt ttttcaatca aaatacqaqa
      361 cgrgaggcga attrcattrg gaaaagtric arrgrggccr arggacrgrc gaararcreg
     421 gctattgcat cagttetttt eggeggtgga cataagetat tatateeege etggttteea.
     481 tacgatgtgc aggccacgga actaatattt tggctaagtg taacatacca aattgccgga
     541 graagtttgg ccatacttca gaatttggcc aatgattcct atccaccgat gacattttgc
     601 gtggttgccg gtcatgtaag acttttggcg atgcgcttga gtagaattgg ccaaggtcca
     661 gaggaaacaa tatacttaac cggaaagcaa ttaatcgaaa gcatcgagga tcaccgaaaa
     721 ctaatgaagt aatgtacata tatagaatgg tttttagtta ttatcattaa atgaacgtgt
     781 tgtaggaaaa ccattctgtt tgtcgggtgt cacggaaatc gattttcctt aatttacata
     841 tgatattaaa tacttccttg caaacaatta tcatattagt aatttagaat ctttattatt
     901 tatttccaga atagtggaat tactgcgcag caccatgaat atttcgcagc tcggccagtt
     961 tatttcaagt ggtgttaata tttccataac actagtcaac attctcttct ttgcggataa
    1021 taattteget ataacetact aeggagtgta etteetateg atggtgttgg aattatteee
    1081 gtgctgctat tacggcaccc tgatatccgt ggagatgaac cagctgacct atgcgattta
    1141 ctcaagtaac tggatgagta tgaatcggag ctacagccgc atcctactga tcttcatgca
    1201 actcaccctg gcggaagtgc agatcaaggc cggtgggatg attggcatcg gaatgaacgc
    1261 ettettegee acceptegat tegestacte ettetteact tegescatet egetegetta
```

FIG. 81-1

DOR73g

```
XXXXX
                          1212 bp
LOCUS
                                    DNA
                                                     INV
                                                               08-FEB-1999
DEFINITION Drosophila melanogaster odorant receptor DOR73g, GENSCAN
predicted complete cds.
ACCESSION
KEYWORDS
SOURCE
            fruit fly.
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea;
            Drosophilidae; Drosophila.
            1 (bases 1 to 1212)
REFERENCE
  AUTHORS Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
           Rzhetsky and Richard Axel.
           A Spatial Map of Olfactory Receptor Expression in the Drosophila
  TITLE
            Antenna
           Cell (1999) In press
  JOURNAL
REFERENCE 2 (bases 1 to 1212)
  AUTHORS
            Celniker, S.E., Agbayani, A., Arcaina, T.T., Baxter, E., Blazej, R.G.,
            Butenhoff, C., Champe, M., Chavez, C., Chew, M., Ciesiolka, L.,
            Doyle, C.M., Farfan, D.E., Galle, R., George, R.A., Harris, N.L.,
            Hoskins, R.A., Houston, K.A., Hummasti, S.R., Karra, K., Kearney, L.,
            Kim, E., Lee, B., Lewis, S., Li, P., Lomotan, M.A., Mazda, P.,
            Moshrefi, A.R., Moshrefi, M., Nixon, K., Pacleb, J.M., Park, S.,
            Pfeiffer, B., Poon, L., Punch, E., Sequeira, A., Sethi, H., Snir, E.,
            Svirskas, R.R., Twomey, B., Wan, K.H., Weinburg, T., Zhang, R.,
            Zieran, L.L. and Rubin, G.M.
  TITLE
           Sequencing of Drosophila melanogaster
  JOURNAL
            Unpublished
REFERENCE
            3 (bases 1 to 1212)
  AUTHORS Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
           Direct Submission
  TITLE
          Submitted (08-FEB-1999) Department of Biochemistry and Molecular
  JOURNAL
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
FEATURES
                     Location/Qualifiers
                   /tissue_type='adult antenna'
     Comment:
                   /note='putative seven transmembrane G protein coupled
                   receptor'
                   /note='sequence annotation for BDGP P1 clone DS07071;
                   predicted using GENSCAN; join (29614-28403)'
                   1..1212
  source
                   /organism="Drosophila melanogaster"
                   /db_xref="taxon:7227"
                   /chromosome="II"
                   /map="33B1-2"
                   join(1..722,798..1212)
  mRNA
                   /gene="DOR73g"
                   1..1212
  gene
                  /note="odorant receptor"
                  /gene="DOR73g"
                   1..722
  exon
                   /gene="DOR73g"
                   /note="exon"
                   join(1..722,798..1212)
  CDS
                   /gene="DOR73g"
                   /note="odorant receptor"
                   /codon_start=1
```

/product="DOR73g"

1201 tttcgagtat ag

FIG. 81-2

```
'translation="MDSRRKVRSENLYKTYWLYWRLLGVEGDYPFRRLVDFTITSFIT
TLFPVHLILGMYKKPOIQVFRSLHFTSECLFCSYKFFCFRWKLKEIKTIEGLLODLDS
RVESEEERNYFNQNPSRVARMLSKSYLVAAISAIITATVAGLFSTGRNLMYLGWFPYD
FOATAAIYWISFSYQAIGSSLLILENLANDSYPPITFCVVSGHVRLLIMRLSRIGHDV
KLSSSENTRKLIEGIQDHRKLMKIIRLLRSTLHLSQLGQFLSSGINISITLINILFFA
```

```
ENNFAMLYYAVFFAAMLIELFPSCYYGILMTMEFDKLPYAIFSSNWLKMDKRYNRSLI
ILMOLTLVPVNIKAGGIVGIDMSAFFATVRMAYSFYTLALSFRV"
                     723..797
     intron
                     /gene="DOR73g"
                     /note="intron"
                     798..1212
     exon
                     /gene="DOR73g"
                     /note="exon"
BASE COUNT
                352 a
                         231 c
                                  242 g
                                           387 t
ORIGIN
        1 atggattcaa gaaggaaagt ccgaagtgaa aatctttaca aaacctattg gctttactgg
       61 cgacttctgg gagtcgaggg cgattatcct tttcgacggc tagtggattt tacaatcacg
      121 tetteatta egattitatt teeegtgeat ettataetgg gaatgtataa aaageeecag
      181 acceaagtot toaggagtot geattteaca teggaatgee tettetgeag etataagtet
      241 trengthing griggaaact taaagaaata aagaccateg aaggatiget ecaggatete
      301 gatagtcgag ttgaaagtga agaagaacgc aactacttta atcaaaatcc aagtcgtgtg
      361 getegaatge titegaaaag tiacitggia getgetatat eggeeataat cacigeaaci
      421 gragerggtt tattragtac tggtcgaaat ttaatgtate tgggttggtt tecetacgat
      481 tttcaagcaa cogcogcaat ctattggatt agtttttcct atcaggogat tggctctagt
      541 ctgttgattc tggaaaatct ggccaacgat tcatatccgc cgattacatt ttgtgtggtc
      601 totggacatg tgagactatt gataatgcgt ttaagtcgaa ttggtcacga tgtaaaatta
      661 traagttrgg aaaatarrag aaaactratr gaaggtator aggatrarag gaaactaatg
      721 aagtaagaat aaagatttaa gaaccgcatg tttgatagct cagagaactg ataattaatc
      781 aaatgtaact tttccaggat aatacgccta cttcgcagca ctttacatct tagccaactg
      841 ggccagttcc tttctagtgg aatcaacatt tccataacac tcatcaacat cctgttcttt
      901 geggaaaaca actttgcaat getttattat geggtgttet tigetgcaat gitaatagaa
      961 ctatttccaa gttgttacta tggaattctg atgacaatgg agtttgataa gctaccatat
     1021 gccatcttct ccagcaactg gcttaaaatg gataaaagat acaatcgatc cttgataatt
     1081 ctgatgcaac taacactggt tccagtgaat ataaaagcag gtggtattgt tggcatcgat
```

1141 atgagtgeat tttttgeeac agtteggatg geatatteet tttaeacttt ageettgtea

FIG. 8J-1

```
DOR46
                          1198 bp
                                     DNA
                                                      INV
LOCUS
            XXXXX
                                                                08-FFR-1999
DEFINITION Drosophila melanogaster odorant receptor DOR46g, GENSCAN
predicted complete cds.
ACCESSION
KEYWORDS
            fruit fly.
SOURCE
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota: Diptera; Brachycera; Muscomorpha; Ephydroidea;
            Drosophilidae; Drosophila.
REFERENCE
            1 (bases 1 to 1198)
            Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
  AUTHORS
            Rzhetsky and Richard Axel.
  TITLE
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
            Antenna
            Cell (1999) In press
  JOURNAL
            2 (bases 1 to 1198)
REFERENCE
            Celniker, S.E., Agbayani, A., Arcaina, T.T., Baxter, E., Blazej, R.G.,
  AUTHORS
            Butenhoff, C., Champe, M., Chavez, C., Chew, M., Ciesiolka, L.,
            Dovle, C.M., Farfan, D.E., Galle, R., George, R.A., Harris, N.L.,
            Hoskins, R.A., Houston, K.A., Hummasti, S.R., Karra, K., Kearney, L.,
            Kim, E., Lee, B., Lewis, S., Li, P., Lomotan, M.A., Mazda, P.,
            Moshrefi, A.R., Moshrefi, M., Nixon, K., Pacleb, J.M., Park, S.,
            Pfeiffer, B., Poon, L., Punch, E., Sequeira, A., Sethi, H., Snir, E.,
            Svirskas, R.R., Twomey, B., Wan, K.H., Weinburg, T., Zhang, R.,
            Zieran, L.L. and Rubin, G.M.
            Sequencing of Drosophila melanogaster
  TITLE
  JOURNAL
            Unpublished
            3 (bases 1 to 1198)
REFERENCE
            Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
  AUTHORS
            Direct Submission
  TITLE
            Submitted (08-FEB-1999) Department of Biochemistry and Molecular
  JOURNAL
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
                      Location/Qualifiers
FEATURES
                   /note='putative seven transmembrane G protein coupled
     Comment:
                   receptor'
                   /note='sequence annotation for BDGP P1 clone DS07462;
                   predicted using GENSCAN'
                      1..1198
     source
                      /organism="Drosophila melanogaster"
                      /db_xref="taxon:7227"
                      /chromosome="II'
                      /map="59D5-7"
                      join(1..725,784..1198)
     mRNA
                      /gene="DOR46g"
                      1..1198
     gene
                      /note="odorant receptor"
                      /gene="DOR46g"
                      1..725
     exon
                      /gene="DOR46g"
                      join(1..725,784..1198)
     CDS
                      /gene="DOR46g"
                      /note="odorant receptor"
                      /codon_start=1
                      /product="DOR46g"
```

FIG. 8J-2

/translation="MAEVRVDSLEFFKSHWTAWRYLGVAHFRVENWKNLYVFYSIVSN LLVTLCYPVHLGISLFRNRTITEDILNLTTFATCTACSVKCLLYAYNIKDVLEMERLL RLLDERVVGPEQRSIYGQVRVQLRNVLYVFIGIYMPCALFAELSFLFKEERGLMYPAW FPFDWLHSTRNYYIANAYQIVGISFQLLQNYVSDCFPAVVLCLISSHIKMLYNRFEEV GLDPARDAEKDLEACITDHKHILELFRRIEAFISLPMLIQFTVTALNVCIGLAALVFF VSEPMARMYFIFYSLAMPLQIFPSCFFGTDNEYWFGRLHYAAFSCNWHTQNRSFKRKM MLFVEQSLKKSTAVAGGMMRIHLDTFFSTLKGAYSLFTIIIRMRK"

```
intron
                  726..783
                  /gene="DOR46g"
                  784..1198
    exon
                  /gene="DOR46g"
BASE COUNT 251 a
                      325 c 310 g
ORIGIN
```

l atggcagagg tcagagtgga cagtctggag tttttcaaga gccattggac cgcctggcgg 61 tacttgggag tggctcattt tcgggtcgag aactggaaga acctttacgt gttttacagc 121 attgtgtcga atcttctcgt gaccctgtgc taccccgttc acctgggaat atccctcttt 181 egeaacegea ceateacega ggacatecte aacetgacea cetttgegae etgeacagee 241 tgttcggtga agtgcctgct ctacgcctac aacatcaagg atgtgctgga gatggagcgg 301 ctgttgaggc ttttggatga acgcgtcgtg ggtccggagc aacgcagcat ctacggacaa 361 gtgagggtcc agctgcgaaa tgtgctatac gtgttcatcg gcatctacat gccgtgtgcc 421 ctgttcgccg agctatcctt tctgttcaag gaggagcgcg gtctgatgta tcccgcctgg 481 tttcccttcg actggctgca ctccaccagg aactattaca tagcgaacgc ctatcagata 541 gtgggcatct cgtttcagct gctgcaaaac tatgttagcg actgctttcc ggcggtggtg 601 ctgtgcctga tctcatccca catcaaaatg ttgtacaaca gattcgagga ggtgggcctg 661 gatccagcca gagatgcgga gaaggacctg gaggcctgca tcaccgatca caagcatatt 721 ctagagtggg caggcggctc attgtaacgt tcgtgttcta ttcactttcc aactttttc 781 cagactatte egacgeateg aggeetteat treeetgees atgetaatte agtteacagt 841 gaccgccttg aatgtgtgca tcggtttagc agccctggtg tttttcgtca gcgagcccat 901 ggcacggatg tacttcatct totactccct ggccatgccg ctgcagatct ttccgtcctg 961 ctttttcggc accgacaacg agtactggtt cggacgcctc cactacgcgg ccttcagttg 1021 caattggcac acacagaaca ggagctttaa gcggaaaatg atgctgttcg ttgagcaatc 1081 gttgaagaag agcaccgctg tggctggcgg aatgatgcgt atccacctgg acacgttctt 1141 ttccacceta aagggggcet actecetett taccateatt atteggatga gaaagtag

FIG. 8K-1

```
DOR19g
            XXXXX
                         1293 bp
                                    DNA
                                                     INV
DEFINITION Drosophila melanogaster odorant receptor DOR19g, GENSCAN
predicted complete cds.
ACCESSION
KEYWORDS
            fruit fly.
SOURCE
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea;
            Drosophilidae; Drosophila.
            1 (bases 1 to 1293)
REFERENCE
            Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
  AUTHORS
            Rzhetsky and Richard Axel.
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
  TITLE
            Antenna
            Cell (1999) In press
  JOURNAL
REFERENCE
            2 (bases 1 to 1293)
            Celniker, S.E., Agbayani, A., Arcaina, T.T., Baxter, E., Blazej, R.G.,
  AUTHORS
            Butenhoff, C., Champe, M., Chavez, C., Chew, M., Ciesiolka, L.,
            Doyle, C.M., Farfan, D.E., Galle, R., George, R.A., Harris, N.L.,
            Hoskins, R.A., Houston, K.A., Hummasti, S.R., Karra, K., Kearney, L.,
            Kim, E., Lee, B., Lewis, S., Li, P., Lomotan, M.A., Mazda, P.,
            Moshrefi, A.R., Moshrefi, M., Nixon, K., Pacleb, J.M., Park, S.
            Pfeiffer, B., Poon, L., Punch, E., Sequeira, A., Sethi, H., Snir, E.,
            Svirskas, R.R., Twomey, B., Wan, K.H., Weinburg, T., Zhang, R.,
            Zieran, L.L. and Rubin, G.M.
            Sequencing of Drosophila melanogaster
  TITLE
            Unpublished
  JOURNAL
REFERENCE 3 (bases 1 to 1293)
  AUTHORS Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
            Direct Submission
  TITLE
            Submitted (09-FEB-1999) Department of Biochemistry and Molecular
  JOURNAL
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
                     Location/Oualifiers
FEATURES
                   /note='putative seven transmembrane G protein coupled
     Comment:
                   receptor'
                   /note='sequence annotation for BDGP Pl clone DS01913;
                   predicted using GENSCAN; join (72218-70926)'
     source
                      1..1293
                      /organism="Drosophila melanogaster"
                      /db_xref="taxon:7227"
                      /chromosome="II"
                      /map="46F5-6"
                      1..1293
     mRNA
                      /gene="DOR19g"
                      1..1293
     gene
                      /note="odorant receptor"
                      /gene="DOR19g"
                      1..1293
     exon
                      /gene="DOR19g"
                      1..1293
     CDS
                      /gene="DOR19g"
                      /note="odorant receptor"
                      /codon_start=1
```

/product="DOR19g"

FIG. 8K-2

/translation="MVTEDFYKYQVWYFQILGVWQLPTWAADHQRRFQSMRFGFILVI LFIMLLLFSFEMLNNISQVREILKVFFMFATEISCMAKLLHLKLKSRKLAGLVDAMLS PEFGVKSEQEMQMLELDRVAVVRMRNSYGIMSLGAASLILIVPCFDNFGELPLAMLEV CSIEGWICYWSQYLFHSICLLPTCVLNITYDSVAYSLLCFLKVQLQMLVLRLEKLGPV IEPQDNEKIAMELRECAAYYNRIVRFKDLVELFIKGPGSVQLMCSVLVLVSNLYDMST MSIANGDAIFMLKTCIYQLVMLWQIFIICYASNEVTVQSSRLCHSIYSSQWTGWNRAN RRIVLLMMQRFNSPMLLSTFNPTFAFSLEAFGSVGQQKFLYISFITGYALLLSDRQLL LQLLRTAEARQQLNFETPQHLKIFKPIFKSTQNVMHVH"

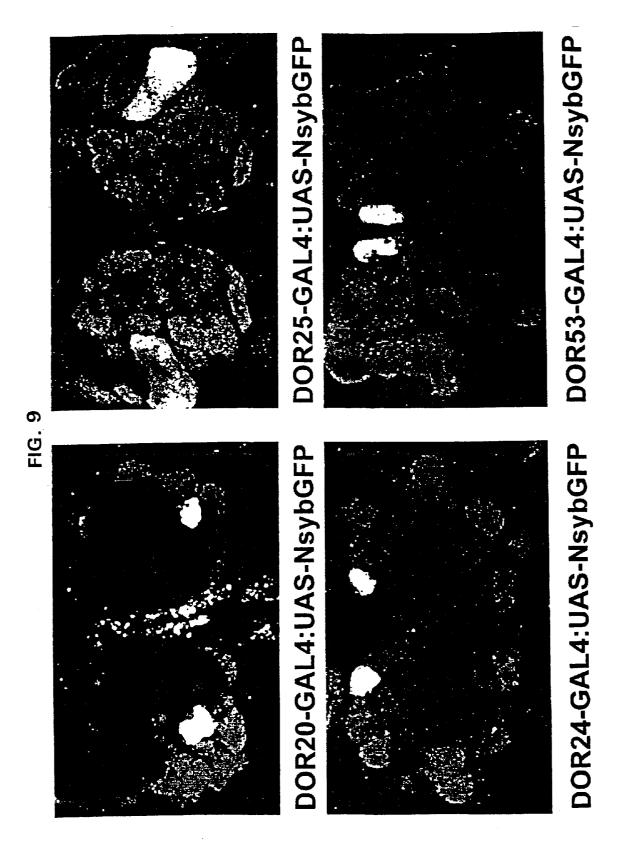
BASE COUNT 290 a 322 c 307 g 374 t ORIGIN

> 1 atggttacgg aggactttta taagtaccag gtgtggtact tccaaatcct tggtgtttgg 61 cagetececa ettgggeege agaceaecag egtegtttte agteeatgag gtttggette 121 atcotggtca tectgtteat catgetgetg etttteteet tegaaatgtt gaacaacatt 181 teceaagtta gggagateet aaaggtatte treatgrieg ceaeggaaat atcetgeatg 241 gccaaattat tgcatttgaa gttgaagage egcaaacteg etggettggt tgatgegatg 301 ttgtccccag agttcggcgt taaaagtgaa caggaaatgc agatgctgga attggataga 361 gragegatta recacatas gaactectae ageateatat coeragacae agerteceta 421 atccttatag ttccctgttt cgacaacttt ggcgagctac cactggccat gttggaggta 481 tgcagcatcg agggatggat ctgctattgg tcgcagtacc ttttccactc qatttgcctq 541 ctgcccactt gtgtgctgaa tataacctac gactcggtgg cctactcgtt gctctgtttc 601 ttgaaggttc agctacaaat gctggtcctg cgattagaaa agttgggtcc tgtgatcgaa 661 ccccaggata atgagaaaat cgcaatggaa ctgcgtgagt gtgccgccta ctacaacagg 721 attgttcgtt tcaaggacct ggtggagctg ttcataaagg ggccaggatc tgtgcagctc 781 atgtgttctg ttctggtgct ggtgtccaac ctgtacgaca tgtccaccat gtccattgca 841 aacggcgatg ccatctttat gctcaagacc tgtatctatc agctggtgat gctctggcag 901 atetteatea titigetaege etecaaegag gtaaetgtee agagetetag gitgtgteae 961 agcatctaca gctcccaatg gacgggatgg aacagggcaa accgccggat tgtccttctc 1021 atgatgcage getttaatte ecegatgete etgageacet ttaaceceae etttgettte 1081 agertggagg certrggtte tgtagggeag cagaaattee tttatatate atttattact 1141 ggttatgete tteteettte agategteaa etgeteetae agetaetteg eaetgetgaa 1201 gcgcgtcaac agttaaattt cgaaacaccg cagcacctaa agattttcaa gccgattttt 1261 aaaagcactc aaaacgttat gcacgtacat taa

FIG. 8L-1

```
DOR24g
```

```
LOCUS
            XXXXX
                          2075 bp
                                     DNA
                                                     INV
                                                               09-FEB-1999
DEFINITION Drosophila melanogaster odorant receptor DOR24g, GENSCAN
predicted complete cds.
ACCESSION
KEYWORDS
SOURCE
            fruit fly.
  ORGANISM Drosophila melanogaster
            Eukaryota; Metazoa; Arthropoda; Tracheata; Hexapoda; Insecta;
            Pterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea;
            Drosophilidae; Drosophila.
            1 (bases 1 to 2075)
REFERENCE
            Leslie B. Vosshall, Hubert Amrein, Pavel S. Morozov, Andrey
 AUTHORS
            Rzhetsky and Richard Axel.
            A Spatial Map of Olfactory Receptor Expression in the Drosophila
  TITLE
            Antenna
  JOURNAL
            Cell (1999) In press
REFERENCE
            2 (bases 1 to 2075)
            Celniker, S.E., Agbayani, A., Arcaina, T.T., Baxter, E., Blazej, R.G.,
 AUTHORS
            Butenhoff, C., Champe, M., Chavez, C., Chew, M., Ciesiolka, L.,
            Doyle, C.M., Farfan, D.E., Galle, R., George, R.A., Harris, N.L.,
            Hoskins, R.A., Houston, K.A., Hummasti, S.R., Karra, K., Kearney, L.,
            Kim, E., Lee, B., Lewis, S., Li.P., Lomotan, M.A., Mazda, P.,
            Moshrefi, A.R., Moshrefi, M., Nixon, K., Pacleb, J.M., Park, S.,
            Pfeiffer, B., Poon, L., Punch, E., Sequeira, A., Sethi, H., Snir, E.,
            Svirskas, R.R., Twomey, B., Wan, K.H., Weinburg, T., Zhang, R.,
            Zieran, L.L. and Rubin, G.M.
            Sequencing of Drosophila melanogaster
  TITLE
  JOURNAL
            Unpublished
REFERENCE
           3 (bases 1 to 2075)
 AUTHORS Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R.
 TITLE
            Direct Submission
            Submitted (09-FEB-1999) Department of Biochemistry and Molecular
 JOURNAL
            Biophysics, HHMI-Columbia University, 701 West 168th Street, New
            York, NY 10032, USA
FEATURES
                      Location/Qualifiers
     Comment:
                   /tissue_type='adult antenna'
                   /note='putative seven transmembrane G protein coupled
                   receptor'
                   /note='sequence annotation for BDGP P1 clone DS00724:
                   predicted using GENSCAN; join (62623-64697)'
     source
                      1..2075
                      /organism="Drosophila melanogaster"
                      /db_xref="taxon:7227"
                     /chromosome="II"
                     /map="47D6-E2"
                     join(1..185,739..1038,1338..1953,2025..2075)
    mRNA
                     /gene="DOR24g"
                     1..2075
     gene
                     /note="odorant receptor"
                     /gene="DOR24g"
                     join(1..185,739..1038,1338..1953,2025..2075)
    CDS
                     /gene="DOR24g"
                     /note="odorant receptor"
                     /codon_start=1
                     /product="DOR24g"
```


FIG. 8L-2

/translation="MRPTLQVLISVLÇLVSAYAWDHTDCNDHYIEFMDYPDERATAYS NESSEWDFFEFWRQVFGLFLQVQKSTIALLGFDLFSENREMWKRPYRAMNVFSIAAIF PFILAAVLHNWKNVLLLADAMVALLITILGLFKFSMILYLRRDFKRLIDKFRLLMSNG EFFPWNIHIIRNYVLSFIWSAFASTGVVLPAVSLDTIFCSFTSNLCAFFKIAQYKVVR FKGGSLKESQATLNKVFALYQTSLDMCNDLNQCYQPIICAQFFISSLQLCMLGYLFSI TFAOTEGVYYASFIATIIIQAYIYCYCGENLKTESASFEWAIYDSPWHESLGAGGAST SICRSLLISMMRAHRGFRITGYFFEANMEAFSSIVRTAMSYITMLRSFS"

```
exon
                    1..185
                     /gene="DOR24g"
     intron
                     186..738
                     /gene="DQR24g"
     exon
                     739..1038
                     /gene="DOR24g"
     intron
                    1039..1337
                     /gene="DOR24g"
                     1338..1953
    - exon
                     /gene="DOR24g"
     intron
                     1954..2024
                     /gene="DOR24g"
                     2025..2075
     exon
                     /gene="DOR24g"
BASE COUNT
                548 a
                         460 c
                                  447 g
                                           620 t
ORIGIN
        1 atgegeceaa cactecaggt ceteateagt gteettigte tggtetetge ctaegeetgg
       61 gatcataccg actgtaacga tcactatatc gaattcatgg actatcccga tgagagagct
      121 acceptata geaatgaate etcagaatgg gatttetttg aattttggag geaagtgttt
      181 ggcctgtagc aattctgaca tcgctgacca cgcctctggt caaagcaatc acttggcgag
      241 acatgtgacc ctcggatgtc agggcgtgaa taaagaacat taaaatttaa ccggagttct
      301 catttactat godtaaagag gtgtcaaacg gaggtattat ttgggcgtga tatattatac
      361 cototaaagg agtatococa coaggigaaa cootataaaa cootigacgi egitaatgga
      421 aagtactgaa coggaaatga aagtgggcac tttctaatgg tagaaatttg togggatgaa
      481 atatataagt agatatatat aatattatat cttgattatc cagcatcaat cacaagataa
      541 aaaaaaaata taattoataa tooataatto atatgtaata ggoattigta aatgtigtaa
      601 acaaaggaag ggtattaaag agctgtactt tegeatetgt attteattta tteetactea
      661 attgaaaggt ttaaaacccc tgaactgaac acacttgact tagtgtgagg ccgaattaac
      721 cettgtegac atggacagtt ttetgeaagt acagaagage accattgeec ttetgggett
      781 tgatetett agtgaaaate gagaaatgtg gaaacgeece tatagageaa tgaatgtgtt
      841 tagcataget gocattitte cetttateet ggeagetgtg etecataatt ggaagaatgt
      901 attgctgctg gccgatgcca tggtggccct actaataacc attctgggcc tattcaagtt
      961 tagcatgata ctttacttac gtcgcgattt caagcgactg attgacaaat ttcgtttgct
     1021 catgregaat ggtgagttgt aatccattte ggccagaatg tgtatcattt catttattat
     1081 tttatagagg cggaacaggg cgaggaatac gccgagattc tcaacgcagc aaacaagcag
     1141 gatcaacgaa tgtgcactct gtttaggact tgtttcctcc tcgcctgggc cttgaatagt
     1201 gttctgcccc tcgtgagaat gggtctcagc tattggttag caggtcatgc agagcccgag
     1261 ttgccttttc cctgtctgta tgtacaaatg atatatatga tatatggtga tcaagttatc
     1321 aggettigtt cetaaagtti teeetggaat atecacatea tiegeaatta tgittigage
     1381 ttcatctgga gcgctttcgc ctcgacaggt gtggttttac ctgctgtcag cttggatacc
     1441 atattetgtt cetteaccag caacetgtge geettettea aaattgegea gtacaaggtg
     1501 gttagattta agggcggatc ccttaaagaa tcacaggcca cattgaacaa agtctttgcc
     1561 ctgtaccaga ccagcttgga tatgtgcaac gatctgaatc agtgctacca accgattatc
     1621 tgcgcccagt tcttcatttc atctctgcaa ctctgcatgc tgggatatct gttctccatt
     1681 acttttgccc agacagaggg cgtctactat gcctcattca tagccacaat cattatacaa
     1741 gentatatet actgetactg eggggagaac etgaagaegg agagtgeeag ettegagtgg
     1801 gecatetacg acagtecgtg geacgagagt ttgggtgetg gtggagcete tacetegate
     1861 tgccgatect tgctgateag catgatgegg gctcateggg gatteegcat taegggatae
     1921 tttttcgagg caaacatgga ggccttctca tcggtgggtg aatcatttcc attgtacaat
```

1981 acatggattt acatgaatac tottttctaa ctttccgttt ttagattgtt cgcacggcga

2041 tgtcctacat cacaatgctg agatcattct cctaa

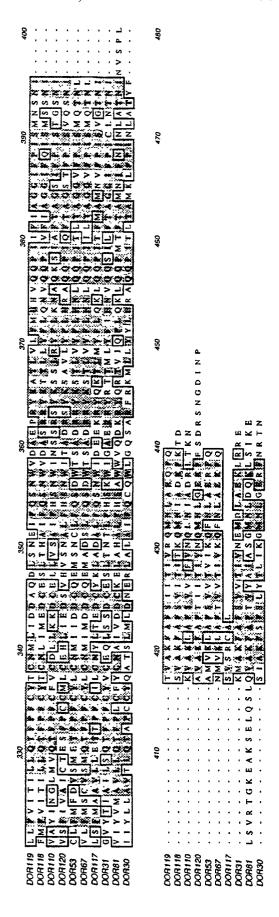
ClustalW Alignment of the DOR53 Family

PAPLTEKVOIS BLO NITY LYRAM

KPNPTNLLTSPBSFRYFEV SMAN

TAPLDOEVS BLO AS DYYYMAN

TAPLDOEVS BLO AS DYYYMAN


TAPLDOEVS BLO AS DYYYMAN

TAPLDOEVS BLO AS DYYYMAN

TAPLDO S LO AS DOWYYMAN

TAPLDO S LO A

8 OF FR= ONX-	V = X V C C C C C C C C C	\$ *** ***	8
	->		× = + + + × × × × × × × × × × × × × × ×
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		X X X X X X X X X X X X X X X X X X X	# # # # # # # # # # # # # # # # # # #
	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	> Z = - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
			>> <u> </u>
0000x-0720 646-4-1647 745-1-4747	**************************************	ΣΣ->> </td <td>**************************************</td>	**************************************
L L L X Z + Z - L >	DOBBBBCCE SASSECECE	0 - <u>7 7</u> > > > > 1	TENSONE
N		2 - 1 > X > >	>> \
トーししし 0 C C C C - 1 T A K A K A K A K A K A K A K A K A K A	口 移 高 り 窓 家 表 那 単純語 日 男 男 神 教 神 教 教 教 教 教 女 子 日 日 日 日 リ ト カ ウ ト ロ ソ R ウ T レ ソ R ウ		31 H- 1 - 10 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
×××××××××××××××××××××××××××××××××××××	EXXDOSTES OPXPOSTES OPXPOSTES	N	
40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 0.0000 - 0.000 - 1.00000 - 0.000 - 1.0000 - 0.000		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2	
	8 2 2 5 5 2 2 2 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Z Q Z D Z Q Z D Z Z Q Z Z Z Z Z Z Z Z Z	©
	- Z X Z Z Z X Z Z Z Z Z Z Z Z Z Z Z Z Z	M < K × × × × × × × × × × × × × × × × × ×	
e c + e m > x + 1 − < 	2 X X X M M M M M M M M M M M M M M M M		2 Σ - (- (· · · · · · · · · · · · · · · ·
Z LACESSES	**************************************	OO < < < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X x · Q 0 0 x m x Q
> × + + × × + × × × × × × × × × × × × ×	Z X Z C C C C Z Z Z Z Z Z Z Z Z Z Z Z Z		
Z Z Z < Z Z > - · · · · · · · · · · · · · · · · · ·	K K K K K K K K K K K K K K K K K K K	8 X + X H	2
		S C D S C D S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C S C D C D	
N TOTELL T	>		ZYZ Y B Q O B Q C
	なるののので N × ∩ − − × × × × × × × × × × × × × × × ×		〇 E O E E E E E E E E E E E E E E E E E
W K K K K K K K K K K K K K K K K K K K	>>>->->>	2 Z Z Z C C Z Z Z C C Z Z Z C C Z Z Z C C Z Z Z C C Z	SENX エン・XIEI
T W W W W W W W W W W W W W W W W W W W	- U = Q O V = U V V V V V V V V V V V V V V V V V	NORORROUX <	4 4 4 <u>2 0 0 m 0</u> 2 m
T L L L L L L L L L L L L L L L L L L L	*** > ****** > ***** > ***** > ****** > ********		
2		2	· · · · · · · · · · · · · · · · · · ·
M			
A A A A A A A A A A A A A A A A A A A	Z N I Z I L I Z I Z O Z O I Z I Z I Z I Z I Z I Z I	**************************************	
M M M G G G G G G G G G G G G G G G G G		2 4 + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	NS TOS STESS
DORITION DOR	DOR119 DOR118 DOR118 DOR120 DOR120 DOR62 DOR67 DOR17 DOR117 DOR81	DOR119 DOR119 DOR120 DOR120 DOR53 DOR67 DOR17 DOR17 DOR17 DOR81 DOR81	DOR119 DOR118 DOR110 DOR120 DOR120 DOR53 DOR67 DOR117 DOR91 DOR81
000000000	000000000	000000000	22224444

ClustalW Alignment of the DOR64 Family

E K C C C K B 480 DORES

DORTS

DO DOREZ DOR73 DOR72 DOR46 DOR64

GENES ENCODING INSECT ODORANT RECEPTORS AND USES THEREOF

[0001] This application claims priority and is a continuation-in-part application of U.S. Ser. No. 09/257,706, filed Feb. 25, 1999, the contents of which is hereby incorporated by reference.

[0002] The invention disclosed herein was made with Government support under NIH:NIMH, 5P50, MH50733-05 and the NINDS, NS29832-07 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

[0003] Throughout this application, various publications are referred to by arabic numeral within parentheses. Full citations for these publications are presented immediately before the claims. Disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

BACKGROUND OF THE INVENTION

[0004] All animals possess a "nose," an olfactory sense organ that allows for the recognition and discrimination of chemosensory information in the environment. Humans, for example, are thought to recognize over 10,000 discrete odors with exquisite discriminatory power such that subtle differences in chemical structure can often lead to profound differences in perceived odor quality. What mechanisms have evolved to allow the recognition and discrimination of complex olfactory information and how is olfactory perception ultimately translated into appropriate behavioral responses? The recognition of odors is accomplished by odorant receptors that reside on olfactory cilia, a specialization of the dendrite of the olfactory sensory neuron. The odorant receptor genes encode novel serpentine receptors that traverse the membrane seven times. In several vertebrate species, and in the invertebrate Caenorhabditis elegans, as many as 1000 genes encode odorant receptors, suggesting that 1-5% of the coding potential of the genome in these organisms is devoted to the recognition of olfactory sensory stimuli (Buck and Axel, 1991; Levy et al., 1991; Parmentier et al., 1992; Ben-Arie et al., 1994; Troemel et al., 1995; Sengupta et al., 1996; Robertson, 1998). Thus, unlike color vision in which three photoreceptors can absorb light across the entire visible spectrum, these data suggest that a small number of odorant receptors are insufficient to recognize the full spectrum of distinct molecular structures perceived by the olfactory system. Rather, the olfactory sensory system employs an extremely large number of receptors, each capable of recognizing a small number of odorous

[0005] The discrimination of olfactory information requires that the brain discern which of the numerous receptors have been activated by an odorant. In mammals, individual olfactory sensory neurons express only one of a thousand receptor genes such that the neurons are functionally distinct (Ngai et al., 1993; Ressler et al., 1993; Vassar et al., 1993; Chess et al., 1994; Dulac and Axel, unpublished). The axons from olfactory neurons expressing a specific receptor converge upon two spatially invariant glomeruli among the 1800 glomeruli within the olfactory bulb (Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996; Wang et al., 1998). The bulb therefore provides a

spatial map that identifies which of the numerous receptors has been activated within the sensory epithelium. The quality of an olfactory stimulus would therefore be encoded by specific combinations of glomeruli activated by a given odorant.

[0006] The logic of olfactory discrimination is quite different in the nematode, *C. elegans*. Despite the large size of the odorant receptor gene family, volatile odorants are recognized by only three pairs of chemosensory cells each likely to express a large number of receptor genes (Bargmann and Horvitz, 1991; Colbert and Bargmann, 1995; Troemel et al., 1995). Activation of any one of the multiple receptors in one cell will lead to chemoattraction, whereas activation of receptors in a second cell will result in chemorepulsion (Troemel et al., 1997). The specific neural circuit activated by a given sensory neuron is therefore the determinant of the behavioral response. Thus, this invertebrate olfactory sensory system retains the ability to recognize a vast array of odorants but has only limited discriminatory power.

[0007] Vertebrates create an internal representation of the external olfactory world that must translate stimulus features into neural information. Despite the elucidation of a precise spatial map, it has been difficult in vertebrates to discern how this information is decoded to relate the recognition of odors to specific behavioral responses. Genetic analysis of olfactory-driven behavior in invertebrates may ultimately afford a system to understand the mechanistic link between odor recognition and behavior. Insects provide an attractive model system for studying the peripheral and central events in olfaction because they exhibit sophisticated olfactorydriven behaviors under control of an olfactory sensory system that is significantly simpler anatomically than that of vertebrates (Siddiqi, 1987; Carlson, 1996). olfactory-based associative learning, for example, is robust in insects and results in discernible modifications in the neural representation of odors in the brain (Faber et al., 1998). It may therefore be possible to associate modifications in defined olfactory connections with in vivo paradigms for learning and memory.

[0008] Olfactory recognition in the fruit fly Drosophila is accomplished by sensory hairs distributed over the surface of the third antennal segment and the maxillary palp. olfactory neurons within sensory hairs send projections to one of 43 glomeruli within the antennal lobe of the brain (Stocker, 1994; Laissue et al, 1999). The glomeruli are innervated by dendrites of the projection neurons, the insect equivalent of the mitral cells in the vertebrate olfactory bulb, whose cell bodies surround the glomeruli. These antennal lobe neurons in turn project to the mushroom body and lateral horn of the protocerebrum (reviewed in Stocker, 1994). 2-deoxyglucose mapping in the fruit fly (Rodrigues, 1988) and calcium imaging in the honeybee (Joerges et al., 1997; Faber et al., 1998) demonstrate that different odorants elicit defined patterns of glomerular activity, suggesting that in insects as in vertebrates, a topographic map of odor quality is represented in the antennal lobe. However, in the absence of the genes encoding the receptor molecules, it has not been possible to define a physical basis for this spatial map.

[0009] In this study, we identify a large family of genes that are likely to encode theodorant receptors of *Drosophila melanogaster*. Difference cloning, along with analysis of

Drosophila genomic sequences, has led to the identification of a novel family of putative seven transmembrane domain receptors likely to be encoded by 100 to 200 genes within the Drosophila genome. Each receptor is expressed in a small subset of sensory cells (0.5-1.5%) that is spatially defined within the antenna and maxillary palp. Moreover, different neurons express distinct complements of receptor genes such that individual neurons are functionally distinct. Identification of a large family of putative odorant receptors in insects indicates that, as in other species, the diversity and specificity of odor recognition is accommodated by a large family of receptor genes. The identification of the family of putative odorant receptor genes may afford insight into the logic of olfactory perception in Drosophila.

[0010] Insects provide an attractive system for the study of olfactory sensory perception. We have identified a novel family of seven transmembrane domain proteins, encoded by 100 to 200 genes, that is likely to represent the family of Drosophila odorant receptors. Members of this gene family are expressed in topographically defined subpopulations of olfactory sensory neurons in either the antenna or the maxillary palp. Sensory neurons express different complements of receptor genes, such that individual neurons are functionally distinct. The isolation of candidate odorant receptor genes along with a genetic analysis of olfactory-driven behavior in insects may ultimately afford a system to understand the mechanistic link between odor recognition and behavior.

SUMMARY OF THE INVENTION

[0011] This invention provides an isolated nucleic acid molecule encoding an insect odorant receptor. In an embodiment, the isolated nucleic acid molecule comprise: (a) one of the nucleic acid sequences as set forth in FIG. 8, (b) a sequence being degenerated to a sequence of (a) as a result of the genetic code; or (c) a sequence encoding one of the amino acid sequences as set forth in FIG. 8.

[0012] This invention provides a nucleic acid molecule of at least 12 nucleotides capable of specifically hybridizing with the sequence of the above-described nucleic acid molecule. This invention provides a vector which comprises the above-described isolated nucleic acid molecule. In another embodiment, the vector is a plasmid.

[0013] This invention also provides a host vector system for the production of a polypeptide having the biological activity of an insect odorant receptor which comprises the above described vector and a suitable host.

[0014] This invention provides a method of producing a polypeptide having the biological activity of an insect odorant receptor which comprising growing the above described host vector system under conditions permitting production of the polypeptide and recovering the polypeptide so produced

[0015] This invention also provides a purified, insect odorant receptor. This invention further provides a polypeptide encoded by the above-described isolated nucleic acid molecule.

[0016] This invention provides an antibody capable of specifically binding to an insect odorant receptor. This invention also provides an antibody capable of competi-

tively inhibiting the binding of the antibody capable of specifically binding to an insect odorant receptor.

[0017] This invention provides a method for identifying cDNA inserts encoding an insect odorant receptors comprising: (a) generating a cDNA library which contains clones carrying cDNA inserts from antennal or maxillary palp sensory neurons; (b) hybridizing nucleic acid molecules of the clones from the cDNA libraries generated in step (a) with probes prepared from the antenna or maxillary palp neurons and probes from heads lacking antenna or maxillary palp neurons or from virgin female body tissue; (c) selecting clones which hybridized with probes from the antenna or maxillary palp neurons but not from head lacking antenna or maxillary palp neurons or virgin female body tissue; and (d) isolating clones which carry the hybridized inserts, thereby identifying the inserts encoding odorant receptors.

[0018] This invention also provides cDNA inserts identified by the above method.

[0019] This invention further provides a method for identifying DNA inserts encoding an insect odorant receptors comprising: (a) generating DNA libraries which contain clones carrying inserts from a sample which contains at least one antennal or maxillary palp neuron; (b) contacting clones from the cDNA libraries generated in step (a) with nucleic acid molecule capable of specifically hybridizing with the sequence which encodes an insect odorant receptor in appropriate conditions permitting the hybridization of the nucleic acid molecules of the clones and the nucleic acid molecule; (c) selecting clones which hybridized with the nucleic acid molecule; and (d) isolating the clones which carry the hybridized inserts, thereby identifying the inserts encoding the odorant receptors.

[0020] This invention also provides a method to identify DNA inserts encoding an insect odorant receptors comprising:

[0021] (a) generating DNA libraries which contain clones with inserts from a sample which contains at least one antenna or maxillary palp sensory neuron; (b) contacting the clones from the DNA libraries generated in step (a) with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding odorant receptors in appropriate conditions permitting the amplification of the hybridized inserts by polymerase chain reaction; (c) selecting the amplified inserts; and (d) isolating the amplified inserts, thereby identifying the inserts encoding the odorant receptors.

[0022] This invention also provides a method to isolate DNA molecules encoding insect odorant receptors comprising:(a) contacting a biological sample known to contain nucleic acids with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding insect odorant receptors in appropriate conditions permitting the amplification of the hybridized molecules by polymerase chain reaction; (b) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors.

[0023] This invention also provides a method of transforming cells which comprises transfecting a host cell with a suitable vector described above. This invention also provides transformed cells produced by the above method.

[0024] This invention provides a method of identifying a compound capable of specifically bind to an insect odorant receptor which comprises contacting a transfected cells or membrane fractions of the above described transfected cells with an appropriate amount of the compound under conditions permitting binding of the compound to such receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby determining whether the compound specifically binds to the receptor.

[0025] This invention provides a method of identifying a compound capable of specifically binding to an insect odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an appropriate amount of the compound under conditions permitting binding of the compound to such purified receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby determining whether the compound specifically binds to the receptor.

[0026] This invention also provides a method of identifying a compound capable of activating the activity of an insect odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is capable of activating the activity of a odorant receptor.

[0027] This invention also provides a method of identifying a compound capable of activating the activity of an odorant receptor which comprises contacting a purified insect odorant receptor with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is capable of activating the activity of a odorant receptor. In an embodiment, the purified receptor is embedded in a lipid bilayer.

[0028] This invention also provides a method of identifying a compound capable of inhibiting the activity of a odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is capable of inhibiting the activity of a odorant receptor.

[0029] This invention provides a method of identifying a compound capable of inhibiting the activity of a odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is capable of activating the activity of a odorant receptor. In an embodiment, the purified receptor is embedded in a lipid bilayer.

[0030] This invention also provides the compound identified by the above-described methods.

[0031] This invention provides a method of controlling pest populations which comprises identifying odorant ligands by the above-described method which are alarm odorant ligands and spraying the desired area with the identified odorant ligands.

[0032] Finally, this invention provides a method of controlling a pest population which comprises identifying odorant ligands by the above-described method which interfere with the interaction between the odorant ligands and the odorant receptors which are associated with fertility.

BRIEF DESCRIPTION OF FIGURES

[0033] FIG. 1 Identification of Rare Antennal- and Maxillary Palp-Specific Genes

[0034] Candidate antennal/maxillary palp-specific phage were subjected to in vivo excision, digestion of resulting pBLUESCRIPT plasmid DNAs with BamHI/Asp718, and electrophoresis on 1.5% agarose gels. Southern blots were hybridized with ³²Plabeled cDNA probes generated from antennal/maxillary palp mRNA (Panel A), head minus antennal/ maxillary palp mRNA (Panel B), or virgin female body mRNA (Panel C). The ethidium bromide stained gel is shown in Panel D. Of the thirteen clones displayed in this figure, four appear to be antennal/maxillary palp specific (lanes 5, 7, 9, and 11). However, only two are selectively expressed in subsets of cells in chemosensory organs of the adult fly. DOR104, a putative maxillary palp odorant receptor, is in Lane 9. The clone in Lane 11 (RN106) is homologous to lipoprotein and triglyceride lipases and is expressed in a restricted domain in the antenna (data not shown).

[0035] FIG. 2 Expression of DOR104 in a Subset of Maxillary Palp Neurons

[0036] (A) A frontal section of an adult maxillary palp was hybridized with a digoxigenin-labeled antisense RNA probe and visualized with anti-digoxigenin conjugated to alkaline phosphatase. Seven cells expressing DOR104 are visible in this 15 µm section, which represents about one third of the diameter of the maxillary palp. Serial sections of multiple maxillary palps were scored for DOR104 expression and on average 20 cells per maxillary palp are positive for this receptor.

[0037] (B) Transgenic flies carrying a DOR104-lacZ reporter transgene were stained with X-GAL in a whole mount preparation. Maxillary palps were dissected from the head and viewed in a flattened cover slipped preparation under Nomarski optics, which allows the visualization of all 20 cells expressing DOR104-lacZ.

[0038] (C) Dendrites and axons of neurons expressing DOR104-lacZ are visible in this horizontal section of a maxillary palp. LacZ expression was visualized with a polyclonal anti-β-galactosidase primary antibody and a CY3-conjugated secondary antibody. Sections were viewed under epifluorescence and photographed on black and white film.

[0039] FIG. 3 Predicted Amino Acid Sequences of Drosophila odorant Receptor Genes

[0040] Deduced amino acid sequences of 12 DOR genes are aligned using ClustalW (MacVector, Oxford Molecular). Predicted positions of transmembrane regions (I-VII) are indicated by bars

above the alignment. Amino acids identities are marked with dark shading and similarities are indicated with light shading. Protein sequences of DOR87, 53, 67, 104, and 64 were derived from cDNA clones. All others were derived from GEN-SCAN predictions of intron-exon arrangements in genomic DNA, as indicated by the letter "g" after the gene name. We obtained a partial cDNA clone for DOR62 and found it to be 100% identical to the GENSCAN protein in the region of amino acids 245-381. A $4\overline{0}$ amino acid extension for DOR 19 was predicted by GENSCAN analysis. This has been replaced with an asterisk in the alignment, and isolation of cDNA clones for this receptor will resolve whether this extension is physically present in the protein.

[0041] FIG. 4 Receptor Gene Expression in Spatially Restricted Regions of the Antenna Digoxigenin-labeled antisense RNA probes against 8 DOR genes each hybridize to a small number of cells distributed in distinct regions in the antenna. The total number of cells per antenna expressing a given receptor was obtained by counting positive cells in serial sections of multiple antennae. There are approximately 20 positive cells per antenna for DOR67 (A), 53 (B), and 24 (data not shown); 15 positive cells for DOR62 (C) and 87 (D); and 10 positive cells for DOR64 (E). The actual number of cells staining in these sections is a subset of this total number. With the exception of DOR53 and DOR67, which strongly cross-hybridize, the receptor genes likely identify different olfactory neurons, such that the number of cells staining with a mixed probe (F) is equal to the sum of those staining with the individual probes (A-E). The mixture of DOR53, 67, 62, 87 and 64 labels a total of about 60 cells per antenna. A total of 34 cells stain with the mixed probe in this 15 μ m section. Expression of the linked genes DOR71, DOR72, and DOR73 is shown in panels (G), (H), and (I), respectively. DOR71 is expressed in approximately 10 cells in the maxillary palp. Five positive cells are seen in the horizontal section in panel (G). We also examined the expression of the other members of this linkage group and found DOR72 in approximately 15 cells (of which 3 label in this section) (H) and DOR73 in 1 to 2 cells per antenna (I).

[0042] FIG. 5 Odorant Receptors are Restricted to Distinct Populations of Olfactory Neurons

[0043] (A-C) Flies of the C155 eIav-GAL4; UAS-lacZ genotype express cytoplasmic lacZ in all neuronal cells. Panels (A-C) show confocal images of a horizontal maxillary palp section from such a fly incubated with an antisense RNA probe against DOR104 (red) and anti-β-galactosidase antibody (green). DOR104 recognizes five cells in this maxillary palp section (A), all of which also express elav-lacZ (B), as demonstrated by the yellow cells in the merged image in panel©).

[0044] (D, E) DOR64 and DOR87 are expressed in non-overlapping neurons at the tip of the antenna. Antisense RNA probes for DOR64 (digoxigenin-RNA; red) and DOR87 (FITC-RNA; green) were annealed to the same antennal sections and viewed by confocal microscopy. Panel (D) is a digital superimposition of confocal images taken at 0.5 µm intervals through a 10 µm section of the antenna. Cells at

different focal planes express both receptors, but no double labeled cells are found.

[0045] (F, G) Two color RNA in situ hybridization with odorant receptors and odorant binding proteins demonstrates that these proteins are expressed in different populations of cells. DORS3 (FITC-RNA; green) labels a few cells internal to the cuticle at the proximal-medial edge, while PBPRP2 (digoxigenin-RNA; red) labels a large number of cells apposed to the cuticle throughout the antenna (F). The more restricted odorant binding protein OS-F (digoxigenin-RNA; red) also stains cells distinct from those expressing DOR67 (FITC-RNA; green) (G).

[0046] FIG. 6 Receptor Expression is Conserved Between Individuals

[0047] Frontal sections of antennae from six different individuals were hybridized with digoxigenin-labeled antisense RNA probes against DOR53 (A-C) or DOR87 (D-F). DOR53 labels approximately 20 cells on the proximal-medial edge of the antenna, of which approximately 5 are shown labeling in these sections. DOR87 is expressed in about the same number of cells at the distal tip. Both the position and number of staining cells is conserved between different individuals and is not sexually dimorphic.

[0048] FIG. 7 Drosophila Odorant Receptors are Highly Divergent

[0049] Oregon R genomic DNA isolated from whole flies was digested with BamHI (B), EcoRI (E), or HindIII (H), electrophoresed on 0.8% agarose gels, and blotted to nitrocellulose membranes. Blots were annealed with ³²P-labeled probes derived from DOR53 cDNA (A), DOR67 cDNA (B), or DNA fragments generated by RT-PCR from antennal mRNA for DOR 24 (C), DOR62 (D), and DOR72 (E). Strong crosshybridization of DOR53 and DOR67 is seen at both high and low stringency (A, B), while DOR24, 62, and 72 reveal only a single hybridizing band in each lane at both low stringency (C-E) and high stringency (data not shown).

[**0050**] FIG. **8** DOR 62, 104, 87, 53, 67, 64, 71g, 72g, 73g, 46, 19g, and 24g

[0051] Both nucleic acid sequence of each DOR and its encoded amino acid sequence are described.

[0052] FIG. 9 Analysis of axonal projections of olfactory receptor neurons expressing a given Drosophila odorant receptor. Result: all neurons expressing a given receptor send their axons to a single glomerulus, or discrete synaptic structure, in the olfactory processing center of the fly brain. This result is identical to that obtained with mouse odorant receptors: each glomerulus is dedicated to receiving axonal input from neurons expressing a given odorant receptor. Therefore, this result strengthens the argument that these genes indeed function as odorant receptors in Drosophila.

[0053] FIG. 10 ClustalW alignments of two subfamilies of the Drosophila odorant receptors, the DOR53 (A-1 and A-2) and DOR64 (B) families. This figure highlights sequence similarities between DOR genes, that are diagnostic hallmarks of the proteins. Residues that are identical in

different DOR genes are highlighted in black, while residues that are similar are highlighted in gray.

DETAILED DESCRIPTION OF THE INVENTION

[0054] In order to facilitate an understanding of the Experimental Procedures section which follow, certain frequently occurring methods and/or terms are described in Sambrook, et al. (1989).

[0055] Throughout this application, the following standard abbreviations are used throughout the specification to indicate specific nucleotides:

[0056] C=cytosine A=adenosine

[0057] T=thymidine G=guanosine

[0058] This invention provides an isolated nucleic acid molecule encoding an insect odorant receptor. The nucleic acid includes but is not limited to DNA, cDNA, genomic DNA, synthetic DNA or RNA. In an embodiment, the nucleic acid molecule encodes a Drosophila odorant receptor

[0059] In a further embodiment, the isolated nucleic acid molecule comprise: (a) one of the nucleic acid sequences as set forth in FIG. 8, (b) a sequence being degenerated to a sequence of (a) as a result of the genetic code; or (c) a sequence encoding one of the amino acid sequences as set forth in FIG. 8.

[0060] The nucleic acid molecules encoding a insect receptor includes molecules coding for polypeptide analogs, fragments or derivatives of antigenic polypeptides which differ from naturally-occurring forms in terms of the identity or location of one or more amino acid residues (deletion analogs containing less than all of the residues specified for the protein, substitution analogs wherein one or more residues specified are replaced by other residues and addition analogs where in one or more amino acid residues is added to a terminal or medial portion of the polypeptides) and which share some or all properties of naturally-occurring forms. These molecules include but not limited to: the incorporation of codons "preferred" for expression by selected non-mammalian hosts; the provision of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate sequences that facilitate construction of readily expressed vectors. Accordingly, these changes may result in a modified insect odorant receptor. It is the intent of this invention to include nucleic acid molecules which encodes modified insect odorant receptor. Also, to facilitate the expression of receptor in different host cells, it may be necessary to modify the molecule such that the expressed receptors may reach the surface of the host cells. The modified insect odorant receptor should have biological activities similar to the unmodified insect odorant receptor. The molecules may also be modified to increase the biological activity of the expressed receptor.

[0061] This invention provides a nucleic acid molecule of at least 12 nucleotides capable of specifically hybridizing with the sequence of the above-described nucleic acid molecule. In an embodiment, the nucleic acid molecule hybridizes with a unique sequence within the sequence of

the above-described nucleic acid molecule. This nucleic acid molecule may be DNA, cDNA, genomic DNA, synthetic DNA or RNA.

[0062] This invention provides a vector which comprises the above-described isolated nucleic acid molecule. In another embodiment, the vector is a plasmid.

[0063] In an embodiment, the above described isolated nucleic acid molecule is operatively linked to a regulatory element.

[0064] Regulatory elements required for expression include promoter sequences to bind RNA polymerase and transcription initiation sequences for ribosome binding. For example, a bacterial expression vector includes a promoter such as the lac promoter and for transcription initiation the Shine-Dalgarno sequence and the start codon AUG. Similarly, a eukaryotic expression vector includes a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon AUG, and a termination codon for detachment of the ribosome. Such vectors may be obtained commercially or assembled from the sequences described by methods well-known in the art, for example the methods described above for constructing vectors in general.

[0065] This invention also provides a host vector system for the production of a polypeptide having the biological activity of an insect odorant receptor which comprises the above described vector and a suitable host.

[0066] This invention also provides a host vector system, wherein the suitable host is a bacterial cell, yeast cell, insect cell, or animal cell. The host cell of the above expression system may be selected from the group consisting of the cells where the protein of interest is normally expressed, or foreign cells such as bacterial cells (such as *E. coli*), yeast cells, fungal cells, insect cells, nematode cells, plant or animal cells, where the protein of interest is not normally expressed. Suitable animal cells include, but are not limited to Vero cells, HeLa cells, Cos cells, CV1 cells and various primary mammalian cells.

[0067] This invention provides a method of producing a polypeptide having the biological activity of an insect odorant receptor which comprising growing the above described host vector system under conditions permitting production of the polypeptide and recovering the polypeptide so produced.

[0068] This invention also provides a purified, insect odorant receptor. This invention further provides a polypeptide encoded by the above-described isolated nucleic acid molecule.

[0069] This invention provides an antibody capable of specifically binding to an insect odorant receptor. This invention also provides an antibody capable of competitively inhibiting the binding of the antibody capable of specifically binding to an insect odorant receptor. In an embodiment, the antibody is monoclonal. In another embodiment, the antibody is polyclonal.

[0070] Monoclonal antibody directed to an insect odorant receptor may comprise, for example, a monoclonal antibody directed to an epitope of an insect odorant receptor present on the surface of a cell. Amino acid sequences may be analyzed by methods well known to those skilled in the art

to determine whether they produce hydrophobic or hydrophilic regions in the proteins which they build. In the case of cell membrane proteins, hydrophobic regions are well known to form the part of the protein that is inserted into the lipid bilayer which forms the cell membrane, while hydrophilic regions are located on the cell surface, in an aqueous environment.

[0071] Antibodies directed to an insect odorant receptor may be serum-derived or monoclonal and are prepared using methods well known in the art. For example, monoclonal antibodies are prepared using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the desired antibody. Cells such as NIH3T3 cells or 293 cells which express the receptor may be used as immunogens to raise such an antibody. Alternatively, synthetic peptides may be prepared using commercially available machines.

[0072] As a still further alternative, DNA, such as a cDNA or a fragment thereof, encoding the receptor or a portion of the receptor may be cloned and expressed. The expressed polypeptide recovered and used as an immunogen.

[0073] The resulting antibodies are useful to detect the presence of insect odorant receptors or to inhibit the function of the receptor in living animals, in humans, or in biological tissues or fluids isolated from animals or humans.

[0074] This antibodies may also be useful for identifying or isolating other insect odorant receptors. For example, antibodies against the Drosophila odorant receptor may be used to screen an cockroach expression library for a cockroach odorant receptor. Such antibodies may be monoclonal or monospecific polyclonal antibody against a selected insect odorant receptor. Different insect expression libraries are readily available and may be made using technologies well-known in the art.

[0075] One means of isolating a nucleic acid molecule which encodes an insect odorant receptor is to probe a libraries with a natural or artificially designed probes, using methods well known in the art. The probes may be DNA or RNA. The library may be cDNA or genomic DNA.

[0076] This invention provides a method for identifying cDNA inserts encoding an insect odorant receptors comprising: (a) generating a cDNA library which contains clones carrying cDNA inserts from antennal or maxillary palp sensory neurons; (b) hybridizing nucleic acid molecules of the clones from the cDNA libraries generated in step (a) with probes prepared from the antenna or maxillary palp neurons and probes from heads lacking antenna or maxillary palp neurons or from virgin female body tissue; (c) selecting clones which hybridized with probes from the antenna or maxillary palp neurons but not from head lacking antenna or maxillary palp neurons or virgin female body tissue; and (d) isolating clones which carry the hybridized inserts, thereby identifying the inserts encoding odorant receptors.

[0077] In an embodiment of the above method, after step (c), it further comprises: (a) amplifying the inserts from the selected clones by polymerase chain reaction; (b) hybridizing the amplified inserts with probes from the antennal or maxillary palp neurons; and (c) isolating the clones which carry the hybridized inserts, thereby identifying the inserts encoding the odorant receptors.

[0078] In an embodiment, the probes are cDNA probes.

[0079] The appropriate polymerase chain reaction primers may be chosen from the conserved regions of the known insect odorant receptor sequences. Alternatively, the primers may be chosen from the regions which are the active sites for the binding of ligands.

[0080] This invention also provides cDNA inserts identified by the above method.

[0081] This invention further provides a method for identifying DNA inserts encoding an insect odorant receptors comprising: (a) generating DNA libraries which contain clones carrying inserts from a sample which contains at least one antennal or maxillary palp neuron; (b) contacting clones from the cDNA libraries generated in step (a) with nucleic acid molecule capable of specifically hybridizing with the sequence which encodes an insect odorant receptor in appropriate conditions permitting the hybridization of the nucleic acid molecules of the clones and the nucleic acid molecule; (c) selecting clones which hybridized with the nucleic acid molecule; and (d) isolating the clones which carry the hybridized inserts, thereby identifying the inserts encoding the odorant receptors.

[0082] This invention also provides a method to identify DNA inserts encoding an insect odorant receptors comprising: (a) generating DNA libraries which contain clones with inserts from a sample which contains at least one antenna or maxillary palp sensory neuron; (b) contacting the clones from the DNA libraries generated in step (a) with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding odorant receptors in appropriate conditions permitting the amplification of the hybridized inserts by polymerase chain reaction; (c) selecting the amplified inserts; and (d) isolating the amplified inserts, thereby identifying the inserts encoding the odorant receptors.

[0083] This invention also provides a method to isolate DNA molecules encoding insect odorant receptors comprising:(a) contacting a biological sample known to contain nucleic acids with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding insect odorant receptors in appropriate conditions permitting the amplification of the hybridized molecules by polymerase chain reaction; (b) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors.

[0084] This invention also provides a method of transforming cells which comprises transfecting a host cell with a suitable vector described above.

[0085] This invention also provides transformed cells produced by the above method. In an embodiment, the host cells are not usually expressing odorant receptors. In another embodiment, the host cells are expressing odorant receptors.

[0086] This invention provides a method of identifying a compound capable of specifically binding to an insect odorant receptor which comprises contacting a transfected cells or membrane fractions of the above described transfected cells with an appropriate amount of the compound under conditions permitting binding of the compound to such receptor, detecting the presence of any such compound

specifically bound to the receptor, and thereby determining whether the compound specifically binds to the receptor.

[0087] This invention provides a method of identifying a compound capable of specifically bind to an insect odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an-appropriate amount of the compound under conditions permitting binding of the compound to such purified receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby determining whether the compound specifically binds to the receptor. In an embodiment, the purified receptor is embedded in a lipid bilayer. The purified receptor may be embedded in the liposomes with proper orientation to carry out normal functions. Liposome technology is well-known in the art.

[0088] This invention also provides a method of identifying a compound capable of activating the activity of an insect odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is capable of activating the activity of a odorant receptor.

[0089] This invention also provides a method of identifying a compound capable of activating the activity of an odorant receptor which comprises contacting a purified insect odorant receptor with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is capable of activating the activity of a odorant receptor. In an embodiment, the purified receptor is embedded in a lipid bilayer.

[0090] This invention also provides a method of identifying a compound capable of inhibiting the activity of a odorant receptor which comprises contacting the transfected cells or membrane fractions of the above-described transfected cells with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is capable of inhibiting the activity of a odorant receptor.

[0091] This invention provides a method of identifying a compound capable of inhibiting the activity of a odorant receptor which comprises contacting an appropriate amount of the purified insect odorant receptor with an appropriated amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is capable of activating the activity of a odorant receptor. In an embodiment, the purified receptor is embedded in a lipid bilayer.

[0092] In a separate embodiment of the above method, the compound is not previously known. This invention also provides the compound identified by the above-described methods.

[0093] This invention provides a method of controlling pest populations which comprises identifying odorant ligands by the above-described method which are alarm odorant ligands and spraying the desired area with the identified odorant ligands.

[0094] Finally, this invention provides a method of controlling a pest population which comprises identifying odorant ligands by the above-described method which interfere with the interaction between the odorant ligands and the odorant receptors which are associated with fertility.

[0095] This invention will be better understood from the Experimental Procedures which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

[0096] Experimental Procedures

[0097] Experimental Animals

[0098] Oregon R flies (*Drosophila melanogaster*) were raised on standard cornmeal-agar-molasses medium at 25° C. Transgenic constructs were injected into yw embryos. CISS elav-GAL4 flies were obtained from Corey Goodman (Lin and Goodman, 1994) and Gary Struhl provided the UAS- (cytoplasmic) lacZ stock.

[0099] Preparation and Differential Screening of a Drosophila Antennal/Maxillary Palp cDNA Library

[0100] Drosophila antennae and maxillary palps were obtained by manually decapitating and freezing 5000 adult flies and shaking antennae and maxillary palps through a fine metal sieve. mRNA was prepared using a polyA+ RNA Purification Kit (Stratagene). An antennal/maxillary palp cDNA library was made from 0.5 μ g mRNA using the LambdaZAPIIXR kit from Stratagene.

[0101] Briefly, phage were plated at low density (500-1000 pfu/150 mm plate) and UV-crosslinked after lifting in triplicate to Hybond-N+ (Amersham). Complex probes were generated by random primed labeling (PrimeItII, Stratagene) of reverse transcribed mRNA (RT-PCR kit, Stratagene) from virgin adult female body mRNA and duplicate lifts hybridized at high stringency for 36 hours (65° C. in 0.5M Sodium Phosphate buffer [pH7.3] containing 1% bovine serum albumin, 4% SDS, and 0.5 mg/ml herring sperm DNA). We prescreened the third lift with a mix of all previously cloned OBPs/PBPs (McKenna et al., 1994; Pikielny et al., 1994; Kim et al., 1998) remove a source of abundant but undesired olfactory-specific clones. Approximately 5000 individual OBP/PBP and virgin female body negative phage clones were isolated, their inserts amplified by PCR with T3 and T7 primers, and approximately 3 µg of DNA were electrophoresed on 1.5% agarose gels. Gels were blotted in duplicate to Hybond-N+ (Amersham), filters were UV-crosslinked, and the resulting Southern blots were subjected to reverse Northern analysis using complex probes generated from virgin female body mRNA. Approximately 500 clones not hybridizing with virgin female body probes were identified and consolidated onto secondary Southern blots in triplicate. These blots were probed with complex probes derived from antennal/maxillary palp, head-minus-antenna/maxillary palp, and virgin female body mRNA. A total of 210 clones negative with head-minus-antenna/maxillary palp and virgin female body probes and strongly positive, weakly positive, or negative with antennal/maxillary palp probes were further analyzed by sequencing and in situ hybridization.

8

[0102] Analysis of Drosophila Genome Project Sequences for Transmembrane Proteins

[0103] All Drosophila genomic sequences were batch downloaded in April 1998 from the Berkeley Drosophila Genome Project (Berkeley Drosophila Genome Project, unpublished). Genomic P1 sequences were first analyzed with the GENSCAN program (Burge and Karlin, 1997; http://CcR-081.mit.edu/GENSCAN.html), which predicts intron-exon structures and generates hypothetical coding sequences (CDS) and open reading frames. GENSCAN predicted proteins shorter than 50 amino acids were discarded. The remaining open reading frames were used to search for putative transmembrane regions greater than 15 amino acids with two programs that were obtained from the authors and used in stand-alone mode locally (see Persson and Argos, 1994; Cserzo et al., 1997). The Dense Surface Alignment (DAS) program is available at http://www.biokemi.su.se/~ server/DAS/ M. or from (miklos@pugh.bip.bham.ac.uk). TMAP is available at ftp:// ftp.ebi.ac.uk/pub/software/unix/, or by contacting the author, Bengt Persson (bpn@mbb.ki.se). Scripts were written to apply the DAS and TMAP programs repeatedly to genome scale sequence sets. Genes showing significant sequence similarity to the NCBI non-redundant protein database using BLAST analysis (Altschul et al., 1990; Altschul et al., 1997) were eliminated. All scripts required for these computations were written in standard ANSI C and run on a SUN Enterprise 3000.

[0104] Of 229 novel Drosophila proteins with three or more predicted transmembrane spanning regions, 35 showed no clear sequence similarity to any known protein and were selected for further analysis by in situ hybridization. Probes for in situ hybridization were generated by RT-PCR using antennal/maxillary palp mRNA as a template.

[0105] Map positions of DOR Genes

[0106] The chromosome position of DOR104 was determined by in situ hybridization of a biotin-labeled probe to salivary gland polytene chromosome squashes as described (Amrein et al., 1988).

[0107] Chromosomal positions of all other DOR genes were eased on chromosome assignments of the P1 clones to which they map, as determined by the Berkeley Drosophila Genome Project (personal communication; http://www.fruitfly.org; see also Hartl et al., 1994; Kimmerly et al., 1996). DOR62 maps to a cosmid sequenced by the European Drosophila Genome Project (unpublished; http://edgp.ebi-ac.uk/; Siden-Kiamos et al., 1990).

RECEPTOR	MAP POSITION	P1 CLONE ACCESSION NUMBER
DOR62	(X) 2F	62D9 (EDGP cosmid)
DOR67	(2L) 22A3	DS00676
DOR53	(2L) 22A2-3	DS05342
DOR64	(2L) 23A1-2	DS06400
DOR72	(2L) 33B1-2	DS07071
DOR72	(2L) 33B1-2	DS07071
DOR73	(2L) 33B1-2	DS07071
DOR87	(2R) 43B1-2	DS08779
DOR19	(2R) 46F5-6	DS01913
DOR24	(2R) 47D6-E2	DS00724

-continued

RECEPTOR	MAP POSITION	P1 CLONE ACCESSION NUMBER
DOR46	(2R) 59D5-7	DS07462
DOR104	(3L) 85B	not applicable

[0108] The Isolation of DOR cDNA Clones and Southern Blotting

[0109] We screened 3×10⁶ clones of the antennal/maxillary palp library described above with PCR probes for the genes DOR87, DOR53, DOR67, DOR64, and DOR62. cDNAs were present at a frequency ranging from 1:200,000 (DOR67) to 1:1,000,000 (DOR62) in the library and their sequences were remarkably similar to the hypothetical CDS predicted by the GENSCAN program. The frequency of these genes is similar to that of DOR104, which is present at 1:125,000 in the antennal/maxillary palp library. All sequencing was with ABI cycle sequencing kits and reactions were run on an ABI 310 or 377 sequencing system.

[0110] Five μ g of Oregon R genomic DNA isolated from whole flies were digested with BamHI, EcoRI, or HindIII, electrophoresed on 0.8% agarose gels, and blotted to Nitropure nitrocellulose membranes (Micron Separations Inc.). Blots were baked and annealed with ³²P-labeled probes derived from cDNA probes of DORS3 and DOR67, or PCR fragments from DOR24, DOR62, and DOR72. Hybridization was at 42° C. for 36 hours in 5× SSCP, 10× Denhardts, 500 μ g/ml herring sperm DNA, and either 50% (high stringency) or 25% (low stringency) formamide (Sambrook et al., 1989). Blots were washed for 1 hour in 0.2× SSC, 0.5% SDS at 65° C. (high stringency) or 1× SSC, 0.5% SDS at 42° C. (low stringency).

[0111] In situ Hybridization

[0112] RNA in situ hybridization was carried out essentially as described (Schaeren-Wiemers and Gerfin-Moser, 1993). This protocol was modified to include detergents in most steps to increase sensitivity and reduce background. The hybridization buffer contained 50% formamide, 5× SSC, 5× Denhardts, 250 μ g/ml yeast tRNA, 500 μ g/ml herring sperm DNA, 50 μ g/ml Heparin, 2.5 mM EDTA, 0.1% Tween-20, 0.25% CHAPS. All antibody steps were in the presence of 0.1% Triton X-100, and the reaction was developed in buffer containing 0.1% Tween-20. Slides were mounted in Glycergel (DAKO) and viewed with Nomarski optics.

[0113] Fluorescent in situ hybridization was carried out as above with either digoxigenin or FITC labeled RNA probes. The digoxigenin probe was visualized with sheep antidigoxigenin (Boehringer) followed by donkey anti-sheep CY3 (Jackson). FITC probes were visualized with mouse anti-FITC (Boehringer) and goat anti-mouse Alexa 488 (Molecular Probes) following preincubation with normal goat serum. Sections were mounted in vectashield reagent (Vector Labs) and viewed on a Biorad 1024 Confocal Microscope.

[0114] For double labeling with a neural marker, animals of the genotype C155 elav-Gal4; UAS-lacZ were sectioned and first hybridized with a digoxigenin labeled antisense DOR104 RNA probe and developed as described above. Neuron-specific expression of lacZ driven by the elav-Gal4

enhancer trap was visualized with a polyclonal rabbit anti- β -galactosidase antibody (Organon-Technika/Cappel), visualized by a goat anti-rabbit Alexa488 conjugated secondary antibody (Molecular Probes) following preincubation with normal goat serum.

[0115] The proportion of neurons in the third antennal segment was calculated by comparing the number of nuclei staining with the 44C11 ELAV monoclonal (kindly provided by Lily Jan) and those staining with TOTO-3 (Molecular Probes), a nucleic acid counterstain, in several confocal sections of multiple antennae. On average, 36% of the nuclei in the antenna were ELAV positive.

[0116] DOR104-lacZ Transaene Construction and Histochemical Staining

[0117] A genomic clone containing the DOR104 coding region and several kb of upstream sequence was isolated from a genomic library prepared from flies isogenic for the third chromosome (a gift of Kevin Moses and Gerry Rubin). Approximately 3 kb of DNA immediately upstream of the putative translation start site of DOR104 were isolated by PCR and subcloned into the pCasperAUGβGal vector (Thummel et al., 1988). β-galactosidase activity staining was carried out with whole mount head preparations essentially as described in Wang et al. (1998). Frozen sections of DOR104-lacZ maxillary palps were incubated with a polyclonal rabbit anti-β-galactosidase antibody and as described above.

[0118] Experimental Results

[0119] Cloning Candidate Odorant Receptors

[0120] In initial experiments, we isolated a cDNA encoding a putative odorant receptor by a difference cloning strategy designed to detect cDNA copies of mRNA present at extremely low frequencies in an mRNA population. In the antenna and maxillary palp, about 30% of the cells are olfactory neurons. If each neuron expressed only one of a possible 100 different odorant receptor genes at a level of 0.1% of the mRNA in a sensory neuron, then a given receptor mRNA would be encountered at a frequency of one in 300,000 in antennal mRNA. If 100 different receptor genes were expressed, then the entire family of receptor genes would be represented at a frequency of one in 3,000 mRNAs. We therefore introduced experimental modifications into standard difference cloning to allow for the identification of extremely rare mRNAs whose expression is restricted to either the antenna or the maxillary palp.

[0121] Briefly, 5000 insets from an antennal/maxillary palp cDNA library were prescreened (see Experimental Procedures) and then subjected to Southern blot hybridization with cDNA probes from antennal/maxillary palp, head minus antenna/maxillary palp, or virgin female body mRNA (see FIG. 1). This Southern blot hybridization (or reverse Northern) to candidate cDNAs allows for the detection of sequences present at a frequency of 1 in 100,000 in the probe, a sensitivity about one hundred-fold greater than that of plaque screening (see Experimental Procedures). This procedure led to the identification of multiple antennal/ maxillary palp-specific cDNAs that were analyzed by DNA sequencing and in situ hybridization. One cDNA, DOR104 (for Drosophila Odorant Receptor) (FIG. 1, Lane 9), encodes a putative seven-transmembrane domain protein with no obvious sequence similarity to known serpentine

receptors (FIG. 3). In situ hybridization revealed that this cDNA anneals to about 15% of the 120 sensory neurons within the maxillary palp but does not anneal with neurons in either the brain or antenna. Seven cells expressing DOR104 are shown in the frontal maxillary palp section in FIG. 2A.

[0122] These observations suggested that DOR104 might be one member of a larger family of odorant receptor genes within the Drosophila genome. However, we were unable to identify additional genes homologous to DOR104 by low stringency hybridization to genomic DNA and cDNA libraries or upon analysis of linked genes in a genomic walk. We therefore analyzed the Drosophila genome database for families of multiple transmembrane domain proteins that share sequence similarity with DOR104. Sequences representing about 10% of the Drosophila genome were downloaded (Berkeley Drosophila Genome Project) and subjected to GENSCAN analysis (Burge and Karlin, 1997) to predict the intron-exon structure of all sequences within the database. Open reading frames greater than 50 amino acids were searched for proteins with three or more predicted transmembrane-spanning regions using the dense alignment surface (DAS) and TMAP algorithms (Persson and Argos, 1994; Cserzo et al., 1997; also see Experimental Procedures). Of 229 candidate genes identified in this manner, 11 encoded proteins that define a novel divergent family of presumed seven transmembrane domain proteins with sequence similarity to the DOR104 sequence. This family of candidate odorant receptors does not share any conserved sequence motifs with previously identified families of seven transmembrane domain receptors. cDNA clones containing the coding regions for 5 of the 11 genes identified by GENSCAN analysis have been isolated from an antennal/ maxillary palp cDNA library and their sequences are provided in FIG. 3. The remaining 6 protein sequences derive from GENSCAN predictions for intron-exon arrangement. Their organization conforms well to the actual structure determined from the cDNA sequences of other members of the gene family (FIG. 3).

[0123] The receptors consist of a short extracellular N-terminal domain (usually less than 50 amino acids) and seven presumed membrane-spanning domains. Analysis of presumed transmembrane domains (Kyte and Doolittle, 1982; Persson and Argos, 1994; Cserzo et al., 1997) reveals multiple hydrophobic segments, but it is not possible from this analysis to unequivocally determine either the number or placement of the membrane spanning domains. At present, our assignment of transmembrane domains is therefore tentative.

[0124] The individual family members are divergent and most exhibit from 17-26% amino acid identity. Two linked clusters of receptor genes constitute small subfamilies of genes with significantly greater sequence conservation. Two linked genes, DOR53 and DOR67, exhibit 76% amino acid identity, whereas the three linked genes, DOR71, 72 and 73, reveal 30-55% identity (FIG. 3; see below). Despite the divergence, each of the genes shares short, common motifs in fixed positions within the putative seven transmembrane domain structure that define these sequences as highly divergent members of a novel family of putative receptor molecules.

[0125] Expression of the DOR Gene Family in Olfactory Neurons

[0126] If this gene family encodes putative odorant receptors in the fly, we might expect that other members of the family in addition to DOR104 would also be expressed in olfactory sensory neurons. We therefore performed in situ hybridization to examine the pattern of receptor expression of each of the 11 additional members of the gene family in adult and developing organisms. In Drosophila, olfactory sensory neurons are restricted to the maxillary palp and third antennal segment. The third antennal segment is covered with approximately 500 fine sensory bristles or sensilla (Stocker, 1994), each containing from one to four neurons (Venkatesh and Singh, 1984). The maxillary palp is covered with approximately 60 sensilla, each of which is innervated by two or three neurons (Singh and Nayak, 1985). Thus, the third antennal segment and maxillary palp contain about 1500 and 120 sensory neurons, respectively.

[0127] RNA in situ hybridization experiments were performed with digoxigenin-labeled RNA antisense probes to each of the 11 new members of the gene family under conditions of high stringency. One linked pair of homologous genes, DOR53 and DOR67, crosshybridizes, whereas the remaining 10 genes exhibit no crosshybridization under these conditions (see below). Eight of the 11 genes hybridize to a small subpopulation (0.5-1.5%) of the 1500 olfactory sensory neurons in the third antennal segment (FIG. 4). One gene, DOR71, is expressed in about 10% of the sensory neurons in the maxillary palp but not in the antenna (FIG. 4G). We have not detected expression of DOR46 or DOR19 in the antenna or the maxillary palp. Expression of this gene family is only observed in cells within the antenna and maxillary palp. No hybridization was observed in neurons of the brain, nor was hybridization observed in any sections elsewhere in the adult fly or in any tissue at any stage during embryonic development. However, we do find hybridization to a small number of cells in the developing antennae in the late pupal stage (data not shown). We have not yet determined whether this family of receptors is expressed in the larval olfactory apparatus.

[0128] Only about one third of the cells in the third antennal segment and the maxillary palp are neurons (data not shown), which are interspersed with non-neuronal sensillar support cells and glia. We have performed two experiments to demonstrate that the family of seven transmembrane domain receptor genes is expressed in sensory neurons rather than support cells or glia within the antenna and maxillary palp. First, we developed two-color fluorescent antibody detection schemes to co-localize receptor expression in cells that express the neuron-specific RNA binding protein, ELAV (Robinow and White, 1988). An enhancer trap line carrying an insertion of GAL4 at the elav locus expresses high levels of lacZ in neurons when crossed to a transgenic UAS-lacZ responder line (Lin and Goodman, 1994). Fluorescent antibody detection of lacZ identifies the sensory neurons in a horizontal section of the maxillary palp (FIG. 5B). Hybridization with the receptor probe DOR104 reveals expression in 5 of the 12 lacZ positive cells in a horizontal section of the maxillary palp (FIG. 5A). All cells that express DOR104 are also positive for lacZ (FIG. 5C), indicating that this receptor is expressed only in neurons.

[0129] In a second experiment we have demonstrated that the receptor genes are not expressed in non-neuronal cells.

The support cells of the antenna express different members of a family of odorant binding proteins (McKenna et al., 1994; Pikielny et al., 1994; Kim et al., 1998). These genes encode abundant low molecular weight proteins thought to transport odorants through the sensillar lymph (reviewed in Pelosi, 1994). Two-color in situ experiments with a probe for the odorant binding protein, PBPRP2 (Pikielny et al., 1994), reveal hybridization to a large number of cells broadly distributed throughout the antenna (FIG. 5F). In the same section, however, the probe DOR53 anneals to a nonoverlapping subpopulation of neurons restricted to the medial-proximal domain of the antenna. In a similar experiment, in situ hybridization with the odorant binding protein, OS-F (McKenna et al., 1994), identifies a spatially restricted subpopulation of support cells in the antenna, whereas the DOR67 probe identifies a distinct subpopulation of neurons in a medial-proximal domain (FIG. 5G). Thus, the putative odorant receptor genes are expressed in a subpopulation of sensory neurons distinct from the support cells that express the odorant binding proteins. Taken together, these data demonstrate that 10 of the 12 family members we have identified are expressed in small subpopulations of olfactory sensory neurons in the antenna and maxillary palp.

[0130] Spatially Defined Patterns of Receptor Expression

[0131] The in situ hybridization experiments reveal that each receptor is expressed in a spatially restricted subpopulation of neurons in the antenna or maxillary palp (FIG. 4). The total number of cells expressing each receptor per antenna was obtained by counting the positive cells in serial sections of antennae from multiple flies. These numbers are presented in the legend of FIG. 4. DOR67 and 53, for example, anneal to about 20 neurons on the medial proximal edge of the antenna (FIGS. 4A and B), whereas DOR62 and 87 anneal to subpopulations of 20 cells at the distal edge of the antenna (FIGS. 4C-D). Approximately 10 cells in the distal domain express DOR64 (FIG. 4E). Each of the three linked genes DOR71, 72, and 73 is expressed in different neurons. DOR72 is expressed in approximately 15 antennal cells (FIG. 4H), while DOR73 is expressed in 1 to 2 cells at the distal edge of the antenna (FIG. 4I). In contrast, DOR71 is expressed in approximately 10 maxillary palp neurons but is not detected in the antenna (FIG. 4G). The three sensillar types are represented in a coarse topographic map across the third antennal segment. The proximal-medial region, for example, contains largely basiconic sensilla. Receptors expressed in this region (DOR53 and 67) are therefore likely to be restricted to the large basiconic sensilla. More distal regions contain a mixture of all three sensilla types and it is therefore not possible from these data to assign specific receptors to specific sensillar types.

[0132] The spatial pattern of neurons expressing a given receptor is conserved between individuals. In situ hybridization with two receptor probes to three individual flies reveals that both the frequency and spatial distributions of the hybridizing neurons is conserved in different individuals (FIG. 6). At present, we cannot determine the precision of this topographic map and can only argue that given receptors are expressed in localized domains.

[0133] In preliminary experiments, we have demonstrated that the spatial pattern of expression of one receptor, DOR104, can be recapitulated in transgenic flies with a promoter fragment flanking the DOR104 gene. The fusion of

the presumed DOR104 promoter (consisting of 3 kb of 5' DNA immediately adjacent to the coding region) to the lacZ reporter gene has allowed us to visualize a subpopulation of neurons expressing DOR104 within the maxillary palp. Whole mount preparations of the heads of transgenic flies reveal a small subpopulation of sensory neurons within the maxillary palp whose cell bodies exhibit blue color after staining with X-gal (FIG. 2B). The number of positive cells, approximately 20 per maxillary palp, corresponds well with that seen for DOR104 RNA expression. Immunofluorescent staining of sections with antibodies directed against β-galactosidase more clearly reveals the dendrites and axons of these bipolar neurons in the maxillary palp (FIG. 2C). Levels of lacZ expression in these transgenic lines are low and further amplification will be necessary to allow us to trace the axons to glomeruli in the antennal lobe. Nonetheless, the data suggest that the information governing the spatial pattern of DOR104 expression in a restricted subpopulation of maxillary palp neurons resides within 3 kb of DNA 5' to the DOR104 gene.

[0134] Individual Neurons Express Different Complements of Receptors

[0135] An understanding of the logic of olfactory discrimination in Drosophila will require a determination of the diversity and specificity of receptor expression in individual neurons. In the vertebrate olfactory epithelium, a given neuron is likely to express only one receptor from the family of 1,000 genes (Ngai et al., 1993; Ressler et al., 1993; Vassar et al., 1993; Chess et al., 1994; Dulac and Axel, unpublished). In the nematode C. elegans, however, individual chemosensory neurons are thought to express multiple receptor genes (Troemel et al., 1995). Our observations with the putative Drosophila odorant receptors indicate that a given receptor probe anneals with 0.5-1.5% of antennal neurons, suggesting that each cell expresses only a subset of receptor genes. If we demonstrate that each of the different receptor probes hybridizes with distinct, nonoverlapping subpopulations of neurons, this would provide evidence that neurons differ with respect to the receptors they express.

[0136] In situ hybridization was therefore performed with either a mix of five receptor probes (FIG. 4F) or individually with each of the five probes (FIGS. 4A-E). We observe that the number of olfactory neurons identified with the mixed probe (about 60 per antenna) approximates the sum of the positive neurons detected with the five individual probes. These results demonstrate that individual receptors are expressed in distinct nonoverlapping populations of olfactory neurons.

[0137] We have performed an additional experiment using two-color RNA in situ hybridization to ask whether two receptor genes, DOR64 and DOR87, expressed in interspersed cells in the distal antenna are expressed in different neurons. Antisense RNA probes for the two genes were labeled with either digoxigenin- or FITC-UTP and were used in pairwise combinations in in situ hybridization to sections through the Drosophila antenna. Although these two genes are expressed in overlapping lateral-distal domains, two-color in situ hybridization reveals that neurons expressing DOR64 do not express DOR87, rather each gene is expressed in distinct cell populations (FIGS. 5D and E). Taken together, these data suggest that olfactory sensory neurons within the antenna are functionally distinct and

express different complements of odorant receptors. At the extreme, the experiments are consistent with a model in which individual neurons express only a single receptor gene.

[0138] Our differential cloning procedure identified one additional gene, A45, which shares weak identity (24%) with the DOR gene family over a short region (93 amino acids). This gene, however, does not appear to be a classical member of the DOR family: it is far more divergent and significantly larger than the other family members (486 amino acids). This gene is expressed in all olfactory sensory neurons (data not shown). If A45 does encode a divergent odorant receptor, then it would be present in all sensory neurons along with different complements of the more classical members of the DOR gene family.

[0139] The Size and Organization of the Odorant Receptor Gene Family

[0140] How large is the family of odorant receptor genes in Drosophila? Unlike vertebrate odorant receptors, which share 40-98% sequence identity at the amino acid level, the fly receptors are extremely divergent. The extent of sequence similarity between receptor subfamilies ranges from 20-30%. The maxillary palp receptor DOR104 is the most distantly related member of the family with about 17% identity to the other receptor genes. Inspection of the receptor sequences suggests that Southern blot hybridizations, even those performed at low stringency, are unlikely to reveal multiple additional members of a gene family. In accord with this, Southern blot hybridization with receptor probes DOR24, 62, and 72, performed at either high or low stringency, reveals only a single hybridizing band following cleavage of genomic DNA with three different restriction endonucleases (FIGS. 7C-E). The two linked clusters of receptors contain genes with a greater degree of sequence conservation and define small subfamilies of receptor genes. A cluster of three receptors, DOR71, 72, and 73, is located at map position 33B1-2. The antennal receptors DOR72 and 73 are 55% identical and both exhibit about 30% identity to the third gene at the locus, DOR71, which is expressed in the maxillary palp. DOR67 and DOR53, members of a second subfamily, reside within 1 kb of each other at map position 22A2-3 and exhibit 76% sequence identity. Not surprisingly, these two linked genes crosshybridize at low stringency. Southern blots probed with either DOR67 or DOR53 reveal two hybridizing bands corresponding to the two genes within the subfamily but fail to detect additional subfamily members in the chromosome (FIGS. 7A and B).

[0141] The members of the receptor gene family described here are present on all but the small fourth chromosome. No bias is observed toward telomeric or centromeric regions. The map positions, as determined from P1 and cosmid clones (Berkeley Drosophila Genome Project; European Drosophila Genome Project) are provided in Experimental Procedures. A comparatively large number of receptor genes map to chromosome 2 because the Berkeley Drosophila Genome Project has concentrated its efforts on this chromosome. Unlike the distribution of odorant receptors in nematodes and mammals (Ben-Arie et al., 1994; Troemel et al., 1995; Robertson, 1998), only small linked arrays have been identified and the majority of the family members are isolated at multiple, scattered loci in the Drosophila genome.

[0142] The high degree of divergence among members of the Drosophila odorant receptor gene family is more reminiscent of the family of chemoreceptors in C. elegans than the more highly conserved odorant receptors of vertebrates. Estimates of the size of the Drosophila receptor gene family, therefore, cannot be obtained by either Southern blot hybridization o[text missing or illegible when filed] PCR analysis of genomic DNA. Rather, our estimates of the gene family derive from the statistics of small numbers. We detect 12 members of the odorant receptor gene family from a Drosophila genome database that includes roughly 10% of the genome. Recognizing a possible bias in our estimate, it seem reasonable at present to estimate that the odorant recepto[text missing or illegible when filed] family is or illegible when filed] accord with independent estimates from in situ hybridizatio[text missing or illegible when filed] experiments that demonstrate that a given receptor prob[text missing or illegible when filed] hybridizes with 0.5-1.5% of the neurons. If we assume tha [text missing or illegible when filed] a given neuron expresses only a single receptor gene, thes [text missing or illegible when filed] observations suggest that the gene family would include 10 text missing or illegible when filed to 200 members.

[0143] Experimental Discussion

[0144] The Size and Divergence of the Gene Family

[0145] We have identified a novel family of seven transmembrane domain proteins that is likely to encode the Drosophila odorant receptors. The number of different receptor genes expressed in the neurons of the antenna and maxillary palp will reflect the diversity and specificity of odor recognition in the fruit fly. How large is the Drosophila odorant receptor gene family? We have identified 11 members of this divergent gene family in the Drosophila DNA database. The potential for bias notwithstanding, it seems reasonable to assume then that since only 10% of genomic sequence has been deposited, this gene family is likely to contain from 100 to 200 genes. However, significant errors in our estimates could result from bias in the nature of the sequences represented in the 10% of the Drosophila genome analyzed to date. In situ hybridization experiments demonstrating that each of the receptor genes labels from 0.5-1.5% of the olfactory sensory neurons are in accord with the estimate of 100 to 200 receptor genes.

[0146] Several divergent odorant receptor gene families, each encoding seven transmembrane proteins, have been identified in vertebrate and invertebrate species. In mammals, volatile odorants are detected by a family of as many as 1,000 receptors each expressed in the main olfactory epithelium (Buck and Axel, 1991; Levy et al., 1991; Parmentier et al., 1992; Ben-Arie et al., 1994). This gene family shares features with the serpentine neurotransmitter receptors and is conserved in all vertebrates examined. Terrestrial vertebrates have a second anatomically and functionally distinct olfactory system, the vomeronasal organ, dedicated to the detection of pheromones. Vomeronasal sensory neurons express two distinct families of receptors each thought to contain from 100 to 200 genes: one novel family of serpentine receptors (Dulac and Axel, 1995), and a second related to the metabotropic neurotransmitter receptors (Herrada and Dulac, 1997; Matsunami and Buck, 1997; Ryba and Tirindelli, 1997).

[0147] In the invertebrate *C. elegans*, chemosensory receptors are organized into four gene families that share 20-40% sequence similarity within a family and essentially

no sequence similarity between families (Troemel et al., 1995; Sengupta et al., 1996; Robertson, 1998). The four gene families in *C. elegans* together contain about 1,000 genes engaged in the detection of odors. The nematode receptors exhibit no sequence conservation with the three distinct families of vertebrate odorant receptor genes. Our studies reveal that Drosophila has evolved an additional divergent gene family of serpentine receptors comprised of from 100 to 200 genes. The observation that a similar function, chemosensory detection, is accomplished by at least eight highly divergent gene families, sharing little or no sequence similarity, is quite unusual.

[0148] Why is the evolutionary requirement for odorant receptors so often met by recruitment of novel gene families rather than exploiting pre-existing odorant receptor families in ancestral genomes? The character of natural odorants along with their physical properties (e.g. aqueous or volatile) represent important selectors governing the evolution of receptor gene families. The use of common "anthropomorphic" odorant sets in the experimental analysis of olfactory specificity has led to the prevailing view that significant overlap exists in the repertoire of perceived odors between different species. Studies of odorant specificity in different species often employ odors at artificially high concentrations and may present an inaccurate image of the natural repertoire of odorants. We simply do not know the nature of the odors that initially led to the ancestral choice of receptor genes during the evolution of the nematode, insect, or vertebrate species. Clearly, vastly different properties in salient odors could dictate the recruitment of new gene families to effect an old function, olfaction. The character of the odor is not the only evolutionary selector. Odorant receptors must interact with other components in the signal transduction pathway [G proteins (for review see Buck, 1996; Bargmann and Kaplan, 1998) and perhaps even RAMPs (McLatchie et al, 1998) and rho (Mitchell et al., 1998)] that may govern the choice of one family of serpentine receptors over another. Moreover, mammalian receptors not only recognize odorants in the environment but are likely to recognize guidance cues governing formation of a sensory map in the brain (Wang et al., 1998). Thus, the multiple properties required of the odorant receptors might change vastly over evolutionary time and this might underlie the independent origins of the multiple chemosensory receptor gene families.

[0149] Establishing a Topographic Map in the Antenna and the Brain

[0150] We observe that individual receptor genes in the fly are expressed in topographically conserved domains within the antenna. This highly ordered spatial distribution of receptor expression differs from that observed in the mammalian olfactory epithelium. In mammals, a given receptor can be expressed in one of four broad but circumscribed zones in the main olfactory epithelium (Ressler et al., 1993; Vassar et al., 1993). A given zone can express up to 250 different receptors and neurons expressing a given receptor within a zone appear to be randomly dispersed (Ressler et al., 1993; Vassar et al., 1993). The highly ordered pattern of expression observed in the Drosophila antenna might have important implications for patterning the projections to the antennal lobe. In visual, somatosensory, and auditory systems the peripheral receptor sheet is highly ordered and neighbor relations in the periphery are maintained in the

projections to the brain. These observations suggest that the relative position of the sensory neuron in the periphery will determine the pattern of projections to the brain.

[0151] Our data on the spatial conservation of receptor expression in the antenna suggest that superimposed upon coarse spatial patterning of olfactory sensilla (Venkatesh and Singh, 1984; Ray and Rodrigues, 1995; Reddy et al., 1997) must be more precise positional information governing the choice of receptor expression This spatial information might dictate the fixed topographic pattern of receptor expression in the peripheral receptor sheet and at the same time govern the ordered sensory projections to the brain. This relationship between positional identity and the pattern of neuronal projections has been suggested for both peripheral sensory neurons (Merritt and Whitington, 1995; Grillenzoni et al., 1998) and neurons in the embryonic central nervous system of Drosophila (Doe and Skeath, 1996).

[0152] Implications for Sensory Processing

[0153] In mammals, olfactory neurons express only one of the thousand odorant receptor genes. Neurons expressing a given receptor project with precision to 2 of the 1800 glomeruli in the mouse olfactory bulb. Odorants will therefore elicit spatially defined patterns of glomerular activity such that the quality of an olfactory stimulus is encoded by the activation of a specific combination of glomeruli (Stewart et al., 1979; Lancet et al., 1982; Kauer et al., 1987; Imamura et al., 1992; Mori et al., 1992; Katoh et al., 1993; Friedrich and Korsching, 1997). Moreover, the ability of an odorant to activate a combination of glomeruli allows for the discrimination of a diverse array of odors far exceeding the number of receptors and their associated glomeruli. In the nematode, an equally large family of receptor genes is expressed in 16 pairs of chemosensory cells, only three of which respond to volatile odorants (Bargmann and Horvitz, 1991; Bargmann et al., 1993). This immediately implies that a given chemosensory neuron will express multiple receptors and that the diversity of odors recognized by the nematode might approach that of mammals, but the discriminatory power is necessarily dramatically reduced.

[0154] What does the character of the gene family we have identified in Drosophila tell us about the logic of olfactory processing in this organism? We estimate that the Drosophila odorant receptors comprise a family of from 100 to 200 genes. Moreover, the pattern of expression of these genes in the third antennal segment suggests that individual sensory neurons express a different complement of receptors and, at the extreme, our data are consistent with the suggestion that individual neurons express one or a small number of receptors. As in the case of mammals, the problem of odor discrimination therefore reduces to a problem of the brain discerning which receptors have been activated by a given odorant. If the number of different types of neurons exceeds the number of glomeruli (43) (Stocker, 1994; Laissue et al., 1999), it immediately follows that a given glomerulus must receive input from more than one kind of sensory neuron. This implies that a single glomerulus will integrate multiple olfactory stimuli. One possible consequence of this model would be a loss of discriminatory power while maintaining the ability to recognize a vast array of odors. Alternatively, significant processing of sensory input may occur in the fly antennal lobe to afford discrimination commensurate with the large number of receptors.

[0155] This model of olfactory coding is in sharp contrast with the main olfactory system of vertebrates in which sensory neurons express only a single receptor and converge on only a single pair of spatially fixed glomeruli in the olfactory bulb. Moreover, each projection neuron in the mammalian bulb extends its dendrite to only a single glomerulus. Thus the integration and decoding of spatial patterns of glomerular activity, in vertebrates, must occur largely in the olfactory cortex. In the fruit fly, the observation that the number of receptors may exceed the number of glomeruli suggests that individual glomeruli will receive input from more than one type of sensory neuron. A second level of integration in the antennal lobe is afforded by subsets of projection neurons that elaborate extensive dendritic arbors that synapse with multiple glomeruli. Thus, the Drosophila olfactory system reveals levels of processing and integration of sensory input in the antennal lobe that is likely to be restricted to higher cortical centers in the main olfactory system of vertebrates.

[0156] Protein and Nucleic Acid (nt) Sequences of 55 Drosophila Odorant Receptor Genes

[0157] The following includes those genes first identified in 1998-1999. Protein sequences used single letter amino acid codes.

[**0158**] DOR10

[0159] MEKLRSYEDFIFMANMMFKTLGYDLFHT-PKPWWRYLLVRGYFVLCTISNFYEASMVTT
RIIEWESLAGSPSKIMRQGLHFFYMLSSQLKFITFMINRKRLLQLSHRLKELYPHKEQ
NQRKYEVNKYYLSCSTRNVLYVYYFVMNVVMALEPLVQSQFIVNVSLGTDLWMMCVSSQ ISMHLGYLANMLASIRPSPETEQQDCDFLASIIKRHQLMIRLQKDVNYVFGLLLASNL
FTTSCLLCCMAYYTVVEGFNWEGISYMMLPASVAAQFYVVSSHGQMLIDLLMTITYRF
FAVIRQTVEK

[0160] DOR10nt

[0161] ATGGAAAAACTACGTTCCTATGAG-GATTTCATCTTCATGGCCAACATGATGTTCAAGA CCCTTGGCTACGATCTATTCCATACAC-CCAAACCCTGGTGGCGCTATCTGCTTGTGCG AGGATACTTCGTTTTGTGCACGATCAG-CAACTTTTACGAGGCTTCCATGGTGACGACA AGGATAATTGAGTGGGAATCCTTGGCCG-GAAGTCCCTCCAAAATAATGCGACAGGGTC TGCACTTCTTTTACATGTTGAGTAGC-CAATTGAAATTTATCACATTCATGATAAATCG CAAACGCCTACTGCAGCTGAGC-CATCGTTTGAAAGAGTTGTATCCTCAT-AAAGAGCAA **AATCAAAGGAAGTACGAGGT-**GAATAAATACTACCTATCCTGTTCCACGCGCAATG TGTACGTGTACTACTTTGTAATGGTCGT-CATGGCACTGGAACCCCTCGTTCAGTCCCA GTTCATAGTGAATGTGAGCCTGGGCACA-GATCTGTGGATGATGTGCGTCTCAAGCCAA ATATC-GATGCACTTGGGCTATCTGGCCAATAT-GTTGGCCTCCATTCGACCAAGTCCAG AAACGGAACAACAAGACTGTGACTTCT-TGGCCAGCATTATAAAGAGACATCAACTAAT GAT-CAGGCTTCAAAAGGACGTGAACTAT-GTTTTTGGACTCTTATTGGCATCTAATCTG

TTTACCACATCCTGTTTACTTTGCTG-CATGGCGTACTATACCGTCGTCGAAGGTTTCA ATTGGGAGGGCATTTCCTATATGAT-GCTCTTTGCTAGTGTAGCTGCCCAGTTCTACGT TGTCAGCTCACACGGACAAATGTTAATA-GATTTGTTGATGACCATCACATACAGATTT TTCGCGGTTATACGACAAACTGTAGAAAAG

[**0162**] DOR104

[0163] MASLQFHGNVDADIRYDISLDPARESN-LFRLLMGLQLANGTKPSPRLPKWWPKRLEMI GKV-LPKAYCSMVI FTSLHLGVLFTKTTLDVLPTGELQAIT-**IYFFTGYGTIY** WCLRSRRLLAYMEHMNREYRHHSLAGVT-FVSSHAAFRMSRNFTVVWIMSCLLGVISWG VSPLM-LGIRMLPLQCWYPFDALGPG-TYTAVYATQLFGQIMVGMTFGFGGSLFVTLSLL LLGQFDVLYCSLKNLDAHTKLLGGES-VNGLSSLQEELLLGDSKRELNQYVLLQEHPTD LLRL-SAGRKCPDQGNAFHNALVECIRLHRFIL-HCSQELENLFSPYCLVKSLQITFQLC LLVFVGVSGTREVLRIVNQLQYLGL-TIFELLMFTYCGELLSRHSIRSGDAFWRGAWWK HAHFIRODILIFLVNSRRAVHVTAGK-FYVMDVNRLRSVITQAFSFLTLLQKLAAKKTE SEL

[**0164**] DOR104nt

[0165] GAATTCGGCACGAGCAGTCGATGGC-CAGTCTTCAGTTCCACGGCAACGTCGATGCGGA CATCAGGTATGATATTAGCCTGGATCCG-GCTAGGGAATCGAATCTCTTCCGTCTGCTA GACTCCAGTTGGCGAATGGCACGAAGC-CATCGCCGCGGTTACCCAAATGGTGGC CAAAGCGGCTGGAAATGATTGGTAAAGT-GCTGCCCAAAGCCTATTGTTCCATGGTGAT TTTCACCTCCCTGCATTTGGGTGTCCT-GTTCACGAAAACCACACTGGATGTCCTGCCG ACGGGGGAGCTGCAGGCCATAACGGAT-GCCCTCACCATGACCATAATATACTTTTTCA CGGGCTACGGCACCATCTACTGGTGCCT-GCGCTCCCGGCGCCTCTTGGCCTACATGGA GCA-CATGAACCGGGAGTATCGCCATCAT-TCGCTGGCCGGGGTGACCTTTGTGAGTAGC CATGCGGCCTTTAGGATGTCCAGAAACT-TCACGGTGGTGTGGATAATGTCCTGCCTGC TGGGCGTGATTTCCTGGGGCGTTTCGC-CACTGATGCTGGGCATCCGGATGCTGCCGCT CCAATGTTGGTATCCCTTCGACGC- ${\tt CCTGGGTCCCGGCACATATACGGCGGTCTATGCT}$ ACACAACTTTTCGGTCAGATCATG-GTGGGCATGACCTTTGGATTCGGGGGATCACTGT TTGTCACCCTGAGCCTGCTACTCCTGG-GACAATTCGATGTGCTCTACTGCAGCCTGAA GAACCTGGATGCCCATACCAAGT-TGCTGGGCGGGGAGTCTGTAAATGGCCTGAGTTCG CTGCAAGAGGAGTTGCTGCTGGGG-GACTCGAAGAGGGAATTAAATCAGTACGTTTTGC TCCAGGAGCATCCGACGGATCTGCT-GAGATTGTCGGCAGGACGAAAATGTCCTGACCA AGGAAATGCGTTTCACAACGCCTTGGTG-GAATGCATTCGCTTGCATCGCTTCATTCTG CACT-GCTCACAGGAGTTGGAGAATCTAT-TCAGTCCATATTGTCTGGTCAAGTCACTGC AGATCACCTTTCAGCTTTGCCTGCTG-

GTCTTTGTGGGCGTTTCGGGTACTCGAGAGGT CCTGCGGATTGTCAACCAGCTACAGTACTTGGGACTGACCATCTTCGAGCTCCTAATG
TTCACCTATTGTGGCGAACTCCTCAGTCGGCATAGTATTCGATCTGGCGACGCCTTTT
GGAGGGGTGCGTGGTGGAAGCACGCCCATTTCATCCGCCAGGACATCCTCATCTTTCT GGTCAATAGTAGACGTGCAGTTCACGTGACTGCCGGCAAGTTTTATGTGATGGATGTG
AATCGTCTAAGATCGGTTATAACGCAGGCGTTCAGCTTCTTGACTTTGCTGCAAAAGT
TGGCTGCCAAGAAGACGGAATCGGAGCTCTAAACTGGTACCACGCATCGATATTTATT
TAGCGCATTGTCGAGTAAAAAA

[**0166**] DOR105

[0167] MFEDIQLIYMNIKILRFWALLYDKNLR-RYVCIGLASFHIFTQIVYMMSTNEGLTGIIR NSYMLV-LWINTVLRAYLLLADHDRYLALIQKL-TEAYYDLLNLNDSYISEILDQVNKVG KLMARGNLFFGMLTSMGFGLY-PLSSSERVLPFGSKIPGLNEYESPYYEMWYIFQMLIT PMGCCMYIPYTSLIVGLIMFGIVRCK-ALQHRLRQVALKHPYGDRDPRELREEIIACIR YQQSI-IEYMDHINELTTMMFLFELMAFSALL-CALLFMLIIVSGTSQLIIVCMYINMIL AQILALYWYANELREQNLAVATAAY-ETEWFTFDVPLRKNILFMMMRAQRPAAILLGNI RPITLELFQNLLNTTYTFFTVLKRVYG

[**0168**] DOR105nt

[0169] ATGTTTGAAGACATTCAGCTAATCTA-CATGAATATCAAGATATTGCGATTCTGGGCCC TGCTCTATGACAAAAACTTGAGGCGT-TATGTGTGCATTGGACTGGCCTCATTCCACAT CTTCACCCAAATCGTCTACATGATGAG-TACCAATGAAGGACTAACCGGGATAATTCGT AACT-CATATATGCTCGTCCTTTGGAT-TAATACGGTGCTGCGAGCTTATCTCTTGCTGG CGGATCACGACAGATATTTG-GCTTTGATCCAAAAACTAACTGAGGC-CTATTACGATTT ACTGAATCTGAACGATTCG-TATATATCGGAAATATTGGACCAGGTGAACAAGGT AAGTTGATGGCTAGGGGCAATCTGT-TCTTTGGCATGCTCACATCCATGGGATTCGGTC TGTACCCATTGTCCTCCAGCGAAA-GAGTCCTGCCATTTGGCAGCAAAATTCCTGGTCT AAATGAGTACGAGAGTCCGTACTAT-GAGATGTGGTACATCTTTCAGATGCTCATCACC CCGATGGGCTGTTGCATGTACATTCCG-TACACCAGTCTGATTGTGGGCTTGATAATGT TCG-GCATTGTGAGGTGCAAGGCTTTGCAG-CATCGCCTCCGCCAGGTGGCGCTTAAGCA TCCGTACGOAGATCGCGATCCCCGT-GAACTGAGGGAGGAGATCATAGCCTGCATACGT TACCAGCAGAGCATTATCGAGTACATG-GATCACATAAACGAGCTGACCACCATGATGT TCCTATTCGAACTGATGGCCTTTTCG-GCGCTGCTCTGTGCGCTGCTCTTTATGCTGAT TATCGTCAGCGGCACCAGTCAGCT-GATAATTGTTTGCATGTACATTAACATGATTCTG GCCCAAATACTGGCCCTCTATTGGTATG-CAAATGAGTTAAGGGAACAGAATCTGGCGG TGGC- CACCGCAGCCTACGAAACGGAGTGGTTCACCTTCGACGTTCCACTGCGCAAAAA
CATCCTGTTCATGATGATGAGGGCACAGCGGCCAGCTGCAATACTACTGGGCAATATA
CGCCCCATCACTTTGGAACTGTTCCAAAACCTACTGAACACAACCTATACATTTTTTA
CGGTTCTCAAGCGAGTCTACGGA

[**0170**] DOR107

[0171] MYPRFLSRNYPLAKHLFFVTRYSF-GLLGLRFGKEQSWLHLLWLVFNFVNLAHCCQAEF VFGWSHLRTSPVDAMDAFCPLACSFT-TLFKLGWMWWRRQEVADLMDRIRLLIGEQEKR EDSRRKVAQRSYYLMVTRCGMLVFTLG-SITTGAFVLRSLWEMWVRRHQEFKFDMPFRM LFHD-FAHRMPWFPVFYLYSTWSGQVTVYAF-AGTDGFFFGFTLYMAFLLQALRYDIQDA LKPIRDPSLRESKICCQRLADI-VDRHNEIEKIVKEFSGIMAAPTFVHFVSASLVIATS VIDILLYSGYNIIRYVVYTFTVSSAI-FLYCYGGTEMSTESLSLGEAAYSSAWYTWDRE TRRRVFLIIL-RAQRPITVRVPFFAPSLPVFTSVIKFTGSIVALAKTIL

[0172] DOR107nt

[0173] ATGTATCCGCGATTCCTCAGCCGTAAC-TATCCGCTGGCCAAGCATTTGTTCTTCGTCA CCA-GATACTCCTTTGGCCTGCTGGGCCT-GAGATTTGGCAAAGAGCAATCGTGGCTTCA CCTCTTGTGGCTGGTGTTCAATTTCGT-TAACCTGGCGCACTGCTGCCAGGCGGAGTTC GTCTTCGGCTGGAGTCACTTGCGCAC-CAGTCCCGTGGATGCCATGGACGCCTTTTGTC CTCTGGCCTGCAGTTTCACCACGCTCT-TCAAGCTGGGATGGATGTGGTGGCGTCGCCA GGAAGTAGCTGATCTAATGGACCGCATC-CGCTTGCTCATCGGGGAGCAGGAGAAGAGG GAG-GACTCCCGGAGAAAGGTGGCTCAAAG-GAGCTACTATCTCATGGTCACCAGGTGCG GTATGCTGGTCTTCACCCTGGGCAGCAT-TACCACTGGAGCCTTCGTTCTGCGTTCCCT TTGG-GAAATGTGGGTGCGTCGTCATCAGGAGT-TCAAATTCGATATGCCCTTTCGCATG CTGTTCCACGACTTTGCGCATCGCATGC-CCTGGTTTCCAGTTTTCTATCTCTACTCCA CATG-GAGTGGCCAGGTCACTGTGTACGC-CTTTGCTGGTACAGATGGTTTCTTC TTGG CTTTACCCTCTACATGGCCTTCTTGCTG-CAGGCCTTAAGATACGATATCCAGGATGCC CTCAAGCCAATAAGAGATCCCTCGCT-TAGGGAATCCAAAATCTGCTGTCAGCGATTGG CGGACATCGTGGATCGCCACAAT-GAGATAGAGAAGATAGTCAAGGAATTTTCTGGAAT TATGGCTGCTCCAACTTTTGTTCACT-TCGTATCAGCCAGCTTAGTGATAGCCACCAGC GTCATTGATATACTATTGTATTCCGGC-TATAACATCATCCGTTACGTGGTGTACACCTTCACG-GTTTCCTCGGCCATCTTCCTCTATTGC-TACGGAGGCACAGAAATGTCAACTGA GAGCCTTTCCTTGGGAGAAGCAGCCTA-CAGCAGTGCCTGGTATACTTGGGATCGAGAG ACCCGCAGGCGGGTCTTTCTCATTATC-CTGCGTGCTCAACGACCCATTACGGTGAGGG TGC-CCTTTTTTGCACCATCGTTACCAGTCT-

 ${\tt TCACATCGGTCATCAAGTTTACAGGTTC}\\ {\tt GATTGTGGCACTGGCTAAGACGATACTG}\\$

[**0174**] DOR108

[0175] MDKHKDRIESMRLILQVMQLFGLWPWS-LKSEEEWTFTGFVKRNYRFLLHLPITFTFIG
LMWLEAFISSNLEQAGQVLYMSITEMALVVKILSIWHYRTEAWRLMYELQHAPDYQLH
NQEEVDFWRREQRFFKWFFYIYILISLGVVYSGCTGVLFLEGYELPFAYYVPFEWQNE RRYWFAYGYDMAGMTLTCISNITLDTLGCYFLFHISLLYRLLGLRLRETKNMKNDTIF
GQQLRAIFIMHQRIRSLTLTCQRIVSPYILSQIILSALIICFSGYRLQHVGIRDNPGQ FISMLQFVSVMILQIYLPCYYGNEITVYANQLTNEVYHTNWLECRPPIRKLLNAYMEH
LKKPVTIRAGNSFAVGLPIFVKTINNAYSFLALLLNVSN

[**0176**] DOR108nt

[0177] ATGGATAAACACAAGGATCGCAT-TGAATCCATGCGCCTAATTCTTCAGGTCATGCAAC TATTTGGCCTCTGGCCGTGGTCCT-TGAAATCGGAAGAGGAGTGGACTTTCACCGGTTT TGTAAAGCGCAACTATCGCTTCCTGCTC-CATCTGCCCATTACCTTCACCTTTATTGGA CTCAT-GTGGCTGGAGGCCTTCATCTCGAG-CAATCTGGAGCAGGCTGGCCAGGTTCTGT ACATGTCCATCACCGAGATGGCTTTG-GTGGTGAAAATCCTGAGCATTTGGCACTATCG CAC-CGAAGCTTGGCGGCTGATGTACGAACTC-CAACATGCTCCGGACTACCAACTCCAC AACCAGGAGGAGGTAGACTTTTGGCGC-CGGGAGCAACGATTCTTCAAGTGGTTCTTCT ACATCTACATTCTGATTAGCT-TGGGCGTGGTATATAGTGGCTGCACTG-**GAGTACTTTT** TCTGGAGGGCTACGAACTGC- ${\tt CCTTTGCCTACTACGTGCCCTTCGAATGGCAGAAC}$ AGAAGGTACTGGTTCGCCTATGGTTAC-GATATGGCGGGCATGACGCTGACCTGCATCT CAAA-CATTACCCTGGACACCCTGGGTTGC-TATTTCCTGTTCCATATCTCTCTTTTGTA CCGACTGCTTGGTCTGCGATTGAGG-GAAACGAAGAATATGAAGAATGATACCATTTTT GGCCAGCAGTTGCGTGCCATCTTCAT-TATGCATCAGAGGATTAGAAGCCTAACCCTGA CCT-GCCAGAGAATCGTATCTCCCTATATC-CTATCTCAGATCATTTTGAGTGCCCTGAT CATCTGCTTTAGTGGATACCGCTTGCAG-CATGTGGGAATTCGCGATAATCCCGGCCAG TTTATATCCATGTTGCAGTTTGTCAGT-GTGATGATCCTGCAGATTTACTTGCCCTGCT ACT-ATGGAAACGAGATAACCGTGTATGC-CAATCAGCTGACCAACGAGGTTTACCATAC CAATTGGCTGGAATGTCGGCCACCGAT-TCGAAAGTTACTCAATGCCTACATGGAGCAC CTGAAGAAACCGGTGACCATCCGGGCTG-GCAACTCCTTCGCCGTGGGACTACCAATTT TAAGACCATCAACAACGCCTA-CAGTTTCTTGGCTTTATTACTAAATGTATCGAA T

[**0178**] DOR109

[0179] MESTNRLSAIQTLLVIQRWIGLLKWE-NEGEDGVLTWLKRIYPFVLHLPLTFTYIALMW YEAITSSDFEEAGQVLYMSITELALVTKLLNIWYRRHEAASLIHELQHDPAFNLRNSE EIKFWQQNQRNFKRIFYWYIWGSLFVAVMGYISVFFQEDYELPFGYYVPFEWRTRERY
FYAWGYNVVAMTLCCLSNILLDTLGCYFMFHIASLFRLLGMRLEALKNAAEEKARPEL
RRIFQLHTKVRRLTRECEVLVSPYVLSQVVFSAFIICFSAYRLVHMGFKQRPGLFVTT
VQFVAVMIVQIFLPCYYGNELTFHANALTNSVFGTNWLEYSVGTRKLLNCYMEFLKRP
VKVRAGVFFEIGLPIFVKTINNAYSFFALLLKISK

[0180] DOR109nt

[0181] ATGGAGTCTACAAATCGCCTAAGTGC-CATCCAAACACTTTTAGTAATCCAACGTTGGA TAG-GACTTCTTAAATGGGAAAACGAGGGC-GAGGATGGAGTATTAACCTGGCTAAAACG AATATATCCTTTTGTACTGCACCTTC-CACTGACCTTCACGTATATTGCCTTAATGTGG GAAGCTATTACATCGTCAGATTTTGAG-GAAGCTGGTCAAGTTCTGTACATGTCCA TCACCGAACTGGCATTGGTCACTAAACT-GCTGAATATTTGGTATCGTCGTCATGAAGC TGCTAGTCTAATCCACGAATTGCAACAC-GATCCCGCATTTAATCTGCGCAATTCGGAG GAAAT-CAAATTCTGGCAGCAAAATCAGAG-GAACTTTAAGAGAATATTTTACTGGTACA TCTGGGGCAGCCTTTTCGTGGCTG-TAATGGGTTATATAAGCGTGTTTTTCCAGGAGGA TTACGAGCTGCCCTTTGGCTACTACGT-GCCATTCGAGTGGCGCACCAGGGAACGATAC TTC-TACGCTTGGGGCTATAATGTGGTGGC-CATGACCCTGTGCTGTCTATCCAACATCC TACTGGACACACTAGGCTGTTATTTCAT-GTTCCACATCGCCTCGCTTTTCAGGCTTTT GGGAATGCGACTGGAGGCCTTGAAAAAT-GCAGCCGAAGAGAAAGCCAGACCGGAGTTG CGC-CGCATTTTCCAACTGCACACTAAAGTC-CGCCGATTGACGAGGGAATGCGAAGTGT TAGTTTCACCCTATGTTCTATC- ${\tt CCAAGTGGTCTTCAGTGCCTTCATCATCTGCTTCAG}$ TGCCTATCGACTGGTGCACATGGGCT-TCAAGCAGCGACCTGGACTCTTCGTGACCACC GTGCAATTCGTGGCCGTCATGATCGTC-CAGATTTTCTTGCCCTGTTACTACGGCAATG TGACCTTTCATGCCAATGCACTCAC-TAATAGTGTCTTCGGTACCAATTGGCTGGA GTACTCCGTGGGCACTCGCAAGCTGCT-TAACTGCTACATGGAGTTCCTCAAGCGACCG GTTAAAGTGCGAGCTGGGGTGT-TCTTTGAAATAGGACTACCCATCTTTGTGAAGACCA TCAACAATGCCTACAGTTTCTTCGCCCT-GCTGCTAAAGATATCCAAG

[**0182**] DOR110

[0183] MLFNYLRKPNPTNLLTSPDSFRYFEYGM-FCMGWHTPATHKIIYYITSCLIFAWCAVYL PIGIIISFK-TDINTFTPNELLTVMQLFFNSVGMPFKV-LFFNLYISGFYKAKKLLSEMD KRCTTLKERVEVHQGVVRCNKAY-LIYQFIYTAYTISTFLSAALSGKLPWRIYNPFVDF RESRSSFWKAALNETALMLFAVTQTLMS-DIYPLLYGLIRVHLKLLRLRVESLCTDSG KSDAENEQDLINYAAAIRPAVTRTIFVQ-

FLLIGICLGLSMINLLFFADIWTGLATVAY
VQTFPFCFVCDLLKKDCELLVSAIFHSNWINSSRSYKSSLRYFLKNAQKsIAF
TAGSIFPISTGSNIKVAKLAFSVVTFVNQLNIADRLTKN

[**0184**] DOR110nt

[0185] ATGTTGTTCAACTATCTGCGAAAGC-CGAATCCCACAAACCTTTTGACTTCTCCGGACT CATTTAGATACTTTGAGTATGGAAT-GTTTTGCATGGGATGGCACACACCAGCAACGCA TAAGATAATCTACTATATAACATCCT-GTTTGATTTTTGCTTGGTGTGCCGTATACTTG CCAATCGGAATCATCATT-AGTTTCAAAACGGATATTAACACATTCA-CACCGAATGAAC TGTTGACAGTTATGCAAT-TATTTTCAATTCAGTGGGAATGCCATTCAAGGTT CTTCAATTTGTATATTTCTGGATTTTA-CAAGGCCAAAAAGCTCCTTAGCGAAATGGAC AAACGTTGCACCACTTTGAAGGAGC-GAGTGGAAGTGCACCAAGGTGTGGTCCGTTGCA ACAAGGCCTACCTCATTTACCAGT-TCATTTATACCGCGTACACTATTTCAACATTTCT ATCGGCGGCTCTTAGTGGAAAATTGC-CATGGCGCATCTATAATCCTTTTGTGGATTTT CGAGAAAGTAGATCCAGTTTTTG-GAAAGCTGCCCTCAACGAGACAGCACTTATGCTAT TTGCTGTGACTCAAACCCTAATGAGT-GATATATATOCACTGCTTTATGGTTTGATCCT GAGAGTTCACCTCAAACTTTTGCGAC-TAAGAGTGGAGAGCCTGTGCACAGATTCTGGA AAAAGCGATGCTGAAAACGAGCAA-GATTTGATTAACTATGCTGCAGCAATACGACCAG CGGTTACCCGCACAATTTTCGTTCAAT-TCCTCTTGATCGGAATTTGCCTTGGCCTTTC GATCAATCTACTCTTCTTTGCCGA-CATCTGGACAGGATTGGCCACAGTGGCTTAC ATCAATGGTCTAATOGTGCAGACATTTC-CATTTTGCTTCGTTTGTGATCTACTCAAAA AGGAT-TGTGAACTTCTTGTGTCGGC-CATATTTCATTCCAACTGGATTAATTCAAGCCG CAGTTACAAGT-CATCTTTGAGATATTTTCTGAAGAACGC-CCAGAAATCAATTGCTTTT ACAGCCGGC TCTATTTTCCCATTTCTACTGGCTC-GAATATTAAGGTGGCTAAGCTGG CATTTTCGGTG-GTTACTTTTGTCAATCAACTTAACAT-AGCTGACAGATTGACAAAGAA C

[**0186**] DOR 111

[0187] MLFRKRKPKSDDEVITFDELTRFPMTFYKTIGEDLYSDRDPNVIRRYLLRFYLVLGFL
NFNAYVVGEIAYFIVHIMSTITTLLEATAVAPCIGFSFMADFKQFGLTVNRKRLVRLLD DLKEIFPLDLEAQRKYNVSFYRKHMNRVMTLFTILCMTYTSSFSFYPAIKSTIKYYLM
GSEIFERNYGFHILFPYDAETDLTVYWFSYWGLAHCAYVAGVSYVCVDLLLIATITQL TMHFNFIANDLEAYEGGDHTDEENIKYLHNLVVYHARALDINKKCTFQSSRIGHSAFN
QNWLPCSTKYKRILQFIIARSQKPASIRPPTFPPISFNTFMKVISMSYQFFALLRTTY YG

[**0188**] DOR111nt

[0189] ATGCTGTTCCGCAAACGTAAGCCAAAAAGTGACGATGAAGTCATCACCT-

TCGACGAAC TTACCCGGTTTCCGATGACTTTCTA-CAAGACCATCGGCGAGGATCTGTACTCCGATAG GGATCCGAATGTGATAAGGCGTTACCT-GCTACGTTTTTATCTGGTACTCGGTTTTCTC AACT-TCAATGCCTATGTGGTGGGC-GAAATCGCGTACTTTATAGTCCATATAATGTCGA CGACTACTCTTTTGGAGGCCACTG-CAGTGGCACCGTGCATTGGCTTCAGCTTCATGGC CGACTTTAAGCAGTTCGGTCTCACAGT-GAATAGAAAGCGATTGGTCAGATTGCTGGAT GATCTCAAGGAGATATTTCCTTTAGATT-TAGAAGCGCAGCGGAAGTATAACGTATCGT TTTAC-CGGAAACACATGAACAGGGTCATGAC-CCTATTCACCATCCTCTGCATGACCTA CACCTCGTCATTTAGCTTTTATCCAGC-CATCAAGTCGACCATAAAGTATTACCTTATG GGATCGGAAATCTTTGAGCGCAACTACG-GATTTCACATTTTGTTTCCCTACGACGCAG AAACG-GATCTGACGGTCTACTGGTTTTC- ${\tt CTACTGGGGATTGGCTCATTGTGCCTATGT}$ GGCCGGAGTTTCCTACGTCTGCGTG-GATCTCCTGCTGATCGCGACCATAACCCAGCTG ACCATGCACTTCAACTTTATAGCGAAT-GATTTGGAGGCCTACGAAGGAGGTGATCATA CGGATGAAGAAAATATCAAATACCTGCA-CAACTTGGTCGTCTATCATGCCAGGGCGCT GGATATTAACAAGAAATGTACATTTCA-GAGCTCTCGGATTGGCCATTCGGCATTTAAT CAGAACTGGTTGCCATGCAGCAC-CAAATACAAACGCATCCTGCAATTTATTATCGCGC GCAGCCAGAAGCCCGCCTCTATAAGAC-CGCCTACCTTTCCACCCATATCTTTTAATAC CTTTAT-GAAGGTAATCAGCATGTCGTAT-CAGTTTTTTGCACTGCTCCGCACCACATAT TATGGT

[0190] DOR114

[0191] MLTKKDTQSAKEQEKLKAIPLHSFLKY-ANVFYLSIGMMAYDHKYSQKWKEVLLHWTFI AQM-VNLNTVLISELIYVFLAIGKGSNFLEAT-MNLSFIGFVIVGDFKIWNISRQRKRLT QVVSRLEELHPQGLAQQEPYNIGHHLS-GYSRYSKFYFGMHMVLIWTYNLYWAVYYLVC DFWLGMRQFERMLPYYCWVPWDWST-GYSYYFMYISQNIGGQACLSGQLAADMLMCALV TLVvMHFIRLSAHIESHVAGIGS-FQHDLEFLQATVAYHQSLIHLCQDINEIFGVSLLS NFVSSSFIICFVGFQMTIGSKIDNLVM-LVLFLFCAMVQVFMIATHAQRLVDASEQIGQ AVYN-HDWFRADLRYRKMLILIIKRAQQPSRLK-ATMFLNISLVTVSDLLQLSYKFFALL RTMYVN

[0192] DOR114nt

CAAGTGGTCAGCCGATTGGAAGAACTG-CATCCGCAAGGCTTGGCTCAACAAGAACCCT ATAATATAGGGCATCATCTGAGCGGC-TATAGCCGATATAGCAAATTTTACTTCGGCAT GCA-CATGGTGCTGATATGGACGTACAACCTG-TATTGGGCCGTTTACTATCTGGTCTGT GATTTCTGGCTGGGAATGCGT-CAATTTGAGAGGATGCTGCCCTACTACT-GCTGGGTTC CCTGGGATTGGAGTACCGGATATAGC-TACTATTTCATGTATATCTCACAGAATATCGG CGGTCAGGCTTGTCTGTCCGGT-CAGCTAGCAGCTGACATGTTAATGT-GCGCCCTGGTC ACTTTGGTGGTGATGCACTTCATC-CGGCTTTCCGCTCACATCGAGAGTCATGTTGCGG GCATTGGCTCATTCCAGCACGATTTG-GAGTTCCTCCAAGCGACGGTGGCGTATCACCA GAGCTTGATCCACCTCTGCCAGGATAT-CAATGAGATATTCGGTGTTTCACTGTTGTCC AACTTTGTATCCTCGTCGTTTATCATCT-GCTTCGTGGGTTTCCAGATGACCATCGGCA GCAA-GATCGACAACCTGGTAATGCTTGT-GCTTTTCCTGTTTTGTGCCATGGTTCAGGT CTTCATGATTGCCACCCATGCTCAGAG-GCTCGTTGATGCGAGTGAACAGATTGGTCAA GCG-GTCTATAATCACGACTGGTTCCGTGCT-GATCTGCGGTATCGTAAAATGCTGATCC TGATTATTAAGAGGGCCCAACAGC-CGAGTCGACTCAAGGCCACAATGTTCCTGAACATCTCACTGGTCACCGTGTCGGATCTCTTG-CAACTCTCGTACAAATTCTTTGCCCTTCTG CAATGTACGTGAAT

[**0194**] DOR115

[0195] MEKLMKYASFFYTAVGIRPYTNGEESKMNKLIFHIVFWSNVINLSFVGLFESIYVYSA FMDNKFLEAVTALSYIGFVTVGMSKMFFIRWKKTAITELINELKEIYPNGLIREERYN
LPMYLGTCSRISLIYSLLYSVLIWTFNLFCVMEYWVYDKWLNIRVVGKQLPYLMYIPW
KWQDNWSYYPLLFSQNFAGYTSAAGQISTDVLLCAVATQLVMHFDFLSNSMERHELSG
DWKKDSRFLVDIVRYHERILRLSDAVNDIFGIPLLLNFMVSSFVICFVGFQMTVGVPP
VKLFLFLVSSMSQVYLICHYGQLVADASYGFSVATYNQKWYKADVRYKRALVIII
ARSQKVTFLKATIFLDITRSTMTDVRNCVLSV

[0196] DOR115nt

[0197] ATGGAGAAGCTAATGAAGTACGCTAGCT-TCTTCTACACAGCAGTGGGCATACGGCCAT ATAC-CAATGGTGAAGAATCCAAAATGAA-CAAACTTATATTTCACATAGTTTTTTGGTC CAATGTGATTAACCTCAGCTTCGTTG-GATTATTTGAGAGCATTTACGTTTACAGTGCC TTCATGGATAATAAGTTCCTGGAAG-CAGTCACTGCGTTGTCCTACATTGGCTTCGTAA CCGTAGGCATGAGCAAGATGTTCT-TCATCCGGTGGAAGAAAACGGCTATAACTGAACT GATTAATGAATTGAAGGAGATCTATC-CGAATGGTTTGATCCGAGAGGAAAGATACAAT CTGCCGATGTATCTGGGCACCTGCTCCA-GAATCAGCCTTATATATTCCTTGCTCTACT CTGT-TCTCATCTGGACATTCAACTTGTTTTGT-GTAATGGAGTATTGGGTCTATGACAA

GTGGCTCAACATTCGAGTGGTGGGCAAA-CAGTTGCCGTACCTCATGTACATTCCTTGG AAATG-GCAGGATAACTGGTCGTACTATCCACT-**GTTATTCTCCCAGAATTTTGCAGGAT** ACACATCTGCAGCTGGTCAAATTTCAAC-CGATGTCTTGCTCTGCGCGGTGGCCACTCAGTTGG-TAATGCACTTCGACTTTCTCTCAAATAG-TATGGAACGCCACGAATTGAGTGGA GATTGGAAGAAGGACTCCCGATTTCTG-GTGGACATTGTTAGGTATCACGAACGTATAC TCCGCCTTTCAGATGCAGTGAAC-GATATATTTGGAATTCCACTACTACTCAACTTCAT GGTATCCTCGTTCGTCATCTGCT-TCGTGGGATTCCAGATGACTGTTGGAGTTCCGCCG GATATAGTTGTGAAGCTCTTCCTCTTC-CTTGTCTCTTCGATGAGTCAGGTCTATTTGA TTTGT-CACTATGGTCAACTGGTGGCCGAT-GCTAGCTACGGATTTTCGGTTGCCACCTA CAATCAGAAGTGGTATAAAGCCGATGT-GCGCTATAAACGAGCCTTGGTTATTATTATA GCTA-GATCGCAGAAGGTAACTTTTCTAAAGGC-CACTATATTCTTGGATATTACCAGGT CCACTATGACAGATGTACGCAACTGTG-**TATTGTCAGTG**

[**0198**] DOR116

[0199] MELLPLAMLMYDGTRVTAM-QYLIPGLPLENNYCYVVTYMIQTVTM-LVQGVGFYSGDLF VFLGLTQILTFADMLQVKVKELN-DALEQKAEYRALVRVGASIDGAENRQRLLLDVIRW HQLFTDYCRAINALYYELIATQVLS-MALAMMLSFCINLSSFHMPSAIFFVVSAYSMSI YCILGTILEFAYDQVYESICNVTWYELS-GEQRKLFGFLLRESQYPHNIQILGVMSLSV RTAL-QIVKLIYSVSMMMMNRA

[**0200**] DOR116nt

[0201] ATGGAACTCCTGCCATTGGCCAT-GCTAATGTACGATGGAACCCGGGTTACTGCGATGC AGTATTTAATTCCGGGTCTACCGCT-TGAGAACAATTATTGCTACGTAGTCACGTACAT GATTCAGACGGTGACAATGCTCGTG-CAAGGAGTCGGATTCTACTCCGGTGATTTGTTC GTATTTCTCGGCTTAACGCAGATC-CTAACTTTCGCCGATATGCTGCAGGTGAAGGTGA AAGAGCTAAACGATGCCCTGGAA-CAAAAAGCGGAATACAGAGCTCTAGTCCGAGTTGGAGCTTCTATTGATGGAGCGGAAAATCGT-CAACGCCTTCTCTTGGATGTTATAAGATGG CAT-CAATTATTCACGGACTACTGTCGCGC-CATAAATGCCCTCTACTACGAATTGATCG CCACTCAGGTTCTTTCGATGGCTTTGGC-CATGATGCTCAGCTTCTGCATTAATTTGAG CAGCTTTCACATGCCTTCGGC-TATCTTTTCGTGGTTTCTGCCTACAGCATGTCCATC TATTGCATTCTGGGCACCATTCT-TGAGTTTGCATATGACCAGGTGTACGAGAGCATCT GTAATGTGACCTGGTATGAGTTGAGTG-GCGAACAGCGAAAGCTTTTTGGTTTTTGTT GCGGGAATCCCAGTATCCGCACAATAT-TCAGATACTTGGAGTTATGTCGCTTTCCGTG AGAACGGCTCTGCAGATTGTTAAAC-TAATTTATAGCGTATCCATGATGATGATGAATC **GGGCG**

[**0202**] DOR117

[0203] MDLRRWFPTLYTQSKDSPVRSRDAT-LYLLRCVFLMGVRKPPAKFFVAYVLWSFALNFC STFYQPIGFLTGYISHLSEFSPGE-FLTSLQVAFNAWSCSTKVLIVWALVKRFDEANNL LDEMDRRITDPGERLQIHRAVSLSN-RIFFFFMAVYMVYATNTFLSAIFIGRPPYQNYY PFLD-WRSSTLHLALQAGLEYFAMAGACFQD-VCVDCYPVNFVLVLRAHMSIFAERLRRL GTYPYESQEQKYERLVQCIQDHKVILR-FVDCLRPVISGTIFVQFLVVGLVLGFTLINI VLFANLG-SAIAALSFMAAVLLETTPFCILCNYLT-EDCYKLADALFQSNWIDEEKRYQK TLMYFLQKLQQPITFMAMNVFPISVGTNISVSRCAL

[0204] DOR117nt

[0205] ATGGATCTGCGAAGGTGGTTTCCGACCT-TGTACACCCAGTCGAAGGATTCGCCAGTTC GCTC-CCGAGACGCGACCCTGTACCTC-CTACGCTGCGTCTTCTTAATGGGCGTCCGCAA GCCACCTGCCAAGTTTTTCGTGGC- ${\tt CTACGTGCTCTGGTCCTTCGCACTGAATTTCTGC}$ TCAACATTTTATCAGCCAATTG-GCTTTCTCACAGGCTATATAAGCCATTTATCAGAGT TCTCCCCGGGAGAGTTTCTAACTTCGCT-GCAGGTGGCCTTTAATGCTTGGTCCTGCTC TACAAAAGTCCTGATAGTGTGGGCAC-TAGTTAAGCGCTTTGACGAGGCTAATAACCTT CTC-GACGAGATGGATAGGCGTATCACAGAC-CCCGGAGAGCGTCTTCAGATTCATCGCG CTGTCTCCCTCAGTAACCGTATATTCT-TCTTTTTCATGGCAGTCTACATGGTTTATGC CAC-TAATACGTTTCTGTCGGCGATCTTCAT-TGGAAGGCCACCGTACCAAAATTACTAC CCTTTTCTGGACTGGCGATCTAG-CACTCTGCATCTAGCTCTGCAGGCCGGTCTGGAAT ACTTCGCCATGGCTGGCGCCTGCTTC-CAGGACGTTTGCGTTGATTGCTACCCAGTCAA TTTCGTTTTGGTCCTGCGTGCCCACAT-GTCGATCTTCGCGGAGCGCCTTCGACGTTTG GGAACTTATCCTTATGAAAGCCAGGAG-CAGAAATATGAACGATTGGTTCAGTGCATAC AAGATCACAAAGTAATTTTGCGATTTGT-TGACTGCCTGCGTCCTGTTATTTCTGGTAC CATCT-TCGTGCAATTCTTGGTTGTGGGGTTGGT-GCTGGGCTTTACCCTAATTAACATT CTCCTGTTCGCCAACTTGGGATCGGC-CATCGCAGCGCTCTCGTTTATGGCCGCAGTGC TTCTAGAGACGACTCCCTTCTGCATAT-TGTGCAATTATCTCACAGAAGACTGCTACAA GCTG-GCCGATGCCCTGTTTCAGTCAAACTG-GATTGATGAGGAGAAACGATACCAAAAG ACACTCATGTACTTCCTACAGAAACTG-CAGCAGCCTATAACCTTCATGGCTATGAACG TGTTTCCAATATCTGTGGGAACTAACAT-CAGTGTAAGCAGATGTGCCCTT

[**0206**] DOR118

[0207] MKFIGWLPPKQGVLRYVYLTWTLMT-FVWCTTYLPLGFLGSYMTQIKSFSPGEFLTSLQ VCI-NAYGSSVKVAITYSMLWRLIKAK-NILDQLDLRCTAMEEREKIHLVVARSNHAFLIFTFVYCGYAGSTYLSSVLSGRPPWQLYN-PFIDWHDGTLKLWVASTLEYMVMSGAVLOD OLS-

DSYPLIYTLILRAHLDMLRERIRRLRSDENLSEAESYEELVKCVMDHKLILRYCA
IIKPVIQGTIFTQFLLIGLVLGFTLINVFFFSDIWTGIASFMFVITILLQTFPFCYTC NLIMEDCESLTHAIFQSNWVDASRRYKTTLLYFLQNVQQPIVFIAGGIFQISMSSNIS
VAKFAFSVITITKQMNIADKFKTD

[0208] DOR118nt

[0209] ATGAAGTTTATTGGATGGCTGC-CCCCCAAGCAGGGTGTGCTCCGGTATGT-GTACCTCA CCTGGACGCTAATGACGTTCGTGTGGT-GTACAACGTACCTGCCGCTTGGCTTCCTTGG TAGCTACATGACGCAGATCAAGTCCT-TCTCCCCTGGAGAGTTTCTCACTTCACTCCAG GTGTGCATTAATGCCTACGGCTCATCGG-TAAAAGTTGCAATCACATACTCCATGCTCT GGCGC-CTTATCAAGGCCAAGAACATTTTGGAC-CAGCTGGACCTGCGCTGCACCGCCAT GGAGGAGCGCGAAAAGATCCACCTAGTG-GTGGCCCGCAGCAACCATGCCTTTCTCATC TTCAC-CTTTGTCTACTGCGGATATGCCGGCTC-CACCTACCTGAGCTCGGTTCTCAGCG GGCGTCCGCCCTGGCAGCTGTACAATC-CCTTTATTGATTGGCATGACGGCACACTCAA GCTCTGGGTGGCCTCCACGTTGGAGTA-CATGGTGATGTCAGGCGCCGTTCTGCAGGAT CAACTCTCGGACTCTTACCCATTGATC-TATACCCTCATCCTTCGTGCTCACTTGGACA TGCTAAGGGAGCGCATCCGACGCCTC-CGTTCCGATGAGAACCTGAGCGAGGCCGAGAG CTATGAAGAGCTGGTCAAATGTGTGATG-GACCACAAGCTCATTCTAAGATACTGCGCG ATTAT-TAAACCAGTAATCCAGGGGACCATCT-TCACACAGTTTCTGCTGATCGGCCTGG TTCTGGGCTTCACGCTGATCAACGT-GTTTTCTCAGACATCTGGACGGGCATCGC ATCATTTATGTTTGTTATAAC-CATTTTGCTGCAGACCTTCCCCTTCTGC-**TACACATGC** AACCTCATCATGGAGGACTGC-GAGTCCTTGACCCATGCTATTTTCCAGTCCAACTG TGGATGCCAGTCGTCGCTACAAAACAA-CACTACTGTATTTTCTCCAAAACGTGCAGCA GCCTATCGTTTTCATTGCAGGCGG-TATCTTTCAGATATCCATGAGCAGCAACATAAGT GTGGCAAAGTTTGCTTTCTCCGT-GATAACCATTACCAAGCAAATGAATATAGCTGACA **AATTTAAGACGGAC**

[0210] DOR119

[0211] MAVFKLIKPAPLTEKVQSRQGNIY-LYRAMWLIGWIPPKEGVLRYVYLFWTCVPFAFGV FYLPVGFIISYVQEFKNFTPGE-FLTSLQVCINVYGASVKSTITYLFLWRLRKTEILLD SLDKRLANDSDRERIHNMVARCN-YAFLIYSFIYCGYAGSTFLSYALSGRPPWSVYNPF IDWRDGMGSLWIQAIFEYITMSFAV-LQDQLSDTYPLMFTIMFRAHMEVLKDHVRSLRM DPERSEADNYQDLVNCVLDHKTILKCCD-MIRPMISRTIPVQFALIGSVLGLTLVNVFF FSNF-WKGVASLLFVITILLQTFPFCYTCNM-LIDDAQDLSNEIFQSNWVDAEPRYKATL VLFMHHVQQPIIFIAGGIFPISMNSNIT-VAKFAFSIITIVRQMNLAEQFQATGGCGGT

GTTCAAGCTAATCAAACCGGCTCCGT-TGACCGAGAAGGTGCAGTCCCGCCAGGGGAAT ATATATCTGTACCGTGCCATGTGGCT-CATCGGATGGATTCCGCCGAAGGAGGGAGTCC TGCGCTACGTGTATCTCTTCTGGACCT-GCGTGCCCTTCGCCTTCGGGGTGTTTTACCT GCCCGTGGGCTTCATCATCAGCTACGTG-CAGGAGTTCAAGAACTTCACGCCGGGCGAG TTC-CTTACCTCGCTGCAGGTGTGCATCAAT-GTGTATGGCGCCTCGGTGAAGTCCACCA TCACCTACCTCTTCCTCTGGCGACTGCG-CAAGACGGAGATCCTTCTGGACTCCCTGGA CAA-GAGGCTGGCGAACGACAGCGATCGC-GAGAGGATCCACAATATGGTGGCGCGCTGC AACTACGCCTTTCTCATCTACAGCT-TCATCTACTGCGGATACGCGGGTTCCACTTTCC TGTCCTACGCCCTCAGTGGTCGTCCTC-CGTGGTCCGTCTACAATCCCTTCATCGATTG GCGC-GATGGCATGGGCAGCCTGTGGATCCAG-GCCATATTCGAGTACATCACCATGTCC TTCGCCGTGCTGCAGGACCAGCTATC-CGACACGTATCCCCTGATGTTCACCATTATGT TCCGGGCCCACATGGAGGTCCTCAAG-GATCACGTGCGGAGCCTGCGCATGGATCCCGA GCGCAGTGAGGCAGACAACTATCAG-GATCTGGTGAACTGCGTGCTGGACCACAAGACT ATACTGAAATGCTGTGACATGATTCGC-CCCATGATATCCCGCACCATCTTCGTGCAAT TCGCGCTGATTGGTTCCGTTTTGGGCCT-GACCCTGGTGAACGTGTTCTTCTCGAA CTTCTGGAAGGGCGTGGCCTCGCTCCT-GTTCGTCATCACCATCCTGCTGCAGACCTTC CCGT-TCTGCTACACCTGCAACATGCTGATC-GACGATGCCCAGGATCTGTCCAACGAGA TTTTCCAGTCCAACTGGGTGGACGCG-GAGCCGCGCTACAAGGCGACGCTGGTGCTCTT CATGCACCATGTTCAGCAGCCCAT-AATCTTCATTGCCGGAGGCATCTTTCCCATCTCT ATGAACAGCAACATAACCGTGGCCAAGT-TCGCCTTCAGCATCATTACAATAGTGCGAC GAATCTGGCCGAGCAGTTCCAG

[**0212**] DOR120

[0213] MTKFFFKRLQTAPLDQEVSSLDAS-DYYYRIAFFLGWTPPKGALLRWIYSLWTLTTMWL GIVYLPLGLSLTYVKHFDRFTPTE-FLTSLQVDINCIGNVIKSCVTYSQMWRFRRMNEL ISSLDKRCVTTTQRRIFHKMVARVNLIV-ILFLSTYLGFCFLTLFTSVFAGKAPWQLYN PLVD-WRKGHWQLWIASILEYCVVSIGTM-QELMSDTYAIVFISLFRCHLAILRDRIANL RQDPKLSEMEHYEQMVACIQDHRTIIQC-SQIIRPILSITIFAQFMLVGIDLGLAAISI LFFPNTIWTI-MANVSFIVAICTESFPCCMLCEHLIEDS-VHVSNALFHSNWITADRSYK SAVLYFLHRAQQPIQFTAGSTFPISVQS-NIAVAKFAFTIITIVNQMNLGEKFFSDRSN GDINP

[0214] DOR120nt

[0215] ATGACCAAGTTCTTCTTCAAGCGCCTG-CAAACTGCTCCACTTGATCAGGAGGTGAGTT CCCTTGATGCCAGCGACTACTACTACCG-CATCGCATTTTTCCTGGGCTGGACCCCGCC CAAGGGGGCTCTGCTCCGATGGATC-

TACTCCCTGTGGACTCTGACCACGATGTGGCTG GGTATCGTGTACCTGCCGCTCGGACT-GAGCCTCACCTATGTGAAGCACTTCGATAGAT TCACGCCGACGGAGTTCCTGACCTCCCT- ${\tt GCAGGTGGATATCAACTGCATCGGGAACGT}$ GAT-CAAGTCATGCGTAACTTATTCCCAGAT-GTGGCGTTTTCGCCGGATGAATGAGCTT ATCTCGTCCCTGGACAAGAGATGTGT-GACTACGACACAGCGTCGAATTTTCCATAAGA TGGTGGCACGGGTTAATCTCATCGTGAT-TCTGTTCTTGTCCACGTACTTGGGCTTCTG CTTTCTAACTCTGTTOACTTCG-GTTTTCGCTGGCAAAGCTCCTTG-CCACTGGTGGACTGGCG-GCAGCTGTACAAC GAAAGGCCATTGGCAGCTATGGATTGCCTCCATC ACTGTGTGGTCTCCATTGGCACCATG-**CTGGAGT** CAGGAGTTGATGTCCGACACCTACGCCATAGT GTTCATCTCCTTGTTCCGCTGCCACCTG-GCTATTCTCAGAGATCGCATAGCTAATCTG CGGCAGGATCCGAAACTCAGTGAGATG-GAACACTATGAGCAGATGGTGGCCTGCATTC AGGATCATCGAACCATCATACAGTGCTC-CCAGATTATTCGACCCATCCTGTCGATCAC TATCTTTGCCCAGTTCATGCTGGTTG-GCATTGACTTGGGTCTGGCGGCCATCAGCATC CTCTTCTTTCCGAACACCATTTGGAC-GATCATGGCAAACGTGTCGTTCATCGTGGCCA TCT-GTACAGAGTCCTTTCCATGCTGCAT-GCTCTGCGAGCATCTGATCGAGGACTCCGT CCATGTGAGCAACGCCCTGTTCCACT-CAAACTGGATAACCGCGGACAGGAGCTACAAG TCGGCGGTTCTGTATTTCCTGCAC-CGGGCTCAGCAACCCATTCAATTCACGGCCGGCT CCATATTTCCCATTTCGGTGCAGAGCAA-CATAGCCGTGGCCAAGTTCGCGTTCACAAT CATCA-CAATCGTGAACCAAATGAATCTGGGC-GAGAAGTTCTTCAGTGACAGGAGCAAT GGCGATATAAATCCT

[**0216**] DOR121

[0217] MLTDKFLRLQSALFRLLGLELLHEQD-VGHRYPWRSICCILSVASFMPLTIAFGLQNVQ NVEQLTDSLCSVLVDLLALCKIGLFLW-LYKDFKFLIGQFYCVLQTETHTAVAEMIVTR ESR-RDQFISAMYAYCFITAGLSACLMSPLSM-LISYHEQVNCSRNFHFPVCKKKYCLIS RILRYSFCRYPWDNMKLSNYIISYFWNV-CAALGVALPTVCVDTLFCSLSHNLCALFQI ARHKM-MHFEGRNTKETHENLKHVFQLYALCLN-LGHFLNEYFRPLICQFVAASLHLCVLCYQLSANILQPALLFYAAFTAAV-VGQVSIYCFCGSSIHSECQLFGQAIYESSWPHLLQENLQLVSSLKIAMMRSSLGCPIDGY-FFEANRETLITVSKAFIKVSKKTPQVND

[**0218**] DOR121

[0219] ATGCTGACGGACAAGTTCCTCCGACTG-CAGTCCGCTTTATTTCGCCTTCTCGGACTCG AATTGTTGCACGAGCAGGATGTTGGCCATC-GATATCCTTGGCGCAGCATCTCTCTCGGTGGCCAGTTTCATGCCCCT-GACCATTGCGTTTGGCCTGCAAAACGTCCAA AATGTGGAGCAATTAACCGACTCACTCT-GCTCGGTTCTCGTGGATTTGCTGGCCCTGT

GCAAAATCGGGCTTTTCCTTTGGCTTTA-CAAGGACTTCAAGTTCCTAATAGGGCAGTT CTAT-TGTGTTTTGCAAACGGAAACCCACAC-CGCTGTCGCTGAAATGATAGTGACCAGG GAAAGTCGTCGGGATCAGTTCATCAGT-GCTATGTATGCCTACTGTTTCATTACGGCTG GCCTTTCGGCCTGCCTGATGTCCCCTC-TATCCATGCTGATTAGCTACCACGAACAGGT GAAT-TGCAGCCGAAATTTCCATTTCCCAGTGT-GTAAGAAAAGTACTGCTTAATATCC AGAATATTAAGATACAGTTTCTGCA-GATATCCCTGGGACAATATGAAGCTGTCCAACT ACATCATTTCCTATTTCTGGAATGTGT-GTGCTGCATTGGGCGTGGCACTGCCCACCGT TTGT-GTGGACACACTGTTCTGTTCTCTGAGC-CATAATCTCTGTGCCCTATTCCAGATT GCCAGGCACAAAATGATG-CACTTTGAGGGCAGAAATACCAAA-GAGACTCATGACAACT TAAAGCACGTGTTTCAAC-TATATGCGTTGTGTTTGAACCTGGGCCATTTCTTAA **ACGA** ATATTTCAGACCGCTCATCTGC-CAGTTTGTGGCAGCCTCACTGCACTTGT-GTGTCCTG TGCTACCAACTGTCTGCCAATATCCTG-CAGCCAGCGTTACTCTTCTATGCCGCATTTA CGGCAGCAGTTGTTGGCCAGGTGTC-TATATACTGCTTCTGCGGATCGAGCATCCATTC GGAGTGTCAGCTATTTGGCCAGGCCATC-TACGAGTCCAGCTGGCCCCATCTGCTGCAG GAAAACCTGCAGCTTGTAAGCTCCT-TAAAAATTGCCATGATGCGATCGAGTTTGGGAT GTCCCATCGATGGTTACTTCTTCGAGGC-CAATCGGGAGACGCTCATCACGGTGAGTAA AGCGTTTATAAAAGTGTCCAAAAAGA-CACCTCAAGTGAATGAT

[0220] DOR14

[0221] MDYDRIRPVRFLTGVLKWWRLWPRKES-VSTPDWTNWQAYALHVPFTFLFVLLWLEAI
KSRDIQHTADVLLICLTTTALGGKVINIWKYAHVAQGILSEWSTWDLFELRSKQEVDM WRFEHRRFNRVFMFYCLCSAGVIPFIVIQPLFDIPNRLPFWMWTPFDWQQPVLFWYAF
IYQATTIPIACACNVTMDAVNWYLMLHLSLCLRMLGQRLSKLQHDDKDLREKFLELIH
LHQRLKQQALSIEIFISKSTFTQILVSSLIICFTIYSMQMDLPGFAAMMQYLVAMIMQ VMLPTIYGNAVIDSANMLTDSMYNSDWPDMNCRMRRLVLMFMVYLNRPVTLKAGGFFH
IGLPLFTKVVFSTLENPCISYLYFRP

[**0222**] DOR14nt

[0223] ATGGACTACGATCGAAITCGACCGGTGC-GAITTTTGACGGGAGTGCTGAAATGGTGGC
GTCTCTGGCCGAGGAAGGAATCGGTGTCCACACCGGACTGGACTAACTGGCAGGCATA TGC-CTTGCACGTTCCAITTACAITCTTGTTTGTGTTGCTTTTGTGGTTGGAGGCAATC
AAGAGCAGGGATATACAGCATACCGCCGATGTCCTTTTGAITTGCCTAACCACCACTG CCTTGGGAGGTAAAGTTATCAATATCTGGAAGTATGCCCATGTGGCCCAAGGCATTTT
GTCCGAGTGGAGCACGTGGGATCTTTTCGAGCTGAGGAGCAAACAGGAAGTGGATATG
TGGCGATTCGAGCATCGACGTTTCAATCGT-

GTTTTTATGTTTTACTGTTTGTGCAGTG CTGGTGTAATCCCATTTATTGTGAT-TCAACCGTTGTTTGATATCCCAAATCGATTGCC CTTCTGGATGTGGACACCATTCGATTG- ${\tt GCAGCAGCCTGTTCTCTTCTGGTATGCATTC}$ ATC-TATCAGGCCACAACCATTCCTATTGCCT-GTGCTTGCAACGTAACCATGGACGCTG TTAATTGGTACTTGATGCTGCATCTGTC-CTTGTGTTTGCGTATGTTGGGCCAGCGATT GAG-TAAGCTTCAGCATGATGACAAGGATCT-GAGGGAGAAGTTCCTGGAACTGATCCAT CTGCACCAGCGACTCAAGCAACAGGCCT-CGT-TGAGCATTGAAATCTTTATTTCGAAGAGCA TCACCCAAATTCTGGTCAGTTCCCTTAT-CATTTGCTTCACCATTTACAGCATGCA GATGGACTTGCCAGGATTTGCCGCCAT-GATGCAGTACCTAGTGGCCATGATCATGCAG GTCATGCTGCCCACCATATATGG-TAACGCCGTCATCGATTCTGCAAATATGTTGACCG ATTCCATGTACAATTCGGATTGGCCG-GATATGAATTGCCGAATGCGTCGCCTAGTTTT AAT-GTTTATGGTGTACTTAAATCGACCGGT-GACCTTAAAAGCCGGTGGCTTTTTTCAT ATTGGTTTACCTCTGTTTACCAAGGTTG-TATTTCTACTCTGGAAAATCCTTGTATAA **GTTATCTTTATTTCAGACCA**

[**0224**] DOR16

[0225] MTDSGQPAIADHFYRIPRISGLIVGLW-PQRIRGGGGRPWHAHLLFVFAFAMVVVGAVG
EVSYGCVHLDNLVVALEAFCPGTTKAVCVLKLWVFFRSNRRWAELVQRLRAILWESRR
QEAQRMLVGLATTANRLSLLLLSSGTATNAAFTLQPLIMGLYRWIVQLPGQTELPFNI ILPSFAVQPGVFPLTYVLLTASGACTVFAFSFVDGFFICSCLYICGAFRLVQQDIRRI
FADLHGDSVDVFTEEMNAEVRHRLAQVVERHNAIIDFCTDLTRQFTVIVLMHFLSAAF
VLCSTILDIMLVSPFSEAFLWGGYPWVCRATGFSHRLHSAAVLKVFPCFHCLLFFPGF SSRSVLIRFSRFVCLLCGCGCGSLRWQFISA

[**0226**] DOR16nt

[0227] ATGACTGACAGCGGGCAGCCTGCCAT-TGCCGACCACTTTTATCGGATTCCCCGCATCT CCG-GCCTCATTGTCGGCCTCTGGCCGCAAAG-GATAAGGGGCGGGGGGGGTCGTCCTTG GCACGCCCATCTGCTCTTCGTGTTCGC-CTTCGCCATGGTGGTGGTGGGTGGGC GAG-GTGTCGTACGGCTGTGTCCACCTGGA-CAACCTGGTGGTGGCGCTTGGAGGCCTTCT GCCCCGGAACCACCAAGGCGGTCT-GCGTTTTGAAGCTGTGGGTCTTCTTCCGCTCCAA TCGCCGGTGGGCGGAGTTGCTCCAGCGC- ${\tt CTGCGGGCTATTTTGTGGGAATCGCGGCGG}$ CAG-GAGGCCCAGAGGATGCTGGTCGGACTG-GCCACCACGGCCAACAGGCTCAGCCTGT TGTTGCTCAGCTCTGGCACGGCGA-CAAATGCCGCCTTCACCTTGCAACCGCTGATTAT GGGTCTCTACCGCTGGATTGTGCAGCT-GCCAGGTCAAACCGAGCTGCCCTTTAATATC ATACTGCCCTCGTTTGCCGTGCAGCCAG-GAGTCTTTCCGCTCACCTACGTGCTGCTGA CCGCT-TCCGGTGCCTGCACCGTTTTCGCCT-

TCAGCTTCGTGGACGGATTCTTCATTTG CTCGTGCCTCTACATCTGCGGCGCTTTC-CGGCTGGTGCAGCAGGACATTCGCAGGATA TTTGCCGATTTGCATGGCGACTCAGTG-GATGTGTTCACCGAGGAGATGAACGCGGAGG TGCGGCACAGACTGGCCCAAGTTGTC-GAGCGCACAATGCGATTATCGATTTCTGCAC GGACCTAACACGCCAGTTCACCGT-TATCGTTTTAATGCATTTCCTGTCCGCCGCCTTC GTCCTCTGCTCGACCATCCTGGACAT-CATGTTGGTGAGCCCCTTTTCAGAGGCCTTCC TTTGGGGCGGGTATCCT-TGGGTTTGTCGCGCCACTGGCTTTTCG-GGCGGCTGTTT-CATCGCCTGCATTC TAAAAGTTTTTCCCTGTTTTCACTGTTTGCTGTTT GCTGCGGCTCTCTCCGGTGGCAATT-TATAAGCCCATGA

[0228] DOR19

[0229] MVTEDFYKYQVWYFQILGVWQLPT-WAADHQRRFQSMRFGFILVILFIMLLLFSFEMLN NISQVREILKVFFMFATEISCMAK-LLHLKLKSRKLAGLVDAMLSPEFGVKSEQEMQML ELDRVAVVRMRNSYGIMSLGAAS-LILIVPCFDNFGELPLAMLEVCSIEGWICYWSQYL FHSICLLPTCVLNITYDSVAY-SLLCFLKVQLQMLVLRLEKLGPVIEPQDNEKIAMELR ECAAYYNRIVRFKDLVELFIKGPGS-VQLMCSVLVLVSNLYDMSTMSIANGDAIFMLKT CIYQLVMLWQIFIICYASNEVTVQSSR-LCHSIYSSQWTGWNRANRRIVLLMMQRFNSP MLLSTFNPTFAFSLEAFGSVGQQKFLYIS-FITGYALLLSDRQLLLQLLRTAEARQQLN FETPQHLKIFKPIFKSTQNVMHVH

[**0230**] DOR19nt

[0231] ATGGTTACGGAGGACTTTTATAAGTAC-CAGGTGTGGTACTTCCAAATCCTTGGTGTTT GGCAGCTCCCCACTTGGGCCGCAGAC-CACCAGCGTCGTTTTCAGTCCATGAGGTTTGG CTTCATCCTGGTCATCCTGTTCATCAT-GCTGCTGCTTTCTCCTTCGAAATGTTGAAC AACATTTCCCAAGTTAGGGAGATC-CTAAAGGTATTCTTCATGTTCGCCACGGAAATAT CCTGCATGGCCAAATTATTG-CATTTGAAGTTGAAGAGCCG-CAAACTCGCTGGCTTGGT TGATGCGATGTTGTC-CCCAGAGTTCGGCGTTAAAAGTGAACAGGAAAT GCAGATGCTG GAATTGGATAGAGTGGCGGTTGTC-CGCATGAGGAACTCCTACGGCATCATGTCCCTGG GCGCGGCTTCCCTGATCCTTATAGTTC-CCTGTTTCGACAACTTTGGCGAGCTACCACT GGC-CATGTTGGAGGTATGCAGCATCGAGG-GATGGATCTGCTATTGGTCGCAGTACCTT TTCCACTCGATTTGCCTGCTGCCCACT-TGTGTGCTGAATATAACCTACGACTCGGTGG CCTACTCGTTGCTCTGTTTCTTGAAGGT-TCAGCTACAAATGCTGGTCCTGCGATTAGA AAAGT-TGGGTCCTGTGATCGAACCCCAG-GATAATGAGAAAATCGCAATGGAACTGCGT GAGTGTGCCGCCTACTACAACAGGAT-TGTTCGTTTCAAGGACCTGGTGGAGCTGTTCA

TAAAGGGCCAGGATCTGTGCAGCTCAT-GTGTTCTGTTCTGGTGCTGGTGTCCAACCT GTAC-GACATGTCCACCATGTCCATTGCAAACG-GCGATGCCATCTTTATGCTCAAGACC TGTATCTATCAGCTGGTGATGCTCTG-GCAGATCTTCATCATTTGCTACGCCTCCAACG AGG-TAACTGTCCAGAGCTCTAGGTTGTCA-CAGCATCTACAGCTCCCAATGGACGGG ATGGAACAGGGCAAACCGCCGGATTGTC-CTTCTCATGATGCAGCGCTTTAATTCCCCG ATGCTC-CTGAGCACCTTTAACCCCAC-CTTTGCTTTCAGCTTGGAGGCCTTTGGTTCTG TAGGGCAGCAGAAATTCCTTTATATAT-CATTTATTACTGGTTATGCTCTTCTCCTTTC AGATCGTCAACTGCTCCTACAGCTACT-TCGCACTGCTGAAGCGCGTCAACAGTTAAAT TTC-GAAACACCGCAGCACCTAAA-GATTTTCAAGCCGATTTTTAAAAGCACTCAAAACG TTATGCACGTACAT

[**0232**] DOR20

[0233] MSKGVEIFYKGQKAFLNILSLWPQIER-RWRIIHQVNYVHVIVFWVLLFDLLLVLHVMA
NLSYMSEVVKAIFILATSAGHTTKLLSIKANNVQMEELFRRLDNEEFRPRGANEELIF AAACERSRKLRDFYGALSFAALSMILIPQFALDWSHLPLKTYNPLGENTGSPAYWLLY
CYQCLALSVSCITNIGFDSLCSSLFIFLKCQLDILAVRLDKIGRLITTSGGTVEQQLK
ENIRYHMTIVELSKTVERLLCKPISVQIFCSVLVLTANFYAIAVWSCEFATRRLSVCD LSGVHVDSDFYIVLLCRVGIPYPKCLPRPVMNFIVSEVTQRSLDLPHELYKTSWVDWD
YRSRRIALLFMQRLHSTLRIRTLNPSLGFDLMLFSSVSSFRVLTFLCTVANFHNEAH

[**0234**] DOR20nt

[0235] ATGAGCAAAGGAGTAGAAATCTTTTA- ${\tt CAAGGGCCAGAAGGCATTCTTGAACATCCTCT}$ CGTTGTGGCCTCAGATAGAACGCCGGTG-GAGAATCATCCACCAGGTGAACTATGTCCA CGTAATTGTGTTTTTGGGTGCT-GCTCTTTGATCTCCTCTTGGTGCTCCAT-GTGATGGCT AATTTGAGCTACATGTCCGAGGTTGT-GAAAGCCATCTTTATCCTGGCCACCAGTGCAG GGCACACCACCAAGCTGCTGTCCAT-AAAGGCGAACAATGTGCAGATGGAGGAGCTCTT TAGGAGATTGGATAACGAAGAGTTC-CGTCCTAGAGGCGCCAACGAAGAGTTGATCTTT GCAGCAGCCTGTGAAAGAAGTAG-GAAGCTTCGGGACTTCTATGGAGCGCTTTCGTTTG CCGCCTTGAGCATGATTCTCATAC-CCCAGTTCGCCTTGGACTGGTCCCACCTTCCGCT CAAAACATACAATCCGCTTGGC-GAGAATACCGGCTCACCTGCTTATTGGCTCCTCTAC TGCTATCAGTGTCTGGCCTTGTCCG-TATCCTGCATCACCAACATAGGATTCGACTCAC TCTGCTCCTCACTGTTCATCTTCCT-CAAGTGCCAGCTGGACATTCTGGCCGTGCGACT GGACAAGATCGGTCGGTTAATCACTACT-TCTGGTGGCACTGTGGAACAGCAACTTAAG GAAAATATCCGCTATCACATGAC-CATCGTTGAACTGTCGAAAACCGTGGAGCGTCTAC TTTGCAAGCCGATTTCGGTGCAGATCT-

[**0236**] DOR24

[0237] MDSFLQVQKSTIALLGFDLFSENREM-WKRPYRAMNVFSIAAIFPFILAAVLHNWKNVL
LLADAMVALLITILGLFKFSMILYLRRDFKRLIDKFRLLMSNEAEQGEEYAEILNAAN
KQDQRMCTLFRTCFLLAWALNSVLPLVRMGLSYWLAGHAEPELPFPCLFPWNIHIIRN
YVLSFIWSAFASTGVVLPAVSLDTIFCSFTSNLCAFFKIAQYKVVRFKGGSLKESQAT LNKVFALYQTSLDMCNDLNQCYQPIICAQFFISSLQLCMLGYLFSITFAQTEGVYYAS
FIATIIIQAYIYCYCGENLKTESASFEWAIYDSPWHESLGAGGASTSICRSLLISMMR AHRGFRITGYFFEANMEAFSSIVRTAMSYITMLRSFS

[**0238**] DOR24nt

[0239] GGCACGAGCCTTGTCGACATGGA-CAGTTTTCTGCAAGTACAGAAGAGCACCATTGCTC TTCTGGGCTTTGATCTCTTTAGT-GAAAATCGAGAAATGTGGAAACGCCCCTATAGAGC AATGAATGTGTTTAGCATAGCTGC-CATTTTTCCCTTTATCCTGGCAGCTGTGCTCCAT AATTGGAAGAATGTATTGCTGCTGGC-CGATGCCATGGTGGCCCTACTAATAACCATTC TGGGCCTATTCAAGTTTAGCAT-GATACTTTACTTACGTCGCGATTTCAAGCGACTGAT TGACAAATTTCGTTTGCTCATGTCGAAT-GAGGCGAACAGGCCGAGGAATACGCCGAG ATTCTCAACGCAGCAAACAAGCAGGAT-CAACGAATGTGCACTCTGTTTAGGACTTGTT TCCTCCTCGCCTGGGCCTTGAATAGTGT-TCTGCCCCTCGTGAGAATGGGTCTCAGCTA TTGGT-TAGCAGGTCATGCAGAGCCCGAGTTGC-CTTTTCCCTGTCTTTTTCCCTGGAAT ATCCACATCATTCGCAATTAT-GTTTTGAGCTTCATCTG-GAGCGCTTTCGCCTCGACAG GTGTGGTTTTACCT-GCTGTCAGCTTGGATACCATATTCTGTTCCTTCAC CAGCAACCT GTGCGCCTTCTTCAAAATTGCGCAG-TACAAGGTGGTTAGATTTAAGGGCGGATCCCTT AAAGAATCACAGGCCACATTGAA-CAAAGTCTTTGCCCTGTACCAGACCAGCTTGGATA TGTGCAACGATCTGAATCAGTGCTAC-CAACCGATTATCTGCGCCCAGTTCTTCATTTC ATCTCTGCAACTCTGCATGCTGG-GATATCTGTTCTCCATTACTTTTGCCCAGACAGAG GGCGTGTACTATGCCTCTTTCATAGC-CACCATCATTATACAAGCCTATATCTACTGCT ACT- GCGGGGAGAACCTGAAGACGGAGAGTGC-CAGCTTCGAGTGGGCCATCTACGACAG TCCGTGGCACGAGAGTTTGGGTGCTG-GTGGAGCCTCTACCTCGATCTGCCGATCCTTG CTGATCAGCATGATGCGGGCTCATCGGG-GATTCCGCATTACGGGATACTTCTTCGAGG CAAA-CATGGAGGCCTTCTCATCGATTGTTCG-CACGGCTATGTCCTACATCACAATGCT GAGATCATTCTCCTAAATGTGGTTTGAC-CACAAGGCTTTGGATTGATTTTTGTGCAAT TTTTGTTTTATTGCTGAGCATGCGTTGC-CGTACGACATTTAACAATCGATCTTACGTA ATTTA-CATATGATAATCTCACATATTGTTCGT-TAAGCACTAAGTAGAATGT GAATTGGCTGTAGAAATGCACAGAT-GAAGCACGAAAAAAAAAAAAAAAAAAAAAAAAAA

[0240] DOR25

[0241] MNDSGYQSNLSLLRVFLDEFRSVLRQESPGLIPRLAFYYVRAFLSLPLYRWINLFIMC
NVMTIFWTMFVALPESKNVIEMGDDLVWISGMALVFTKIFYMHLRCDEIDELISDFEY
YNRELRPHNIDEEVLGWQRLCYVIESGLYINCFCLVNFFSAAIFLQPLLGEGKLPFHS
VYPFQWHRLDLHPYTFWFLYIWQSLTSQHNLMSILMVDMVGISTFLQTALNLKLLCIE
IRKLGDMEVSDKRFHEEFCRVVRFHQHIIKLVGKANRAFNGAFNAQLMASFSLISIST
MAAAAvDPKMAAKFVLLMLVAFIQLSLWCVSGTLVYTQSVEVAQAAFDINDWHTK
SPGIQRDISFVILRAQKPLMYVAEPFLPFTLGTYMLVLKNCYRLLALMQESM

DOR25nt

[0242] ATGAACGACTCGGGTTATCAAT-CAAATCTCAGCCTTCTGCGGGTTTTTCTCGACGAGT TCCGATCGGTTCTGCGGCAGGAAAGTC-CCGGTCTCATCCCACGCCTGGCTTTTTACTA TGT-TCGCGCCTTTCTGAGCTTGCCCCTGTAC-CGATGGATCAACTTGTTCATCATGTGC AATGTGATGACCATTTTCTGGACCATGT-TCGTGGCCCTGCCCGAGTCGAAGAACGTGA TCGAAATGGGCGACGACTTGGTTTG-GATTTCGGGGATGGCACTGGTGTTCACCAAGAT CTTTTACATGCATTTGCGTTGCGAC-GAGATCGATGAACTTATTTCGGATTTTGAATAC TACAACCGGGAGCTGAGACCCCAT-AATATCGATGAGGAGGTGTTGGGTTGGCAGAGAC TGTGCTACGTGATAGAATCGGGTC-TATATATCAACTGCTTTTGCCTGGTCAACTTCTT CAGTGCCGCTATTTTCCTGCAACCTCT-GTTGGGCGAGGGAAAGCTGCCCTTCCACAGC GTC-TATCCGTTTCAATGGCATCGCTTG-GATCTGCATCCCTACACGTTCTGGTTCCTCT ACATCTGGCAGAGTCTGACCTCGCAGCA-CAACCTAATGAGCATTCTAATGGTGGATAT GGTAG-GCATTTCCACGTTCCTCCAGACGCCGCT-CAATCTCAAGTTGCTTTGCATCGAG ATAAGGAAACTGGGGGACATGGAGGT-CAGTGATAAGAGGTTCCACGAGGAGTTTTGTC GTGTGGTTCGCTTCCACCAGCACATTAT-CAAGTTGGTGGGGAAAGCCAATAGAGCTTT CAATGGCGCCTTCAATGCACAATTAATG-GCCAGTTTCTCCCTGATTTCCATATCCACT TTC- GAGACCATGGCTGCAGCGGCTGTGGATC-CCAAAATGGCCGCCAAGTTCGTGCTTC
TCATGCTGGTGGCATTCATTCAACT-GTCGCTTTGGTGCGCTCTCTGGAACTTTGGTTTA
TACTCAGTCAGTGGAGGTGGCTCAGGCT-GCTTTTGATATCAACGATTGGCACACCAAA TCGC-CAGGCATCCAGAGGGGATATATCCTTTGT-GATACTACGAGCCCAGAAACCCCTGA
TGTATGTGGCCGAACCATTTCTGCCCT-TCACCCTGGGAACCTATATGCTTGTACTGAA
GAACTGCTATCGTTTGCTGGCCCTGATG-CAAGAATCGATGTAG

[**0243**] DOR28

[0244] MYSPEEAAELKRRNYRSIREMIRL-SYTVGFNLLDPSRCGQVLRIWTIVLSVSSLASLY GHWQMLARYIHDIPRIGETAGTALQFLT-SIAKMWYFLFAHRQIYELLRKARCHELLQK CEL-FERMSDLPVIKEIRQQVESTMNRYWAST-RRQILIYLYSCICITTNYFINSFVINL YRYFTKPKGSYDIMLPLPSLYPAWEHK-GLEFPYYHIQMYLETCSLYICGMCAVSFDGV FIVL-CLHSVGLMRSLNQMVEQATSELVPP-DRRVEYLRCCIYQYQRVANFATEVNNCFR HITFTQFLLSLFNWGLALFQMS-VGLGNNSSITMIRMTMYLVAAGYQIVVYCYNGQRFA TASEEIANAFYQVRWYGESREFRHLIRM-MLMRTNRGFPRLDVSFMQMSLPTLMAVSSG AEQS-RGPAGPAGPPPRVPSYSQFHLID-SQMVRTSGQYFLLLQNVNQK

[**0245**] DOR28nt

[0246] ATGTACTCACCGGAAGAGGCGGC-CGAACTGAAGAGGCGCAACTATCGCAGCATCAGG GAGATGATCCGACTCTCCTATACG-GTGGGCTTCAACCTGTTGGATCCTTCCCGATGCG GACAGGTGCTCAGAATCTGGACAAT-TGTCCTTAGCGTGAGTAGCTTGGCATCGCTTTA TGGGCACTGGCAAATGTTAGCCAGGTA-CATTCATGATATTCCACGCATTGGAGAGACC GCTG-GAACTGCCCTGCAGTTCCTAACATCGAT-AGCAAAGATGTGGTACTTTCTGTTTG CCCATAGACAGATATACGAATTGCTAC-GAAAGGCGCCCCCCATGAATTACTCCAAAA GTGTGAGCTCTTTGAAAGGATGTCA-GATCTACCTGTTATCAAAGAGATTCGCCAGCAG GTTGAGTCCACGATGAATCGG-TACTGGGCCAGCACTCGTCGGCAAAT-TCTTATCTATT TGTACAGCTGTATTTGTATTACTA-CAAACTACTTTATCAACTCCTTCGTAATCAACCT CTATCGCTATTTCACTAAACCGAAAG-GATCCTACGACATAATGTTACCTCTGCCATCT CTG-TATCCCGCCTGGGAGCACAAGGGATTA-GAGTTTCCCTACTATCATATACAGATGT ACCTGGAAACCTGTTCTCTGTATATCT-GCGGCATGTGTGCCGTTAGCTTTGATGGAGT CTT-TATTGTCCTGTGCCTTCATAGCGTGG-GACTTATGAGGTCACTTAACCAAATGGTG GAACAAGCCACATCTGAGTTGGTTCCTC-CAGATCGCAGGGTTGAATACTTGCGATGCT GTATT-TATCAGTACCAACGAGTGGCGAACTTTG-CAACCGAGGTTAACAACTGCTTTCG GCACATCACTTTCACGCAGTTCCTGCT-TAGCCTTTTCAACTGGGGCCTGGCCTTGTTC

CAAATGAGCGTCGGATTGGGCAACACAGCAGCATCACCATGATCCGGATGACCATGT
ACCTGGTGGCAGCCGGCTATCAGATAGTTGTGTACTGCTACAATGGCCAGCGATTTGC GACTGCTAGCGAGGAGATTGCCAACGCCTTTTACCAGGTGCGATGGTACGGAGAGTCC
AGGGAGTTCCGCCACCTCATCCGCATGATGCTGATGCGCACGAACCGGGGATTCAGGC
TGGACGTGTCCTGGTTCATGCAAATGTCCTTGCCCACACTCATGGCGGTGAGTAGCGG AGCAGAGCAGAGCAGGGTCCTGCAGGTCCTGCAGGTCCTGCAGGTCCACCCCAAGG
GTCCCCTCCTACAGCCAGTTCCACTTGATTGATTCGCAGATGGTCCGGACAAGTGGAC
AGTACTTCCTGCTGCTGCAGAACGTCAACCAGAAA

[0247] DOR30

[0248] MAVSTRVATKOEVPESRRAFRNLFNCFY-ALGMQAPDGSRPTTSSTWQRIYACFSVVMY VWQLLLVPTFFVISYRYMGGMEITQVLT-SAQVAIDAVILPAKIVALAWNLPLLRRAEH HLAAL-DARCREQEEFQLILDAVRFCNYLVWFY-QICYAIYSSSTFVCAFLLGQPPYALY LPGLDWQRSQMQFCIQAWIEFLIMNWT-CLHQASDDVYAVIYLYVVRIQVQLLARRVEK LGT-DDSGQVEIYPDERRQEEHCAELQR-CIVDHOTMLOLLDCISPVISRTIFVOFLITA AIMGTTMINIFIFANTNTKIASIIYL-LAVTLQTAPCCYQATSLMLDNERLALAIFQCQ WLGOSARFRKMLLYYLHRAOOPITLTA-MKLFPINLATYFSIAKFSFSLYTLIKGMNLG ERFNRTN

[**0249**] DOR30nt

[0250] ATGGCGGTGAGCACTCGTGTGGCCA-CAAAGCAGGAAGTGCCCGAATCCCGGCGAGCGT TTAGGAATCTCTTCAATTGCTTCTATGC-CCTTGGCATGCAGGCACCGGATGGCAGTCG ACCGACCACGAGCAGCACATGGCAACG-CATCTACGCCTGCTTCTCGGTGGTCATGTAC GTGTGGCAACTGCTGCTGGTGCCCACAT-TCTTTGTGATCAGCTATCGGTACATGGGCG GCATG-GAGATTACCCAGGTGCTGACCTCCGC-CCAGGTGGCCATCGATGCGGTCATTCT GCCGGCCAAGATTGTGGCACTGGCGTG-GAATTTGCCATTGCTGCGCAGAGCAGAGCAT CATCTGGCCGCCTTGGATGCGCGGTG-CAGGGAACAGGAGGAGTTCCAATTGATCCTCG ATGCGGTGAGGTTTTGCAACTATCTGG-TATGGTTCTACCAGATCTGCTATGCCATCTA CTC-CTCGTCGACATTTGTGTGCGCCTTCCT-GCTGGGCCAACCGCCATATGCCCTCTAT TTGCCTGGCCTCGATTGGCAGCGTTC-CCAGATGCAGTTCTGCATCCAGGCCTGGATTG AGT-TCCTTATCATGAACTGGACGTGCCTG-CACCAAGCTAGCGATGATGTGTACGCCGT TATCTATCTGTATGTGGTCCGGAT-TCAAGTGCAATTGCTGGCCAGGCGGGTGGAGAAG CTGGGCACGGATGATAGTGGCCAGGTG-GAGATCTATCCCGATGAGCGGCGGCAGGAGG AGCATTGCGCGGAACTGCAGCGCTGCAT-TGTAGATCACCAGACGATGCTGCAGCTGCT CGACT-GCATTAGTCCCGTCATCTCGCGTAC-CATATTCGTTCAGTTCCTGATCACCGCC GCCATCATGGGCACCACCATGATCAA-

[**0251**] DOR31

[0252] MIFKYIQEPVLGSLFRSRDSLIYLNR-SIDQMGWRLPPRTKPYWWLYYIWTLVVIVLVF
IFIPYGLIMTGIKEFKNFTTTDLFTYVQVPVNTNASIMKGIIVLFMRRFSRAQKMMD AMDIRCTKMEEKVQV
HRAAALCNRVVVIYHCIYFGYLSMALTGALVIGKTPFCLYNPL VNPDDHFYLATAIESVTMAGIILANLILDVYPIIYVVVLRIHMELLSERIKTLRTDVE
KGDDQHYAELVECVKDHKLIVEYGNTLRPMISATMFIQLLSVGLLLGLAAVSMQFYNT VMERVVSGVYTIAILSQTFPFCYVCEQLSSDCESLTNTLFHSKWIGAERRYRTTMLYF
IHNVQQSILFTAGGIFPICLNTNIKMAKFAFSVVTIVNEMDLAEKLRRE

[**0253**] DOR31nt

[0254] ATGATTTTTAAGTACATTCAAGAGC-CAGTCCTTGGATCCTTATTTCGATCCCGGGATT CGCTGATCTACTTAAACAGATCCATA-GATCAAATGGGATGGAGACTGCCGCCACGAAC TAAGCCGTACTGGTGGCTCTATTA-CATTTGGACATTGGTGGTCATAGTACTCGTCTTT ATCTTTATACCCTATGGACTGATAAT-GACTGGAATAAAGGAGTTCAAGAACTTCACGA CCACGGATCTGTTTACGTATGTCCAGGT-GCCGGTTAACACCAATGCTTCGATCATGAA GGGCATTATAGTGTTGTTTATGCGGCG-GCGATTTTCAAGGGCTCAGAAGATGATGGAC GCCATGGACATTCGATGCACCAAGATG-GAGGAGAAAGTCCAGGTGCACCGAGCAGCAG CCTTATGCAATCGTGTTGTTGTGATT-TACCATTGCATATACTTCGGCTATCTATCCAT GGC-CTTAACCGGAGCTCTGGTGATTGGGAA-GACTCCATTCTGTTTGTACAATCCACTG GTTAACCCCGACGATCATTTCTATCTG-GCCACTGCCATTGAATCGGTCACCATGGCTG GCAT-TATTCTGGCCAATCTCATTTTGGACG-TATATCCCATCATATATGTGGTCGTTCT GCGGATCCACATGGAGCTCTTGAGT-GAGCGAATCAAGACGCTGCGTACTGATGTGGAA AAAGGCGACGATCAACATTATGC-CGAGCTGGTGGAGTGTTAAAGGATCACAAGCTAA TTGTCGAATATGGAAACACTCTGCGTC-CCATGATATCCGCCACGATGTTCATCCAACT ATCCGTTGGCTTACTTTTGGGTCTG-GCAGCGGTGTCCATGCAGTTCTATAACACC GTAATGGAGCGTGTTGTCTCCGGGGTC-TACACCATAGCCATTCTATCCCAGACCTTTC CATTTTGCTATGTCTGTGAGCAGCTGAG-CAGCGATTGCGAATCCCTGACCAACACACT GTTC- CATTCCAAGTGGATTGGAGCTGAGCCAC-GATACAGAACCACGATGTTGTACTTC
ATTCACAATGTTCAGCAGTCGATTTTGT-TCACTGCGGGCGGAATTTTCCCCATATGTC
TAAA-CACCAATATAAAGATGGCCAAGT-TCGCTTTCTCAGTGGTGACCATTGTAAATGA
GATGGACTTGGCCGAGAAATTGAGAAGGGAG

[**0255**] DOR32

[0256] MEPVQYSYEDFARLPTTVFWIMGYDM-LGVPKTRSRRILYWIYRFLCLASHGVCVGVMV FRM-VEAKTIDNVSLIMRYATLVTYIINSDTK-FATVLQRSAIQSLNSKLAELYPK-TLD
RIYHRVNDHYWTKSFVYLVIIYIGSSIM-VVIGPIITSIIAYFTHNVFTYMHCYPYFLY DPEKD-PVWIYISIYALEWLHSTQMVISNIGADI-WLLYFQVQINLHFRGIIRSLADHKP
SVKHDQEDRKFIAKIVDKQVHLVS-LQNDLNGIFGKSLLLSLLTTAAVICTVAVYTLIQ
GPTLEGFTYVIFIGTSVMQVYLV-CYYGQQVLDLSGEVAHAVYNHDFHDASIAYKRYLL
IIIIRAQQPVELNAMGYLSISLDT-FKQLMSVSYRVITMLMQMIQ

[**0257**] DOR32nt

[0258] ATGGAACCTGTGCAGTACAGCTACGAG-GATTTCGCTCGATTGCCCACGACGGTGTTCT GGAT-CATGGGCTACGACATGCTGGGCGTTC-CGAAGACCCGCTCTCGCAGGATACTATA CTGGATATATCGTTTCCTCTGTCTCGC-CAGCCATGGGGTCTGTGTAGGAGTCATGGTA TTTCGTATGGTGGAGGCAAAGACCAT-TGACAATGTTTCGCTGATCATGCGGTATGCCA CTCTGGTCACCTATATCATCAACTCG-GATACGAAATTCGCAACTGTCTTACAAAGGAG TGCAATTCAAACTCTAAACTCAAAACTG-GCCGAACTATATCCGAAGACCACGCTGGAC AGGATCTATCACCGGGTGAATGATCAC-TATTGGACCAAGTCATTTGTATATTTGGTTA TTATC-TACATTGGTTCGTCGATTATGGTTGT-TATTGGACCGATTATTACGTCGATTAT AGCTTACTTCACGCACAACGTTTTCAC-GATC-CTACATGCACTGCTATCCGTACTTTTTGTAT CTGAGAAGGATCCGGTTTGGATCTACAT-CAGCATCTATGCTCTGGAATGGTTGC ACAGCACACAGATGGTCATTTCGAACAT-TGGCGCGGATATCTGGCTGCTGTACTTTCA GGTG-CAGATAAATCTCCACTTCAGGGGCAT-TATACGATCACTGGCGGATCACAAGCCC AGTGTGAAGCACGACCAGGAGGACAG-GAAATTCATTGCGAAAAATTGTCGACAAGCAGG TGCACCTGGTCAGTTTGCAAAACGATCT-GAATGGTATCTTTGGAAAATCGCTGCTTCT AAGC-CTGCTGACCACCGCAGCGGTTATCTG-CACGGTGGCGGTGTACACTCTGATTCAG GGTCCCACCTTGGAGGGCTTCACCTAT-GTGATCTTCATCGGGACTTCTGTGATGCAGG TCTACCTGGTGTGCTATTACGGTCAG-CAAGTTCTCGACTTGAGCGGCGAGGTGGCCCA CGCCGTGTACAATCATGATTTTCACGAT-GCTTCTATAGCGTACAAGAGGTACCTGCTC ATAAT-CATTATCAGGGCGCAGCAGCCCGTG-GAACTTAATGCCATGGGCTACCTGTCCA

TTTCGCTGGACACCTTTAAACAGCTGAT-GAGCGTCTCCTACCGGGTTATAACCATGCT CATG-CAGATGATTCAG

[**0259**] DOR37

[0261] KVDSTRALVNHWRIFRIMGIHPPGKRTF-WGRHYTAYSMVWNVTFHICIWVSFSVNLLQ SNS-LETFCESLCVTMPHTLYMLKLINVRRM-RGOMISSHWLLRLLDKRLGCDDEROIIM AGIERAEFIFRTIFRGLACTVVLGIIYI-SASSEPTLMYPTWIPWNwRDsTSAYLATAM LHTTAL-MANATLVLNLSSYPGTYLILVSVHT-KALALRVSKLGYGAPLPAVRMQAILVG YIHDHQIILR*VSGNLISQCKNF*SISGVLTFIERRMY THFGVPNIFIVIEDYYILFL NYSLFKSLERSLSMTC-FLQFFSTACAQCTICYFLLFGNVGIMR-FMNMLFLLVILTTET LLLCYTAELPCKEGESLLTAVY-SCNWLSQSVNFRRLLLLMLARCQIPMILVSGVIVPI **SMKTF**

[**0262**] DOR37nt

 $\cite{[0263]}$ **information on nucleotide sequence is in progress**

[**0264**] DOR38

[0265] MRLIKISYSALNEVCVWLKLNGSWPLT-ESSRPWRSQSLLATAYIVWAWYVIASVGITI
SYQTAFLLNNLSDIIITTENCCTTFMGVLNFVRLIHLRLNQRKFRQLIENFSYEIWIP NSSKNNVAAECRRMVTFSIMTSLLACLIIMYCVLPLVEIFFGPAFDAQNKPFPYKMI
FPYDAQSSWIRYVMTYIFTSYAGICVVTTLFAEDTILGFFITYTCGQFHLLHQRIAGL FAGSNAELAESIQLERLKRIVEKHNNIISANSV

[**0266**] DOR38nt [0267] ATGCGTTTGATCAAAATTTCATATTCG-GCACTTAATGAGGTGTGCGTTTGGCTGAAAC TGAATGGTTCTTGGCCATTAACCGAAT-CATCGAGGCCATGGAGGAGCCAATCCTTATT GGC-CACCGCCTACATCGTGTGGGCGTGG-TACGTCATTGCATCTGTGGGCATAACAATC AGCTATCAGACGGCCTTTTTTGCTGAA-CAACCTTTCGGACATTATTATCACCACGGAAA ATTGTTGCACCACCTTTATGGGTGTCCT-GAACTTTGTCCGACTCATCCATCTTCGCCT CAGAGGAAATTCCGCCAGCTTAT-TGAGAACTTTTCCTACGAAATTTGGATACCT AATTCTTCCAAAAACAATGTTGCCGC-CGAGTGTCGCAGACGCATGGTTACCTTCAGCA TAATGACATCCTTGCTAGCGTGCCTGAT-CATAATGTATTGTGTCCTGCCGCTGGTGGA GATCT-TCTTTGGACCCGCCTTCGATGCACAGAA-CAAGCCGTTTCCCTACAAGATGATC TTTCCGTACGATGCCCAGAGCAGTTG-GATCCGATATGTGATGACCTACATCTTCACCT CCTACGCGGGAATCTGTGTGGTCACCAC-CTTGTTTGCAGAGGACACCATTCTTGGCTT CTTCATAACCTACACTTGTGGC-CAATTTCATTTGCTACACCAACGAATCGCAGGTTTA TTTGCGGGTTCCAATGCGGAATTGGC-CGAGAGCATTCAGCTGGAGCGACTCAAACGTA TTGTGGAAAAACACAACAATATTAT-CAGCGCAAATTCTGTA

[0268] DOR44

[0269] MKSTFKEERIKDDSKRRDLFVFVRQTM-CIAAMYPFGYYVNGSGVLAVLVRFCDLTYEL FNY-FVSVHIAGLYICTIYINYGQGDLDFFVN-CLIQTIIYLWTIAMKLYFRRFRPGLLN
TILSNINDEYETRSAVGFSFVTMAGSYR-MSKLWIKTYVYCCYIGTIFWLALPIAYRDR
SLPLACWYPFDYTQPGVYEVVFLLQAMG-QIQVAASFASSSGLHMVLCVLISGQYDVLF CSLKNV-LASSYVLMGANMTELNQLQAEQSAADVE-PGQYAYSVEETPLQELLKVGSSM
DFSSAFRLSFVRCIQHHRYIVAALK-KIESFYSPIWFVKIGEVTFLMCLVAFVSTKSTA ANSFM-RMVSLGQYLLLVLYELFIICYFADI-VFQNSQRCGEALWRSPWQRHLKDVRSDY
MFFMLNSRRQFQLTAGKISNLNVDRFRGVGILT

[**0270**] DOR44nt

[0271] ATGAAGAGCACATTCAAGGAAGAAAG-GATTAAGGACGACTCCAAGCGTCGCGACCTGT TTGTATTCGTGAGGCAAACCATGTGTAT-AGCGGCCATGTATCCCTTCGGTTACTACGT GAATG-GATCTGGAGTCCTGGCCGTTCTGGTGC-GATTCTGTGACTTGACCTACGAGCTC TTTAACTACTTCGTTTCGGTACACAT-AGCTGGCCTGTACATCTGCACCATCTACATCA ACT-ATGGGCAAGGCGATTTGGACTTCTTCGT-GAACTGTTTGATACAAACCATTATTTA TCTGTGGACAATAGCGATGAAACTC-TACTTTCGGAGCTTCAGACCTGGTTTGTTGAAT ACCATTCTGTCCAACATCAATGATGAG-TACGAGACACGTTCGGCTGTGGGATTCAGTT TCGT-CACAATGGCGGGATCCTATCGGATGTC-CAAGCTATGGATCAAAACCTATGTGTA TTGCTGCTACATAGGCACCATTTTCTG-GCTGGCTCTTCCCATTGCCTACCGGGATAGG AGTCTTCCTCTTGCCTGCTGGTATC-CCTTTGACTATACACAACCCGGTGTCTATGAGG TAGTGTTCCTTCTCCAGGCGATGGGACA-GATCCAAGTGGCCGCATCCTTTGCCTCCTC CAGTG-GCCTGCATATGGTGCTTTTGTGTGCT-GATATCAGGGCAGTACGATGTCCTCTTT TGCAGTCTCAAGAATGTATTAGCCAG-CAGCTATGTCCTTATGGGAGCCAATATGACGG AACTGAATCAATTGCAGGCTGAG-CAATCTGCGGCCGATGTCGAGCCAGGTCAGTATGC TTACTCCGTGGAGGAGGAGACACCTTTG-CAAGAACTTCTAAAAGTTGGGAGCTCAATG GACT-TCTCCTCCGCATTCAGGCTGTCTTTTGT-GCGGTGCATTCAGCACCATCGATACA TAGTGGCGGCACTGAAGAAAAT-TGAGAGTTTCTACAGTCCCATATGGTTCGTGAAGAT TGGCGAAGTCACCTTTCTTATGTGCCTG-GTAGCCTTCGTCTCCACGAAGAGCACCGCG GCCAACTCATTCATGCGAATGGTCTCCT-TGGGCCAGTACCTGCTCTTAGTTCTCTACG AGCT-GTTCATCATCTGCTACTTCGCGGA-CATCGTTTTTCAGAACAGCCAGCGGTGCGG TGAAGCCCTCTGGCGAAGTCCTTG-GCAGCGACATTTGAAGGATGTTCGCAGTGATTAC ATGTTCTTTATGCTGAATTCCCGCAG-GCAGTTCCAACTTACGGCCGGAAAAATAAGCA ATCTAAACGTGGATCGTTTCA-GAGGGGTGGGTATCCTTACT

[**0272**] DOR46

[0273] MAEVRVDSLEFFKSHWTAWRYLGVAHFR-VENWKNLYVFYSIVSNLLVTLCYPVHLGIS LFRNR-TITEDILNLTTFATCTACSVK-CLLYAYNIKDVLEMERLLRLLDERVVGPEQRS IYGQVRVQLRNVLYVFIGIYMPCAL-FAELSFLFKEERGLMYPAWFPFDWLHSTRNYYI ANAYQIVGISFQLLQNYVSDCFPAVVL-CLISSHIKMLYNRFEEVGLDPARDAEKDLEA CITDH-KHILELFRRIEAFISLPMLIQFTVTALN-VCIGLAALVFFVSEPMARMYFIFYS LAMPLQIFPSCFFGTDNEYWFGRL-HYAAFSCNWHTQNRSFKRKMMLFVEQSLKKSTAV AGGMMRIHLDTFFSTLKGAYSLFTIIIRMRK

[**0274**] DOR46nt

[0275] ATGGCAGAGGTCAGAGTGGACAGTCTG-GAGTTTTTCAAGAGCCATTGGACCGCCTGGC GGTACTTGGGAGTGGCT-CATTTTCGGGTCGAGAACTGGAAGAAC-CTTTACGTGTTTTA CAGCATTGTGTCGAATCT-TCTCGTGACCCTGTGCTACCCCGTTCACCTGGGA CTCTTTCGCAACCGCACCATCACCGAG-ATATCC GACATCCTCAACCTGACCACCTTTGCGACCT GCA-CAGCCTGTTCGGTGAAGTGCCTGCTC-TACGCCTACAACATCAAGGATGTGCTGGA GATGGAGCGGCTGTTGAGGCTTTTTGGAT-GAACGCGTCGTGGGTCCGGAGCAACGCAGC ATC-TACGGACAAGTGAGGGTCCAGCTGC-GAAATGTGCTATACGTGTTCATCGGCATCT ACATGCCGTGTGCCCTGTTCGCCGAGC-TATCCTTTCTGTTCAAGGAGGAGCGCGGTCT GATG-TATCCCGCCTGGTTTCCCTTCGACTG-GCTGCACTCCACCAGGAACTATTACATA GCGAACGCCTATCAGAT-AGTGGGCATCTCGTTTCAGCTGCTG-CAAAACTATGTTAGCG ACTGCTTTCCGGCGGTGGT-GCTGTGCCTGATCTCATCCCACATCAAAATGTTGTACAA CAGATTCGAGGAGGTGGGCCTGGATC-CAGCCAGAGATGCGGAGAAGGACCTGGAGGCC TGCATCACCGATCACAAGCATATTCTA-GAGTGGGCAGGCGGCTCATTGGTTCGTGTTC TAT-TCACTTTCCAACTTTTTTCCAGACTAT-TCCGACGCATCGAGGCCTTCATTTCCCT GCCCATGCTAATTCAGTTCACAGTGAC-CGCCTTGAATGTGTGCATCGGTTTAGCAGCC CTG-GTGTTTTTCGTCAGCGAGCCCATG-GCACGGATGTACTTCATCTTCTACTCCCTGG CCATGCCGCTGCAGATCTTTCCGTCCT-GCTTTTTCGGCACCGACAACGAGTACTGGTT CGGACGCCTCCACTACGCGGCCTTCAGT-TGCAATTGGCACACACAGAACAGGAGCTTT AAGCGGAAAATGATGCTGTTCGTTGAG-CAATCGTTGAAGAAGAGCACCGCTGTGGCTG GCG-GAATGATGCGTATCCACCTGGACACGT-TCTTTTCCACCCTAAAGGGGGCCTACTC CCTCTTTACCATCATTATTCGGATGAGAAAG

[**0276**] DOR48

[0277] MERHYFMVPKFALSLIGFYPEQKRTV-LVKLWSFFNFFILTYGCYAEAYYGIHYIPINI ATALDALCPVASSILSLVKKVAIWW-YQDELRSLIERRFYTLATQLTFLLLCCGFCTST SYS-VRHLIDNILRRTHGKDWIYETPFKMMFP- DLLLRLPLYPITYILVHWHGYITVVCF VGADGFFLGFCLYFTVLLLCLQD-DVCDLLEVENIEKSPSEAEEARIVREMEKLVDRHN EVAELTERLSGVMVEITLAHFVTSSLI-IGTSVVDILLFSGLGIIVYVVYTCAVGVEIF LYCLGGSHIMEACSNLARSTFSSHW-YGHSVRVQKMTLLMVARAQRVLTIKIPFFSPSL ETLTSILRFTGSLIALAKSVI

[0278] DOR48nt

[0279] ATGGAGCGCCATTATTTCATGGTGC-CAAAGTTTGCATTATCGCTGATTGGTTTTTATC CCGAACAGAAGCGAACGGTTTTGGT-GAAACTTTGGAGTTTCTTCAACTTTTTCATCCT CACCTACGGCTGTTATGCAGAGGCTTAC-TATGGCATACACTATATACCGATTAACATA GCCACT-GCATTGGATGCCCTTTGTCCTGTGGC-CTCCAGCATTTTGTCGCTGGTGAAAA TGGTCGCCATTTGGTGGTATCAAGAT-GAATTAAGGAGTTTGATAGAGCGGGTAAGATT TTTAACAGAGCAACAGAAGTCCAAGAG-GAAACTGGGCTATAAGAAGAGGTTCTATACA CTG-GCAACGCAACTAACATTCCTGCTACTAT-GCTGTGGATTTTGCACCAGTACTTCCT ATTCCGTCAGACATTTGAT-TGATAATATCCTGAGACGCACCCATG-GCAAGGACTGGAT CTACGAGACTCCGTTCAAGAT-GATGTAAGGAAAGGGAAGAATGGTTTATATATACT TGGAACGAAATAATGATGTGATCTAAA-CAAGATGCACTTTTTTTTAGGTTCCCCGATCTTCTC-CTGCGTTTGCCACTCTATCCCATCAC-CTATATACTCGTGCATTGGCATGGCTA CATTACTGTGGTTTGTTTTTTTCGGCGCGCG-GATGGTTTCTTCCTGGGGTTCTGTTTGTAC TTCACT-GTTTTGCTGCTCTGTCTGCAGGACGAT-GTTTGTGATTTACTAGAGGTTGAAA ACATCGAGAAGAGTCCCTCCGAAGCG- ${\tt GAGGAAGCTCGCATAGTTCGGGAAATGGAAAA}$ ACTGGTGGACCGGCATAACGAGGTGGC-CGAGCTGACAGAAAGATTGTCGGGTGTTATG GTG-GAAATAACACTGGCCCACTTTGTTACT-TCGAGTTTGATAATCGGAACCAGCGTGG TGGATATTTTATTAGTGGGTATTTA-CATTTGATTAGATCCTTTCGATATATGTTCTTA AAT-TCTAGTTTTCCGGCCTGGGAATCATTGT-GTATGTGGTCTACACTTGTGCCGTAGG TGTGGAAATATTTCTATACTGTTTAG-GAGGATCTCATATTATGGAAGCGGTATATTCA TAA-GAAACTACTATAAAGTTACTTTTAAAT-TCATTGCATTTCTTAGTGTTCCAATCTA GCGCGCTCCACATTTTCCAGCCACTGG-TATGGCCACAGTGTTCGGGTCCAAAAGATGA CCCTTTTGATGGTAGCTCGTGCTCAAC-GAGTTCTCACAATTAAAATTCCTTTCTTTTC CCCAT-CATTAGAGACTCTAACTTCGGTAAGCT-TATGCGAAAATGTTATGGTACACACA AGTCTACATTTCTATGAGGTCTTGTA-GATTTTGCGCTTCACTGGATCTCTGATTGCCC **TGGCAAAGTCGGTTATA**

[**0280**] DOR53

[0281] MLSKFFPHIKEKPLSERVK-SRDAFIYLDRVMWSFGWTEPEN-KRWILPYKLWLAFVNIV MLILLPISISIEYLHRFKTF- SAGEFLSSLEIGVNMYGSSFKCAFTLIGFKKRQEAK
VL LDQLDKRCLSDKERSTVHRYVAMGNFFDILYHIFYSTFVVMNFPYFLLERRHAWRMYF
PYIDSDEQFYISSIAECFLMTEAIYMDLCTDVCPLISMLMARCHISLLKQRLRNLRSK PGRTEDEYLEELTECIRDHRLLLDYVDALRPVFSGTIFVQFLLIGTVLGLSMINLMFF
STFWTGVATCLFMFDVSMETF;FCYLCNMIIDDCQEMSNCLFQSDWTSADRRYKSTLV
YFLHNLQQPITLTAGGVFPISMQTNLAMVKLAFSVVTVIKQFNLAERFQ

[0282] DOR53nt

[0283] TCAAACAAAGCCACGGACAAGATGT-TAAGCAAGTTTTTTCCCCACATAAAAGAAAAGC CATTGAGCGAGCGGGTTAAGTC-CCGAGATGCCTTCATTTACTTGGATCGGGTGATGTG GTCCTTTGGCTGGACAGAGCCTGAAAA-CAAAAGGTGGATCCTTCCTTATAAACTGTGG TTAGCGTTCGTGAACATAGTAATGCT-CATCCTTCTGCCGATCTCGATAAGCATCGAGT ACCTCCACCGATTTAAAACCTTCTCG-GCGGGGGAGTTCCTTAGTTCCCTCGAGATTGG AGT-CAACATGTACGGAAGCTCTTTTAAGT-GCGCCTTCACCTTGATTGGATTCAAGAAA AGACAGGAAGCTAAGGTTTTACTGGAT-CAGCTGGACAAGAGATGCCTTAGCGATAAGG AGAGGTCCACTGTTCATCGCTATGTCGC-CATGGGAAACTTTTTCGATATTTTGTATCA CATTTTTTACTCCACCTTCGTGGTAAT-GAACTTCCCGTATTTTCTGCTTGAGAGACGC GCTTGGCGCATGTACTTTCCATATATC-GATTCCGACGAACAGTTTTACATCTCCA GCATCGCCGAGTGTTTTCTGATGACG-GAGGCCATCTACATGGATCTCTGTACGGACGT GTGTCCCTTGATCTCCATGCTTATG-GCTCGATGCCACATCAGCCTCCTGAAACAGCGA CTGAGAAATCTCCGATCGAAGCCAG-GAAGGACCGAAGATGAGTACTTGGAGGAGCTCA CCGAGTGCATTCGGGATCATCGATTGC-TATTGGACTATGTTGACGCATTGCGACCCGT CTTTTCGGGAACCATTTTTGTGCAGTTC-CTCCTGATCGGTACTGTACTGGGTCTCTCA ATGATAAATCTAATGTTCTTCTCGA-CATTTTGGACTGGTGTCGCCACTTGCCTTTTTATGT-TCGACGTGTCCATGGAGACGTTC-CCCTTTTGCTATTTGTGCAACATGATTATCGA TGACTGCCAGGAAATGTCCAATTGC-CTCTTTCAATCGGACTGGACCTCTGCCGATCGT CGCTACAAATCCACTTTGG-TATACTTTCTTCACAATCTTCAGCAAC-**CCATTACTCTCA** CGGCTGGTGGAGTGTTTC-CTATTTCCATGCAAACAAATTTGGCTATGGTGAA ATTTTCTGTGGTTACGGTAATTAAG-CAATTTAACTTGGCCGAAAGGTTTCAATAAGTT GAGAGGACGAGCTCTGCTACTAT-TATATTATATTATATTATATATATATATAT TATATTATATATTGCTGTAC-CCTAATAAATATTTAGTAATAAAAAAAAAAAAAAA AAAA

[**0284**] DOR56

[0285] MDPVEMPIFGSTLKLMKFWSYLFVHNWR-RYVAMTPYIIINCTQYVDIYLSTESLDFII RNVYLAV-

LFTNTVVRGVLLCVQRFSYERFINILKS-FYIELLVSTERLSQKCILHKWAV LPYGMYLPTIDEYKYASPYYE-IFFVIQAIMAPMGCCMYIPYTNMVVTFTLFAILMCRV LQHKLRSLEKLKNEQVRGEIAQ-TIAQTVIVIAYMVMIFANSVVLYYVANELYFQSFDI AIAAYESNWMDFDVDTQKTLKFLIMR-SQKPLASLVGGTYPMNLKMLQSLINAIYSFFT LLR-RVYG

[0286] DOR56nt

[0287] ATGGATCCGGTGGAGATGCCCATTTTTG-GTAGCACTCTGAAGCTAATGAAGTTCTGGT CATATCTGTTTGTTCACAACTGGCGC-CGCTATGTCGCAATGACTCCGTACATCATTAT CAACTGTACTCAGTATGTG-GATATATCTGAGCACCGAATCCTTG-GACTTTATCATC AGAAATGTATACCTGGCTGTAT-TGTTTACCAACACGGTGGTCAGAGGTGTATTGTTAT GCGTACAGCGGTTTAGCTAC-GAGCGTTTCAT-TAATATTTTGAAAAGCTTTTACATTGA GTTGTTGGT-GAGTACCGAAAGATTATCTCAAAAATGCATATTG CATAAATGGGCAGTT CTGCCATATGGCATG-TATTTGCCCACTATTGATGAATA-CAAATACGCATCACCTTACT ACGAGATTTTCTTTGT-GATTCAAGCCATTATGGCTCCAATGGGGTGTTGC ATGTACAT ACCATACACAAACATGGTAGTGACATT-TACCCTTTTCGCCATTCTCATGTGTCGAGTG CAACATAAGTTGAGAAGCCTA-GAAAAGCTGAAAAATGAACAAGTACGTGGTGAAA TCGCTCAAACAATTGCTCAGACCGTCAT-AGTCATCGCATACATGGTAATGATATTTGC CAA-CAGTGTAGTCCTTTACTACGTGGCCAAT-GAGCTATACTTTCAAAGCTTTGATATT GCCATTGCTGCCTATGAGAGCAATTG-CATGGACTTTGATGTGGACACACAAAAGACTT TGAAGTTCCTCATCATGCGCTCG-CAAAAGCCCTTGGCGAGTCTGGTGGGTGGCACATA TCCCATGAACTTGAAAATGCTTCAGT-CACTACTAAATGCCATTTACTCCTTCTTCACC CTTCTGCGTCGCGTTTACGGC

[**0288**] DOR58

[0289] MDASYFAVQRRALEIVGFDPST-PQLSLKHPIWAGILILSLISHNWPMVVYALQDLSDL TRLTDNFAVFMQGSQSTFKFLVM-MAKRRIGSLIHRLHKLNQAASATPNHLEKIEREN QLDRYVARSFRNAAYGVICASAIAPM-LLGLWGYVETGVFTPTTPMEFNFWLDERKPHF YWPIYVWGVLGVAAAAWLAIATDTLF-SWLTHNVVIQFQLLELVLEEKDLNGGDSPLTG FVS-RHRIALDLAKELSSIFGEIVFVKYML-SYLQLCMLAFRFSRSGWSAQVPFRATFLV AIIIQLSSYCYGGEYIKQQSLA-IAQAVYGQINWPEMTPKKRLWQMVIMRAQRPAKIF GFMFVVDLPLLLWVIRTAGSFLAMLRTFER

[0290] DOR58nt

[0291] ATGGACGCCAGCTACTTTGCCGTCCA-GAGAAGAGCTCTGGAAATAGTTGGATTCGATC CCAGTACTCCGCAACTGAGTCTGAAA-CATCCCATCTGGGCCGGGATTCTCATCCTGTC CTTGATCTCTCACAACTGGCCCATGG-

TAGTCTATGCCCTGCAGGATCTCTCCGACTTG ACCCGTCTGACGGACAACTTTGCGGT-GTTTATGCAAGGATCACAGAGCACCTTCAAGT TCCTGGTCATGATGGCGAAACGAAGGCG-CATTGGATCGTTGATTCACCGTTTGCATAA GCTAAACCAGGCGGCCAGTGCCACGC-CCAATCACCTGGAGAAGATCGAGAGGGAAAAC CAACTGGATAGGTATGTCGCCAGGTC-CTTTAGAAATGCCGCCTACGGAGTGATTTGTG CCTCGGCCATAGCGCCCATGTTGCTTG-GCCTGTGGGGATATGTGGAGACGGGTGTATT TAC-CCCCACCACACCCATGGAGTTCAACT-TCTGGCTGGACGAGCGAAAGCCTCACTTT TATTGGCCCATCTACGTTTGGGGCG-TACTGGGCGTGGCAGCTGCCGCCTGGTTGGCCA TTGCAACGGACACCCTGTTCTCCTGGCT-GACTCACAATGTGGTGATTCAGTTCCAACT ACTG-GAGCTTGLTCTCGAAGAGAAGGATCT-GAATGGCGGAGACTCTCGCCTGACCGGG TTTGTTAGTCGTCATCGTATAGCTCTG-GATTTGGCCAAGGAACTAAGTTCGATTTTCG GGGAGATCGTCTTTGTGAAATACATGCT-CAGTTACCTGCAACTCTGCATGTTGGCCTT TCGCT-TCAGCCGCAGTGGCTGGAGTGCCCAGGT-GCCATTTAGAGCCACCTTCCTAGTG GCCATCATCATCCAACTGAGTTCGTAT-TGCTATGGAGGCGAGTATATAAAGCAGCAAA GTTTGGCCATCGCACAAGCCGTTTATG-GTCAAATCAATTGGCCAGAAATGACGCCAAA GAAAAGAAGACTCTGGCAAATGGTGAT-CATGAGGGCGCAGCGACCGGCTAAGATTTTT GGATTCATGTTCGTTGTGGACTTGC-CACTGCTGCTTTGGGTCATCAGAACTGCGGGCT CATTTCTGGCCATGCTTAGGACTTTCGAGCGT

[**0292**] DOR59

[0293] MHEADNREMELLVATQAYTRTITLLI-WIPSVIAGLMAYSDCIYRSLFLPKSVFNVPAV RRGEE-HPILLFQLFPFGELCDNFVVGYLGPWY-ALGLGITAIPLWHTFITCLMKYVNLK LQILNKRVEEMDITRLNSKLVIGRLTA-SELTFWQMQLFKEFVKEQLRIRKFVQELQYL ICVPV-MADFIIFSVLICFLFFALTVGH-DELSLAYFSCGWYNFEMPLQKMLVFMMMHAQ RPMKMRALLVDLNLRTFIDIGRGAYSYFNLLRSSHLY

[0294] DOR59nt

[0295] ATGCACGAAGCAGATAATCGGGAGATG-GAACTTTTGGTCGCCACTCAGGCTTATACAC GAAC-CATTACCCTGTTGATCTGGATACCATCG-GTTATTGCTGGCCTAATGGCCTATTC AGACTGCATCTACAGGAGTCTGTTTCT-GCCGAAATCGGTTTTCAATGTGCCAGCTGTG CGACGTGGTGAGGAGCATCCCATTCTGC-TATTTCAGCTGTTTCCCTTCGGAGAACTTT GCGATAACTTCGTTGTTGGATACTTGG-GACCTTGGTATGCTCTGGGCCTGGGAATCAC GGC-TATCCCATTGTGGCACACCTTTATCACT-TGCCTCATGAAGTACGTAAATCTCAAG CTGCAAATACTCAACAAGCGAGTGGAG-GAGATGGATATTACCCGACTTAATTCCAAAT TGG-TAATTGGTCGCCTAACTGCCAGTGAGT-TAACCTTCTGGCAAATGCAACTCTTCAA GGAATTTGTAAAGGAACAGCTGAGGAT-

TCGAAAATTTGTCCAGGAACTACAGTATCTG
ATTTGCGTGCCTGTGATGGCAGATTTCAITATCTTCTCGGTTCTCATTTGCTTTCTCT
TTTTTGCCTTGACAGTTGGCCACGATGAACTGAGCCTTGCTTACTTTTCTTGCGGATG GTACAACTTCGAAATGCCTTTGCAGAAAATGCTGGTTTTTATGATGATGCATGCCCAA
AGGCCGATGAAGATGCGCGCCCTGCTGGTCGATTTGAATCTGAGGACCTTCATAGACA TTGGCCGTGGAGCCTACAGCTACTTCAATTTGCTGCGTAGCTCCCACTTGTAT

[0296] DOR61

[0297] MGHKDDMDSTDSTALSLKHISS-LIFVISAQYPLISYVAYNRNDMEKVTACLSVVFTNM LTVIKISTFLANRKDFWEMIHRFRKM-HEQCKYREGLDYVAEANKLASFLGRAYCVSCG LTG-LYFMLGPIVKIGVCRWHGTTCDKELPMP-MKFPFNDLESPGYEVCFLYTVLVTVVV VAYASAVDGLFISFAINLRAHFQTLQR-QIENWEFPSSEPDTQIRLKSIVEYHVLLLSL SRKLR-SIYTPTVMGQFVITSLQVGVIIYQLVT-NMDSVMDLLLYASFFGSIMLQLFIYC YGGEIIKAESLQVDTAVRLSNWHLASPK-TRTSLSLIILQSQKEVLIRAGFFVASLANF PYRLITLIK-SIDSIC

[0298] DOR61nt

[0299] **information on nucleotide sequence is in progress**

[**0300**] DOR62

[0301] MEKQEDFKLNTHSAVYYHWRVWELTGLM-RPPGVSSLLYVVYSITVNLVVTVLFPLSLL ARLLFTT-NMAGLCENLTITITDIVANLKFANVYM-VRKQLHEIRSLLRLMDARARLVGD PEEISALRKEVNIAQGTFRTFASIFVF-GTTLSCVRVVVRPDRELLYPAWFGVDWMHSTRNYVLINIYQLFGLIVQAIQNCASDSYP-PAFLCLLTGHMRALELRVRRIGCRTEKSNK GQT-YEAWREEVYQELIECIRDLARVHRLREI-IQRVLSVPCMAQFVCSAAVQCTVAMHFLYVADDHDHTAMIISIVFF-SAVTLEVFVICYFGDRMRTQSEAL-CDAFYDCNWIEQLPK FKRELLFTLARTQRPSLIYAGNYIALSLETFEQVMRFTYSVFTLLLRAK

[0302] DOR62nt

[0303] ATGGAGAAGCAAGAGGATTTCAAACT-GAACACCCACAGTGCTGTGTACTACCACTGGC GCGTTTGGGAGCTCACTGGCCTGAT-GCGTCCTCCGGGCGTTTCAAGCCTGCTTTACGT GGTATACTCCATTACGGTCAACTTGGTG-GTCACCGTGCTGTTTCCCTTGAGCTTGCTG GCCAG-GCTGCTGTTCACCACCAACATGGCCG-GATTGTGCGAGAACCTGACCATAACTA TTACCGATATTGTGGC-CAATTTGAAGTTTGCGAATGTGTACATG-CCATGAGATTCGCTCTCTC-GTGAGGAAGCAGCT CTAAGGCTCATGGACGCTAGAGCCCGGCTGGTGG **GCGAT** CCCGAGGAGATTTCTGCCTTGAGGAAG-GAAGTGAATATCGCACAGGGCACTTTCCGCA CCTTTGCCAGTATTTTCGTATTTGGCAC-TACTTTGAGTTGCGTCCGCGTGGTCGTTCG CCCG- GATCGAGAGCTCCTGTATCCGGCCTGGT-TCGGCGTTGACTGGATGCACTCCACC AGAAACTATGTGCTCATCAATATCTAC-CAGCTCTTCGGCTTGATAGTGCAGGCTATAC AGAACTGCGCTAGTGACTCCTATCCGC-CTGCGTTTCTCTGCCTGCTCACGGGTCATAT GCGT-GCTTTGGAGCTGAGGGTGCGGCGGATTG-GCTGCAGGACGGAAAAGTCCAATAAA GGGCAGACATATGAAGCCTGGCGGGAG-GAGGTGTACCAGGAACTCATCGAGTGCATCC GCGATCTGGCGCGGGTCCATCGGCT-GAGGGAGATCATTCAGCGGGTCCTTTCAGTGCC CTGCATGGCCCAGTTCGTCTGCTCCGC-CGCCGTCCAGTGTACCGTCGCCATGCACTTC CTG-TACGTAGCGGATGACCACGACCACAC-CGCCATGATCATCTCGATTGTATTTTCT CGGCCGTCACCTTGGAGGTGTTTG-TAATCTGCTATTTTGGGGACAGGATGCGGACACA GAGCGAGGCGCTGTGCGATGCCTTCTAC-GATTGCAACTGGATAGAACAGCTGCCCAAG TTCAAGCGCGAACTGCTCTTCACCCTG-GCCAGGACGCAGCGGCCTTCTCTTATTTACG CAG-GCAACTACATCGCACTCTCGCTGGAGAC-CTTCGAGCAGGTCATGAGGTTCACATA CTCTGTTTTCACACTCTTGCTGAGGGC-CAAGTAAGAACTTTATAATCTCTTTTTTGGGG AGAAAAATTTTAAAGCACAATAGCA-GAAAATATATCAGATAATATAACAAA

[0304] DOR64

[0305] MKLSETLKIDYFRVQLNAWRICGALDL-SEGRYWSWSMLLCILVYLPTPMLLRGVYSFE DPVENNFSLSLTVTSLSNLMKFCMYVA-QLTKMVEVQSLIGQLDARVSGESQSERHRNM TEHLLRMSKLFQITYAVWFI-IAAVPFVFETELSLPMPMWFPFDWKNSM-VAYIGALVFQ EIGYVFQIMQCFAADSFPPLVLYLISE-QCQLLILRISEIGYGYKTLEENEQDLVNCIR DQNALYRLLDVTKSLVSYPMMVQFM-VIGINIAITLFVLIFYVETLYDRIYYLCFLLGI TVQTY-PLCYYGTMVQESFAELHYAVFCSNWVDQ-SASYRGHMLILAERTKRMQLLLAGN LVPIHLSTYVACWKGAYSFFTLMADRDGLGS

[**0306**] DOR64nt

[0307] GGCACGAGCCAAGAATTCAAAAT-GAAACTCAGCGAAACCCTAAAAATCGACTATTTTC GAGTCCAGTTGAATGCCTGGC-GAATTTGTGGTGCCTTGGATCTCAGC-GAGGGTAGGTA CTGGAGTTGGTCGATGCTATTGTG-CATCTTGGTGTACCTGCCGACACCCATGCTACTG AGAGGAGTATACAGTTTCGAGGATCCG-GTGGAAAATAATTTCAGCTTGAGCCTGACGG TCA-CATCGCTGTCCAATCTCATGAAGTTCTG-CATGTACGTGGCCCAACTAACAAAGAT GGTCGAGGTCCAGAGTCTTATTGGT-CAGCTGGATGCCCGGGTTTCTGGCGAGAGCCAG TCTGAGCGTCATAGAAATATGACCGAG-CACCTGCTAAGGATGTCCAAGCTGTTCCAGA TCACCTACGCTGTAGTCTTCATCAT-TGCTGCAGTTCCCTTCGTTTTCGAAACTGAGCT AAGCTTACCCATGCCCATGTGGTTTC-CCTTCGACTGGAAGAACTCGATGGTGGCCTAC ATCGGAGCTCTGGTTTTCCAGGAGATTG-

GCTATGTCTTTCAAATTATGCAATGCTTTG CAGCT-GACTCGTTTCCCCCGCTCGTACTGTAC-CTGATCTCCGAGCAATGTCAATTGCT GATCCTGAGAATCTCTGAAATCG-GATATGGTTACAAGACTCTGGAGGAGAACGAACAG **GATCTGGTCAACTGCATCAGGGAT-**CAAAACGCGCTGTATAGATTACTCGATGTGACCA AGAGTCTCGTTTCGTATCCCATGATGGT-GCAGTTTATGGTTATTGGCATCAACATCGC CAT-CACCCTATTTGTCCTGATATTTTACGTG-GAGACCTTGTACGATCGCATCTATTAT CTTTGCTTTCTCTTGGGCATCACCGTG-CAGACATATCCATTGTGCTACTATGGAACCA TGGT-GCAGGAGAGTTTTGCTGAGCTTCACTAT-GCGGTATTCTGCAGCAACTGGGTGGA TCAAAGTGCCAGCTATCGTGGGCACAT-GCTCATCCTGGCGGAGCGCACTAAGCGGATG CAGCTTCTCCTCGCCGGCAACCTGGTGC-CCATCCACCTGAGCACCTACGTGGCCTGTT GGAAGGGAGCCTACTCCTTCTTCACCCT-GATGGCCGATCGAGATGGCCTGGGTTCTTA GTAGC-CCAGTCATTTCACTCACATTCTACAT-CAAGTAGTACTACCACTGAACACGAAC ACGAATATTTCAAAAGTAAACACAT-AATATTCACAATAGTGTATCACTTTAATAAAAT TTTTGGTTACCATGAAAAAAAAAAAAAAAAAA

[0308] DOR67

[0309] MLSQFFPHIKEKPLSERVK-SRDAFVYLDRVMWSFGWTVPENKRWDL-HYKLWSTFVTLV IFILLPISVSVEYIQRFKTFSAGE-FLSSIQIGVNMYGSSFKSYLTMMGYKKRQEAKMS LDELDKRCVCDEERTIVHRHVALGNF-CYIFYHIAYTSFLISNFLSFIMKRIHAWRMYF PYVD-PEKQFYISSIAEVILRGWAVFMDLCTD-VCPLISMVIARCHITLLKQRLRNLRSE PGRTEDEYLKELADCVRDHR-LILDYVDALRSVFSGTIFVQFLLIGIVLGLSMINIMFF STLSTGVAVVLFMSCVSMQTFPFCYLCN-MIMDDCQEMADSLFQSDWTSADRRYKSTLV YFLHNLQQPIILTAGGVFPISMQTNLNM-VKLAFTVVTIVKQFNLAEKFQ

[0310] DOR67nt

[0311] GGCACGAGGAAATGTTAAGCCAGT-TCTTTCCCCACATTAAAGAAAAGCCATTGAGCGA GCGGGTTAAGTCCCGAGATGCCTTCGTT-TACTTAGATCGGGTGATGTGGTCCTTTGGC TGGA-CAGTGCCTGAAAACAAAAGGTGGGATC-TACATTACAAACTGTGGTCAACTTTCG TGACATTGGTGATATTTATCCTTCTGC-CGATATCGGTAAGCGTTGAGTATATTCAGCG GTTCAAGACCTTCTCGGCGGGT-GAGTTTCTTAGCTCAATCCAGATTGGCGTTAACATG TACGGAAGCAGCTTTAAAAGT-TATTTGACCATGATGGGATATAAGAA-GAGACAGGAGG CTAAGATGTCACTGGATGAGCTG-GACAAGAGATGCGTTTGTGATGAGGAGAGGACCAT TGTACATCGACATGTCGCCCTGG-GAAACTTTTGCTATATTTTCTATCACATTGCGTAC ACTAGCTTTTTGATTTCAAACTTTTTGT-CATTTATAATGAAGAGAATCCATGCCTGGC GCATG-TACTTTCCCTACGTCGACCCCGAAAAG-CAATTTTACATCTCTAGCATCGCCGA

AGTCATTCTTAGGGGGTGGGCCGTCT-TCATGGATCTCTGCACGGATGTGTGTCCTTTG ATCTCCATGGTAATAGCACGATGCCA-CATCACCCTTCTGAAACAGCGCCTGCGAAATC TAC-GATCGGAACCAGGAAGGACGGAAGAT-GAGTACTTGAAGGAGCTCGCCGACTGCGT TCGAGATCACCGCTTGATATTGGACTAT-GTCGACGCATTGCGATCCGTCTTTTCGGGG ACAATTTTTGTGCAGTTCCTCTTGATCG-GTATTGTACTGGGTCTGTCAATGATAAATA TAAT-GTTTTTCTCAACACTTTCGACTGGT-GTCGCCGTTGTCCTTTTTATGTCCTGCGT ATCTATGCAGACGTTCCCCTTTTGC-TATTTGTGTAACATGATTATGGATGACTGCCAA GAGATGGCCGACTCCCTTTTTCAATCG-GACTGGACATCTGCCGATCGTCGCTACAAAT CCACTTTGGTATACTTTCTTCACAATCT-TCAGCAGCCCATTATTCTTACGGCTGGTGG AGTCTTTCCTATTTCCATGCAAA-CAAATTTAAATATGGTGAAGCTGGCCTTTACTGTG GTTACAATAGTGAAACAATTTAACTTG-GCAGAAAAGTTTCAATAAGTTAAGATATGCA AGCTCTGCTATTATAAACCTACACTC-GAGAAAATATTTCTTCACATTAATAAACCTTC AGTACTTACTGCTTGTGGCGCCCCCG-GAAAAAAAAAAAAAAA

[**0312**] DOR68

[0313] MSKLIEVFLGNLWTQRFTFARMGLDLQP-DKKGNVLRSPLLYCIMCLTTSFELCTVCAF MVQN-RNQIVLCSEALMHGLQMVSSLLKMAI-FLAKSHDLVDLIQQIQSPFTEEDLVGTEWRSQNQRGOLMAAIYFMMCAGTSVSFLL-MPVALTMLKYHSTGEFAPVSSFRVLLPYDVTYAMDCCLMVFVLSFFCCSTTGVDTLYG-WCALGVSLQYRRLGQQLKRIPSCFNPSRSDFGLSGIFVEHARLLKIVQHFNYS-FMEIAFVEVVIICGLYCSVICQYIMPHTNQNFSLVVTTQLCIYLFGAEQVRLEAERFS-RLLYEVIPWQNLPPKHRKLFLFPIERAQRETVLGAYFFELGRPLLVWVSIFLFIVLLF

[**0314**] DOR68nt

[0315] ATGTCAAAGCTAATCGAGGT-GTTTCTGGGTAATCTGTGGAC-CCAGCGTTTTACCTTCG CCCGAATGGGTTTG-GATTTGCAGCCCGATAAAAAGGGCAATGTTTTGC GATCTCCGCT TCTTTATTGTATTATGTGTCTGACAA-CAAGCTTTGAGCTCTGCACCGTGTGCGCCTTT ATG-GTCCAAAATCGCAACCAAATCGT-GCTTTGTTCCGAGGCCCTGATGCACGGACTAC AGATGGTCTCCTCGCTACTGAAGATGGC-TATATTCTTGGCCAAATCTCACGACCTGGT GGAC-CTAATTCAACAGATTCAGTCGCCTTTTA-CAGAGGAGGATCTTGTAGGTACAGAG TGGAGATCCCAAAATCAAAGGGGACAAC-TAATGGCTGCCATTTACTTTATGATGTGTG CCGG-TACGAGTGTGTCATTTCTGTTGATGC-CAGTGGCTTTGACCATGCTTAAGTACCA TTCCACTGGGGAATTCGCGCCTGT-CAGCTCGTTCCGGGTTCTGCTTCCATACGATGTG ACACAACCGCATGTTTATGCCATGGACT-GCTGCTTGATGGTATTTGTGTTAAGTTTTT TTTGCT-GCTCCACCACCGGAGTGGATACCT-

TATATGGATGGTGTGCTTTAGGCGTGAG TTTACAATACCGTCGCCTCGGTCAA-CAACTTAAAAGGATACCCTCCTGTTTCAATCCA TCTCGGTCTGACTTTGGATTAAGTGG-GATTTTTGTGGAGCATGCTCGTCTGCTTAAAA TAGTCcAACATTTTAATTATAGTTT-TATGGAGATCGCATTTGTGGAGGTTGTTATAAT CTGTGGACTCTATTGCTCAGTAATTTGT-CAGTATATAATGCCACACACCAACCAAAAC TTCGC-CTTTCTGGGTTTCTTTTCATTGGTAGT-TACCACACAGCTGTGCATCTATCTTT TCGGTGCCGAACAGGTCCGTTTGGAG-GCTGAGCGATTTTCCCGGCTGCTATACGAAGT AAT-TCCTTGGCAAAACCTTCCTCCTAAACAC-CGGAAACTTTTCCTTTTTCCAATTGAG CGCGCCCAACGAGAAACTGTTCTCGGT- ${\tt GCTTATTTCTTCGAACTAGGCAGACCTCTTC}$ TTGTTTGGGTAAGCATATTCCTTTTTAT-**TGTATTATTATTT**

[0316] DOR71

[0317] MVIIDSLSFYRPFWICMRLLVPT-FFKDSSRPVOLYVVLLHILVTLWFPLHLLLHLLLL PSTAEFFKNLTMSLTCVACSLKHVAHL-YHLPQIVEIESLIEQLDTFIASEQEHRYYRD HVH-CHARRFTRCLYISFGMIYALFLF-GVFVQVISGNWELLYPAYFPFDLESNRFLGAV ALGYQVFSMLVEGFQGLGNDTYTPLTL-CLLAGHVHLWSIRMGQLGYFDDETVVNHQRL LDYIEOHKLLVRFHNLVSR-TISEVQLVQLGGCGATLCIIVSYM-FFGVVCVQLFPSCYFASE-LFFVGDTISLVYYLV VAEELERLPYAIFSSRWYDOSRDHRFDLLIFTOLTL GNRG WIIKAGGLIELNLNAFFATLKMAY-SLFAVVHRETGNPLOREH

[**0318**] DOR71nt

[0319] ATGGTCATTATCGACAGTCTTAGTTTT-TATCGTCCATTCTGGATCTGCATGCGATTGC TGG-TACCGACTTTCTTCAAGGATTCCT-CACGTCCTGTCCAGCTGTACGTGGTGTTGCT GCACATCCTGGTCACCTTGTGGTTTC-CACTGCATCTGCTGCTGCATCTTCTGCTACTT CCATCTACCGCTGAGTTCTTTAAGAAC-CTGACCATGTCTCTGACTTGTGTGGCCTGCA GTCT-GAAGCATGTGGCCCACTTGTATCACT-TGCCGCAGATTGTGGAAATCGAATCACT GATCGAGCAATTAGACACATTTATTGC-CAGCGAACAGGAGCATCGTTACTATCGGGAT CACGTACATTGCCATGCTAGGCGCTTTA-CAAGATGTCTCTATATTAGCTTTGGCATGA TCTAT-GCGCTTTTCCTGTTCGGCGTCTTCGT-TCAGGTTATTAGCGGAAATTGGGAACT TCTCTATCCAGCCTATTTCCCATTC-GACTTGGAGAGCAATCGCTTTCTCGGCGCAGTA GCCTTGGGCTATCAGGTATTCAGCATGT-TAGTTGAAGGCTTCCAGGGGCTGGGCAACG ATAC-CTATACCCCACTGACCCTATGCCTTCTG-GCCGGACATGTCCATTTGTGGTCCAT ACGAATGGGTCAACTGGGATACTTCGAT-GACGAGACGGTGGTGAATCATCAGCGTTTG CTG-GATTACATTGAGCAGCATAAACTCTTG-GTGCGGTTCCACAACCTGGTGAGCCGGA CCATCAGCGAAGTGCAACTGGTG-

CAGCTGGGCGGATGTGGAGCCACTCTGTGCATCAT
TGTCTCCTACATGCTCTTCTTTGTGGGCGACACAATCTCGCTGGTCTACTACTTGGTG
TTCTTTGGAGTGGTCTGCGTGCAGCTCTTTCCCAGCTGCTATTTTGCCAGCGAAGTAG CCGAGGAGTTGGAACGGCTGCCATATGCGATCTTCTCCAGCAGATGGTACGATCA
ATC GCGGGATCATCGATTCGATTTGCTCATCTTTACACAATTAACACTGGGAAACCGGGGG
TGGATCATCAAGGCAGGAGGTCTTATCGAGCTGAATTTGAATGCCTTTTTCGCCACCC TGAAGATGGCCTATTCCCTTTTTTGCAGTTGTGGTGCGGGCAAAGGGTATA

[**0320**] DOR72

[0321] MDLKPRVIRSEDIYRTYWLY-WHLLGLESNFFLNRLLDLVITIFVTIWYPIHLILGLFM ERSLGDVCKGLPITAACFFASFKFICFR-FKLSEIKEIEILFKELDQRALSREECEFFN QNTRRE-ANFIWKSFIVAYGLSNISAIASV-LFGGGHKLLYPAWFPYDVQATELIFWLSVTYQIAGVSLAILQNLANDBYPPMTFCV-VAGHVRLLAMRLSRIGQGPEETIYLTGKQLIESIEDHRKLMKIVELLRSTM-NISQLGQFISSGVNISITLVNILFFADNNFAITYYGVYFLSMVLELFPCCYYGTLISVEMN-QLTYAIYSSNWMSMNRSYSRILLIFMQLTLAEVQIKAGGMIGIGMNAFFATVRLAYSFFTLAMSLR

[**0322**] DOR72nt

[0323] ATGGACTTAAAACCGCGAGTCATTC-GAAGTGAAGATATCTACAGAACCTATTGGTTAT ATTGGCATCTTTTGGGCCTGGAAAG-CAATTTCTTTCTGAATCGCTTGTTGGATTTGGT GAT-TACAATTTTCGTAACCATTTGGTATC-CAATTCACCTGATTCTGGGACTGTTTATG GAAAGATCTTTGGGGGATGTCTG-CAAGGGTCTACCAATTACGGCAGCATGCTTTTTCG CCAGCTTTAAATTTATTTGTTTTCGCT-TCAAGCTATCTGAAATTAAAGAAATCGAAAT ATTATTTAAAGAGCTGGATCAGC-GAGCTTTAAGTCGAGAGGAATGCGAGTTTTTCAAT CAAAATACGAGACGTGAGGC-GAATTTCATTTGGAAAAGTTTCATTGTG-TGTCGAATATCTCGGCTATTGCAT-GCCTATGGAC CAGTTCTTTTCGGCGGTGGACATAAGCTATTATA TCCCGCCTGGTTTCCATACGATGTGCAG-GCCACGGAACTAATATTTTGGCTAAGTGTA ACAT-ACCAAATTGCCGGAGTAAGTTTGGCCAT-ACTTCAGAATTTGGCCAATGATTCCT ATCCACCGATGACATTTTGCGTGGTTGC-CGGTCATGTAAGACTTTTGGCGATGCGCTT GAGTA-GAATTGGCCAAGGTCCAGAGGAAA-CAATATACTTAACCGGAAAGCAATTAATC GAAAGCATCGAGGATCACCGAAAAC-TAATGAAGATAGTGGAATTACTGCGCAGCACCA TGAATATTTCGCAGCTCGGCCAGTT-TATTTCAAGTGGTGTTAATATTTCCATAACACT AGT-CAACATTCTCTTCTTTGCG-GATAATAATTTCGCTATAACCTACTACGGAGTGTAC TTCCTATCGATGGTGTTGGAATTATTC-CCGTGCTGCTATTACGGCACCCTGATATCCG TGGAGATGAACCAGCTGACCTATGC-GATTTACTCAAGTAACTGGATGAGTATGAATCG

GAGCTACAGCCGCATCCTACTGATCTTCATGCAACTCACCCTGGCGGAAGTGCAGATC
AAGGCCGGTGGGATGATTGGCATCGGAATGAACGCCTTCTTTGCCACCGTGCGATTGG
CCTACTCCTTCTTCACTTTGGCCATGTCGCTGCGT

[**0324**] DOR73

[0325] MDSRRKVRSENLYKTYWLYWRLLGVEG-DYPFRRLVDFTITSFITILFPVHLILGMYKK PQIQV-FRSLHFTSECLFCSYKFFCFRWKLKEIK-TIEGLLQDLDSRVESEEERNYFNQN
PSRVARMLSKSYLVAAISAIITATVA-GLFSTGRNLMYLGWFPYDFQATAAIYWISFSY
QAIGSSLLILENLANDSYPPITFCVWS-GHVRLLIMRLSRIGHDVKLSSSENTRKLIEG
IQDHRKLMKIIRLLRSTLHLSQLGQ-FLSSGINISITLINILFFAENNFAMLYYAVFFA
AMLIELFPSCYYGILMTMEFDKLPYAIF-SSNWLKMDKRYNRSLIILMQLTLVPVNIKA
GGIVGIDMSAFFATVRMAYSFYTLALSFRV

[0326] DOR73nt

[0327] ATGGATTCAAGAAGGAAAGTCCGAAGT-GAAAATCTTTACAAAACCTATTGGCTTTACT GGC-GACTTCTGGGAGTCGAGGGCGATTATC-CTTTTCGACGGCTAGTGGATTTTACAAT CACGTCTTTCATTACGATTTTATTTC-CCGTGCATCTTATACTGGGAATGTATAAAAAG CCCCAGATTCAAGTCTTCAGGAGTCTG-CATTTCACATCGGAATGCCTTTTCTGCAGCT ATAAGTTTTTCTGTTTTCGTTGGAAACT-TAAAGAAATAAAGACCATCGAAGGATTGCT CCAG-GATCTCGATAGTCGAGTTGAAAGTGAA-GAAGAACGCAACTACTTTAATCAAAAT CCAAGTCGTGTGGCTCGAATGCTTTC-GAAAAGTTACTTGGTAGCTGCTATATCGGCCA TAATCACTGCAACTGTAGCTGGTTTATT-TAGTACTGGTCGAAATTTAATGTATCTGGG TTG-GTTTCCCTACGATTTTCAAGCAACCGC-CGCAATCTATTGGATTAGTTTTTCCTAT CAGGCGATTGGCTCTAGTCTGTTGAT-TCTGGAAAATCTGGCCAACGATTCATATCCGC CGATTACATTTTGTGTGGTCTCTGGA-CATGTGAGACTATTGATAATGCGTTTAAGTCG AAT-TGGTCACGATGTAAAATTATCAAGTTCG-GAAAATACCAGAAAACTCATCGAAGGT ATCCAGGATCACAGGAAACTAATGAA-GATAATACGCCTACTTCGCAGCACTTTACATC TTAGCCAACTGGGCCAGTTC-CTTTCTAGTGGAATCAACATTTCCATAA-CACTCATCAA CATCCTGTTCTTTGCGGAAAA-CAACTTTGCAATGCTTTATTATGCGGTGTTCTTTGCT GCAATGTTAATAGAACTATTTCCAAGT-TGTTACTATGGAATTCTGATGACAATGGAGT TTGATAAGCTACCATATGCCATCTTCTC-CAGCAACTGGCTTAAAATGGATAAAAGATA CAATC-**GATCCTTGATAATTCTGATGCAACTAA-**CACTGGTTCCAGTGAATATAAAAGCA GGTGGTATTGTTGGCATCGATATGAGTG-CATTTTTTGCCACAGTTCGGATGGCATATT TACACTTTAGCCTTGTCATTTCGAGTA

[0328] DOR77

[0329] MELMRVPVQFYRTIGEDIYAHRSTNPLK-SLLFKIYLYAGFINFNLLVIGELVFFYNSI ODFETIRLA- IAVAPCIGFSLVADFKQAAMIRGKKTLIMLLDDLENMHPKTLAKQMEYK
LPDFEKTMKRVINIFTFLCLAYTTTFSFYPAIKASVKFNFLGYDTFDRNFGFLIWFPF
DATRNNLIYWIMYWDIAHGAYLAAFQVTESTVEVIIIYCIFLMTSMVQVFMVCYYGDT
LIAASLKVGDAAYNQKWFQCSKSYCTMLKLLIMRSQKPASIRPPTFPPISLVTYMKNP FNNLPKHSSSLQINANRYI

[0330] DOR77nt

[0331] ATGGAATTGATGCGAGTGCCAGTA-CAGTTTTACAGAACGATTGGAGAGGATATCTACG CCCATCGATCCACGAATC-CCCTAAAATCGCTTCTCTTCAAGATC-TATCTATATGCGGG ATTCATAAATTTTAATCTGTTGG-TAATCGGTGAACTGGTGTTCTTCTACAACTCAATT CAGGACTTTGAAACCATTCGATTGGC-CATCGCGGTGGCTCCATGTATCGGATTTTCTC TGGT-TGCTGATTTTAAACAAGCTGCCAT-GATTAGAGGCAAGAAAACACTAATTATGCT ACTCGATGATTTGGAGAACATGCATC-CGAAAACCCTGGCAAAGCAAATGGAATACAAA TTGCCGGACTTTGAAAAGACCAT-GAAACGTGTGATCAATATATTCACCTTTCTCTGCT TGGCCTATACGACTACGTTCTCCTTT-TATCCGGCCATCAAGGCATCCGTGAAATTTAA TTTCTTGGGCTACGACACCTTTGATC-GAAATTTTGGTTTCCTCATCTGGTTTCCCTTC GATG-CAACAAGGAATAATTTGATATACTGGAT-CATGTACTGGGACATAGCCCATGGGG CCTATCTAGCGGCCTTTCAGGTCAC-CGAATCAACAGTGGAAGTGATTATTATTTACTG CATTTTTTGATGACCTCGATGGTTCAG-GTATTTATGGTGTGCTACTATGGGGATACT TGCCGCGAGCTTGAAAGTGGGCGATGC-CGCTTACAACCAAAAGTGGTTTCAGT GCAGCAAATCCTATTGCACCATGT-TGAAGTTGCTAATCATGAGGAGTCAGAAACCAGC TTCAATAAGACCGCCGACTTTTC-CCCCCATATCCTTGGTTACCTATATGAAGAATCCC TTCAACAATCTACCCAAACACAGCTCT-TCCCTGCAAATCAACGCCAATCGCTATATC

[**0332**] DOR78

[0333] MKFMKYAVFFYTSVGIEPYTIDSR-SKKASLWSHLLFWANVINLSVIVFGEILYLGVAY SDGKFIDAVTVLSYIGFVIVGMSKMFFI-WWKKTDLSDLVKELEHIYPNGKAEEEMYRL DRYLRSCSRISITYALLYSVLIWTFNLFSIMQ-FLVYEKLLKIRVVGQTLPYLMYFPWN WHENWTYYVLLFCQNFAGHTSASGQIST-DLLLCAVATQVVMHFDYLARVVEKQVLDRD WSENSRFLAKTVQYHQRILRLMDVLNDIFGI-PLLLNFMVSTFVICFVGFQMTVGVPPD IMIKLFLFLFSSLSQVYLICHYGQLIA-DAVRDFRSSSLSISAYKQNWQNADIRYRRAL VFFI-ARPQRTTYLKATIFMNITRATMTDVRYNLKCH

[**0334**] DOR78nt

[0335] ATGAAGTTCATGAAGTACG-CAGTTTTCTTTTACACATCGGTGGGCAT-TGAGCCGTATA CGATTGACTCGCGGTC-CAAAAAAGCGAGCCTATGGTCACATCTTCTCTTC **TGGGCCAA** TGTGATCAATTTAAGTGTCAT-TGTTTTCGGAGAGATCCTCTATCTGG-GAGTGGCCTAT TCCGATGGAAAGTTCATTGATGC-CGTCACTGTACTGTCATATATCGGATTCGTAATCG TGGGCATGAGCAAGATGTTCTTCATATG-GTGGAAGAAGACCGATCTAAGCGATTTGGT TAAG-GAATTGGAGCACATCTATCCAAATG-GCAAAGCTGAGGAGGAGATGTATCGGTTG GATAGGTATCTGCGATCTTGTTCAC-GAATTAGCATTACCTATGCACTACTCTACTCCG TACTCATCTGGACCTTCAATCTGTTCAG-GCT-TATCATGCAATTCCTTGTCTATGAAAAGTT TAAAATCCGAGTGGTCGGCCAAACGCT-GCCATATTTGATGTACTTTCCCTGGAAC TGGCATGAAAACTGGACGTATTATGT-GCTGCTGTTCTGTCAAAACTTCGCAGGACATA CTTCGGCATCGGGACAGATCTCTACG-GATCTTTTGCTTTGTGCTGTTGCTACCCAGGT GGTAATGCACTTCGATTACTTGGCCA-GAGTGGTGGAAAAACAAGTGTTAGATCGCGAT TGGAGCGAAAACTCCAGATTTTTG-GCAAAAACTGTACAATATCATCAGCGCATTCTTC GGCTAATGGACGTTCTCAACGATATAT-TCGGGATACCGCTACTGCTTAACTTTATGGT CACATTTGTCATCTGCTTTGTGGGATTC-CAAATGACCGTGGGTGTCCCGCCGGAC ATCATGATTAAGCTCTTCTTGTTCCTGT-TCTCGTCCTTGTCGCAAGTGTACTTGATAT GCCAC-TACGGCCAGCTGATTGCCGATGCGGTAA-GAGACTTTCGAAGCTCTAGCTTATC GATTTCTGCATATAAGCAGAATTG-GCAAAATGCTGACATTCGCTATCGTCGGGCTCTG GTATTCTTTATAGCTCGACCTCAGAGGA-CAACTTATCTAAAAGCTACAATTTTCATGA ATATAA-CAAGGCCACCATGACGGACGTAAGATA-CAATTTGAAATGTCAT

[0336] DOR81

[0337] MMETLRNSGLNLKNDFGIGRKIWRVFSFTYNMVILPVSFPINYVIHLAEFPPELLLQS LQLCLNTWCFALKFFTLIVYTHRLELANKHFDELDKYCVKPAEKRKVRDMVATITRLY
LTFVVVYVLYATSTLLDGLLHHRVPYNTYYPFINWRVDRTQMYIQSFLEYFTVGYAIY
VATATDSYPVIYVAALRTHILLLKDRIIYLGDPSNEGSSDPSYMFKSLVDCIKAHRTM LNFCDAIQPIISGTIFAQFIICGSILGIIMINMVLFADQSTRFGIVIYVMAVLLQTFP
LCFYCNAIVDDCKELAHALFHSAWWVQDKRYQRTVIQFLQKLQQPMTFTAMNIFNINL ATNINVSPLLSVRTGKEAKSELQSLQVAKFAFTVYAIASGMNLDQKLSIKE

[**0338**] DOR81nt

[0339] ATGATGGAGACGCTGCGAAATTCGGGCTTGAATTTGAAGAACGATTTCGGTATAGGCC GCAAGATTTGGAGGGTGTTTTCGTTCACCTACAATATGGTGATACTTCCCGTAAGTTT
CCCAATCAACTATGTGATACATCTGGCGGAGTTCCCGCCGGAGCTGCTGCTAATCC CTGCAACTGTGCCTCAACACTTGGTGCTTCGCTCTGAAGTTCTTCACTCTGATCGTCT
ATACGCACCGCTTGGAGCTGGCCAACAAGCACTTTGACGAATTGGATAAGTACTGCGT

GAAGCCGGCGAGAAGCGCAAGGTTCGC-GACATGGTGGCCACTATTACAAGACTGTAC CTGAC-CTTCGTCGTGGTCTACGTCCTCTACGC-CACCTCCACGCTACTGGACGGACTAC TGCACCACCGTGTTCCCTACAATACG-TACTATCCGTTCATAAACTGGCGAGTCGATCG GAC-CCAGATGTACATCCAGAGTTTTCTGGAG-TACTTCACCGTGGGTTATGCCATATAT GTGGCCACCGCCACCGATTCCTACCCT-GTGATTTACGTGGCAGCCCTGCGAACTCATA TTCTCTTGCTCAAGGACCGTATCATT-TACTTGGGCGATCCCAGCAACGAGGGTAGCAG CGACCCGAGCTACATGTTTAAATCGTTG-GTGGATTGTATCAAGGCACACAGAACCATG CTAAAGTOCAGTTTTTGTGATGCCAT-TCAACCAATCATCTCTGGCACGATATTTGCCC AAT-TCATCATATGCGGATCGATCCTGGGCAT-AATTATGATCAACATGGTATTGTTCGC TGATCAATCGACCCGATTCGGCATAGT-CATCTACGTTATGGCCGTCCTTCTGCAGACT TTTC-CGCTTTGCTTCTACTGCAACGC-CATCGTGGACGACTGCAAAGAACTGGCCCACG CACTTTTCCATTCCGCCTGGTGGGTG-CAGGACAAGCGATACCAGCGGACTGTCATCCA GTTCCTGCAGAAACTGCAGCAGCCCAT-GACCTTCACCGCCATGAACATATTTAACATT AATTTGGCCACTAACATCAATGTAAGTC-CACTGCTCTCGGTTAGAACGGGGAAGGAAG CAAAGTCCGAACTTCAATCCTTGCAGG-TAGCCAAGTTCGCCTTCACCGTGTACGCCAT CGC-GAGCGGTATGAACCTGGACCAAAAGT-TAAGCATTAAGGAA

[**0340**] DOR82

[0341] MACIPRYQWKGRPTERQFYASEQRIV-FLLGTICQIFQITGVLIYWYCNGRLATETGTP
VAQLSEMCSSFCLTFVGFCNVYAISTNRNQIETLLEELHQIYPRYRKNHYRcQHYFDM
AMTIMRIEFLFYMILYVYYNSAPLWVLLWEHLHEEYDLSFKTQTNTWFPWKVHGSALG
FGMAVLSITVGSFVGVGFSIVTQNLICLLTFQLKLHYDGISSQLVSLDCRRPGAHKEL SILIAHHSRILQLGDQVNDIMNFVFGSSLVGATIAICMSSVSIMLLDLASAFKYASGL
VAFVLYNFVICYMGTEVTLAVKIGSYMDGRRWIPKDSLLRSQRLQVLVAVGFFNICVL
SNRRPKIEILLRYYYHIMFYSFKLYFSLRKGSLWKILSSFTLLRI

[0342] DOR82nt

[0343] ATGGCATGCATACCAAGATATCAATG-GAAAGACGCCCTACTGAAAGACAGTTCTACGCTTCGGAGCAAAGGATAGTGTTCCTTCTTGGAACCATTTGCCAGATATTCCAGATTACTGGAGTGCTTATCTATTGGTATTG-CAATGGCCGTCTTGCCACGGAAACGGGCACCTTTGTGGCACAATTATCTGAAATGTGCAGTTCTTTTTTGTCTAACATTTGTGGGATTCTGTAACGTTTATGCGATCTCTACAAACCGCAATCAAATTGAAACATTACTCGAGGAGACTTCATCAGATATATCCGAGGATACAGGAAAAATCACTATCGCTGCCAGCATTATTTTGACATGGCCAGCATTATTTTTGACATGGCCATGACAATAATGAGAATTGAGTTTCTTTTCTTTTCTTATATGATCTTGTACGTGTACTACA

ATAGTGCACCATTATGGGTGCT-TCTTTGGGAACACTTGCACGAGGAATATGATCTTAG CTTCAAGACGCAGACCAACACTTG-GTTTCCATGGAAAGTCCATGGGTCGGCACTTGGA TTTGGTATGGCTGTACTAAGCATAAC-CGTGGGATCCTTTGTGGGCGTAGGTTTCAGTA TTGTCACCCAGAATCTTATCTGTTTGT-TAACCTTCCAACTAAAGTTGCACTACGATGG AATATCCAGTCAGTTAGTATCTCTCGAT-TGCCGTCGTCCTGGAGCTCATAAGGAGTTG AGCATCCTCATCGCCCACCACAGC-CGAATCCTTCAGCTGGGCGACUAAGTCAATGACA TAATGAACTTTGTATTCGGCTCTAGC-CTAGTAGGTGCCACTATTGCCATTTGTATGTC AAGT-GTTTCTATAATGCTACTGGACTTAG-CATCTGCCTTCAAATATGCCAGTGGTCTA GTGGCATTCGTCCTCTACAACTTTGT-CATCTGCTACATGGGAACCGAGGTCACTTTAG CTGTGAAGATTGGTTCATATATGGACG-GAAGGCGGTGGATACCCAAAGATTCGTTGCT GAGATCTCAGAGGCTACAGGT-GCTCGTCGCAGTTGGATTTTTTAATATATGTGTCCTC TCGAATCGTCGTCCTAAAAT-TGAAATTTTGCTTAGATATTATTACCATATTATGTTTT ATTCATTTAAATTATATTTTTCTTTAAG-GAAAGGTAGCCTTTGGAAAATCTTcTCTTC TTTCACCTTATTGAGGATC

[0344] DOR83

[0345] MQLEDFMRYPDLVCQAAQLPRYTWN-GRRSLEVKRNLAKRIIFWLGAVNLVYHNIGCVM YGYFGDGRTKDPIAYLAELASVASMLGF-TIVGTLNLWKMLSLKTHFENLLNEFEELFQ LIKHRAYRIHHYQEKYTRHIRNTFIFHT-SAVVYYNSLPILLMIREHFSNSQQLGYRIQ SNTWYP-WQVQGSIPGFFAAVACQIFSCQTNMCVN-MFIQFLINFFGIQLEIHFDGLARQ LETIDARNPHAKDQLKYLIVYHTKLLN-LADRVNRSFNFTFLISLSVSMISNCFLAFSM TMFDF-GTSLKHLLGLLLFITYNFSMCRSGTH-LILTSGKVLPAAFYNNWYEGDLVYRRM LLILMMRATKPYMWKTYKLAPVSITTY-MAECKTKEAHEQRHFRRHERQKPRVARI

[0346] DOR83nt

[0347] ATGCAGTTGGAGGACTTTATGCGGTAC-CCGGACCTCGTGTGTCAAGCGGCCCAACTTC CCA-GATACACGTGGAATGGCAGACGATCCT-TGGAAGTTAAACGCAACTTGGCAAAACG CATTATCTTCTGGCTTGGAGCAG-TAAATTTGGTTTATCACAATATTGGCTGCGTCATG TATGGCTATTTCGGTGATGGAAGAA-CAAAGGATCCAATTGCGTATTTAGCTGAATTGG CATCTGTGGCCAGCATGCTTGGTTTCAC-CATTGTGGGCACCCTCAACTTGTGGAAGAT GCT-GAGCCTTAAGACCCATTTTGAGAAC-CTACTAAATGAATTCGAGGAATTATTTCAA CTAATCAAGCACAGGGCGTATCGCATA-CACCACTATCAAGAAAAGTATACGCGTCATA TAC-GAAATACATTTATTTTCCATACCTCTGC-CGTTGTCTACTACAACTCACTACCAAT TCTTCTAATGATTCGGGAACATTTCTC-GAACTCACAGCAGTTGGGCTATAGAATTCAG AGTAATACCTGGTATCCCTGGCAGGT-

TCAGGGATCAATTCCTGGATTTTTTGCTGCAG TCGCCTGTCAAATCTTTTCGTGCCAAAC-CAATATGTGCGTCAATATGTTTATCCAGTT TCTGAT-CAACTTTTTTGGTATCCAGCTAGAAATA-CACTTCGATGGTTTGGCCAGGCAG CTGGAGACCATCGATGCCCGCAATC-CCCATGCCAAGGATCAATTGAAGTATCTGATTG TATATCACACAAAATTGCTTAATCTAGC-CGACAGAGTTAATCGATCGTTTAACTTTAC GTTTCTCATAAGTCTGTCGGTATCCAT-GATATCCAACTGTTTTCTGGCATTTTCCATG ACCAT-GTTCGACTTTGGCACCTCTCTAAAA-CATTTACTCGGACTTTTGCTATTCATCA CATATAATTTTTCAATGTGCCGCAGTGG-TACGCACTTGATTTTAACGAGTGGCAAAGT ATTGC-CAGCGGCCTTTTATAACAATTGGTAT-GAAGGCGATCTTGTTTATCGAAGGATG CTCCTCATCCTGATGATGCGTGCTAC-GAAACCTTATATGTGGAAAACCTACAAGCTGG CACCTGTATCCATAACTACATATATG-GCAGAATGCAAAACAAAAGAAGCCCATGAACA ACGCCATTTTAGACGCCATGAAAGA-CAAAAACCTCGGGTTGCACGAATA

[0348] DOR84

[0349] MVFSFYAEVATLVDRLRDNENFLESCILLSYVSFVVMGLSKIGAVMKKKPKMTALVRQ LETCFPSPSAKVQEEYAVKSWLKRCHIYTKGFGGLFMIMYFAHALIPLFIYFIQR
VLL HYPDAKQIMPFYQLEPWEFRDSWLFYPSYFHQSSAGYTATCGSIAGDLMIFAVVLQVI
MHYERLAKVLREFKIQAHNAPNGAKEDIRKLQSLVANHIDILRLTDLMNEVFGIPLLL
NFIASALLVCLVGVQLTIALSPEYFCKQMLFLISVLLEVYLLCSFSQRLIDAVC

[**0350**] DOR84nt

[0351] ATGGTGTTTAGTTTTTATGCCGAGG-TAGCGACTCTGGTGGACAGGTTACGCGATAATG AAAATTTTCTCGAGAGCTGCATCTTACT-GAGCTACGTGTCCTTTGTGGTCATGGGCCT CTC-CAAGATAGGTGCTGTAAT-GAAAAAAAGCCAAAAATGACAGCTTTGGTCA TTGGAGACCTGCTTTCCGTCGCCAAGTG-CAAAGGTTCAAGAGGAATATGCTGTGAAGT CCTG-GCTGAAACGCTGCCATATATACA-CAAAGGGATTTGGTGGTCTCTTCATGATCAT GTATTTCGCTCACGCTCTGATTCCCT-TATTCATATACTTCATTCAAAGAGTGCTGCTC CAC-TATCCGGATGCCAAGCAGATTATGC-CGTTTTACCAACTCGAACCTTGGGAATTTC GCGACTCCTGGTTGTTTTATCCAAGC-TATTTTCACCAGTCGTCGGCCGGATATACGGC TACATGTGGATCCATTGCCGGTGAC-CTAATGATCTTCGCTGTGGTCCTGCAGGTCATC ATGCACTACCAAAGACTGGCCAAGGT-TCTTAGGGAGTTTAAGATTCAAGCCCATAACG CAC-CCAATGGAGCTAAGGAGGATATAAG-GAAGTTGCAGTCCCTAGTCGCCAATCACAT TGATATACTTCGACTCACTGATCTGAT-GAACGAGGTCTTTGGAATTCCCTTGTTGCTA AACTTTATTGCATCTGCGCTGCTGGTCT-GCCTGGTGGGAGTTCAATTAACCATCGCTT TAAGTCCAGAGTATTTTTGCAAGCAGAT-

GCTATTTCTGATTTCCGTACTGCTTGAGGT CTATCTCCTTTGCTCCTTCAGCCAGAG-GTTAATAGATGCTGTATGT

[**0352**] DOR87

[0353] MTIEDIGLVGINVRMWRHLAVLYPT-PGSSWRKFAFVLPVTAMNLMQFVYLLRMWGDLP AFILNMFFFSAIFNALMRTWLVIIKRRQ-FEEFLGQLATLFHSILDSTDEWGRGILRA EREARN-LAILNLSASFLDIVGALVSPLFREERAH-PFGVALPGVSMTSSPVYEVIYLAQ LPTPLLLSMMYMPFVSLFAGLAIFGKAM-LQILVHRLGQIGGEEQSEEERFQRLASCIA YHTQVM-RYVWQLNKLVANIVAVEAIIFGSIICS-LLFCLNIITSPTQVISIVMYILTML YVLFTYYNRANEICLENNRVAEAVYNVP-WYEAGTRFRKTLLIFLMQTQHPMEIRVGNV YPMT-LAMFQSLLNASYSYFTMLRGVTGK

[**0354**] DOR87nt

[0355] GGCACGAGGCTTATAGAAAGTGCCGAG-CAATGACAATCGAGGATATCGGCCTGGTGGG CAT-CAACGTGCGGATGTGGCGACACTTGGC-CGTGCTGTACCCCACTCCGGGCTCCAGC TGGCGCAAGTTCGCCTTCGTGCTGCCG-GTGACTGCGATGAATCTGATGCAGTTCGTCT ACCT-GCTGCGGATGTGGGGCGACCTGCCCGC-CTTCATTCTGAACATGTTCTTCTTCTC GGCCATTTTCAACGCCCTGATGCG- ${\tt CACGTGGCTGGTCATAATCAAGCGGCGCCAGTTC}$ GAGGAGTTTCTCGGCCAACTGGC-CACTCTGTTCCATTCGATTCTCGACTCCACCGACG AGTGGGGGCGTGGCATCCTGCG-GAGGGCGGAACGGGAGGCTCGGAACCTG-GCCATCCT TAATTTGAGTGCCTCCTTCCTGGACAT-TGTCGGTGCTCTGGTATCGCCGCTTTTCAGG GAGGAGAGAGCTCATCCCTTCGGCG-TAGCTCTACCAGGAGTGAGCATGACCAGTTCAC CCGTCTACGAGGTTATCTACTTGGC-CCAACTGCCTACGCCCCTGCTGCTGTCCATGAT GTACATGCCTTTCGTCAGCCTTTTTGC-CGGCCTGGCCATCTTTGGGAAGGCCATGCTG CAGATCCTGGTACACAGGCTGGGCCA- ${\tt GATTGGCGGAGAAGAGCAGTCGGAGGAGGAGC}$ GCTTCCAAAGGCTGGCCTCCTGCAT-TGCGTACCACACGCAGGTGATGCGCTATGTGTG GCAGCTCAACAAACTGGTGGCCAACAT-TGTGGCGGTGGAAGCAATTATTTTTGGCTCG ATAATCTGCTCACTGCTCTTCTGTCT-GAATATTATAACCTCACCCACCCAGGTGATCT CGATAGTGATGTACATTCTGACCATGCT-GTACGTTCTCTTCACCTACTACAATCGGGC CAAT-GAAATATGCCTCGAGAACAACCGGGTG-GCGGAGGCTGTTTACAATGTGCCCTGG TACGAGGCAGGAACTCGGTTTCG-CAAAACCCTCCTGATCTTCTTGATGCAAACACAAC ACCCGATGGAGATAAGAGTCG-GCAACGTTTACCCCATGACATTGGCCAT-**GTTCCAGAG** TCTGTTGAATGCGTCCTACTC-CTACTTTACCATGCTGCGTGGCGTCACCGGCAAA GCTGAAAGACCGAAAAAACCGGAGTATC-CCCTTCCATATTCCCCCTGCTCCTTTATTT TCCTTTC-CTTTTCCCTTTCCGTTTTCCCAT-TCGCTTTTCCAGCAATCCGGGTAATGCA

[0356] DOR91

[0357] MVRYVPRFADGQKVKLAWPLAVFRLNHIFWPLDPSTGKWGRYLDKVLAVAMSLVFMQH
NDAELRYLRFEASNRNLDAFLTGMPTYLILVEAQFRSLHILLHFEKLQKFLEIFYANI YIDPRKEPEMFRKVDGKMIINRLVSAMYGAVISLYLIAPVFSIINQSKDFLYSMIFPF
DSDPLYIFVPLLLTNVWVGIVIDTMMFGETNLLCELIVHLNGSYMLLKRDLQLAIEKI LVARDRPHMAKQLKVLITKTLRKNVALNQFGQQLEAQYTVRVFIMFAFAAGLLCALSF
KAYTTDSLSTMYYLTHWEQILQYSTNPSENLRLLKLINLAIEMNSKPFYVTGLKYFRV
SLQAGLKRQKFLRSASSSTLSTADVLAFAFAFTRWLL

[**0358**] DOR91nt

[0359] ATGGTTCGTTACGTGCCCCGGTTCGCT-GATGGTCAGAAAGTAAAGTTGGCTTGGCCCT TGGCGGTTTTTCGGTTAAATCACATAT-TCTGGCCATTGGATCCGAGCACAGGGAAATG GGGCCGATATCTGGACAAGGTTCTAGCT-GTTGCGATGTCCTTGGTTTTTATGCAACAC AAC-GATGCAGAGCTGAGGTACTTGCGCTTC-GAGGCAAGTAATCGGAATTTGGATGCCT TTCTCACAGGAATGCCAACGTATT-TAATCCTCGTGGAGGCTCAATTTAGAAGTCTTCA CATTCTACTGCACTTCGAGAAGCTTCA-GAAGTTTTTAGAAATATTCTACGCAAATATT TATAT-TGATCCCCGTAAGGAACCCGAAAT-GTTTCGAAAAGTGGATGGAAAGATGATAA TTAACAGATTAGTTTCGGCCATGTACG-GTGCAGTTATCTCTCTGTATCTAATCGCACC CGTTTTTTCCATCATTAACCAAAGCAAA-GATTTTCTATACTCTATGATCTTTCCGTTC GATTCG-GATCCCTTGTACATATTTGTGCCACT-GCTTTTGACAAACGTATGGGTTGGCA TTGTAATAGATACCATGATGTTCGGG-GAGACGAATTTGTTGTGTGAACTAATTGTCCA CCTAAATGGTAGTTATATGTTGCTCAA-GAGGGACTTGCAGTTGGCCATTGAAAAGATA TTAGTTGCAAGGGACCGTCCGCATATG-GCCAAACAGCTAAAGGTTTTAATTACAAAAA CTCTCCGAAAGAATGTGGCTCTAAAT-CAGTTTGGCCAGCAGCTGGAGGCTCAGTATAC TGT-GCGGGTTTTTATTATGTTTGCATTCGCT-GCGGGCCTTTTATGTGCTCTTTCTTTT AAGGCTTATACGACGGATTCCCTCAGCA-CAATGTACTACCTTACCCATTGGGAGCAAA TCCTG-CAGTACTCTACAAATCCCAGC-GAAAATCTGCGATTACTAAAGCTCATTAACTT GGCCATTGAGATGAACAGCAAGCCCTTC-TATGTGACAGGGCTAAAATATTTTCGCGTT AGTCT-GCAGGCTGGCTTAAAACGT-

CAAAAGTTTCTGCGGTCTGCCAGCTCATCCACCC TTAGCACCGCTGATGTGTTG-GCATTTGCTTTTGCTTTTACTCGCTGGCTGCTT

[**0360**] DOR92

[0361] MSEWLRFLKRDQQLDVYFFAVPRLSLDIMGYWPGKTGDTWPWRSLIHFAILAIGVATE LHAGMCFLDRQQITLALETLCPAGTSAVTLLKMFLMLRFRQDLSIMWNRLRGLLFDPN
WERPEQRDIRLKHSAMAARINFWPLSAGFFTCTTYNLKPILIAMILYLQNRYEDFVWF TPFNMTMPKVLLNYPFFPLTYIFIAYTGYVTIFMFGGCDGFYFEFCAHLSALFEVLQA
EIESMFRPYTDHLELSPVQLYILEQKMRSVIIRHNAIIDLTRFFRDRYTIITLAHFVS AAMVIGFSMVNLLTLGNNGLGAMLYVAYTVAALSQLLVYCYGGTLVAESSTGLCRAMF
SCPWQLFKPKQRRLVQLLILRSQRPVSMAVPFFSPSLATFAAILQTSGSIIALVKSFQ

[**0362**] DOR92nt

[0363] ATGTCCGAGTGGTTACGCTTTCT-GAAACGCGATCAACAGCTGGATGTGTACTTTTTTG CAGTGCCCCGCTTGAGTTTAGACAT-AATGGGCTATTGGCCGGGCAAAACTGGTGATAC ATGGCCCTGGAGATCCCTGATTCACT-TCGCAATCCTGGCCATTGGCGTGGCCACCGAA CTGCATGCTGGCATGTTTTCTAGAC-CGACAGCAGATTACCTTGGCACTGGAGACCC TCT-GTCCAGCTGGCACATCGGCGGTCACGCT-GCTCAAGATGTTCCTAATGCTGCGCTT TCGTCAGGATCTCTCCATTATGTGGAAC-CGCCTGAGGGGCCTGCTCTTCGATCCCAAC TGG-GAGCGACCCGAGCAGCGGGACATCCG-GCTAAAGCACTCGGCCATGGCGGCTCGCA TCAATTTCTGGCCCCTGTCAGCCGGAT-TCTTCACATGCACCACCTACAACCTAAAGCC GATACTGATCGCAATGATATTGTATCTC-CAGAATCGTTACGAGGACTTCGTTTGGTTT ACAC-CCTTCAATATGACTATGCCCAAAGTTCT-GCTAAACTATCCATTTTTTCCCCTGA CCTACATATTTATTGCCTATACGGGC-TATGTGACCATCTTTATGTTCGGCGGCTGTGA TGGTTTTTATTTCGAGTTCTGTGCCCAC-CTATCAGCTCTTTTCGAAGTGCTCCAGGCG GAGATAGAATCAATGTTTAGACCCTA-CACTGATCACTTGGAACTGTCGCCAGTGCAGC TTTACATTTTAGAGCAAAAGATGCGAT-CAGTAATCATTAGGCACAATGCCATCATCGA TTTGACCAGATTTTTTCGTGATCGC-TATACCATTATTACCCTGGCCCATTTTGTGTCC GCCGCCATGGTGATTGGATTCAGCATG-GTTAATCTCCTGACATTGGGCAATAATGGTC TGGGCGCAATGCTCTATGTGGCCTA-CACGGTTGCCGCTTTGAGCCAACTGCTGGTTTA TTGCTATGGCGGAACTCTGGTGGC-CGAAAGTAGCACTGGTCTGTGCCGAGCCATGTTC TCCTGTCCGTGGCAGCTTTTTAAGC-CTAAACAACGTCGACTCGTTCAGCTTTTGATTC TCAGATCGCAGCGTCCTGTTTCCATG-GCAGTGCCATTCTTTTCGCCATCGTTGGCTAC CTTTGCTGCGATTCTTCAAACTTCGGGT-TCCATAATTGCGCTGGTTAAGTCCTTTCAG

[**0364**] DOR95

[0365] MSDKVKGKKQEEKDQSLRVQILVYRC-MGIDLWSPTMANDRPWLTFVTMGPLFLFMVPM FLAAHEYITQVSLLSDTLGSTFASM-LTLVKFLLFCYHRKEFVGLIYHIRAILAKEIEV WPDA-REIIEVENQSDQMLSLTYTRCFGLAGI-FAALKPFVGIILSSIRGDEIHLELPHN GVYPYDLQVVMFYVPTYLWNVMA-SYSAVTMALCVDSLLFFFTYNvCAIFKIAKHRMIH LPAVGGKEELEGLVQVLLLHQKGLQIA-DHIADKYRPLIFLQFFLSALQICFIGFQVAD LFPNPQS-LYFIAFVGSLLIALFIYSKC-GENIKSASLDFGNGLYETNWTDFSPPTKRAL LIAAMRAQRPCQMKGYFFEASMATFS-TIVRSAVSYIMMLRSFNA

[**0366**] DOR95nt

[0367] ATGAGCGACAAGGTGAAGGGAAAAAAG-CAGGAGGAAAAGGATCAATCCTTGCGGGTG CAAATTC CCAGCTATAGTGCTGTAACCATG-GCACTCTGCGTGGACTCGCTGCTCTTTTTTCAC CTACAACGTGTGCGCCATTTTCAA-GATCGCCAAGCACCGGATGATCCATCTGCCGGCG GTGGGCGGAAAGGAGGAGCTG-GAGGGCTCGTCCAGGTGCTGCTG-GCCTCCAGATCGCCGATCACAT-CACCAGAAGG TGCGGACAAGTACCGGCCGCTGATCTTTTTGCAGTT CTTTCTGTCCGCCTTGCAGATCTGCT-TCATTGGATTCCAGGTGGCTGATCTGTTTCCC AATCCGCAGAGTCTCTACTTTATCGC-CTTTGTGGGCTCGCTGCTCATCGCACTGTTCA TCTACTCGAAGTGCGGCGAAAATATCAA-GAGTGCCAGCCTGGATTTCGGAAACGGGCT GTAC-GAGACCAACTGGACCGACTTCTCGCCAC-CCACTAAAAGAGCCCTCCTCATTGCC GCCATGCGCGCCCAGCGACCTTGCCA-GATGAAGGCTACTTTTTCGAGGCCAGCATGG CCACCTTCTCGACGATTGTTCGCTCTGC-CGTGTCGTACATCATGATGTTGCGCTCCTT TAAT-GCC

[**0368**] DOR99

[0369] MEEFLRPQMFQEVAQMVHFQWRRN-PVDNSMVNASMVPFCLSAFLNVLFFGCNGWDIIG HFWLGHPANQNPPVLSITIYFSIRGLM-LYLKRKEIVEFVNDLDRECPRDLVSQLDMQM DETYRNFWQRYRFIRIYSHLGGPMFCV-VPLALFLLTHEGKDTPVAQHEQLLGGWLPCG VRKD-PNFYLLVWSFDLMCTTCGVSFFVTFDN-LFNVMQGHLVMHLGHLARQFSAIDPRQ SLTDEKRFFVDLR-LLVQRQQLLNGLCRKYNDIFKVAFLVSN-FVGAGSLCFYLFMLSET SDVLIIAQYILPTLVLVGFT-FEICLRGTQLEKASEGLESSLRSQEWYLGSRRYRK FYL LWTQYCQRTQQLGAFGLIQVNMVHFTE-IMQLAYRLFTFLKSH

[0370] DOR99nt

[0371] ATGGAGGAGTTTCTGCGTCCGCAGATGT-TCCAGGAGGTGGCTCAGATGGTGCATTTCC AGTG-GCGGAGAAATCCGGTGGACAACAGCATG-GTGAACGCATCCATGGTCCCCTTCTG CTTGTCGGCGTTTCTTAATGTCCT-GTTTTTCGGCTGCAATGGTTGGGACATCATAGGA US 2003/0186359 A1 Oct. 2, 2003

CATTTTTGGCTGGGACATCCTGCCAAC-ACT-CAGAATCCGCCCGTGCTTAGCATCACCATTT TCTCGATCAGGGGATTGATGCTATACCT-GAAACGAAAGGAAATCGTTGAGTTTGT TAACGACTTGGATCGGGAGTGTCCGCGG-GACTTGGTCAGCCAGTTGGACATGCAAATG GAT-GAGACGTACCGAAACTTTTGGCAGCGC-TATCGCTTCATCCGTATCTACTCCCATT TGGGTGGTCCGATGTTCTGCGTTGTGC-CATTAGCTCTATTCCTCCTGACCCACGAGGG TAAA-GATACTCCTGTTGCCCAGCACGAG-CAGCTCCTTGGAGGATGGCTGCCATGCGGT GTGCGAAAGGACCCAAATTTCTACCTTT-TAGTCTGGTCCTTCGACCTGATGTGCACCA CTTGCGGCGTCTCCTTTTTCGTTACCT-TCGACAACCTATTCAATGTGATGCAGGGACA TTTG-GTCATGCATTTGGGCCATCTTGCTCGC-CAGTTTTCGGCCATCGATCCTCGACAG AGTTTGACCGATGAGAAGCGAT-TCTTTGTGGATCTTAGGTTATTAGTTCAGAGGCAGC AGCTTCTTAATGGATTGTGCAGAAAATA-CAACGACATCTTTAAAGTGGCCTTCCTGGT GAG-CAATTTTGTAGGCGCCGGTTCCCTCT-GCTTCTACCTCTTTATGCTCTCGGAGACA TCAGATGTCCTTATCATCGCCCAG-TATATATTACCCACTTTGGTCCTGGTGGGCTTCA CATTTGAGATTTGTCTACGGGGAAC-CCAACTGGAAAAGGCGTCGGAGGGACTGGAATCGTCGTTGCGAAGCCAGGAATGG-TATTTGGGAAGTAGGCGGTACCGGAAGTTCTATTTG CTCTGGACGCAATATTGCCAGCGAACA-CAGCAACTGGGCGCCTTTGGGCTAATCCAAG TCAATATGGTGCACTTCACTGAAATAAT-GCAGCTGGCCTATAGACTCTTCACTTTTCT **CAAATCTCAT**

[0372] DORA45

[0373] MTTSMQPSKYTGLVADLMPNIRAMKYS-GLFMHNFTGGSAFMKKVYSSVHLVFLLMOFT VNMALNAEEVNELSGNTITTLFFTHCIT-KFIYLAVNQKNFYRTLNIWNQVNTHPL FAESDARYHSIALAKMRKLFFLVMLT-TVASATAWTTITFFGDSVKMVVDHETNSSIPV EIPRLPIKSFYPWNASHGMFYMISFAF-**QIYYVLFSMIHSNLCDVMFCSWLIFACEQLQ** HLKGIMKPLMELSASLDTYRPNSAAL-FRSLSANSKSELIHNEEKDPGTDMDMSGIYSS KAD-WGAQFRAPSTLQSFGGNGGGGGGGLVNGA-NPNGLTKKQEMMVRSAIKYWVERHKHV VRLVAAIGDTYGAALLLHMLTSTIKLTL-LAYQATKINGVNVYAFTVVGYLGYALAQVF HFCIF-GNRLIEESSSVMEAAYSCHWYDGSEEAK-TFVQIVCQQCQKAMSISGAKFFTVS LDLFASVLGAVVTYFMVLVQLK

[0374] DORA45nt

[0375] GGCACGAGCTGGTTCCGGAAAGCCT-CATATCTCGTATCTTAAAGTATCCCGGTTAAGC CTTAAAGAGTGAAATGATTGCCTAGAC-GATTGCTGCATTACTGGCACTCAATTAACCC AAGT-GTACCAGACAACAATTACATTTG-TAITTTTAAAGTTCAATAGCAAGGATGACAA CCTCGATGCAGCCGAGCAAGTA-CACGGGCCTGGTCGCCGACCTGATGC- CCAACATCCG GGCGATGAAGTACTCCGGCCTGT-TCATGCACAACTTCACGGGCGGCAGTGCCTTCATG AAGAAGGTGTACTCCTCCGTGCACCTG-GTGTTCCTCCTCATGCAGTTCACCTTCATCC TGGT-CAACATGGCCCTGAACGCCGAGGAGGT-CAACGAGCTGTCGGGCAACACGATCAC GACCCTCTTCTTCACCCACTGCATCAC-GAAGTTTATCTACCTGGCTGTTAACCAGAAG AATTTCTACAGAACATTGAATATATG-GAACCAGGTGAACACGCATCCCTTGTTCGCCG AGTCGGATGCTCGTTACCATTCGATCG-CACTGGCGAAGATGAGGAAGCTGTTCTTTCT GGT-GATGCTGACCACAGTCGCCTCGGCCAC-CGCCTGGACCACGATCACCTTCTTTGGC GACAGCGTAAAAATGGTGGTGGACCAT-GAGACGAACTCCAGCATCCCGGTGGAGATAC CCCGGCTGCCGATTAAGTCCTTCTAC-CCGTGGAACGCCAGCCACGGCATGTTCTACAT GAT-CAGCTTTGCCTTTCAGATCTACTACGT-GCTCTTCTCGATGATCCACTCCAATCTA TGCGACGTGATGTTCTGCTCTTGGCT-GATATTCGCCTGCGAGCAGCTGCAGCACTTGA AGGGCATCATGAAGCCGCTGATGGAGCT-GTCCGCCTCGCTGGACACCTACAGGCCCAA CTCG-GCGGCCCTCTTCAGGTCCCTGTCGGC-CAACTCCAAGTCGGAGCTAATTCATAAT GAAGAAAAGGATCCCGGCACCGACATG-GACATGTCGGGCATCTACAGCTCGAAAGCGG ATTGGGGCGCTCAGTTTCGAGCACCCTC-GACACTGCAGTCCTTTGGCGGGAACGGGGG CGGAGGCAACGGGTTGGTGAACG-GCGCTAATCCCAACGGGCTGAC-CAAAAAGCAGGAG ATGATGGTGCGCAGTGCCAT-CAAGTACTGGGTCGAGCGGCACAAGCACGTGGT TGGTGGCTGCCATCGGCGATACTTACG-**GCGAC** GAGCCGCCCTCCTCCACATGCTGACCTC GAC-CATCAAGCTGACCCTGCTGGCATACCAG-GCCACCAAAATCAACGGAGTGAATGTC TACGCCTTCACAGTCGTCGGATACCTAG-GATACGCGCTGGCCCAGGTGTTCCACTTTT GCATCTTTGGCAATCGTCTGATTGAA-GAGAGTTCATCCGTCATGGAGGCCGCCTACTC GTGCCACTGGTACGATGGCTCCGAGGAG-GCCAAGACCTTCGTCCAGATCGTGTGCCAG CAGT-GCCAGAAGGCGATGAGCATATCGGGAGC-GAAATTCTTCACCGTCTCCCTGGATT TGTTTGCTTCGGTTCTGGGTGCCGTCGT-CACCTACTTTATGGTGCTGGTGCAGCTCAA GTAAGTTGCTGCGAAGCTGATG-GATTTTTGTACCAGAAAAGCGAATGC-CCTACCGCCCCTTGCCCCCTCCG-CAAGAAGCCA CACTGTGCAACCAGCAATATCACAGAGCAATTATA ACGCAAATTATATATTTTATACCTGC-GACGAGCGAGCCTCGTGGGGCATAATGGAGAC ATTCTGGGGCACATAGAAGCCTG-CAAATACTTATCGATTTTGTACACGCGTAGAGCTT TTAATGTAAACTCAAGATGCAAAC-TAAATAAATGTGTAGTGAAAAAAAAAAAAAAAAA **AAA**

[0376] Genbank Accession Numbers

[0377] The accession numbers for the sequences reported in this paper are AF127921-AF127926.

- [0378] References
 - [0379] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
 - [0380] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
 - [0381] Amrein, H., Gorman, M., and Nothiger, R. (1988). The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein [published erratum appears in Cell 1989 Jul 28;58(2):following 419]. Cell 55, 1025-1035.
 - [0382] Ayer, R. K., Jr., and Carlson, J. (1992) Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J. Neurobiol. 23, 965-982.
 - [0383] Bargmann, C. I., and Kaplan, J. M. (1998). Signal transduction in the *Caenorhabditis elegans* nervous system. Annu Rev Neurosci 21, 279-308.
 - [0384] Bargmann, C. I., Hartwieg, E., and Horvitz, H. R. (1993). Odorant-selective genes and neurons mediate olfaction in *C. elegans*. Cell 74, 515-527.
 - [0385] Bargmann, C. I., and Horvitz, H. R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in *C. elegans*. Neuron 7, 729-742.
 - [0386] Ben-Arie, N., Lancet, D., Taylor, C., Khen, M., Walker, N., Ledbetter, D. H., Carrozzo, R., Patel, K., Sheer, D., Lehrach, H., and et al. (1994). Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum. Mol. Genet. 3, 229-235.
 - [0387] Buck, L. B. (1996). Information coding in the vertebrate olfactory system. Annu Rev Neurosci 19, 517-44.
 - [0388] Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187.
 - [0389] Burge, C., and Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78-94.
 - [0390] Carlson, J. R. (1996). Olfaction in Drosophila: from odor to behavior. Trends Genet. 12, 175-180.
 - [0391] Chess, A., Simon, I., Cedar, H., and Axel, R. (1994). Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823-834.
 - [0392] Colbert, H. A., and Bargmann, C. I. (1995) Odorant-specific adaptation pathways generate olfactory plasticity in *C. elegans*. Neuron 14, 803-812.
 - [0393] Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. (1997). Prediction of transmembranehelices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673-676.

- [0394] Doe, C. Q., and Skeath, J. B. (1996). Neurogenesis in the insect central nervous system. Curr. Opin. Neurobiol. 6, 18-24.
- [0395] Dulac, C., and Axel, R. (1995). A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195-206.
- [0396] Faber, T., Joerges, J., and Menzel, R. (1998). Associative learning modifies neural representations of odors in the insect brain. Nature Neurosci. 2, 74-78.
- [0397] Friedrich, R. W., and Korsching, S. I. (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18, 737-752.
- [0398] Grillenzoni, N., van Helden, J., Dambly-Chaudiere, C., and Ghysen, A. (1998). The iroguois complex controls the somatotopy of Drosophila notum mechanosensory projections. Development 125, 3563-9.
- [0399] Hartl, D. L., Nurminsky, D. I., Jones, R. W., and Lozovskaya, E. R. (1994). Genome structure and evolution in Drosophila: applications of the framework Pi map. Proc. Natl. Acad. Sci. U S A 91, 6824-6829.
- [0400] Herrada, G., and Dulac, C. (1997). A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763-773.
- [0401] Imamura, K., Mataga, N., and Mori, K. (1992). Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds. J. Neurophysiol. 68, 1986-2002.
- [0402] Joerges, J., Kuttner, A., Galizia, C. G., and Menzel, R. (1997). Presentations of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285-288.
- [0403] Katoh, K., Koshimoto, H., Tani, A., and Mori, K. (1993). Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. J. Neurophysiol. 70, 2161-2175.
- [0404] Kauer, J. S., Senseman, D. M., and Cohen, L. B. (1987). Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res. 418, 255-261.
- [0405] Kim, M. S., Repp, A., and Smith, D. P. (1998). LUSH odorant-binding protein mediates chemosensory responses to alcohols in *Drosophila melanogaster*. Genetics 150, 711-21.
- [0406] Kimmerly, W., Stultz, K., Lewis, S., Lewis, K., Lustre, V., Romero, R., Benke, J., Sun, D., Shirley, G., Martin, C., and Palazzolo, M. (1996). A P1-based physical map of the Drosophila euchromatic genome. Genome Res. 6, 414-430.
- [0407] Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J Mol. Biol. 157, 105-132.
- [0408] Laissue, P. P., Reiter, C., Hiesinger, P. R., Halter, S., Fischbach, K. F., and Stocker, R. F. (1999) 3D reconstruction of the antennal lobe in *Drosophila melanogaster*. J. Comp. Neurol., in press.

- [0409] Lancet, D., Greer, C. A., Kauer, J. S., and Shepherd, G. M. (1982). Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography. Proc. Natl. Acad. Sci. USA 79, 670-674.
- [0410] Levy, N. S., Bakalyar, H. A., and Reed, R. R. (1991). Signal transduction in olfactory neurons. J. Steroid Biochem. Mol. Biol. 39, 633-637.
- [0411] Lin, D. M., and Goodman, C. S. (1994). Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507-523.
- [0412] Matsunami, H., and Buck, L. B. (1997). A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775-84.
- [0413] McKenna, M. P., Hekmat-Scafe, D. S., Gaines, P., and Carlson, J. R. (1994). Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol. Chem. 269, 16340-16347.
- [0414] McLatchie, L. M., Fraser, N. J., Main, M. J., Wise, A., Brown, J., Thompson, N., Solari, R., Lee, M. G., and Foord, S. M. (1998). RAMPs regulate the transport and ligand specificity of the calcitonin- receptor-like receptor. Nature 393, 333-9.
- [0415] Merritt, D. J., and Whitington, P. M. (1995). Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function. J Neurosci 15, 1755-67.
- [0416] Mitchell, R., McCulloch, D., Lutz, E., Johnson, M., MacKenzie, C., Fennell, M., Fink, G., Zhou, W., and Sealfon, S. C. (1998). Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature 392, 411-4.
- [0417] Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. (1996). Visualizing an olfactory sensory map. Cell 87; 675-686.
- [0418] Mori, K., Mataga, N., and Imamura, K. (1992). Differential specificities of single mitral cells in rabbit olfactory bulb for a homologous series of fatty acid odor molecules. J. Neurophysiol. 67, 786-789.
- [0419] Ngai, J., Chess, A., Dowling, M. M., Necles, N., Macagno, E. R., and Axel, R. (1993). Coding of olfactory information: topography of odorant receptor expression in the catfish olfactory epithelium. Cell 72, 667-680.
- [0420] Parmentier, M., Libert, F., Schurmans, S., Schiffmann, S., Lefort, A., Eggericks, D., Ledent, C., Molleareau, C., Gerard, D., and et al. (1992). Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355, 453-455.
- [0421] Pelosi, P. (1994). Odorant-binding proteins. Crit. Rev. Biochem. Mol. Biol. 29, 199-228.
- [0422] Persson, B., and Argos, P. (1994). Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J. Mol. Biol. 237, 182-192.

- [0423] Pikielny, C. W., Hasan, G., Rouyer, F., and Rosbash, M. (1994). Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12, 35-49.
- [0424] Ray, K., and Rodrigues, V. (1995). Cellular events during development of the olfactory sense organs in *Drosophila melanogaster*. Dev. Biol. 167, 426-38.
- [0425] Reddy, G. V., Gupta, B., Ray, K., and Rodrigues, V. (1997). Development of the Drosophila olfactory sense organs utilizes cell-cell interactions as well as lineage. Development 124, 703-712.
- [0426] Ressler, K. J., Sullivan, S. L., and Buck, L. B. (1993). A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597-609.
- [0427] Ressler, K. J., Sullivan, S. L., and Buck, L. B. (1994). Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245-1255.
- [0428] Robertson, H. M. (1998). Two large families of chemoreceptor genes in the nematodes *Caenorhabditis elegans* and *Caenorhabditis briggsae* reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res. 8, 449-463.
- [0429] Robinow, S. and White, K. (1988) The locus elav of *Drosophila melanogaster* is expressed in neurons at all developmental stages. Dev. Biol. 126, 294-303.
- [0430] Rodrigues, V. (1988). Spatial coding of olfactory information in the antennal lobe of *Drosophila melanogaster*. Brain Res. 453, 299-307.
- [0431] Ryba, N. J., and Tirindelli, R. (1997). A new multigene family of putative pheromone receptors, Neuron 19, 371-379.
- [0432] Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Second Edition (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).
- [0433] Schaeren-Wiemers, N., and Gerfin-Moser, A. (1993). A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled CRNA probes. Histochemistry 100, 431-440.
- [0434] Sengupta, P., Chou, J. H., and Bargmann, C. I. (1996). odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899-909.
- [0435] Siddiqi, 0. (1987). Neurogenetics of olfaction in *Drosophila melanogaster*. Trends Genet. 3, 137-142.
- [0436] Siden-Kiamos, I., Saunders, R. D., Spanos, L., Majerus, T., Treanear, J., Savakis, C., Louis, C., Glover, D. M., Ashburner, M., and Kafatos, F. C. (1990). Towards a physical map of the *Drosophila melanogaster* genome: mapping of cosmid clones within defined genomic divisions. Nucleic Acids Res. 18, 6261-6270.

- [0437] Singh, R. N., and Nayak, S. (1985). Fine structure and primary sensory projections of sensilla on the maxillary palp of *Drosophila melanogaster aMeigen* (*Diptera: Drosophilidae*). *Int. J. Insect Morphol. Embryol.* 14, 291-306.
- [0438] Stewart, W. B., Kauer, J. S., and Shepherd, G. M. (1979). Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. J. Comp. Neurol. 185, 715-734.
- [0439] Stocker, R. F. (1994). The organization of the chemosensory system in *Drosophila melanogaster*: a review. Cell Tissue Res. 275, 3-26.
- [0440] Stocker, R. F., Lienhard, M. C., Borst, A., and Fischbach, K. F. (1990). Neuronal architecture of the antennal lobe in *Drosophila melanogaster*. Cell Tissue Res. 262, 9-34. Stocker, R. F., Singh, R. N., Schorderet, M., and Siddiqi, O. (1983). Projection patterns of different types of antennal sensilla in the antennal glomeruli of *Drosophila melanogaster*. Cell Tissue Res. 232, 237-248.
- [0441] Thummel, C. S., Boulet, A. M., and Lipshitz, H. D. (1988). Vectors for *Drosophila melanogaster* P-element-mediated transformation and tissue culture transfection. Gene 74, 771-784.

<160> NUMBER OF SEC TO NOS: 108

- [0442] Troemel, E. R., Chou, J. H., Dwyer, N. D., Colbert, H. A., and Bargmann, C. I. (1995). Divergent seven transmembrane receptors are candidate chemosensory receptors in *C. elegans*. Cell 83, 207-218.
- [0443] Troemel, E. R., Kimmel, B. E., and Bargmann, C. I. (1997). Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in *C. elegans*. Cell 91, 161-169.
- [0444] Vassar, R., Chao, S. K., Sitcheran, R., Nunez, J. M., Vosshall, L. B., and Axel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981-991.
- [0445] Vassar, R., Ngai, J., and Axel, R. (1993). Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309-318.
- [0446] Venkatesh, S., and Singh, R. N. (1984). Sensilla on the third antennal segment of *Drosophila melanogaster* Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol. 13, 51-63.
- [0447] Wang, F., Nemes, A., Mendelsohn, M., and Axel, R. (1998). Odorant receptors govern the formation of a precise topographic map. Cell 93, 47-60.

SEQUENCE LISTING

```
<210> SEO ID NO 1
<211> LENGTH: 1285
<212> TYPE: DNA
<213> ORGANISM: DROSOPHILA MELANOGASTER DOR62
<400> SEQUENCE: 1
atggagaagc aagaggattt caaactgaac acccacagtg ctgtgtacta ccactggcgc
                                                                       60
gtttgggagc tcactggcct gatgcgtcct ccgggcgttt caagcctgct ttacgtggta
                                                                      120
tactccatta cggtcaactt ggtggtcacc gtgctgtttc ccttgagctt gctggccagg
                                                                      180
ctqctqttca ccaccaacat qqccqqattq tqcqaqaacc tqaccataac tattaccqat
                                                                      240
                                                                      300
attqtqqcca atttqaaqtt tqcqaatqtq tacatqqtqa qqaaqcaqct ccatqaqatt
cgctctctcc taaggctcat ggacgctaga gcccggctgg tgggcgatcc cgaggagatt
                                                                      360
tctgccttga ggaaggaagt gaatatcgca cagggcactt tccgcacctt tgccagtatt
                                                                      420
ttcgtatttg gcactacttt gagttgcgtc cgcgtggtcg ttcgcccgga tcgagagctc
                                                                      480
ctgtatccgg cctggttcgg cgttgactgg atgcactcca ccagaaacta tgtgctcatc
                                                                      540
aatatctacc agctcttcgg cttgatagtg caggctatac agaactgcgc tagtgactcc
                                                                      600
tatccqcctq cqtttctctq cctqctcacq qqtcatatqc qtqctttqqa qctqaqqqtq
                                                                      660
cggcggattg gctgcaggac ggaaaagtcc aataaagggc agacatatga agcctggcgg
                                                                      720
gaggaggtgt accaggaact catcgagtgc atccgcgatc tggcgcgggt ccatcggctg
                                                                      780
agggagatca ttcagcgggt cctttcagtg ccctgcatgg cccagttcgt ctgctccgcc
                                                                      840
                                                                      900
qccqtccaqt qtaccqtcqc catqcacttc ctqtacqtaq cqqatqacca cqaccacacc
```

gccato	atca	tctc	gatt	gt a	tttt	tata	g gc	cgtc	acct	tgg	aggt	gtt ·	tgta	atctgc	960
tatttt	gggg	acag	gatg	cg g	acaca	agago	c gaq	ggcg	ctgt	gcg	atgc	ctt (ctac	gattgc	1020
aactgg	atag	aaca	gctg	cc c	aagt	tcaaq	g ego	gaad	ctgc	tct	tcac	cct (ggcc	aggacg	1080
cagcgg	cctt	ctct	tatt	ta c	gcag	gcaa	tac	catc	gcac	tct	cgct	gga (gacc	ttcgag	1140
caggto	atga	ggtt	caca-	ta c	tctg	tttt	c aca	actc	ttgc	tga	gggc	caa (gtaa	gaactt	1200
tataat	ctct	tttt	gggg	ag a	aaaa	tttta	a aag	gcaca	aata	gca	gaaa	aat a	atat	cagata	1260
atataa	.caaa	aaaa	aaaa	aa a	aaaa										1285
<210> <211> <212> <213>	LENGT:	H: 39	97	SOPHI	ILA N	1ELAN	IOGAS	STER	DOF	R62					
<400>	SEQUE:	NCE:	2												
Met Gl 1	u Lys	Gln	Glu 5	Asp	Phe	Lys	Leu	Asn 10	Thr	His	Ser	Ala	Val 15	Tyr	
Tyr Hi	s Trp	Arg 20	Val	Trp	Glu	Leu	Thr 25	Gly	Leu	Met	Arg	Pro 30	Pro	Gly	
Val Se	r Ser 35	Leu	Leu	Tyr	Val	Val 40	Tyr	Ser	Ile	Thr	Val 45	Asn	Leu	Val	
Val Th		Leu	Phe	Pro	Leu 55	Ser	Leu	Leu	Ala	Arg 60	Leu	Leu	Phe	Thr	
Thr As	n Met	Ala	Gly	Leu 70	Сув	Glu	Asn	Leu	Thr 75	Ile	Thr	Ile	Thr	Asp 80	
Ile Va	l Ala	Asn	Leu 85	Lys	Phe	Ala	Asn	Val 90	Tyr	Met	Val	Arg	Lys 95	Gln	
Leu Hi	s Glu	Ile 100	Arg	Ser	Leu	Leu	Arg 105	Leu	Met	Asp	Ala	Arg 110	Ala	Arg	
Leu Va	l Gly 115		Pro	Glu	Glu	Ile 120	Ser	Ala	Leu	Arg	Lys 125	Glu	Val	Asn	
Ile Al		Gly	Thr	Phe	Arg 135	Thr	Phe	Ala	Ser	Ile 140	Phe	Val	Phe	Gly	
Thr Th	r Leu	Ser	Cys	Val 150	Arg	Val	Val	Val	Arg 155	Pro	Asp	Arg	Glu	Leu 160	
Leu Ty	r Pro	Ala	Trp 165	Phe	Gly	Val	Asp	Trp 170	Met	His	Ser	Thr	A rg 175	Asn	
Tyr Vā	l Leu	Ile 180	Asn	Ile	Tyr	Gln	Leu 185	Phe	Gly	Leu	Ile	Val 190	Gln	Ala	
Ile Gl	n Asn 195	_	Ala	Ser	Asp	Ser 200	Tyr	Pro	Pro	Ala	Phe 205	Leu	Сув	Leu	
Leu Th	_	His	Met	Arg	Ala 215	Leu	Glu	Leu	Arg	Val 220	Arg	Arg	Ile	Gly	
Cys Ar 225	g Thr	Glu	Lys	Ser 230	Asn	Lys	Gly	Gln	Thr 235	Tyr	Glu	Ala	Trp	Arg 240	
Glu Gl	u Val	Tyr	Gln 245	Glu	Leu	Ile	Glu	C y s 250	Ile	Arg	Asp	Leu	Ala 255	Arg	
Val Hi	s Arg	Leu 260	Arg	Glu	Ile	Ile	Gln 265	Arg	Val	Leu	Ser	Val 270	Pro	Cys	
Met Al	a Gln 275		Val	Cys	Ser	Ala 280	Ala	Val	Gln	Cys	Thr 285	Val	Ala	Met	

His Phe Leu Tyr Val Ala Asp Asp His Asp His Thr Ala Met Ile Ile 290 295 300		_
Ser Ile Val Phe Phe Ser Ala Val Thr Leu Glu Val Phe Val Ile Cys 305 310 315 320		
Tyr Phe Gly Asp Arg Met Arg Thr Gln Ser Glu Ala Leu Cys Asp Ala 325 330 335		
Phe Tyr Asp Cys Asn Trp Ile Glu Gln Leu Pro Lys Phe Lys Arg Glu 340 345 350		
Leu Leu Phe Thr Leu Ala Arg Thr Gln Arg Pro Ser Leu Ile Tyr Ala 355 360 365		
Gly Asn Tyr Ile Ala Leu Ser Leu Glu Thr Phe Glu Gln Val Met Arg		
370 375 380 Phe Thr Tyr Ser Val Phe Thr Leu Leu Leu Arg Ala Lys 385 390 395		
2.2		
<210> SEQ ID NO 3 <211> LENGTH: 1499 <212> TYPE: DNA <213> ORGANISM: DROSOPHILA MELANOGASTER DOR104		
<400> SEQUENCE: 3		
gaattoggca cgagcagtog atggccagto ttoagttoca cggcaacgto gatgoggaca	a 60)
tcaggtatga tattagcctg gatccggcta gggaatcgaa tctcttccgt ctgctaatg	120	ı
gactccagtt ggcgaatggc acgaagccat cgccgcggtt acccaaatgg tggccaaagc	180	1
ggctggaaat gattggtaaa gtgctgccca aagcctattg ttccatggtg attttcacct	240	ı
ccctgcattt gggtgtcctg ttcacgaaaa ccacactgga tgtcctgccg acgggggag	300	ı
tgcaggccat aacggatgcc ctcaccatga ccataatata ctttttcacg ggctacggca	a 360	ı
ccatctactg gtgcctgcgc tcccggcgcc tcttggccta catggagcac atgaaccgg	420	ı
agtatcgcca tcattcgctg gccggggtga cctttgtgag tagccatgcg gcctttagga	a 480	1
tgtccagaaa cttcacggtg gtgtggataa tgtcctgcct gctgggcgtg atttcctgg	g 540	1
gcgtttcgcc actgatgctg ggcatccgga tgctgccgct ccaatgttgg tatcccttcg	g 600	1
acgccctggg tcccggcaca tatacggcgg tctatgctac acaacttttc ggtcagatca	a 660	1
tggtgggcat gacctttgga ttcgggggat cactgtttgt caccctgagc ctgctactcc	720	1
tgggacaatt cgatgtgctc tactgcagcc tgaagaacct ggatgcccat accaagttgc	780	i
tgggcgggga gtctgtaaat ggcctgagtt cgctgcaaga ggagttgctg ctgggggact		
cgaagaggga attaaatcag tacgttttgc tocaggagca tocgacggat ctgctgagat		
tgtcggcagg acgaaaatgt cctgaccaag gaaatgcgtt tcacaacgcc ttggtggaat		
gcattcgctt gcatcgcttc attctgcact gctcacagga gttggagaat ctattcagtc		
catattgtct ggtcaagtca ctgcagatca cctttcagct ttgcctgctg gtctttgtgg		
gcgtttcggg tactcgagag gtcctgcgga ttgtcaacca gctacagtac ttgggactga		
ccatcttcga gctcctaatg ttcacctatt gtggcgaact cctcagtcgg catagtattc		
gatetggega egeettttgg aggggtgegt ggtggaagea egeeeattte ateegeeage		
acatecteat etttetggte aatagtagae gtgeagttea egtgaetgee ggeaagtttt		
atgtgatgga tgtgaatcgt ctaagatcgg ttataacgca ggcgttcagc ttcttgactt	1380	

tgctgcaaaa gttggctgcc aagaagacgg aatcggagct ctaaactggt accacgcatc 1440

-continued

1499

43

gatatttatt tagogoatta daadaadgto gagtadaago daadaadaad daddaadaa															
<211 <212	<210> SEQ ID NO 4 <211> LENGTH: 467 <212> TYPE: PRT <213> ORGANISM: DROSOPHILA MELANOGASTER DOR104														
<400)> SE	QUEN	ICE:	4											
Met 1	Ala	Ser	Leu	Gln 5	Phe	His	Gly	Asn	Val 10	Asp	Ala	Asp	Ile	Arg 15	Tyr
Asp	Ile	Ser	Leu 20	Asp	Pro	Ala	Arg	Glu 25	Ser	Asn	Leu	Phe	Arg 30	Leu	Leu
Met	Gly	Leu 35	Gln	Leu	Ala	Asn	Gly 40	Thr	Lys	Pro	Ser	Pro 45	Arg	Leu	Pro
Lys	Trp 50	Trp	Pro	Lys	Arg	Leu 55	Glu	Met	Ile	Gly	L y s 60	Val	Leu	Pro	Lys
Ala 65	Tyr	Cys	Ser	Met	Val 70	Ile	Phe	Thr	Ser	Leu 75	His	Leu	Gly	Val	Leu 80
Phe	Thr	Lys	Thr	Thr 85	Leu	Asp	Val	Leu	Pro 90	Thr	Gly	Glu	Leu	Gln 95	Ala
Ile	Thr	Asp	Ala 100	Leu	Thr	Met	Thr	Ile 105	Ile	Tyr	Phe	Phe	Thr 110	Gly	Tyr
Gly	Thr	Ile 115	Tyr	Trp	Суѕ	Leu	Arg 120	Ser	Arg	Arg	Leu	Leu 125	Ala	Tyr	Met
Glu	His 130	Met	Asn	Arg	Glu	Tyr 135	Arg	His	His	Ser	Leu 140	Ala	Gly	Val	Thr
Phe 145	Val	Ser	Ser	His	Ala 150	Ala	Phe	Arg	Met	Ser 155	Arg	Asn	Phe	Thr	Val 160
Val	Trp	Ile	Met	Ser 165	Cys	Leu	Leu	Gly	Val 170	Ile	Ser	Trp	Gly	Val 175	Ser
Pro	Leu	Met	Leu 180	Gly	Ile	Arg	Met	Leu 185	Pro	Leu	Gln	Суѕ	Trp 190	Tyr	Pro
Phe	Asp	Ala 195	Leu	Gly	Pro	Gly	Thr 200	Tyr	Thr	Ala	Val	Ty r 205	Ala	Thr	Gln
Leu	Phe 210	Gly	Gln	Ile	Met	Val 215	Gly	Met	Thr	Phe	Gly 220	Phe	Gly	Gly	Ser
Leu 225	Phe	Val	Thr	Leu	Ser 230	Leu	Leu	Leu	Leu	Gly 235	Gln	Phe	Asp	Val	Leu 240
Tyr	Суѕ	Ser		L y s 245				Ala						Gl y 255	
Glu	Ser	Val	Asn 260	Gly	Leu	Ser	Ser	Leu 265	Gln	Glu	Glu	Leu	Leu 270	Leu	Gly
Asp	Ser	L y s 275	Arg	Glu	Leu	Asn	Gln 280	Tyr	Val	Leu	Leu	Gln 285	Glu	His	Pro
Thr	Asp 290	Leu	Leu	Arg	Leu	Ser 295	Ala	Gly	Arg	Lys	C y s 300	Pro	Asp	Gln	Gly
Asn 305	Ala	Phe	His	Asn	Ala 310	Leu	Val	Glu	Cys	Ile 315	Arg	Leu	His	Arg	Phe 320
Ile	Leu	His	Суѕ	Ser 325	Gln	Glu	Leu	Glu	Asn 330	Leu	Phe	Ser	Pro	Tyr 335	Cys
Leu	Val	Lys	Ser 340	Leu	Gln	Ile	Thr	Phe 345	Gln	Leu	Cys	Leu	Leu 350	Val	Phe

Val Gly Val Ser Gly Thr Arg Glu Val Leu Arg Ile Val Asn Gln Leu 360 Gln Tyr Leu Gly Leu Thr Ile Phe Glu Leu Leu Met Phe Thr Tyr Cys 375 380 Gly Glu Leu Leu Ser Arg His Ser Ile Arg Ser Gly Asp Ala Phe Trp Arg Gly Ala Trp Trp Lys His Ala His Phe Ile Arg Gln Asp Ile Leu Ile Phe Leu Val Asn Ser Arg Arg Ala Val His Val Thr Ala Gly Lys 420 Phe Tyr Val Met Asp Val Asn Arg Leu Arg Ser Val Ile Thr Gln Ala Phe Ser Phe Leu Thr Leu Leu Gln Lys Leu Ala Ala Lys Lys Thr Glu Ser Glu Leu <210> SEQ ID NO 5 <211> LENGTH: 1556 <212> TYPE: DNA <213> ORGANISM: DROSOPHILA MELANOGASTER DOR87 <400> SEOUENCE: 5 ggcacgaggc ttatagaaag tgccgagcaa tgacaatcga ggatatcggc ctggtgggca 60 tcaacqtqcq qatqtqqcqa cacttqqccq tqctqtaccc cactccqqqc tccaqctqqc 120 gcaagttcgc cttcgtgctg ccggtgactg cgatgaatct gatgcagttc gtctacctgc tgcggatgtg gggcgacctg cccgccttca ttctgaacat gttcttcttc tcggccattt tcaacgccct gatgcgcacg tggctggtca taatcaagcg gcgccagttc gaggagtttc 300 teggecaact ggecactetg ttecattega ttetegacte cacegaegag tgggggegtg 360 gcatcctgcg gagggcggaa cgggaggctc ggaacctggc catccttaat ttgagtgcct 420 ccttcctgga cattgtcggt gctctggtat cgccgctttt cagggaggag agagctcatc 480 ccttcqqcqt aqctctacca qqaqtqaqca tqaccaqttc acccqtctac qaqqttatct 540 acttggccca actgcctacg cccctgctgc tgtccatgat gtacatgcct ttcgtcagcc 600 tttttgccgg cctggccatc tttgggaagg ccatgctgca gatcctggta cacaggctgg 660 gccagattgg cggagaagag cagtcggagg aggagcgctt ccaaaggctg gcctcctgca 720 ttgcgtacca cacgcaggtg atgcgctatg tgtggcagct caacaaactg gtggccaaca 780 ttgtggcggt ggaagcaatt atttttggct cgataatctg ctcactgctc ttctgtctga 840 atattataac ctcacccacc caggtgatct cgatagtgat gtacattctg accatgctgt 900 acqttctctt cacctactac aatcqqqcca atqaaatatq cctcqaqaac aaccqqqtqq 960 cggaggctgt ttacaatgtg ccctggtacg aggcaggaac tcggtttcgc aaaaccctcc tgatcttctt gatgcaaaca caacacccga tggagataag agtcggcaac gtttacccca 1080 tgacattggc catgttccag agtctgttga atgcgtccta ctcctacttt accatgctgc 1140 gtggcgtcac cggcaaatga gctgaaagac cgaaaaaacc ggagtatccc cttccatatt 1200 cccctqctc ctttattttc ctttcctttt ccctttccqt tttcccattc qcttttccaq 1260 caatccqqqt aatqcaaaaa qttqttqctq qctqtqqtcc tqqctqcttq tttqqcattt 1320

gcatatgctt gtcgtttgaa aggatttaat cggactgctg gcacggagtc ggcatcctg	g 1380							
ctcctggatc ctggcatgca aatagttggc ttcttagatt gttacacaaa atagattgt	a 1440							
gattgcagct gaatgttgtg cttggaataa agtcaaaagg atgtggagtc ggcccaagg	c 1500							
tctgcccatt ctgtttgctc gggatgcccg aaagtatgaa aaaaaaaaa aaaaaa	1556							
<210> SEQ ID NO 6 <211> LENGTH: 376 <212> TYPE: PRT <213> ORGANISM: DROSOPHILA MELANOGASTER DOR87								
<400> SEQUENCE: 6								
Met Thr Ile Glu Asp Ile Gly Leu Val Gly Ile Asn Val Arg Met Trp 1 5 10 15								
Arg His Leu Ala Val Leu Tyr Pro Thr Pro Gly Ser Ser Trp Arg Lys 20 25 30								
Phe Ala Phe Val Leu Pro Val Thr Ala Met Asn Leu Met Gln Phe Val 35 40 45								
Tyr Leu Leu Arg Met Trp Gly Asp Leu Pro Ala Phe Ile Leu Asn Met 50 55 60								
Phe Phe Phe Ser Ala Ile Phe Asn Ala Leu Met Arg Thr Trp Leu Val 65 70 75 80								
Ile Ile Lys Arg Arg Gln Phe Glu Glu Phe Leu Gly Gln Leu Ala Thr 85 90 95								
Leu Phe His Ser Ile Leu Asp Ser Thr Asp Glu Trp Gly Arg Gly Ile 100 105 110								
Leu Arg Arg Ala Glu Arg Glu Ala Arg Asn Leu Ala Ile Leu Asn Leu 115 120 125								
Ser Ala Ser Phe Leu Asp Ile Val Gly Ala Leu Val Ser Pro Leu Phe 130 135 140								
Arg Glu Glu Arg Ala His Pro Phe Gly Val Ala Leu Pro Gly Val Ser 145 150 155 160								
Met Thr Ser Ser Pro Val Tyr Glu Val Ile Tyr Leu Ala Gln Leu Pro 165 170 175								
Thr Pro Leu Leu Ser Met Met Tyr Met Pro Phe Val Ser Leu Phe 180 185 190								
Ala Gly Leu Ala Ile Phe Gly Lys Ala Met Leu Gln Ile Leu Val His 195 200 205								
Arg Leu Gly Gln Ile Gly Gly Glu Glu Gln Ser Glu Glu Glu Arg Phe 210 215 220								
Gln Arg Leu Ala Ser Cys Ile Ala Tyr His Thr Gln Val Met Arg Tyr 225 230 235 240								
Val Trp Gln Leu Asn Lys Leu Val Ala Asn Ile Val Ala Val Glu Ala 245 250 255								
Ile Ile Phe Gly Ser Ile Ile Cys Ser Leu Leu Phe Cys Leu Asn Ile 260 265 270								
Ile Thr Ser Pro Thr Gln Val Ile Ser Ile Val Met Tyr Ile Leu Thr 275 280 285								
Met Leu Tyr Val Leu Phe Thr Tyr Tyr Asn Arg Ala Asn Glu Ile Cys 290 295 300								
Leu Glu Asn Asn Arg Val Ala Glu Ala Val Tyr Asn Val Pro Trp Tyr 305 310 315 320								

46

Thr Gln His Pro Met Glu Ile Arg Val Gly Asn Val Tyr Pro Met Thr 340 345 Leu Ala Met Phe Gln Ser Leu Leu Asn Ala Ser Tyr Ser Tyr Phe Thr Met Leu Arg Gly Val Thr Gly Lys <210> SEQ ID NO 7 <211> LENGTH: 1338 <212> TYPE: DNA <213> ORGANISM: DROSOPHILA MELANOGASTER DOR53 <400> SEOUENCE: 7 tcaaacaaag ccacggacaa gatgttaagc aagtttttc cccacataaa agaaaagcca 60 ttgagcgagc gggttaagtc ccgagatgcc ttcatttact tggatcgggt gatgtggtcc tttggctgga cagagcctga aaacaaaagg tggatccttc cttataaact gtggttagcg 180 ttcgtgaaca tagtaatgct catccttctg ccgatctcga taagcatcga gtacctccac 240 cgatttaaaa ccttctcggc gggggagttc cttagttccc tcgagattgg agtcaacatg 300 tacggaagct cttttaagtg cgccttcacc ttgattggat tcaagaaaag acaggaagct 360 aaggttttac tggatcagct ggacaagaga tgccttagcg ataaggagag gtccactgtt 420 catcgctatg tcgccatggg aaactttttc gatattttgt atcacattt ttactccacc 480 ttcgtggtaa tgaacttccc gtattttctg cttgagagac gccatgcttg gcgcatgtac tttccatata tcgattccga cgaacagttt tacatctcca gcatcgccga gtgttttctg atgacggagg ccatctacat ggatctctgt acggacgtgt gtcccttgat ctccatgctt 660 atggctcgat gccacatcag cctcctgaaa cagcgactga gaaatctccg atcgaagcca 720 ggaaggaccg aagatgagta cttggaggag ctcaccgagt gcattcggga tcatcgattg 780 ctattggact atgttgacgc attgcgaccc gtcttttcgg gaaccatttt tgtgcagttc 840 ctcctgatcg gtactgtact gggtctctca atgataaatc taatgttctt ctcgacattt 900 tggactggtg tcgccacttg cctttttatg ttcgacgtgt ccatggagac gttccccttt tgctatttgt gcaacatgat tatcgatgac tgccaggaaa tgtccaattg cctctttcaa 1020 tcggactgga cctctgccga tcgtcgctac aaatccactt tggtatactt tcttcacaat 1080 cttcagcaac ccattactct cacggctggt ggagtgtttc ctatttccat gcaaacaaat 1140 ttggctatgg tgaagctggc attttctgtg gttacggtaa ttaagcaatt taacttggcc 1200 1260 atattatata tatattattt tatattatat attgctgtac cctaataaat atttagtaat 1320 1338 aaaaaaaaa aaaaaaaa <210> SEQ ID NO 8 <211> LENGTH: 397 <212> TYPE: PRT <213> ORGANISM: DROSOPHILA MELANOGASTER DOR53 <400> SEQUENCE: 8

Met Leu Ser Lys Phe Phe Pro His Ile Lys Glu Lys Pro Leu Ser Glu

Glu Ala Gly Thr Arg Phe Arg Lys Thr Leu Leu Ile Phe Leu Met Gln

1				5					10					15	
Arg	Val	Lys	Ser 20	Arg	Asp	Ala	Phe	Ile 25	Tyr	Leu	Asp	Arg	Val 30	Met	Trp
Ser	Phe	Gly 35	Trp	Thr	Glu	Pro	Glu 40	Asn	Lys	Arg	Trp	Ile 45	Leu	Pro	Tyr
Lys	Leu 50	Trp	Leu	Ala	Phe	Val 55	Asn	Ile	Val	Met	Leu 60	Ile	Leu	Leu	Pro
Ile 65	Ser	Ile	Ser	Ile	Glu 70	Tyr	Leu	His	Arg	Phe 75	Lys	Thr	Phe	Ser	Ala 80
Gly	Glu	Phe	Leu	Ser 85	Ser	Leu	Glu	Ile	Gly 90	Val	Asn	Met	Tyr	Gly 95	Ser
Ser	Phe	Lys	Cys 100	Ala	Phe	Thr	Leu	Ile 105	Gly	Phe	Lys	Lys	Arg 110	Gln	Glu
Ala	Lys	Val 115	Leu	Leu	Asp	Gln	Leu 120	Asp	Lys	Arg	Cys	Leu 125	Ser	Asp	Lys
Glu	Arg 130	Ser	Thr	Val	His	Arg 135	Tyr	Val	Ala	Met	Gly 140	Asn	Phe	Phe	Asp
Ile 145	Leu	Tyr	His	Ile	Phe 150	Tyr	Ser	Thr	Phe	Val 155	Val	Met	Asn	Phe	Pro 160
Tyr	Phe	Leu	Leu	Glu 165	Arg	Arg	His	Ala	Trp 170	Arg	Met	Tyr	Phe	Pro 175	Tyr
Ile	Asp	Ser	Asp 180	Glu	Gln	Phe	Tyr	Ile 185	Ser	Ser	Ile	Ala	Glu 190	Сув	Phe
Leu	Met	Thr 195	Glu	Ala	Ile	Tyr	Met 200	Asp	Leu	Cys	Thr	Asp 205	Val	Сув	Pro
Leu	Ile 210	Ser	Met	Leu	Met	Ala 215	Arg	Сув	His	Ile	Ser 220	Leu	Leu	Lys	Gln
Arg 225	Leu	Arg	Asn	Leu	Arg 230	Ser	Lys	Pro	Gly	Arg 235	Thr	Glu	Asp	Glu	Tyr 240
Leu	Glu	Glu	Leu	Thr 245	Glu	Сув	Ile	Arg	Asp 250	His	Arg	Leu	Leu	Leu 255	Asp
Tyr	Val	Asp	Ala 260	Leu	Arg	Pro	Val	Phe 265	Ser	Gly	Thr	Ile	Phe 270	Val	Gln
Phe	Leu	Leu 275	Ile	Gly	Thr	Val	Leu 280	Gly	Leu	Ser	Met	Ile 285	Asn	Leu	Met
Phe	Phe 290	Ser	Thr	Phe	Trp	Thr 295	Gly	Val	Ala	Thr	C y s 300	Leu	Phe	Met	Phe
Asp 305	Val	Ser	Met	Glu	Thr 310	Phe	Pro	Phe	Cys	Tyr 315	Leu	Cys	Asn	Met	Ile 320
Ile	Asp	Asp	Сув	Gln 325	Glu	Met	Ser	Asn	C y s 330	Leu	Phe	Gln	Ser	Asp 335	Trp
Thr	Ser	Ala	Asp 340	Arg	Arg	Tyr	Lys	Ser 345	Thr	Leu	Val	Tyr	Phe 350	Leu	His
Asn	Leu	Gln 355	Gln	Pro	Ile	Thr	Leu 360	Thr	Ala	Gly	Gly	Val 365	Phe	Pro	Ile
Ser	Met 370	Gln	Thr	Asn	Leu	Ala 375	Met	Val	Lys	Leu	Ala 380	Phe	Ser	Val	Val
Thr 385	Val	Ile	Lys	Gln	Phe 390	Asn	Leu	Ala	Glu	Arg 395	Phe	Gln			

```
<211> LENGTH: 1321
<212> TYPE: DNA
<213> ORGANISM: DROSOPHILA MELANOGASTER DOR67
<400> SEOUENCE: 9
                                                                     60
ggcacgagga aatgttaagc cagttctttc cccacattaa agaaaagcca ttgagcgagc
gggttaagtc ccgagatgcc ttcgtttact tagatcgggt gatgtggtcc tttggctgga
                                                                    120
cagtgcctga aaacaaaagg tgggatctac attacaaact gtggtcaact ttcgtgacat
tggtgatatt tatccttctg ccgatatcgg taagcgttga gtatattcag cggttcaaga
                                                                    240
ccttctcggc gggtgagttt cttagctcaa tccagattgg cgttaacatg tacggaagca
                                                                    300
gctttaaaag ttatttgacc atgatgggat ataagaagag acaggaggct aagatgtcac
                                                                    360
tggatgagct ggacaagaga tgcgtttgtg atgaggagag gaccattgta catcgacatg
                                                                    420
tcgccctggg aaacttttgc tatattttct atcacattgc gtacactagc tttttgattt
                                                                    480
caaacttttt gtcatttata atgaagagaa tccatgcctg gcgcatgtac tttccctacg
tcgaccccga aaagcaattt tacatctcta gcatcgccga agtcattctt agggggtggg
ccgtcttcat ggatctctgc acggatgtgt gtcctttgat ctccatggta atagcacgat
                                                                    660
gccacatcac ccttctgaaa cagcgcctgc gaaatctacg atcggaacca ggaaggacgg
                                                                    720
aagatgagta cttgaaggag ctcgccgact gcgttcgaga tcaccgcttg atattggact
                                                                    780
atgtcgacgc attgcgatcc gtcttttcgg ggacaatttt tgtgcagttc ctcttgatcg
                                                                    840
qtattqtact qqqtctqtca atqataaata taatqttttt ctcaacactt tcqactqqtq
                                                                    900
togoogttgt cotttttatg tootgogtat ctatgcagac gttccccttt tgctatttgt
gtaacatgat tatggatgac tgccaagaga tggccgactc cctttttcaa tcggactgga
catctgccga tcgtcgctac aaatccactt tggtatactt tcttcacaat cttcagcagc
                                                                   1080
ccattattct tacggctggt ggagtctttc ctatttccat gcaaacaaat ttaaatatgg
                                                                   1140
tgaagctggc ctttactgtg gttacaatag tgaaacaatt taacttggca gaaaagtttc
                                                                   1200
aataaqttaa qatatqcaaq ctctqctatt ataaacctac actcqaqaaa atatttcttc
                                                                   1260
1320
                                                                   1321
<210> SEQ ID NO 10
<211> LENGTH: 397
<212> TYPE: PRT
<213> ORGANISM: DROSOPHILA MELANOGASTER DOR67
<400> SEQUENCE: 10
Met Leu Ser Gln Phe Phe Pro His Ile Lys Glu Lys Pro Leu Ser Glu
Arg Val Lys Ser Arg Asp Ala Phe Val Tyr Leu Asp Arg Val Met Trp
Ser Phe Gly Trp Thr Val Pro Glu Asn Lys Arg Trp Asp Leu His Tyr
Lys Leu Trp Ser Thr Phe Val Thr Leu Val Ile Phe Ile Leu Leu Pro
Ile Ser Val Ser Val Glu Tyr Ile Gln Arg Phe Lys Thr Phe Ser Ala
65
                                       75
Gly Glu Phe Leu Ser Ser Ile Gln Ile Gly Val Asn Met Tyr Gly Ser
```

											-	con	tin	ued				
				85					90					95				
Ser	Phe	Lys	Ser 100	Tyr	Leu	Thr	Met	Met 105	Gly	Tyr	Lys	Lys	Arg 110	Gln	Glu			
Ala	Lys	Met 115	Ser	Leu	Asp	Glu	Leu 120	Asp	Lys	Arg	Сув	Val 125	Cys	Asp	Glu			
Glu	Arg 130	Thr	Ile	Val	His	Arg 135	His	Val	Ala	Leu	Gly 140	Asn	Phe	Сув	Tyr			
Ile 145	Phe	Tyr	His	Ile	Ala 150	Tyr	Thr	Ser	Phe	Leu 155	Ile	Ser	Asn	Phe	Leu 160			
Ser	Phe	Ile	Met	L y s 165	Arg	Ile	His	Ala	Trp 170	Arg	Met	Tyr	Phe	Pro 175	Tyr			
Val	Asp	Pro	Glu 180	Lys	Gln	Phe	Tyr	Ile 185	Ser	Ser	Ile	Ala	Glu 190	Val	Ile			
Leu	Arg	Gly 195	Trp	Ala	Val	Phe	Met 200	Asp	Leu	Сув	Thr	Asp 205	Val	Cys	Pro			
Leu	Ile 210	Ser	Met	Val	Ile	Ala 215	Arg	Сув	His	Ile	Thr 220	Leu	Leu	Lys	Gln			
Arg 225	Leu	Arg	Asn	Leu	Arg 230	Ser	Glu	Pro	Gly	Arg 235	Thr	Glu	Asp	Glu	Tyr 240			
Leu	Lys	Glu	Leu	Ala 245	Asp	Cys	Val	Arg	Asp 250	His	Arg	Leu	Ile	Leu 255	Asp			
Tyr	Val	Asp	Ala 260	Leu	Arg	Ser	Val	Phe 265	Ser	Gly	Thr	Ile	Phe 270	Val	Gln			
Phe	Leu	Leu 275	Ile	Gly	Ile	Val	Leu 280	Gly	Leu	Ser	Met	Ile 285	Asn	Ile	Met			
Phe	Phe 290	Ser	Thr	Leu	Ser	Thr 295	Gly	Val	Ala	Val	Val 300	Leu	Phe	Met	Ser			
С у в 305	Val	Ser	Met	Gln	Thr 310	Phe	Pro	Phe	Суѕ	Tyr 315	Leu	Сув	Asn	Met	Ile 320			
Met	Asp	Asp	Cys	Gln 325	Glu	Met	Ala	Asp	Ser 330	Leu	Phe	Gln	Ser	Asp 335	Trp			
Thr	Ser	Ala	Asp 340	Arg	Arg	Tyr	Lys	Ser 345	Thr	Leu	Val	Tyr	Phe 350	Leu	His			
Asn	Leu	Gln 355	Gln	Pro	Ile	Ile	Leu 360	Thr	Ala	Gly	Gly	Val 365	Phe	Pro	Ile			
Ser	Met 370	Gln	Thr	Asn	Leu	Asn 375	Met	Val	Lys	Leu	Ala 380	Phe	Thr	Val	Val			
Thr 385	Ile	Val	Lys	Gln	Phe 390	Asn	Leu	Ala	Glu	L y s 395	Phe	Gln						
<212 <212)> SE l> LE 2> TY 3> OF	ENGTH	H: 13	308	SOPHI	ILA N	1ELAN	IOGAS	STER	DOF	R64							
)> SE																	
					aa a	atga	aacto	c ago	cgaaa	accc	taaa	aaato	cga d	ctatt	ttcga		60	
															actgg	1	20	
agti	tggto	cga t	tgct	attg [.]	tg ca	atct	tggt	g tao	cctg	ccga	cac	ccat	gct a	actga	ıgagga	1	80	
gtat	tacaç	gtt t	tcga	ggat	cc g	gtgga	aaaat	t aat	ttca	agct	tga	gaat	gac q	ggtca	catcg	2	40	
ctg	tccaa	atc t	tcat	gaag	tt c	tgcat	tgtad	gt	ggcc	caac	taad	caaaq	gat q	ggtc	gaggtc	3	00	

cagagtctta	ttggtcagct	ggatgcccgg	gtttctggcg	agagccagtc	tgagcgtcat	360
agaaatatga	ccgagcacct	gctaaggatg	tccaagctgt	tccagatcac	ctacgctgta	420
gtcttcatca	ttgctgcagt	tcccttcgtt	ttcgaaactg	agctaagctt	acccatgccc	480
atgtggtttc	ccttcgactg	gaagaactcg	atggtggcct	acatcggagc	tctggttttc	540
caggagattg	gctatgtctt	tcaaattatg	caatgctttg	cagctgactc	gtttcccccg	600
ctcgtactgt	acctgatctc	cgagcaatgt	caattgctga	tcctgagaat	ctctgaaatc	660
ggatatggtt	acaagactct	ggaggagaac	gaacaggatc	tggtcaactg	catcagggat	720
caaaacgcgc	tgtatagatt	actcgatgtg	accaagagtc	tcgtttcgta	tcccatgatg	780
gtgcagttta	tggttattgg	catcaacatc	gccatcaccc	tatttgtcct	gatattttac	840
gtggagacct	tgtacgatcg	catctattat	ctttgctttc	tcttgggcat	caccgtgcag	900
acatatccat	tgtgctacta	tggaaccatg	gtgcaggaga	gttttgctga	gcttcactat	960
gcggtattct	gcagcaactg	ggtggatcaa	agtgccagct	atcgtgggca	catgctcatc	1020
ctggcggagc	gcactaagcg	gatgcagctt	ctcctcgccg	gcaacctggt	gcccatccac	1080
ctgagcacct	acgtggcctg	ttggaaggga	gcctactcct	tcttcaccct	gatggccgat	1140
cgagatggcc	tgggttctta	gtagcccagt	catttcactc	acattctaca	tcaagtagta	1200
ctaccactga	acacgaacac	gaatatttca	aaagtaaaca	cataatattc	acaatagtgt	1260
atcactttaa	taaaatttt	ggttaccatg	aaaaaaaaa	aaaaaaa		1308

<210> SEQ ID NO 12

<211> LENGTH: 379

<212> TYPE: PRT

<213> ORGANISM: DROSOPHILA MELANOGASTER DOR64

<400> SEQUENCE: 12

Met Lys Leu Ser Glu Thr Leu Lys Ile Asp Tyr Phe Arg Val Gln Leu 1 $$ 5 $$ 10 $$ 15

Asn Ala Trp Arg Ile Cys Gly Ala Leu Asp Leu Ser Glu Gly Arg Tyr $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Met Leu Leu Arg Gly Val Tyr Ser Phe Glu Asp Pro Val Glu Asn Asn 50 60

Phe Ser Leu Ser Leu Thr Val Thr Ser Leu Ser Asn Leu Met Lys Phe 65 70 75 75 80

Cys Met Tyr Val Ala Gln Leu Thr Lys Met Val Glu Val Gln Ser Leu $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95 \hspace{1.5cm}$

Ile Gly Gln Leu Asp Ala Arg Val Ser Gly Glu Ser Gln Ser Glu Arg $100 \ \ 105 \ \ \ 110$

His Arg Asn Met Thr Glu His Leu Leu Arg Met Ser Lys Leu Phe Gln 115 120 125

Ile Thr Tyr Ala Val Val Phe Ile Ile Ala Ala Val Pro Phe Val Phe

Glu Thr Glu Leu Ser Leu Pro Met Pro Met Trp Phe Pro Phe Asp Trp 145 155155 160

Lys Asn Ser Met Val Ala Tyr Ile Gly Ala Leu Val Phe Gln Glu Ile $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

gacacaatct cgctggtcta ctacttggtg ttctttggag tggtctgcgt gcagctcttt

cccaqctqct attitqccaq cqaaqtaqcc qaqqaqttqq aacqqctqcc atatqcqatc	960
ttctccagca gatggtacga tcaatcgcgg gatcatcgat tcgatttgct catctttaca	1020
caattaacac tgggaaaccg ggggtggatc atcaaggcag gaggtcttat cgagctgaat	1080
ttgaatgcct ttttcgccac cctgaagatg gcctattccc tttttgcagt tgtggtgcgg	1140
gcaaagggta ta	1152
<210> SEQ ID NO 14 <211> LENGTH: 390 <212> TYPE: PRT <213> ORGANISM: DROSOPHILA MELANOGASTER DOR71g	
<400> SEQUENCE: 14	
Met Val Ile Ile Asp Ser Leu Ser Phe Tyr Arg Pro Phe Trp Ile Cys 1 10 15	
Met Arg Leu Leu Val Pro Thr Phe Phe Lys Asp Ser Ser Arg Pro Val 20 25 30	
Gln Leu Tyr Val Val Leu Leu His Ile Leu Val Thr Leu Trp Phe Pro 35 40 45	
Leu His Leu Leu His Leu Leu Leu Pro Ser Thr Ala Glu Phe 50 55 60	
Phe Lys Asn Leu Thr Met Ser Leu Thr Cys Val Ala Cys Ser Leu Lys 65 70 75 80	
His Val Ala His Leu Tyr His Leu Pro Gln Ile Val Glu Ile Glu Ser 85 90 95	
Leu Ile Glu Gln Leu Asp Thr Phe Ile Ala Ser Glu Gln Glu His Arg 100 105 110	
Tyr Tyr Arg Asp His Val His Cys His Ala Arg Arg Phe Thr Arg Cys 115 120 125	
Leu Tyr Ile Ser Phe Gly Met Ile Tyr Ala Leu Phe Leu Phe Gly Val 130 135 140	
Phe Val Gln Val Ile Ser Gly Asn Trp Glu Leu Leu Tyr Pro Ala Tyr 145 150 155 160	
Phe Pro Phe Asp Leu Glu Ser Asn Arg Phe Leu Gly Ala Val Ala Leu 165 170 175	
Gly Tyr Gln Val Phe Ser Met Leu Val Glu Gly Phe Gln Gly Leu Gly 180 185 190	
Asn Asp Thr Tyr Thr Pro Leu Thr Leu Cys Leu Leu Ala Gly His Val 195 200 205	
His Leu Trp Ser Ile Arg Met Gly Gln Leu Gly Tyr Phe Asp Asp Glu 210 215 220	
Thr Val Val Asn His Gln Arg Leu Leu Asp Tyr Ile Glu Gln His Lys 225 230 235 240	
Leu Leu Val Arg Phe His Asn Leu Val Ser Arg Thr Ile Ser Glu Val 245 250 255	
Gln Leu Val Gln Leu Gly Gly Cys Gly Ala Thr Leu Cys Ile Ile Val 260 265 270	
Ser Tyr Met Leu Phe Phe Val Gly Asp Thr Ile Ser Leu Val Tyr Tyr 275 280 285	
Leu Val Phe Phe Gly Val Val Cys Val Gln Leu Phe Pro Ser Cys Tyr 290 295 300	

Phe Ala Ser Glu Val Ala Glu Glu Leu Glu Arg Leu Pro Tyr Ala Ile 305 310 315 Phe Ser Ser Arg Trp Tyr Asp Gln Ser Arg Asp His Arg Phe Asp Leu 325 330 Leu Ile Phe Thr Gln Leu Thr Leu Gly Asn Arg Gly Trp Ile Ile Lys Ala Gly Gly Leu Ile Glu Leu Asn Leu Asn Ala Phe Phe Ala Thr Leu Lys Met Ala Tyr Ser Leu Phe Ala Val Val His Arg Glu Thr Gly Asn Pro Leu Gln Arg Glu His 385 <210> SEO ID NO 15 <211> LENGTH: 1137 <212> TYPE: DNA <213> ORGANISM: DROSOPHILA MELANOGASTER DOR72g <400> SEQUENCE: 15 atggacttaa aaccgcgagt cattcgaagt gaagatatct acagaaccta ttggttatat 60 tggcatcttt tgggcctgga aagcaatttc tttctgaatc gcttgttgga tttggtgatt 120 acaattttcg taaccatttg gtatccaatt cacctgattc tgggactgtt tatggaaaga 180 tctttqqqqq atqtctqcaa qqqtctacca attacqqcaq catqcttttt cqccaqcttt 240 aaatttattt qttttcqctt caaqctatct qaaattaaaq aaatcqaaat attatttaaa 300 gagctggatc agcgagcttt aagtcgagag gaatgcgagt ttttcaatca aaatacgaga cgtgaggcga atttcatttg gaaaagtttc attgtggcct atggactgtc gaatatctcg gctattgcat cagttctttt cggcggtgga cataagctat tatatcccgc ctggtttcca 480 tacgatgtgc aggccacgga actaatattt tggctaagtg taacatacca aattgccgga 540 gtaagtttgg ccatacttca gaatttggcc aatgattcct atccaccgat gacattttgc 600 gtggttgccg gtcatgtaag acttttggcg atgcgcttga gtagaattgg ccaaggtcca 660 qaqqaaacaa tatacttaac cqqaaaqcaa ttaatcqaaa qcatcqaqqa tcaccqaaaa 720 ctaatgaaga tagtggaatt actgcgcagc accatgaata tttcgcagct cggccagttt atttcaagtg gtgttaatat ttccataaca ctagtcaaca ttctcttctt tgcggataat aatttegeta taacetacta eggagtgtae tteetatega tggtgttgga attatteeeg 900 tgctgctatt acggcaccct gatatccgtg gagatgaacc agctgaccta tgcgatttac 960 tcaagtaact ggatgagtat gaatcggagc tacagccgca tcctactgat cttcatgcaa 1020 1080 ctcaccctgg cggaagtgca gatcaaggcc ggtgggatga ttggcatcgg aatgaacgcc ttctttgcca ccgtgcgatt ggcctactcc ttcttcactt tggccatgtc gctgcgt 1137 <210> SEQ ID NO 16 <211> LENGTH: 379 <212> TYPE: PRT <213> ORGANISM: DROSOPHILA MELANOGASTER DOR72g <400> SEQUENCE: 16 Met Asp Leu Lys Pro Arg Val Ile Arg Ser Glu Asp Ile Tyr Arg Thr

Tyr Trp Leu Tyr Trp His Leu Leu Gly Leu Glu Ser Asn Phe Phe Leu

			20					25					30		
Asn	Arg	Leu 35	Leu	Asp	Leu	Val	Ile 40	Thr	Ile	Phe	Val	Thr 45	Ile	Trp	Tyr
Pro	Ile 50	His	Leu	Ile	Leu	Gly 55	Leu	Phe	Met	Glu	Arg 60	Ser	Leu	Gly	Asp
Val 65	Cys	Lys	Gly	Leu	Pro 70	Ile	Thr	Ala	Ala	С у в 75	Phe	Phe	Ala	Ser	Phe 80
Lys	Phe	Ile	Cys	Phe 85	Arg	Phe	Lys	Leu	Ser 90	Glu	Ile	Lys	Glu	Ile 95	Glu
Ile	Leu	Phe	Lys 100	Glu	Leu	Asp	Gln	Arg 105	Ala	Leu	Ser	Arg	Glu 110	Glu	Cys
Glu	Phe	Phe 115	Asn	Gln	Asn	Thr	Arg 120	Arg	Glu	Ala	Asn	Phe 125	Ile	Trp	Lys
Ser	Phe 130	Ile	Val	Ala	Tyr	Gly 135	Leu	Ser	Asn	Ile	Ser 140	Ala	Ile	Ala	Ser
Val 145	Leu	Phe	Gly	Gly	Gly 150	His	Lys	Leu	Leu	Ty r 155	Pro	Ala	Trp	Phe	Pro 160
Tyr	Asp	Val	Gln	Ala 165	Thr	Glu	Leu	Ile	Phe 170	Trp	Leu	Ser	Val	Thr 175	Tyr
Gln	Ile	Ala	Gly 180	Val	Ser	Leu	Ala	Ile 185	Leu	Gln	Asn	Leu	Ala 190	Asn	Asp
Ser	Tyr	Pro 195	Pro	Met	Thr	Phe	C y s 200	Val	Val	Ala	Gly	His 205	Val	Arg	Leu
Leu	Ala 210	Met	Arg	Leu	Ser	Arg 215	Ile	Gly	Gln	Gly	Pro 220	Glu	Glu	Thr	Ile
Ty r 225	Leu	Thr	Gly	Lys	Gln 230	Leu	Ile	Glu	Ser	Ile 235	Glu	Asp	His	Arg	L y s 240
Leu	Met	Lys	Ile	Val 245	Glu	Leu	Leu	Arg	Ser 250	Thr	Met	Asn	Ile	Ser 255	Gln
Leu	Gly	Gln	Phe 260	Ile	Ser	Ser	Gly	Val 265	Asn	Ile	Ser	Ile	Thr 270	Leu	Val
Asn	Ile	Leu 275	Phe	Phe	Ala	Asp	Asn 280	Asn	Phe	Ala	Ile	Thr 285	Tyr	Tyr	Gly
Val	T y r 290	Phe	Leu	Ser	Met	Val 295	Leu	Glu	Leu	Phe	Pro 300	Cys	Cys	Tyr	Tyr
Gly 305	Thr	Leu	Ile	Ser	Val 310	Glu	Met	Asn	Gln	Leu 315	Thr	Tyr	Ala	Ile	Tyr 320
Ser	Ser	Asn	Trp	Met 325	Ser	Met	Asn	Arg	Ser 330	Tyr	Ser	Arg	Ile	Leu 335	Leu
Ile	Phe	Met	Gln 340	Leu	Thr	Leu	Ala	Glu 345	Val	Gln	Ile	Lys	Ala 350	Gly	Gly
Met	Ile	Gl y 355	Ile	Gly	Met	Asn	Ala 360	Phe	Phe	Ala	Thr	Val 365	Arg	Leu	Ala
Tyr	Ser 370	Phe	Phe	Thr	Leu	Ala 375	Met	Ser	Leu	Arg					
<211 <212	l> LE ?> TY	NGTI PE:		134	50РН]	ILA M	1ELAN	IOGAS	STER	DOF	R73g				

<400> SEQUENCE: 17

atggattcaa gaa	aggaaagt ccgaagtga	a aatctttaca	aaacctattg	gctttactgg	60
cgacttctgg gag	gtcgaggg cgattatco	t tttcgacggc	tagtggattt	tacaatcacg	120
tctttcatta cga	attttatt tcccgtgca	t cttatactgg	gaatgtataa	aaagccccag	180
attcaagtct tca	aggagtet geatttead	a teggaatgee	ttttctgcag	ctataagttt	240
ttctgttttc gtt	tggaaact taaagaaat	a aagaccatcg	aaggattgct	ccaggatctc	300
gatagtcgag tto	gaaagtga agaagaacg	c aactacttta	atcaaaatcc	aagtcgtgtg	360
gctcgaatgc ttt	tcgaaaag ttacttggt	a gctgctatat	cggccataat	cactgcaact	420
gtagctggtt tat	tttagtac tggtcgaaa	t ttaatgtatc	tgggttggtt	tccctacgat	480
tttcaagcaa ccg	gccgcaat ctattggat	t agtttttcct	atcaggcgat	tggctctagt	540
ctgttgattc tgc	gaaaatct ggccaacga	t tcatatccgc	cgattacatt	ttgtgtggtc	600
tctggacatg tga	agactatt gataatgco	t ttaagtcgaa	ttggtcacga	tgtaaaatta	660
tcaagttcgg aaa	aataccag aaaactcat	c gaaggtatcc	aggatcacag	gaaactaatg	720
aagataatac gcc	ctacttcg cagcacttt	a catcttagcc	aactgggcca	gttcctttct	780
agtggaatca aca	atttccat aacactcat	c aacatcctgt	tctttgcgga	aaacaacttt	840
gcaatgcttt att	tatgeggt gttetttge	t gcaatgttaa	tagaactatt	tccaagttgt	900
tactatggaa tto	ctgatgac aatggagtt	t gataagctac	catatgccat	cttctccagc	960
aactggctta aaa	atggataa aagatacaa	t cgatccttga	taattctgat	gcaactaaca	1020
ctggttccag tga	aatataaa agcaggtgo	t attgttggca	tcgatatgag	tgcattttt	1080
gccacagttc gga	atggcata ttcctttta	c actttagcct	tgtcatttcg	agta	1134

<210> SEQ ID NO 18

<211> LENGTH: 378

<212> TYPE: PRT

<213> ORGANISM: Drosophila Melanogaster DOR73g

<400> SEQUENCE: 18

Met Asp Ser Arg Arg Lys Val Arg Ser Glu Asn Leu Tyr Lys Thr Tyr 1 $$ 15

Trp Leu Tyr Trp Arg Leu Leu Gly Val Glu Gly Asp Tyr Pro Phe Arg 20 25 30

Arg Leu Val Asp Phe Thr Ile Thr Ser Phe Ile Thr Ile Leu Phe Pro 35 40 45

Val His Leu Ile Leu Gly Met Tyr Lys Lys Pro Gln Ile Gln Val Phe 50 55 60

Arg Ser Leu His Phe Thr Ser Glu Cys Leu Phe Cys Ser Tyr Lys Phe 65 70 75 80

Phe Cys Phe Arg Trp Lys Leu Lys Glu Ile Lys Thr Ile Glu Gly Leu $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95 \hspace{1.5cm}$

Leu Gln Asp Leu Asp Ser Arg Val Glu Ser Glu Glu Glu Arg Asn Tyr 100 105 110

Phe Asn Gln Asn Pro Ser Arg Val Ala Arg Met Leu Ser Lys Ser Tyr $115 \\ 120 \\ 125$

Leu Val Ala Ala Ile Ser Ala Ile Ile Thr Ala Thr Val Ala Gly Leu 130 135 140

Phe Ser Thr Gly Arg Asn Leu Met Tyr Leu Gly Trp Phe Pro Tyr Asp 145 150 155 160

Phe Gln Ala Thr Ala Ala Ile Tyr Trp Ile Ser Phe Ser Tyr Gln Ala 165 170 175	
Ile Gly Ser Ser Leu Leu Ile Leu Glu Asn Leu Ala Asn Asp Ser Tyr 180 185 190	
Pro Pro Ile Thr Phe Cys Val Val Ser Gly His Val Arg Leu Leu Ile 195 200 205	
Met Arg Leu Ser Arg Ile Gly His Asp Val Lys Leu Ser Ser Glu	
210 215 220 Asn Thr Arg Lys Leu Ile Glu Gly Ile Gln Asp His Arg Lys Leu Met	
225 230 235 240 Lys Ile Ile Arg Leu Arg Ser Thr Leu His Leu Ser Gln Leu Gly	
245 250 255	
Gln Phe Leu Ser Ser Gly Ile Asn Ile Ser Ile Thr Leu Ile Asn Ile 260 265 270	
Leu Phe Phe Ala Glu Asn Asn Phe Ala Met Leu Tyr Tyr Ala Val Phe 275 280 285	
Phe Ala Ala Met Leu Ile Glu Leu Phe Pro Ser Cys Tyr Tyr Gly Ile 290 295 300	
Leu Met Thr Met Glu Phe Asp Lys Leu Pro Tyr Ala Ile Phe Ser Ser 305 310 315 320	
Asn Trp Leu Lys Met Asp Lys Arg Tyr Asn Arg Ser Leu Ile Ile Leu	
325 330 335 Met Gln Leu Thr Leu Val Pro Val Asn Ile Lys Ala Gly Gly Ile Val	
340 345 350	
Gly Ile Asp Met Ser Ala Phe Phe Ala Thr Val Arg Met Ala Tyr Ser 355 360 365	
Phe Tyr Thr Leu Ala Leu Ser Phe Arg Val 370 375	
<210> SEQ ID NO 19	
<pre><211> LENGTH: 1191 <212> TYPE: DNA</pre>	
<213> ORGANISM: DROSOPHILA MELANOGASTER DOR46	
<pre><400> SEQUENCE: 19 atggcagagg tcagagtgga cagtctggag tttttcaaga gccattggac cgcctggcgg</pre>	60
	120
	180
	240
	300
ctgttgaggc ttttggatga acgcgtcgtg ggtccggagc aacgcagcat ctacggacaa 3	360
gtgagggtcc agctgcgaaa tgtgctatac gtgttcatcg gcatctacat gccgtgtgcc 4	120
ctgttcgccg agctatcctt tctgttcaag gaggagcgcg gtctgatgta tcccgcctgg	180
tttcccttcg actggctgca ctccaccagg aactattaca tagcgaacgc ctatcagata	540
gtgggcatct cgtttcagct gctgcaaaac tatgttagcg actgctttcc ggcggtggtg	500
ctgtgcctga tctcatccca catcaaaatg ttgtacaaca gattcgagga ggtgggcctg	560
gatocagoca gagatgogga gaaggacotg gaggootgoa toacogatoa caagoatatt 7	720

ctagagtggg caggcggctc attggttcgt gttctattca ctttccaact tttttccaga

780

ctat	tcc	gac (gcato	cgag	gc c	ttcat	tttc	cct	gecea	atgc	taa-	ttca	gtt	cacaç	gtgacc	840
gcct	tgaa	atg 1	tgtg	catc	gg t	ttag	cagco	cct	ggtgt	ttt	tcg-	tcag	cga ç	gccca	atggca	900
cgga	atgta	act f	tcato	cttc	ta c	tacat	tggc	c ate	gccg	ctgc	aga-	tctti	tcc (gtcct	tgcttt	960
ttc	ggca	ccg a	acaa	cgag-	ta c	tggt	tagga	a cgo	cctc	cact	acg	egge	ctt o	cagti	tgcaat	1020
tgg	cacao	cac a	agaad	cagg	ag c	ttta	agcg	g aaa	aatga	atgc	tgt	tcgt	tga q	gcaat	tcgttg	1080
aaga	aagaq	gca d	ccgc	tgtg	gc t	ggcg	gaat	gate	gcgta	atcc	acc-	tgga	cac q	gttc	tttcc	1140
acco	ctaaa	agg (gggc	ctac-	tc c	ctct	ttaco	c ato	catta	attc	gga-	tgaga	aaa q	3		1191
<212 <212)> SE L> LE 2> TY 3> OF	NGTI PE:	H: 37	79	SOPH]	ILA N	1ELAN	IOGAS	STER	DOF	₹46					
<400)> SE	EQUE	ICE:	20												
Met 1	Ala	Glu	Val	Arg 5	Val	Asp	Ser	Leu	Glu 10	Phe	Phe	Lys	Ser	His 15	Trp	
Thr	Ala	Trp	Arg 20	Tyr	Leu	Gly	Val	Ala 25	His	Phe	Arg	Val	Glu 30	Asn	Trp	
Lys	Asn	Leu 35	Tyr	Val	Phe	Tyr	Ser 40	Ile	Val	Ser	Asn	Leu 45	Leu	Val	Thr	
Leu	С у в 50	Tyr	Pro	Val	His	Leu 55	Gly	Ile	Ser	Leu	Phe 60	Arg	Asn	Arg	Thr	
Ile 65	Thr	Glu	Asp	Ile	Leu 70	Asn	Leu	Thr	Thr	Phe 75	Ala	Thr	Cys	Thr	Ala 80	
Cys	Ser	Val	Lys	C y s 85	Leu	Leu	Tyr	Ala	Ty r 90	Asn	Ile	Lys	Asp	Val 95	Leu	
Glu	Met	Glu	Arg 100	Leu	Leu	Arg	Leu	Leu 105	Asp	Glu	Arg	Val	Val 110	Gly	Pro	
Glu	Gln	Arg 115	Ser	Ile	Tyr	Gly	Gln 120	Val	Arg	Val	Gln	Leu 125	Arg	Asn	Val	
Leu	Tyr 130	Val	Phe	Ile	Gly	Ile 135	Tyr	Met	Pro	Суѕ	Ala 140	Leu	Phe	Ala	Glu	
Leu 145	Ser	Phe	Leu	Phe	Lys 150	Glu	Glu	Arg	Gly	Leu 155	Met	Tyr	Pro	Ala	Trp 160	
Phe	Pro	Phe	Asp	Trp 165	Leu	His	Ser	Thr	Arg 170	Asn	Tyr	Tyr	Ile	Ala 175	Asn	
Ala	Tyr	Gln	Ile 180	Val	Gly	Ile	Ser	Phe 185	Gln	Leu	Leu	Gln	Asn 190	Tyr	Val	
Ser	Asp	C y s 195	Phe	Pro	Ala	Val	Val 200	Leu	Cys	Leu	Ile	Ser 205	Ser	His	Ile	
Lys	Met 210	Leu	Tyr	Asn	Arg	Phe 215	Glu	Glu	Val	Gly	Leu 220	Asp	Pro	Ala	Arg	
Asp 225	Ala	Glu	Lys	Asp	Leu 230	Glu	Ala	Cys	Ile	Thr 235	Asp	His	Lys	His	Ile 240	
Leu	Glu	Leu	Phe	Arg 245	Arg	Ile	Glu	Ala	Phe 250	Ile	Ser	Leu	Pro	Met 255	Leu	
Ile	Gln	Phe	Thr 260	Val	Thr	Ala	Leu	Asn 265	Val	Суѕ	Ile	Gly	Leu 270	Ala	Ala	
Leu	Val	Phe 275	Phe	Val	Ser	Glu	Pro 280	Met	Ala	Arg	Met	Tyr 285	Phe	Ile	Phe	

Tyr Ser Leu Ala Met Pro Leu Gln Ile Phe Pro Ser Cys Phe Phe Gly 290 295 300
Thr Asp Asn Glu Tyr Trp Phe Gly Arg Leu His Tyr Ala Ala Phe Ser 305 310 315 320
Cys Asn Trp His Thr Gln Asn Arg Ser Phe Lys Arg Lys Met Met Leu 325 330 335
Phe Val Glu Gln Ser Leu Lys Lys Ser Thr Ala Val Ala Gly Gly Met
Met Arg Ile His Leu Asp Thr Phe Phe Ser Thr Leu Lys Gly Ala Tyr 355 360 365
Ser Leu Phe Thr Ile Ile Ile Arg Met Arg Lys 370 375
<210> SEQ ID NO 21 <211> LENGTH: 1290 <212> TYPE: DNA <213> ORGANISM: DROSOPHILA MELANOGASTER DOR19q
<400> SEQUENCE: 21
atggttacgg aggactttta taagtaccag gtgtggtact tccaaatcct tggtgtttgg 60
cageteecca ettgggeege agaceaceag egtegtttte agteeatgag gtttggette 120
atcctggtca tcctgttcat catgctgctg cttttctcct tcgaaatgtt gaacaacatt 180
tcccaagtta gggagatcct aaaggtattc ttcatgttcg ccacggaaat atcctgcatg 240
gccaaattat tgcatttgaa gttgaagagc cgcaaactcg ctggcttggt tgatgcgatg 300
ttgtccccag agttcggcgt taaaagtgaa caggaaatgc agatgctgga attggataga 360
gtggcggttg tccgcatgag gaactcctac ggcatcatgt ccctgggcgc ggcttccctg 420
atccttatag ttccctgttt cgacaacttt ggcgagctac cactggccat gttggaggta 480
tgcagcatcg agggatggat ctgctattgg tcgcagtacc ttttccactc gatttgcctg 540
ctgcccactt gtgtgctgaa tataacctac gactcggtgg cctactcgtt gctctgtttc 600
ttgaaggttc agctacaaat gctggtcctg cgattagaaa agttgggtcc tgtgatcgaa 660
ccccaggata atgagaaaat cgcaatggaa ctgcgtgagt gtgccgccta ctacaacagg 720
attgttcgtt tcaaggacct ggtggagctg ttcataaagg ggccaggatc tgtgcagctc 780
atgtgttctg ttctggtgct ggtgtccaac ctgtacgaca tgtccaccat gtccattgca 840
aacggcgatg ccatctttat gctcaagacc tgtatctatc agctggtgat gctctggcag 900
atottoatca tttgctacgo ctccaacgag gtaactgtoo agagototag gttgtgtoac 960
agcatctaca gctcccaatg gacgggatgg aacagggcaa accgccggat tgtccttctc 1020
atgatgcagc gctttaattc cccgatgctc ctgagcacct ttaaccccac ctttgctttc 1080
agcttggagg cctttggttc tgtagggcag cagaaattcc tttatatatc atttattact 1140
ggttatgctc ttctcctttc agatcgtcaa ctgctcctac agctacttcg cactgctgaa 1200
gcgcgtcaac agttaaattt cgaaacaccg cagcacctaa agattttcaa gccgattttt 1260
aaaagcactc aaaacgttat gcacgtacat 1290
<210> SEQ ID NO 22 <211> LENGTH: 430 <212> TYPE: PRT

<212> 11FE: FR1
<213> ORGANISM: DROSOPHILA MELANOGASTER DOR19g

<40)> SE	QUE	ICE:	22											
Met 1	Val	Thr	Glu	Asp 5	Phe	Tyr	Lys	Tyr	Gln 10	Val	Trp	Tyr	Phe	Gln 15	Ile
Leu	Gly	Val	Trp 20	Gln	Leu	Pro	Thr	Trp 25	Ala	Ala	Asp	His	Gln 30	Arg	Arg
Phe	Gln	Ser 35	Met	Arg	Phe	Gly	Phe 40	Ile	Leu	Val	Ile	Leu 45	Phe	Ile	Met
Leu	Leu 50	Leu	Phe	Ser	Phe	Glu 55	Met	Leu	Asn	Asn	Ile 60	Ser	Gln	Val	Arg
Glu 65	Ile	Leu	Lys	Val	Phe 70	Phe	Met	Phe	Ala	Thr 75	Glu	Ile	Ser	Cys	Met 80
Ala	Lys	Leu	Leu	His 85	Leu	Lys	Leu	Lys	Ser 90	Arg	Lys	Leu	Ala	Gly 95	Leu
Val	Asp	Ala	Met 100	Leu	Ser	Pro	Glu	Phe 105	Gly	Val	Lys	Ser	Glu 110	Gln	Glu
Met	Gln	Met 115	Leu	Glu	Leu	Asp	Arg 120	Val	Ala	Val	Val	Arg 125	Met	Arg	Asn
Ser	Tyr 130	Gly	Ile	Met	Ser	Leu 135	Gly	Ala	Ala	Ser	Leu 140	Ile	Leu	Ile	Val
Pro 145	Cys	Phe	Asp	Asn	Phe 150	Gly	Glu	Leu	Pro	Leu 155	Ala	Met	Leu	Glu	Val 160
Cys	Ser	Ile	Glu	Gly 165	Trp	Ile	Сув	Tyr	Trp 170	Ser	Gln	Tyr	Leu	Phe 175	His
Ser	Ile	Сув	Leu 180	Leu	Pro	Thr	Сув	Val 185	Leu	Asn	Ile	Thr	Ty r 190	Asp	Ser
Val	Ala	T y r 195	Ser	Leu	Leu	Сув	Phe 200	Leu	Lys	Val	Gln	Leu 205	Gln	Met	Leu
Val	Leu 210	Arg	Leu	Glu	Lys	Leu 215	Gly	Pro	Val	Ile	Glu 220	Pro	Gln	Asp	Asn
Glu 225	Lys	Ile	Ala	Met	Glu 230	Leu	Arg	Glu	Суѕ	Ala 235	Ala	Tyr	Tyr	Asn	Arg 240
Ile	Val	Arg	Phe	Lys 245	Asp	Leu	Val	Glu	Leu 250	Phe	Ile	Lys	Gly	Pro 255	Gly
Ser	Val	Gln	Leu 260	Met	Cys	Ser	Val	Leu 265	Val	Leu	Val	Ser	Asn 270	Leu	Tyr
Asp	Met	Ser 275	Thr	Met	Ser	Ile	Ala 280	Asn	Gly	Asp	Ala	Ile 285	Phe	Met	Leu
Lys	Thr 290	Cys	Ile	Tyr	Gln	Leu 295	Val	Met	Leu	Trp	Gln 300	Ile	Phe	Ile	Ile
С у в 305	Tyr	Ala	Ser	Asn	Glu 310	Val	Thr	Val	Gln	Ser 315	Ser	Arg	Leu	Cys	His 320
Ser	Ile	Tyr	Ser	Ser 325	Gln	Trp	Thr	Gly	Trp 330	Asn	Arg	Ala	Asn	Arg 335	Arg
Ile	Val	Leu	Leu 340	Met	Met	Gln	Arg	Phe 345	Asn	Ser	Pro	Met	Leu 350	Leu	Ser
Thr	Phe	Asn 355	Pro	Thr	Phe	Ala	Phe 360	Ser	Leu	Glu	Ala	Phe 365	Gly	Ser	Val
Gly	Gln 370	Gln	Lys	Phe	Leu	Tyr 375	Ile	Ser	Phe	Ile	Thr 380	Gly	Tyr	Ala	Leu
Leu 385	Leu	Ser	Asp	Arg	Gln 390	Leu	Leu	Leu	Gln	Leu 395	Leu	Arg	Thr	Ala	Glu 400

Ala Arg Gln Gln Leu Asn Phe Glu Thr Pro Gln His Leu Lys Ile Phe 405 $\,$ 410 $\,$ 415

Lys Pro Ile Phe Lys Ser Thr Gln Asn Val Met His Val His 420 425 430

<210> SEQ ID NO 23

<211> LENGTH: 1391

<212> TYPE: DNA

<213> ORGANISM: DROSOPHILA MELANOGASTER DOR24

<400> SEQUENCE: 23

ggcacgagcc ttgtcgacat ggacagtttt ctgcaagtac agaagagcac cattgctctt 60 ctgggctttg atctctttag tgaaaatcga gaaatgtgga aacgccccta tagagcaatg 120 aatgtgttta gcatagctgc catttttccc tttatcctgg cagctgtgct ccataattgg 180 aagaatgtat tgctgctggc cgatgccatg gtggccctac taataaccat tctgggccta 240 ttcaagttta gcatgatact ttacttacgt cgcgatttca agcgactgat tgacaaattt 360 cgtttgctca tgtcgaatga ggcggaacag ggcgaggaat acgccgagat tctcaacgca gcaaacaagc aggatcaacg aatgtgcact ctgtttagga cttgtttcct cctcgcctgg 420 gccttgaata gtgttctgcc cctcgtgaga atgggtctca gctattggtt agcaggtcat 480 gcagagcccg agttgccttt tccctgtctt tttccctgga atatccacat cattcgcaat 540 tatgttttga gcttcatctg gagcgctttc gcctcgacag gtgtggtttt acctgctgtc 600 agcttggata ccatattctg ttccttcacc agcaacctgt gcgccttctt caaaattgcg 660 cagtacaagg tggttagatt taagggcgga tcccttaaag aatcacaggc cacattgaac aaagtctttg ccctgtacca gaccagcttg gatatgtgca acgatctgaa tcagtgctac 780 caaccgatta tctgcgccca gttcttcatt tcatctctgc aactctgcat gctgggatat 840 ctgttctcca ttacttttgc ccagacagag ggcgtgtact atgcctcttt catagccacc 900 atcattatac aagcctatat ctactgctac tgcggggaga acctgaagac ggagagtgcc 960 agettegagt gggccateta egacagteeg tggcacgaga gtttgggtge tggtggagee 1020 tctacctcga tctgccgatc cttgctgatc agcatgatgc gggctcatcg gggattccgc 1080 attacgggat acttcttcga ggcaaacatg gaggccttct catcgattgt tcgcacggct atgtcctaca tcacaatgct gagatcattc tcctaaatgt ggtttgacca caaggctttg 1200 gattgatttt tgtgcaattt ttgttttatt gctgagcatg cgttgccgta cgacatttaa 1260 caatcgatct tacgtaattt acatatgata atctcacata ttgttcgtta agcactaagt 1320 1380 1391 aaaaaaaaa a

<210> SEQ ID NO 24

<211> LENGTH: 385

<212> TYPE: PRT

<213> ORGANISM: DROSOPHILA MELANOGASTER DOR24

<400> SEQUENCE: 24

Met Asp Ser Phe Leu Gln Val Gln Lys Ser Thr Ile Ala Leu Leu Gly 1 $$ 5 $$ 10 $$ 15

Phe Asp Leu Phe Ser Glu Asn Arg Glu Met Trp Lys Arg Pro Tyr Arg 20 25 30

Ala	Met	Asn 35	Val	Phe	Ser	Ile	Ala 40	Ala	Ile	Phe	Pro	Phe 45	Ile	Leu	Al
Ala	Val 50	Leu	His	Asn	Trp	Ly s 55	Asn	Val	Leu	Leu	Leu 60	Ala	Asp	Ala	Me
Val 65	Ala	Leu	Leu	Ile	Thr 70	Ile	Leu	Gly	Leu	Phe 75	Lys	Phe	Ser	Met	11 80
Leu	Tyr	Leu	Arg	Arg 85	Asp	Phe	Lys	Arg	Leu 90	Ile	Asp	Lys	Phe	Arg 95	Le
Leu	Met	Ser	Asn 100	Glu	Ala	Glu	Gln	Gly 105	Glu	Glu	Tyr	Ala	Glu 110	Ile	Le
Asn	Ala	Ala 115	Asn	Lys	Gln	Asp	Gln 120	Arg	Met	Сув	Thr	Leu 125	Phe	Arg	Th
Суѕ	Phe 130	Leu	Leu	Ala	Trp	Ala 135	Leu	Asn	Ser	Val	Leu 140	Pro	Leu	Val	Ar
Met 145	Gly	Leu	Ser	Tyr	Trp 150	Leu	Ala	Gly	His	Ala 155	Glu	Pro	Glu	Leu	Pr 16
Phe	Pro	Суѕ	Leu	Phe 165	Pro	Trp	Asn	Ile	His 170	Ile	Ile	Arg	Asn	Tyr 175	Va
Leu	Ser	Phe	Ile 180	Trp	Ser	Ala	Phe	Ala 185	Ser	Thr	Gly	Val	Val 190	Leu	Pr
Ala	Val	Ser 195	Leu	Asp	Thr	Ile	Phe 200	Суѕ	Ser	Phe	Thr	Ser 205	Asn	Leu	Су
Ala	Phe 210	Phe	Lys	Ile	Ala	Gln 215	Tyr	Lys	Val	Val	Arg 220	Phe	Lys	Gly	Gl:
Ser 225	Leu	Lys	Glu	Ser	Gln 230	Ala	Thr	Leu	Asn	L y s 235	Val	Phe	Ala	Leu	Ту 24
Gln	Thr	Ser	Leu	Asp 245	Met	Cys	Asn	Asp	Leu 250	Asn	Gln	Cys	Tyr	Gln 255	Pr
Ile	Ile	Cys	Ala 260	Gln	Phe	Phe	Ile	Ser 265	Ser	Leu	Gln	Leu	C y s 270	Met	Le
Gly	Tyr	Leu 275	Phe	Ser	Ile	Thr	Phe 280	Ala	Gln	Thr	Glu	Gly 285	Val	Tyr	Ту
Ala	Ser 290	Phe	Ile	Ala	Thr	Ile 295	Ile	Ile	Gln	Ala	Tyr 300	Ile	Tyr	Cys	Ту
C y s 305	Gly	Glu	Asn	Leu	L y s 310	Thr	Glu	Ser	Ala	Ser 315	Phe	Glu	Trp	Ala	11 32
Tyr	Asp	Ser	Pro	Trp 325	His	Glu	Ser	Leu	Gly 330	Ala	Gly	Gly	Ala	Ser 335	Th
Ser	Ile	Сув	Arg 340	Ser	Leu	Leu	Ile	Ser 345	Met	Met	Arg	Ala	His 350	Arg	G1
Phe	Arg	Ile 355	Thr	Gly	Tyr	Phe	Phe 360	Glu	Ala	Asn	Met	Glu 365	Ala	Phe	Se
Ser	Ile 370	Val	Arg	Thr	Ala	Met 375	Ser	Tyr	Ile	Thr	Met 380	Leu	Arg	Ser	Ph
Ser 385															
			NO NO												
<212	2> TY	PE:				1	fol -			DOT	10				
<2 I 3	> UF	LMAD	ori:	Dros	sophi	.ıa P	ierar.	rogas	cer	DOF	(T)				

62

<400> SEQUENCE: 25	
atggaaaaac tacgttccta tgaggatttc atcttcatgg ccaacatgat gttcaagacc	60
cttggctacg atctattcca tacacccaaa ccctggtggc gctatctgct tgtgcgagga	120
tacttcgttt tgtgcacgat cagcaacttt tacgaggctt ccatggtgac gacaaggata	180
attgagtggg aatccttggc cggaagtccc tccaaaataa tgcgacaggg tctgcacttc	240
ttttacatgt tgagtagcca attgaaattt atcacattca tgataaatcg caaacgccta	300
ctgcagctga gccatcgttt gaaagagttg tatcctcata aagagcaaaa tcaaaggaag	360
tacgaggtga ataaatacta cctatcctgt tccacgcgca atgttttgta cgtgtactac	420
tttgtaatgg tcgtcatggc actggaaccc ctcgttcagt cccagttcat agtgaatgtg	480
agootgggca cagatotgtg gatgatgtgo gtotcaagoo aaatatogat goacttgggo	540
tatotggcca atatgttggc ctccattcga ccaagtccag aaacggaaca acaagactgt	600
gacttcttgg ccagcattat aaagagacat caactaatga tcaggcttca aaaggacgtg	660
aactatgttt ttggactctt attggcatct aatctgttta ccacatcctg tttactttgc	720
tgcatggcgt actataccgt cgtcgaaggt ttcaattggg agggcatttc ctatatgatg	780
ctctttgcta gtgtagctgc ccagttctac gttgtcagct cacacggaca aatgttaata	840
gatttgttga tgaccatcac atacagattt ttcgcggtta tacgacaaac tgtagaaaag	900
<210> SEQ ID NO 26 <211> LENGTH: 300 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR10	
<400> SEQUENCE: 26	
Met Glu Lys Leu Arg Ser Tyr Glu Asp Phe Ile Phe Met Ala Asn Met 1 5 10 15	
Met Phe Lys Thr Leu Gly Tyr Asp Leu Phe His Thr Pro Lys Pro Trp 20 25 30	
Trp Arg Tyr Leu Leu Val Arg Gly Tyr Phe Val Leu Cys Thr Ile Ser 35 40 45	
Asn Phe Tyr Glu Ala Ser Met Val Thr Thr Arg Ile Ile Glu Trp Glu 50 55 60	
Ser Leu Ala Gly Ser Pro Ser Lys Ile Met Arg Gln Gly Leu His Phe 75 70 75 80	
Phe Tyr Met Leu Ser Ser Gln Leu Lys Phe Ile Thr Phe Met Ile Asn 85 90 95	
Arg Lys Arg Leu Leu Gln Leu Ser His Arg Leu Lys Glu Leu Tyr Pro	
His Lys Glu Gln Asn Gln Arg Lys Tyr Glu Val Asn Lys Tyr Tyr Leu 115 120 125	
Ser Cys Ser Thr Arg Asn Val Leu Tyr Val Tyr Tyr Phe Val Met Val	
Val Met Ala Leu Glu Pro Leu Val Gln Ser Gln Phe Ile Val Asn Val 145 150 155 160	
Ser Leu Gly Thr Asp Leu Trp Met Met Cys Val Ser Ser Gln Ile Ser 165 170 175	
Met His Leu Gly Tyr Leu Ala Asn Met Leu Ala Ser Ile Arg Pro Ser 180 185 190	

Pro Glu Thr Glu Gln Gln Asp Cys Asp Phe Leu Ala Ser Ile Ile Lys 195 200 Arg His Gln Leu Met Ile Arg Leu Gln Lys Asp Val Asn Tyr Val Phe 215 Gly Leu Leu Leu Ala Ser Asn Leu Phe Thr Thr Ser Cys Leu Leu Cys Cys Met Ala Tyr Tyr Thr Val Val Glu Gly Phe Asn Trp Glu Gly Ile Ser Tyr Met Met Leu Phe Ala Ser Val Ala Ala Gln Phe Tyr Val Val Ser Ser His Gly Gln Met Leu Ile Asp Leu Leu Met Thr Ile Thr Tyr 275 280 Arg Phe Phe Ala Val Ile Arg Gln Thr Val Glu Lys 295 <210> SEQ ID NO 27 <211> LENGTH: 1125 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR105 <400> SEOUENCE: 27 atgtttgaag acattcagct aatctacatg aatatcaaga tattgcgatt ctgggccctg 60 ctctatgaca aaaacttgag gcgttatgtg tgcattggac tggcctcatt ccacatcttc 120 acccaaatcg tctacatgat gagtaccaat gaaggactaa ccgggataat tcgtaactca 180 tatatqctcq tcctttqqat taatacqqtq ctqcqaqctt atctcttqct qqcqqatcac 240 gacagatatt tggctttgat ccaaaaacta actgaggcct attacgattt actgaatctg aacgattcgt atatatcgga aatattggac caggtgaaca aggtgggaaa gttgatggct 420 aggggcaatc tgttctttgg catgctcaca tccatgggat tcggtctgta cccattgtcc tccagcgaaa gagtcctgcc atttggcagc aaaattcctg gtctaaatga gtacgagagt 480 ccqtactatq aqatqtqqta catctttcaq atqctcatca ccccqatqqq ctqttqcatq 540 tacattccgt acaccagtct gattgtgggc ttgataatgt tcggcattgt gaggtgcaag 600 gctttgcagc atcgcctccg ccaggtggcg cttaagcatc cgtacggaga tcgcgatccc 660 cgtgaactga gggaggagat catagcctgc atacgttacc agcagagcat tatcgagtac atggatcaca taaacgagct gaccaccatg atgttcctat tcgaactgat ggccttttcg 780 gcgctgctct gtgcgctgct ctttatgctg attatcgtca gcggcaccag tcagctgata 840 attgtttgca tgtacattaa catgattctg gcccaaatac tggccctcta ttggtatgca 900 aatgagttaa gggaacagaa tctggcggtg gccaccgcag cctacgaaac ggagtggttc 960 accttcgacg ttccactgcg caaaaacatc ctgttcatga tgatgagggc acagcggcca 1020 qctqcaatac tactqqqcaa tatacqcccc atcactttqq aactqttcca aaacctactq 1080 aacacaacct atacattttt tacggttctc aagcgagtct acgga 1125 <210> SEQ ID NO 28 <211> LENGTH: 375 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR105 <400> SEQUENCE: 28

Met Phe Glu Asp Ile Gln Leu Ile Tyr Met Asn Ile Lys Ile Leu Arg

1				5					10					15	
Phe	Trp	Ala	Leu 20	Leu	Tyr	Asp	Lys	Asn 25	Leu	Arg	Arg	Tyr	Val 30	Cys	Ile
Gly	Leu	Ala 35	Ser	Phe	His	Ile	Phe 40	Thr	Gln	Ile	Val	Tyr 45	Met	Met	Ser
Thr	Asn 50	Glu	Gly	Leu	Thr	Gly 55	Ile	Ile	Arg	Asn	Ser 60	Tyr	Met	Leu	Val
Leu 65	Trp	Ile	Asn	Thr	Val 70	Leu	Arg	Ala	Tyr	Leu 75	Leu	Leu	Ala	Asp	His 80
Asp	Arg	Tyr	Leu	Ala 85	Leu	Ile	Gln	Lys	Leu 90	Thr	Glu	Ala	Tyr	Tyr 95	Asp
Leu	Leu	Asn	Leu 100	Asn	Asp	Ser	Tyr	Ile 105	Ser	Glu	Ile	Leu	Asp 110	Gln	Val
Asn	Lys	Val 115	Gly	Lys	Leu	Met	Ala 120	Arg	Gly	Asn	Leu	Phe 125	Phe	Gly	Met
Leu	Thr 130	Ser	Met	Gly	Phe	Gly 135	Leu	Tyr	Pro	Leu	Ser 140	Ser	Ser	Glu	Arg
Val 145	Leu	Pro	Phe	Gly	Ser 150	Lys	Ile	Pro	Gly	Leu 155	Asn	Glu	Tyr	Glu	Ser 160
Pro	Tyr	Tyr	Glu	Met 165	Trp	Tyr	Ile	Phe	Gln 170	Met	Leu	Ile	Thr	Pro 175	Met
Gly	Сув	Сув	Met 180	Tyr	Ile	Pro	Tyr	Thr 185	Ser	Leu	Ile	Val	Gly 190	Leu	Ile
Met	Phe	Gl y 195	Ile	Val	Arg	Сув	L y s 200	Ala	Leu	Gln	His	Arg 205	Leu	Arg	Gln
Val	Ala 210	Leu	Lys	His	Pro	Tyr 215	Gly	Asp	Arg	Asp	Pro 220	Arg	Glu	Leu	Arg
Glu 225	Glu	Ile	Ile	Ala	C y s 230	Ile	Arg	Tyr	Gln	Gln 235	Ser	Ile	Ile	Glu	Tyr 240
Met	Asp	His	Ile	Asn 245	Glu	Leu	Thr	Thr	Met 250	Met	Phe	Leu	Phe	Glu 255	Leu
Met	Ala	Phe	Ser 260	Ala	Leu	Leu	Суѕ	Ala 265	Leu	Leu	Phe	Met	Leu 270	Ile	Ile
Val	Ser	Gly 275	Thr	Ser	Gln	Leu	Ile 280	Ile	Val	Суѕ	Met	Tyr 285	Ile	Asn	Met
Ile	Leu 290	Ala	Gln	Ile	Leu	Ala 295	Leu	Tyr	Trp	Tyr	Ala 300	Asn	Glu	Leu	Arg
Glu 305	Gln	Asn	Leu	Ala	Val 310	Ala	Thr	Ala	Ala	Tyr 315	Glu	Thr	Glu	Trp	Phe 320
Thr	Phe	Asp	Val	Pro 325	Leu	Arg	Lys	Asn	Ile 330	Leu	Phe	Met	Met	Met 335	Arg
Ala	Gln	Arg	Pro 340	Ala	Ala	Ile	Leu	Leu 345	Gly	Asn	Ile	Arg	Pro 350	Ile	Thr
Leu	Glu	Leu 355	Phe	Gln	Asn	Leu	Leu 360	Asn	Thr	Thr	Tyr	Thr 365	Phe	Phe	Thr
Val	Leu 370	Lys	Arg	Val	Tyr	Gly 375									
)> SE l> LE														
	2> TY			_											

<212> TYPE: DNA
<213> ORGANISM: Drosophila Melanogaster DOR107

<400	> SE	QUE	ICE:	29												
atgt	atco	gc (gatto	cctca	ag co	gtaa	actat	c dd	gctg	gcca	agca	attto	jtt (cttc	gtcacc	60
agat	acto	ct t	tgg	cctg	ct go	ggcct	gaga	a ttt	ggca	aaag	agca	aatco	gtg	gctto	cacctc	120
ttgt	ggct	gg t	gtto	caat	t c	jttaa	accto	g gc	gcact	gct	gcca	aggco	gga i	gttc	gtcttc	180
ggct	ggag	jtc a	actt	gege	ac ca	gtc	ccgto	g gat	gcca	atgg	acgo	ccttt	tg ·	tcct	etggcc	240
tgca	gttt	ca o	ccac	getet	t ca	agct	ggga	a tg	gatgt	ggt	ggc	gtcgc	ca	ggaag	gtagct	300
gatc	taat	gg a	accgo	catco	eg et	tgct	cato	ggg	ggago	cagg	agaa	agago	ıga ı	ggact	cccgg	360
agaa	aggt	gg (ctcaa	aagga	ag ct	acta	atcto	ato	ggtca	acca	ggt	geggt	at	gctg	gtcttc	420
accc	tggg	jca 🤄	gcatt	acca	ac to	gago	cctto	gtt	ctgo	gtt	ccct	tttgg	ıga .	aatgt	gggtg	480
cgtc	gtca	atc a	aggag	gttca	aa at	tcga	atato	g cco	ctttc	cgca	tgct	tgtto	ca	cgact	ttgcg	540
catc	gcat	ge o	cctg	gttt	cc aç	jtttt	ctat	cto	ctact	cca	cato	ggagt	gg	ccago	gtcact	600
gtgt	acgo	ct t	tgct	ggta	ac aç	gatgo	gtttc	tto	ettte	ggct	ttac	cccto	ta	catg	gccttc	660
ttgc	tgca	agg (cctta	aagat	a c	jatat	ccag	g gat	gcc	ctca	agco	caata	ag	agato	cctcg	720
ctta	ggga	at o	ccaaa	aatc	g ct	gtca	agcga	a tto	gggg	gaca	tcgt	tggat	cg	ccaca	aatgag	780
atag	agaa	iga t	agto	caag	ga at	tttc	ctgga	a att	atg	gctg	ctc	caact	tt ·	tgtto	cacttc	840
gtat	cago	ca ç	gctta	agtga	at a	gccad	ccago	gto	catto	gata	tact	tatto	jta ·	ttcc	ggctat	900
aaca	tcat	cc q	gttad	gtg	gt gt	acad	cctto	c acq	ggttt	cct	cggo	ccato	tt	cctct	attgc	960
tacg	gagg	jca (cagaa	aatg	c aa	actga	agago	ctt	tcct	tgg	gaga	aagca	igc (ctaca	agcagt	1020
gcct	ggta	ata d	cttg	ggato	eg aç	gagad	cccgc	agg	geggg	gtct	ttct	tcatt	at	cctgo	egtget	1080
caac	gaco	ca t	tace	ggtga	ag g	gtgco	ccttt	ttt	gcad	ccat	cgtt	tacca	igt	cttca	acatcg	1140
gtca	tcaa	igt t	taca	aggti	c ga	attgt	ggca	a cto	ggcta	aaga	cgat	tacto	J			1188
<210: <211: <212: <213: <400:	> LE > TY > OR	NGTH PE:	PRT	06 Dros	sophi	.la M	Melan	ıogas	ster	DOF	R107					
Met 1	Tyr	Pro	Arg	Phe 5	Leu	Ser	Arg	Asn	Ty r 10	Pro	Leu	Ala	Lys	His 15	Leu	
Phe	Phe	Val	Thr 20	Arg	Tyr	Ser	Phe	Gl y 25	Leu	Leu	Gly	Leu	Arg 30	Phe	Gly	
Lys	Glu	Gln 35	Ser	Trp	Leu	His	Leu 40	Leu	Trp	Leu	Val	Phe 45	Asn	Phe	Val	
	Leu 50	Ala	His	Суѕ	Cys	Gln 55	Ala	Glu	Phe	Val	Phe 60	Gly	Trp	Ser	His	
Leu . 65	Arg	Thr	Ser	Pro	Val 70	Asp	Ala	Met	Asp	Ala 75	Phe	Сув	Pro	Leu	Ala 80	
Сув	Ser	Phe	Thr	Thr 85	Leu	Phe	Lys	Leu	Gl y 90	Trp	Met	Trp	Trp	Arg 95	Arg	
Gln	Glu	Val	Ala 100	Asp	Leu	Met	Asp	Arg 105	Ile	Arg	Leu	Leu	Ile 110	Gly	Glu	
Gln	Glu	Lys 115	Arg	Glu	Asp	Ser	Arg 120	Arg	Lys	Val	Ala	Gln 125	Arg	Ser	Tyr	

Tyr Leu Met Val Thr Arg Cys Gly Met Leu Val Phe Thr Leu Gly Ser

130 135 140
Ile Thr Thr Gly Ala Phe Val Leu Arg Ser Leu Trp Glu Met Trp Val 145 150 155 160
Arg Arg His Gln Glu Phe Lys Phe Asp Met Pro Phe Arg Met Leu Phe 165 170 175
His Asp Phe Ala His Arg Met Pro Trp Phe Pro Val Phe Tyr Leu Tyr 180 185 190
Ser Thr Trp Ser Gly Gln Val Thr Val Tyr Ala Phe Ala Gly Thr Asp 195 200 205
Gly Phe Phe Gly Phe Thr Leu Tyr Met Ala Phe Leu Leu Gln Ala 210 215 220
Leu Arg Tyr Asp Ile Gln Asp Ala Leu Lys Pro Ile Arg Asp Pro Ser 225 230 235 240
Leu Arg Glu Ser Lys Ile Cys Cys Gln Arg Leu Ala Asp Ile Val Asp 245 250 255
Arg His Asn Glu Ile Glu Lys Ile Val Lys Glu Phe Ser Gly Ile Met 260 265 270
Ala Ala Pro Thr Phe Val His Phe Val Ser Ala Ser Leu Val Ile Ala 275 280 285
Thr Ser Val Ile Asp Ile Leu Leu Tyr Ser Gly Tyr Asn Ile Ile Arg 290 295 300
Tyr Val Val Tyr Thr Phe Thr Val Ser Ser Ala Ile Phe Leu Tyr Cys 305 310 315 320
Tyr Gly Gly Thr Glu Met Ser Thr Glu Ser Leu Ser Leu Gly Glu Ala 325 330 335
Ala Tyr Ser Ser Ala Trp Tyr Thr Trp Asp Arg Glu Thr Arg Arg Arg 340 345 350
Val Phe Leu Ile Ile Leu Arg Ala Gln Arg Pro Ile Thr Val Arg Val 355 360 365
Pro Phe Phe Ala Pro Ser Leu Pro Val Phe Thr Ser Val Ile Lys Phe 370 375 380
Thr Gly Ser Ile Val Ala Leu Ala Lys Thr Ile Leu 385 390 395
<210> SEQ ID NO 31 <211> LENGTH: 1161 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR108
<400> SEQUENCE: 31
atggataaac acaaggatcg cattgaatcc atgcgcctaa ttcttcaggt catgcaacta 60
tttggcctct ggccgtggtc cttgaaatcg gaagaggagt ggactttcac cggttttgta 120
aagegeaact ategetteet getecatetg eccattaeet teacetttat tggaeteatg 180 tggetggagg cetteatete gageaatetg gageaggetg geeaggttet gtacatgtee 240
atcaccgaga tggctttggt ggtgaaaatc ctgagcattt ggcactatcg caccgaagct 300
tggcggctga tgtacgaact ccaacatgct ccggactacc aactccacaa ccaggaggag 360
gtagactttt ggcgccggga gcaacgattc ttcaagtggt tcttctacat ctacattctg 420
attagettgg gegtggtata tagtggetge actggagtae tttttetgga gggetaegaa 480
ctgccctttg cctactacgt gcccttcgaa tggcagaacg agagaaggta ctggttcgcc 540

					-
tatggttacg	atatggcggg c	atgacgctg a	acctgcatct	caaacattac cct	ggacacc 600
ctgggttgct	atttcctgtt c	catatctct c	cttttgtacc	gactgcttgg tct	gcgattg 660
agggaaacga	agaatatgaa g	aatgatacc a	atttttggcc	agcagttgcg tgc	catcttc 720
attatgcatc	agaggattag a	agcctaacc c	ctgacctgcc	agagaatcgt atc	tccctat 780
atcctatctc	agatcatttt g	agtgccctg a	atcatctgct	ttagtggata ccg	cttgcag 840
catgtgggaa	ttcgcgataa t	cccggccag t	tttatatcca	tgttgcagtt tgt	cagtgtg 900
atgatcctgc	agatttactt g	ccctgctac t	tatggaaacg	agataaccgt gta	tgccaat 960
cagctgacca	acgaggttta c	cataccaat t	tggctggaat	gtcggccacc gat	togaaag 1020
ttactcaatg	cctacatgga g	cacctgaag a	aaaccggtga	ccatccgggc tgg	caactcc 1080
ttcgccgtgg	gactaccaat t	tttgttaag a	accatcaaca	acgcctacag ttt	ettgget 1140
ttattactaa	atgtatcgaa t				1161
<210> SEQ II <211> LENGTI <212> TYPE: <213> ORGANI	H: 387	ila Melanog	gaster DOR	:108	
<400> SEQUE					
Met Asp Lys 1	His Lys Asp 5	Arg Ile Gl	lu Ser Met 10	Arg Leu Ile Le	ı Gln
Val Met Gln	Leu Phe Gly	Leu Trp Pr 25		Leu Lys Ser Glu	ı Glu
Glu Trp Thr 35	Phe Thr Gly	Phe Val Ly 40	ys Arg Asn	Tyr Arg Phe Let	ı Leu
His Leu Pro 50	Ile Thr Phe	Thr Phe Il	le Gly Leu	Met Trp Leu Gl	ı Ala
Phe Ile Ser	Ser Asn Leu 70	Glu Gln Al	la Gly Gln 75	Val Leu Tyr Me	Ser 80
Ile Thr Glu	Met Ala Leu 85	Val Val Ly	ys Ile Leu 90	Ser Ile Trp Hi	s Tyr
Arg Thr Glu	Ala Trp Arg		yr Glu Leu 05	Gln His Ala Pro	Asp
Tyr Gln Leu 115	His Asn Gln	Glu Glu Va 120	al Asp Phe	Trp Arg Arg Gli 125	ı Gln
Arg Phe Phe	Lys Trp Phe	Phe Tyr Il 135	le Tyr Ile	Leu Ile Ser Le 140	ı Gly
Val Val Tyr 145	Ser Gly Cys 150		al Leu Phe 155	Leu Glu Gly Ty:	Glu 160
Leu Pro Phe	Ala Tyr Tyr 165	Val Pro Ph	he Glu Trp 170	Gln Asn Glu Are	
Tyr Trp Phe	Ala Tyr Gly 180		et Ala Gly 85	Met Thr Leu Th	с Сув
Ile Ser Asn 195		Asp Thr Le	eu Gly Cys	Tyr Phe Leu Pho 205	e His
Ile Ser Leu 210	Leu Tyr Arg	Leu Leu Gl 215	ly Leu Arg	Leu Arg Glu Th	c L y s
Asn Met Lys 225	Asn Asp Thr 230		ly Gln Gln 235	Leu Arg Ala Ile	Phe 240

Ile Met His Gln Arg Ile Arg Ser Leu Thr Leu Thr Cys Gln Arg Ile

atatccaag

-continued

-continued		
245 250 255		
Val Ser Pro Tyr Ile Leu Ser Gln Ile Ile Leu Ser Ala Leu Ile Ile 260 265 270		
Cys Phe Ser Gly Tyr Arg Leu Gln His Val Gly Ile Arg Asp Asn Pro 275 280 285		
Gly Gln Phe Ile Ser Met Leu Gln Phe Val Ser Val Met Ile Leu Gln 290 295 300		
Ile Tyr Leu Pro Cys Tyr Tyr Gly Asn Glu Ile Thr Val Tyr Ala Asn 305 310 315 320		
Gln Leu Thr Asn Glu Val Tyr His Thr Asn Trp Leu Glu Cys Arg Pro 325 330 335		
Pro Ile Arg Lys Leu Leu Asn Ala Tyr Met Glu His Leu Lys Lys Pro 340 345 350		
Val Thr Ile Arg Ala Gly Asn Ser Phe Ala Val Gly Leu Pro Ile Phe 355 360 365		
Val Lys Thr Ile Asn Asn Ala Tyr Ser Phe Leu Ala Leu Leu Leu Asn 370 375 380		
Val Ser Asn 385		
<210> SEQ ID NO 33 <211> LENGTH: 1149 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR109 <400> SEQUENCE: 33 atggagtcta caaatcgcct aagtgccatc caaacacttt tagtaatcca acgttggata	60	5.0
ggacttctta aatgggaaaa cgagggcgag gatggagtat taacctggct aaaacgaata	120	
tatecttttg tactgeacet tecaetgace tteaegtata ttgeettaat gtggtatgaa	180	
gctattacat cgtcagattt tgaggaagct ggtcaagttc tgtacatgtc catcaccgaa	240	10
ctggcattgg tcactaaact gctgaatatt tggtatcgtc gtcatgaagc tgctagtcta	300	0 0
atccacgaat tgcaacacga tcccgcattt aatctgcgca attcggagga aatcaaattc	360	50
tggcagcaaa atcagaggaa ctttaagaga atattttact ggtacatctg gggcagcctt	420	20
ttcgtggctg taatgggtta tataagcgtg tttttccagg aggattacga gctgcccttt	480	30
ggctactacg tgccattcga gtggcgcacc agggaacgat acttctacgc ttggggctat	540	10
aatgtggtgg ccatgaccct gtgctgtcta tccaacatcc tactggacac actaggctgt	600	0 (
tatttcatgt tccacatcgc ctcgcttttc aggcttttgg gaatgcgact ggaggccttg	660	50
aaaaatgcag ccgaagagaa agccagaccg gagttgcgcc gcattttcca actgcacact	720	20
aaagtccgcc gattgacgag ggaatgcgaa gtgttagttt caccctatgt tctatcccaa	780	30
gtggtcttca gtgccttcat catctgcttc agtgcctatc gactggtgca catgggcttc	840	10
aagcagcgac ctggactett cgtgaccace gtgcaatteg tggcegteat gategteeag	900	
attttcttgc cctgttacta cggcaatgag ttgacctttc atgccaatgc actcactaat	960	
agtgtcttcg gtaccaattg gctggagtac tccgtgggca ctcgcaagct gcttaactgc	1020	
tacatggagt tootcaagog acoggttaaa gtgcgagotg gggtgttott tgaaatagga	1080	
ctacccatct ttgtgaagac catcaacaat gcctacagtt tcttcgccct gctgctaaag	1140	10

1149

<211	> LE	NGTH	: 38												
		PE:		Dros	ophi	la M	Melar	ogas	ter	DOF	R109				
<400)> SE	QUEN	ICE:	34											
Met 1	Glu	Ser	Thr	Asn 5	Arg	Leu	Ser	Ala	Ile 10	Gln	Thr	Leu	Leu	Val 15	Ile
Gln	Arg	Trp	Ile 20	Gly	Leu	Leu	Lys	Trp 25	Glu	Asn	Glu	Gly	Glu 30	Asp	Gly
Val	Leu	Thr 35	Trp	Leu	Lys	Arg	Ile 40	Tyr	Pro	Phe	Val	Leu 45	His	Leu	Pro
Leu	Thr 50	Phe	Thr	Tyr	Ile	Ala 55	Leu	Met	Trp	Tyr	Glu 60	Ala	Ile	Thr	Ser
Ser 65	Asp	Phe	Glu	Glu	Ala 70	Gly	Gln	Val	Leu	Ty r 75	Met	Ser	Ile	Thr	Glu 80
Leu	Ala	Leu	Val	Thr 85	Lys	Leu	Leu	Asn	Ile 90	Trp	Tyr	Arg	Arg	His 95	Glu
Ala	Ala	Ser	Leu 100	Ile	His	Glu	Leu	Gln 105	His	Asp	Pro	Ala	Phe 110	Asn	Leu
Arg	Asn	Ser 115	Glu	Glu	Ile	Lys	Phe 120	Trp	Gln	Gln	Asn	Gln 125	Arg	Asn	Phe
L y s	Arg 130	Ile	Phe	Tyr	Trp	Ty r 135	Ile	Trp	Gly	Ser	Leu 140	Phe	Val	Ala	Val
Met 145	Gly	Tyr	Ile	Ser	Val 150	Phe	Phe	Gln	Glu	Asp 155	Tyr	Glu	Leu	Pro	Phe 160
Gly	Tyr	Tyr	Val	Pro 165	Phe	Glu	Trp	Arg	Thr 170	Arg	Glu	Arg	Tyr	Phe 175	Tyr
Ala	Trp	Gly	Tyr 180	Asn	Val	Val	Ala	Met 185	Thr	Leu	Cys	Cys	Leu 190	Ser	Asn
Ile	Leu	Leu 195	Asp	Thr	Leu	Gly	C y s 200	Tyr	Phe	Met	Phe	His 205	Ile	Ala	Ser
Leu	Phe 210	Arg	Leu	Leu	Gly	Met 215	Arg	Leu	Glu	Ala	Leu 220	Lys	Asn	Ala	Ala
Glu 225	Glu	Lys	Ala	Arg	Pro 230	Glu	Leu	Arg	Arg	Ile 235	Phe	Gln	Leu	His	Thr 240
Lys	Val	Arg	Arg	Leu 245	Thr	Arg	Glu	Cys	Glu 250	Val	Leu	Val	Ser	Pro 255	Tyr
Val	Leu		Gln 260		Val		Ser			Ile	Ile	-	Phe 270	Ser	Ala
Tyr	Arg	Leu 275	Val	His	Met	Gly	Phe 280	Lys	Gln	Arg	Pro	Gl y 285	Leu	Phe	Val
Thr	Thr 290	Val	Gln	Phe	Val	Ala 295	Val	Met	Ile	Val	Gln 300	Ile	Phe	Leu	Pro
C y s 305	Tyr	Tyr	Gly	Asn	Glu 310	Leu	Thr	Phe	His	Ala 315	Asn	Ala	Leu	Thr	Asn 320
Ser	Val	Phe	Gly	Thr 325	Asn	Trp	Leu	Glu	Tyr 330	Ser	Val	Gly	Thr	Arg 335	Lys
Leu	Leu	Asn	Cys 340	Tyr	Met	Glu	Phe	Leu 345	Lys	Arg	Pro	Val	Lys 350	Val	Arg
Ala	Gly	Val	Phe	Phe	Glu	Ile	Gly	Leu	Pro	Ile	Phe	Val	Lys	Thr	Ile

355 360 365	
Asn Asn Ala Tyr Ser Phe Phe Ala Leu Leu Leu Lys Ile Ser Lys 370 375 380	
<210> SEQ ID NO 35 <211> LENGTH: 1161 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR110	
<400> SEQUENCE: 35	
atgttgttca actatctgcg aaagccgaat cccacaaacc ttttgacttc tccggactca	60
tttagatact ttgagtatgg aatgttttgc atgggatggc acacaccagc aacgcataag	120
ataatctact atataacatc ctgtttgatt tttgcttggt gtgccgtata cttgccaatc	180
ggaatcatca ttagtttcaa aacggatatt aacacattca caccgaatga actgttgaca	240
gttatgcaat tatttttcaa ttcagtggga atgccattca aggttctgtt cttcaatttg	300
tatatttctg gattttacaa ggccaaaaag ctccttagcg aaatggacaa acgttgcacc	360
actttgaagg agcgagtgga agtgcaccaa ggtgtggtcc gttgcaacaa ggcctacctc	420
atttaccagt tcatttatac cgcgtacact atttcaacat ttctatcggc ggctcttagt	480
ggaaaattgc catggcgcat ctataatcct tttgtggatt ttcgagaaag tagatccagt	540
ttttggaaag ctgccctcaa cgagacagca cttatgctat ttgctgtgac tcaaacccta	600
atgagtgata tatatccact gctttatggt ttgatcctga gagttcacct caaacttttg	660
cgactaagag tggagagcct gtgcacagat tctggaaaaa gcgatgctga aaacgagcaa	720
gatttgatta actatgctgc agcaatacga ccagcggtta cccgcacaat tttcgttcaa	780
ttcctcttga tcggaatttg ccttggcctt tcaatgatca atctactctt ctttgccgac	840
atctggacag gattggccac agtggcttac atcaatggtc taatggtgca gacatttcca	900
ttttgcttcg tttgtgatct actcaaaaag gattgtgaac ttcttgtgtc ggccatattt	960
cattccaact ggattaattc aagccgcagt tacaagtcat ctttgagata ttttctgaag	1020
aacgcccaga aatcaattgc ttttacagcc ggctctattt ttcccatttc tactggctcg	1080
aatattaagg tggctaagct ggcattttcg gtggttactt ttgtcaatca acttaacata	1140
gctgacagat tgacaaagaa c	1161
<210> SEQ ID NO 36 <211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR110	
<400> SEQUENCE: 36	
Met Leu Phe Asn Tyr Leu Arg Lys Pro Asn Pro Thr Asn Leu Leu Thr 1 10 15	
Ser Pro Asp Ser Phe Arg Tyr Phe Glu Tyr Gly Met Phe Cys Met Gly 20 25 30	
Trp His Thr Pro Ala Thr His Lys Ile Ile Tyr Tyr Ile Thr Ser Cys 35 40 45	
Leu Ile Phe Ala Trp Cys Ala Val Tyr Leu Pro Ile Gly Ile Ile Ile 50 55 60	
Ser Phe Lys Thr Asp Ile Asn Thr Phe Thr Pro Asn Glu Leu Leu Thr 65 70 75 80	

71

Val	Met	Gln	Leu	Phe 85	Phe	Asn	Ser	Val	Gly 90	Met	Pro	Phe	Lys	Val 95	Leu			
Phe	Phe	Asn	Leu 100	Tyr	Ile	Ser	Gly	Phe 105	Tyr	Lys	Ala	Lys	Lys 110	Leu	Leu			
Ser	Glu	Met 115	Asp	Lys	Arg	Cys	Thr 120	Thr	Leu	Lys	Glu	Arg 125	Val	Glu	Val			
His	Gln 130	Gly	Val	Val	Arg	C y s 135	Asn	Lys	Ala	Tyr	Leu 140	Ile	Tyr	Gln	Phe			
Ile 145	Tyr	Thr	Ala	Tyr	Thr 150	Ile	Ser	Thr	Phe	Leu 155	Ser	Ala	Ala	Leu	Ser 160			
Gly	Lys	Leu	Pro	Trp 165	Arg	Ile	Tyr	Asn	Pro 170	Phe	Val	Asp	Phe	Arg 175	Glu			
Ser	Arg	Ser	Ser 180	Phe	Trp	Lys	Ala	Ala 185	Leu	Asn	Glu	Thr	Ala 190	Leu	Met			
Leu	Phe	Ala 195	Val	Thr	Gln	Thr	Leu 200	Met	Ser	Asp	Ile	Tyr 205	Pro	Leu	Leu			
Tyr	Gly 210	Leu	Ile	Leu	Arg	Val 215	His	Leu	Lys	Leu	Leu 220	Arg	Leu	Arg	Val			
Glu 225	Ser	Leu	Cys	Thr	Asp 230	Ser	Gly	Lys	Ser	Asp 235	Ala	Glu	Asn	Glu	Gln 240			
Asp	Leu	Ile	Asn	Tyr 245	Ala	Ala	Ala	Ile	Arg 250	Pro	Ala	Val	Thr	Arg 255	Thr			
Ile	Phe	Val	Gln 260	Phe	Leu	Leu	Ile	Gl y 265	Ile	Суѕ	Leu	Gly	Leu 270	Ser	Met			
Ile	Asn	Leu 275	Leu	Phe	Phe	Ala	Asp 280	Ile	Trp	Thr	Gly	Leu 285	Ala	Thr	Val			
Ala	Ty r 290	Ile	Asn	Gly	Leu	Met 295	Val	Gln	Thr	Phe	Pro 300	Phe	Сув	Phe	Val			
С у в 305	Asp	Leu	Leu	Lys	Lys 310	Asp	Суѕ	Glu	Leu	Leu 315	Val	Ser	Ala	Ile	Phe 320			
His	Ser	Asn	Trp	Ile 325	Asn	Ser	Ser	Arg	Ser 330	Tyr	Lys	Ser	Ser	Leu 335	Arg			
Tyr	Phe	Leu	Lys 340	Asn	Ala	Gln	Lys	Ser 345	Ile	Ala	Phe	Thr	Ala 350	Gly	Ser			
Ile	Phe	Pro 355	Ile	Ser	Thr	Gly	Ser 360	Asn	Ile	Lys	Val	Ala 365	Lys	Leu	Ala			
Phe	Ser 370	Val	Val	Thr	Phe	Val 375	Asn	Gln	Leu	Asn	Ile 380	Ala	Asp	Arg	Leu			
Thr 385	Lys	Asn																
<210)> SE	Q II	NO NO	37														
<212	l> LE 2> TY 3> OF	PE:	DNA		sophi	ila M	Melan	ıogas	ter	DOF	R111							
<40)> SE	QUEN	ICE:	37														
atg	ctgtt	cac q	gcaaa	acgta	aa go	ccaaa	aaagt	gad	gate	gaag	tcat	caco	ett o	cgac	gaactt		60	
acc	eggtt	tc o	cgate	gacti	tt c	tacaa	agaco	c ato	ggc	gagg	atc	gtad	ctc o	cgata	agggat	1	120	
ccg	aatgt	ga t	aag	gcgti	ta c	ctgct	cacgt	t ttt	tato	ctgg	tact	cggt	tt t	ctca	aacttc	1	180	
aat	gccta	atg t	ggt	gggc	ga a	atcgo	cgtad	ttt	tataq	gtcc	ata	aato	gtc <u>c</u>	gacga	actact	2	240	

cttttggagg	ccactgcagt	ggcaccgtgc	attggcttca	gcttcatggc	cgactttaag	300
cagttcggtc	tcacagtgaa	tagaaagcga	ttggtcagat	tgctggatga	tctcaaggag	360
atatttcctt	tagatttaga	agcgcagcgg	aagtataacg	tatcgtttta	ccggaaacac	420
atgaacaggg	tcatgaccct	attcaccatc	ctctgcatga	cctacacctc	gtcatttagc	480
ttttatccag	ccatcaagtc	gaccataaag	tattacctta	tgggatcgga	aatctttgag	540
cgcaactacg	gatttcacat	tttgtttccc	tacgacgcag	aaacggatct	gacggtctac	600
tggttttcct	actggggatt	ggctcattgt	gcctatgtgg	ccggagtttc	ctacgtctgc	660
gtggatctcc	tgctgatcgc	gaccataacc	cagctgacca	tgcacttcaa	ctttatagcg	720
aatgatttgg	aggcctacga	aggaggtgat	catacggatg	aagaaaatat	caaatacctg	780
cacaacttgg	tcgtctatca	tgccagggcg	ctggatatta	acaagaaatg	tacatttcag	840
agctctcgga	ttggccattc	ggcatttaat	cagaactggt	tgccatgcag	caccaaatac	900
aaacgcatcc	tgcaatttat	tatcgcgcgc	agccagaagc	ccgcctctat	aagaccgcct	960
acctttccac	ccatatcttt	taataccttt	atgaaggtaa	tcagcatgtc	gtatcagttt	1020
tttgcactgc	tccgcaccac	atattatggt				1050

<210> SEQ ID NO 38

<211> LENGTH: 350

<212> TYPE: PRT

<213> ORGANISM: Drosophila Melanogaster DOR111

<400> SEQUENCE: 38

Met Leu Phe Arg Lys Arg Lys Pro Lys Ser Asp Asp Glu Val Ile Thr 1 $$ 5 $$ 10 $$ 15

Phe Asp Glu Leu Thr Arg Phe Pro Met Thr Phe Tyr Lys Thr Ile Gly 20 25 30

Glu Asp Leu Tyr Ser Asp Arg Asp Pro Asn Val Ile Arg Arg Tyr Leu 35 40 45

Leu Arg Phe Tyr Leu Val Leu Gly Phe Leu Asn Phe Asn Ala Tyr Val 50 60

Val Gly Glu Ile Ala Tyr Phe Ile Val His Ile Met Ser Thr Thr Thr 65 70 75 80

Ala Asp Phe Lys Gln Phe Gly Leu Thr Val Asn Arg Lys Arg Leu Val 100 $\,$ 110 $\,$

Arg Leu Leu Asp Asp Leu Lys Glu Ile Phe Pro Leu Asp Leu Glu Ala 115 120 125

Met Thr Leu Phe Thr Ile Leu Cys Met Thr Tyr Thr Ser Ser Phe Ser 145 $$ 150 $$ 155 $$ 160

Phe Tyr Pro Ala Ile Lys Ser Thr Ile Lys Tyr Tyr Leu Met Gly Ser 165 170 175

Glu Ile Phe Glu Arg Asn Tyr Gly Phe His Ile Leu Phe Pro Tyr Asp \$180\$ \$190

Ala Glu Thr Asp Leu Thr Val Tyr Trp Phe Ser Tyr Trp Gly Leu Ala 195 200 205

His Cys Ala Tyr Val Ala Gly Val Ser Tyr Val Cys Val Asp Leu Leu

aaattotttg cccttctgcg cacaatgtac gtgaat

-continued

-continued										
210 215 220										
Leu Ile Ala Thr Ile Thr Gln Leu Thr Met His Phe Asn Phe Ile Ala 225 230 235 240										
Asn Asp Leu Glu Ala Tyr Glu Gly Gly Asp His Thr Asp Glu Glu Asn 245 250 255										
Ile Lys Tyr Leu His Asn Leu Val Val Tyr His Ala Arg Ala Leu Asp 260 265 270										
Ile Asn Lys Lys Cys Thr Phe Gln Ser Ser Arg Ile Gly His Ser Ala 275 280 285										
Phe Asn Gln Asn Trp Leu Pro Cys Ser Thr Lys Tyr Lys Arg Ile Leu 290 295 300										
Gln Phe Ile Ile Ala Arg Ser Gln Lys Pro Ala Ser Ile Arg Pro Pro 305 310 315 320										
Thr Phe Pro Pro Ile Ser Phe Asn Thr Phe Met Lys Val Ile Ser Met 325 330 335										
Ser Tyr Gln Phe Phe Ala Leu Leu Arg Thr Thr Tyr Tyr Gly 340 345 350										
<210> SEQ ID NO 39 <211> LENGTH: 1236 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR114 <400> SEQUENCE: 39										
atgttgacta agaaggatac tcaaagtgcc aaggagcagg aaaagttgaa ggccattcca	60									
ttgcacagct ttctgaaata tgccaacgtg ttctatttat cgattggaat gatggcctac										
gatcacaagt acagtcaaaa gtggaaggag gtcctgctgc actggacatt cattgcccag	180									
atggtcaatc tgaatacagt gctcatctcg gaactgattt acgtattcct ggcgatcggc	: 240									
aaaggtagca attttctgga ggccaccatg aatctgtctt tcattggatt tgtcatcgtt	300									
ggtgacttca aaatctggaa catttcgcgg cagagaaaga gactcaccca agtggtcagc	360									
cgattggaag aactgcatcc gcaaggcttg gctcaacaag aaccctataa tatagggcat	420									
catctgagcg gctatagccg atatagcaaa ttttacttcg gcatgcacat ggtgctgata	480									
tggacgtaca acctgtattg ggccgtttac tatctggtct gtgatttctg gctgggaatg	540									
cgtcaatttg agaggatgct gccctactac tgctgggttc cctgggattg gagtaccgga	600									
tatagctact atttcatgta tatctcacag aatatcggcg gtcaggcttg tctgtccggt	660									
cagctagcag ctgacatgtt aatgtgcgcc ctggtcactt tggtggtgat gcacttcatc	: 720									
eggettteeg eteacatega gagteatgtt gegggeattg geteatteea geacgatttg	780									
gagttcctcc aagcgacggt ggcgtatcac cagagcttga tccacctctg ccaggatatc	: 840									
aatgagatat toggtgttto actgttgtoo aactttgtat ootogtogtt tatcatotgo	900									
ttcgtgggtt tccagatgac catcggcagc aagatcgaca acctggtaat gcttgtgctt	960									
ttcctgtttt gtgccatggt tcaggtcttc atgattgcca cccatgctca gaggctcgtt	1020									
gatgcgagtg aacagattgg tcaagcggtc tataatcacg actggttccg tgctgatctg	1080									
cggtatcgta aaatgctgat cctgattatt aagagggccc aacagccgag tcgactcaag	1140									
gccacaatgt tcctgaacat ctcactggtc accgtgtcgg atctcttgca actctcgtac	: 1200									

1236

<210> SEQ ID NO 40 <211> LENGTH: 412 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR114												
<400> SEQU	ENCE: 40	0										
Met Leu Th	ır L y s Ly	ys Asp	Thr	Gln	Ser	Ala 10	Lys	Glu	Gln	Glu	Lys 15	Leu
Lys Ala I	e Pro Lo 20	eu His	Ser	Phe	Leu 25	Lys	Tyr	Ala	Asn	Val 30	Phe	Tyr
Leu Ser I	_	et Met	Ala	Tyr 40	Asp	His	Lys	Tyr	Ser 45	Gln	Lys	Trp
Lys Glu Va 50	ıl Leu L	eu His	Trp 55	Thr	Phe	Ile	Ala	Gln 60	Met	Val	Asn	Leu
Asn Thr Va	al Leu I.	le Ser 70	Glu	Leu	Ile	Tyr	Val 75	Phe	Leu	Ala	Ile	Gl y 80
Lys Gly Se	er Asn Pl 8		Glu	Ala	Thr	Met 90	Asn	Leu	Ser	Phe	Ile 95	Gly
Phe Val I	e Val G	ly Asp	Phe	Lys	Ile 105	Trp	Asn	Ile	Ser	Arg 110	Gln	Arg
Lys Arg Le	eu Thr G	ln Val	Val	Ser 120	Arg	Leu	Glu	Glu	Leu 125	His	Pro	Gln
Gly Leu A	a Gln G	ln Glu	Pro 135	Tyr	Asn	Ile	Gly	His 140	His	Leu	Ser	Gly
Tyr Ser Ai 145	g Tyr S	er Lys 150	Phe	Tyr	Phe	Gly	Met 155	His	Met	Val	Leu	Ile 160
Trp Thr Ty		eu Tyr 65	Trp	Ala	Val	Tyr 170	Tyr	Leu	Val	Сув	Asp 175	Phe
Trp Leu G	y Met A: 180	rg Gln	Phe	Glu	Arg 185	Met	Leu	Pro	Tyr	Tyr 190	Сув	Trp
Val Pro Ti	p Asp T	rp Ser	Thr	Gly 200	Tyr	Ser	Tyr	Tyr	Phe 205	Met	Tyr	Ile
Ser Gln As 210	n Ile G	ly Gly	Gln 215	Ala	Cys	Leu	Ser	Gly 220	Gln	Leu	Ala	Ala
Asp Met Le 225	eu Met C	ys Ala 230	Leu	Val	Thr	Leu	Val 235	Val	Met	His	Phe	Ile 240
Arg Leu Se		is Ile 45	Glu	Ser	His	Val 250	Ala	Gly	Ile	Gly	Ser 255	Phe
Gln His As	p Leu G 260	lu Phe	Leu	Gln	Ala 265	Thr	Val	Ala	Tyr	His 270	Gln	Ser
Leu Ile H:		y s Gln	Asp	Ile 280	Asn	Glu	Ile	Phe	Gl y 285	Val	Ser	Leu
Leu Ser As 290	n Phe V	al Ser	Ser 295	Ser	Phe	Ile	Ile	C y s 300	Phe	Val	Gly	Phe
Gln Met Th	nr Ile G	ly Ser 310	Lys	Ile	Asp	Asn	Leu 315	Val	Met	Leu	Val	Leu 320
Phe Leu Ph	_	la Met 25	Val	Gln	Val	Phe 330	Met	Ile	Ala	Thr	His 335	Ala
Gln Arg Le	eu Val A	sp Ala	Ser	Glu	Gln 345	Ile	Gly	Gln	Ala	Val 350	Tyr	Asn
His Asp Ti		rg Ala	Asp	Leu 360	Arg	Tyr	Arg	Lys	Met 365	Leu	Ile	Leu

75

Oct. 2, 2003

Ile Ile Lys Arg Ala Gln Gln Pro Ser Arg Leu Lys Ala Thr Met Phe Leu Asn Ile Ser Leu Val Thr Val Ser Asp Leu Leu Gln Leu Ser Tyr 385 390 395 Lys Phe Phe Ala Leu Leu Arg Thr Met Tyr Val Asn <210> SEQ ID NO 41 <211> LENGTH: 1140 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR115 <400> SEQUENCE: 41 atggagaagc taatgaagta cgctagcttc ttctacacag cagtgggcat acggccatat 60 accaatggtg aagaatccaa aatgaacaaa cttatatttc acatagtttt ttggtccaat 120 gtgattaacc tcagcttcgt tggattattt gagagcattt acgtttacag tgccttcatg gataataagt tootggaago agtoactgog ttgtoctaca ttggottogt aaccgtaggo atgagcaaga tgttcttcat ccggtggaag aaaacggcta taactgaact gattaatgaa 300 ttgaaggaga tctatccgaa tggtttgatc cgagaggaaa gatacaatct gccgatgtat 360 ctgggcacct gctccagaat cagccttata tattccttgc tctactctgt tctcatctgg 420 acattcaact tqttttqtqt aatqqaqtat tqqqtctatq acaaqtqqct caacattcqa 480 540 qtqqtqqca aacaqttqcc qtacctcatq tacattcctt qqaaatqqca qqataactqq togtactato cactgttatt ctcccagaat tttgcaggat acacatctgc agctggtcaa 600 atttcaaccg atgtcttgct ctgcgcggtg gccactcagt tggtaatgca cttcgacttt ctctcaaata gtatggaacg ccacgaattg agtggagatt ggaagaagga ctcccgattt 720 ctggtggaca ttgttaggta tcacgaacgt atactccgcc tttcagatgc agtgaacgat 780 atatttggaa ttccactact actcaacttc atggtatcct cgttcgtcat ctgcttcgtg 840 ggattccaga tgactgttgg agttccgccg gatatagttg tgaagctctt cctcttcctt 900 qtctcttcqa tqaqtcaqqt ctatttqatt tqtcactatq qtcaactqqt qqccqatqct 960 agctacqqat tttcqqttqc cacctacaat caqaaqtqqt ataaaqccqa tqtqcqctat 1020 aaacgagcct tggttattat tatagctaga tcgcagaagg taacttttct aaaggccact atattcttgg atattaccag gtccactatg acagatgtac gcaactgtgt attgtcagtg 1140 <210> SEQ ID NO 42 <211> LENGTH: 380 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR115 <400> SEQUENCE: 42 Met Glu Lys Leu Met Lys Tyr Ala Ser Phe Phe Tyr Thr Ala Val Gly Ile Arg Pro Tyr Thr Asn Gly Glu Glu Ser Lys Met Asn Lys Leu Ile Phe His Ile Val Phe Trp Ser Asn Val Ile Asn Leu Ser Phe Val Gly Leu Phe Glu Ser Ile Tyr Val Tyr Ser Ala Phe Met Asp Asn Lys Phe

Leu Glu Ala Val Thr Ala Leu Ser Tyr Ile Gly Phe Val Thr Val Gly 65 70 75 80	
Met Ser Lys Met Phe Phe Ile Arg Trp Lys Lys Thr Ala Ile Thr Glu 85 90 95	
Leu Ile Asn Glu Leu Lys Glu Ile Tyr Pro Asn Gly Leu Ile Arg Glu 100 105 110	
Glu Arg Tyr Asn Leu Pro Met Tyr Leu Gly Thr Cys Ser Arg Ile Ser 115 120 125	
Leu Ile Tyr Ser Leu Leu Tyr Ser Val Leu Ile Trp Thr Phe Asn Leu 130 135 140	
Phe Cys Val Met Glu Tyr Trp Val Tyr Asp Lys Trp Leu Asn Ile Arg 145 150 155 160	
Val Val Gly Lys Gln Leu Pro Tyr Leu Met Tyr Ile Pro Trp Lys Trp 165 170 175	
Gln Asp Asn Trp Ser Tyr Tyr Pro Leu Leu Phe Ser Gln Asn Phe Ala 180 185 190	
Gly Tyr Thr Ser Ala Ala Gly Gln Ile Ser Thr Asp Val Leu Leu Cys 195 200 205	
Ala Val Ala Thr Gln Leu Val Met His Phe Asp Phe Leu Ser Asn Ser 210 215 220	
Met Glu Arg His Glu Leu Ser Gly Asp Trp Lys Lys Asp Ser Arg Phe 225 230 235 240	
Leu Val Asp Ile Val Arg Tyr His Glu Arg Ile Leu Arg Leu Ser Asp 245 250 255	
Ala Val Asn Asp Ile Phe Gly Ile Pro Leu Leu Leu Asn Phe Met Val 260 265 270	
Ser Ser Phe Val Ile Cys Phe Val Gly Phe Gln Met Thr Val Gly Val 275 280 285	
Pro Pro Asp Ile Val Val Lys Leu Phe Leu Phe Leu Val Ser Ser Met 290 295 300	
Ser Gln Val Tyr Leu Ile Cys His Tyr Gly Gln Leu Val Ala Asp Ala 305 310 315 320	
Ser Tyr Gly Phe Ser Val Ala Thr Tyr Asn Gln Lys Trp Tyr Lys Ala 325 330 335	
Asp Val Arg Tyr Lys Arg Ala Leu Val Ile Ile Ile Ala Arg Ser Gln 340 345 350	
Lys Val Thr Phe Leu Lys Ala Thr Ile Phe Leu Asp Ile Thr Arg Ser 355 360 365	
Thr Met Thr Asp Val Arg Asn Cys Val Leu Ser Val 370 375 380	
<210> SEQ ID NO 43 <211> LENGTH: 759 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR116	
<400> SEQUENCE: 43	
atggaactcc tgccattggc catgctaatg tacgatggaa cccgggttac tgcgatgcag	60
	120
	180
ctcggcttaa cgcagatcct aactttcgcc gatatgctgc aggtgaaggt gaaagagcta	240

aacgatgccc tggaacaaaa agcggaatac agagctctag tccgagttgg agcttctatt	300
gatggagcgg aaaatcgtca acgccttctc ttggatgtta taagatggca tcaattattc	360
acggactact gtcgcgccat aaatgccctc tactacgaat tgatcgccac tcaggttctt	420
tegatggett tggecatgat geteagette tgeattaatt tgageagett teacatgeet	480
toggotatot ttttogtggt ttotgootac agoatgtoca totattgoat totgggoaco	540
attettgagt ttgcatatga ccaggtgtac gagagcatet gtaatgtgac etggtatgag	600
ttgagtggcg aacagcgaaa gctttttggt tttttgttgc gggaatccca gtatccgcac	660
aatattcaga tacttggagt tatgtcgctt tccgtgagaa cggctctgca gattgttaaa	720
ctaatttata gcgtatccat gatgatgatg aatcgggcg	759
<210> SEQ ID NO 44 <211> LENGTH: 253 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR116	
<pre><400> SEQUENCE: 44</pre>	
Met Glu Leu Leu Pro Leu Ala Met Leu Met Tyr Asp Gly Thr Arg Val 1 5 10 15	
Thr Ala Met Gln Tyr Leu Ile Pro Gly Leu Pro Leu Glu Asn Asn Tyr 20 25 30	
Cys Tyr Val Val Thr Tyr Met Ile Gln Thr Val Thr Met Leu Val Gln 35 40 45	
Gly Val Gly Phe Tyr Ser Gly Asp Leu Phe Val Phe Leu Gly Leu Thr 50 55 60	
Gln Ile Leu Thr Phe Ala Asp Met Leu Gln Val Lys Val Lys Glu Leu 65 70 75 80	
Asn Asp Ala Leu Glu Gln Lys Ala Glu Tyr Arg Ala Leu Val Arg Val 85 90 95	
Gly Ala Ser Ile Asp Gly Ala Glu Asn Arg Gln Arg Leu Leu Leu Asp 100 105 110	
Val Ile Arg Trp His Gln Leu Phe Thr Asp Tyr Cys Arg Ala Ile Asn 115 120 125	
Ala Leu Tyr Tyr Glu Leu Ile Ala Thr Gln Val Leu Ser Met Ala Leu 130 135 140	
Ala Met Met Leu Ser Phe Cys Ile Asn Leu Ser Ser Phe His Met Pro 145 150 155 160	
Ser Ala Ile Phe Phe Val Val Ser Ala Tyr Ser Met Ser Ile Tyr Cys 165 170 175	
Ile Leu Gly Thr Ile Leu Glu Phe Ala Tyr Asp Gln Val Tyr Glu Ser 180 185 190	
Ile Cys Asn Val Thr Trp Tyr Glu Leu Ser Gly Glu Gln Arg Lys Leu 195 200 205	
Phe Gly Phe Leu Leu Arg Glu Ser Gln Tyr Pro His Asn Ile Gln Ile 210 215 220	
Leu Gly Val Met Ser Leu Ser Val Arg Thr Ala Leu Gln Ile Val Lys 225 230 235 240	
Leu Ile Tyr Ser Val Ser Met Met Met Asn Arg Ala 245 250	

<211><212><213>	TY	PE:	DNA		ophi	la M	elan	.ogas	ter	DC	R117					
<400>	SE	QUEN	ICE:	45												
atgga	tct	gc g	gaago	ıtggt	t to	cgac	cttg	, tac	acco	agt	cgaa	iggat	tc (gccag	gttcgc	60
tcccg	gaga	.cg c	gaco	ctgt	a co	tcct	acgo	t tgc	gtct	tct	taat	gggc	gt o	ccgca	agcca	120
cctgc	caa	gt t	tttc	gtgg	rc ct	acgt	gcto	tgg	rtcct	tcg	cact	gaat	tt d	ctgct	caaca	180
tttta	ıtca	gc c	caatt	ggct	t to	tcac	aggo	tat	ataa	ıgcc	attt	atca	iga (gttct	ccccg	240
ggaga	igtt	tc t	aact	tcgc	t go	aggt	ggcc	: ttt	aatg	rctt	ggto	ctgo	etc 1	tacaa	aagtc	300
ctgat	agt	gt g	gggca	ctag	rt ta	agco	rcttt	gac	gagg	rcta	ataa	acctt	ct o	cgaco	gagatg	360
gatag	ldcd	ta t	caca	gaco	:c cg	gaga	ıgcgt	ctt	caga	ttc	atc	geget	gt	ctccc	ctcagt	420
aaccg	ŗtat	at t	ctto	tttt	t ca	tggc	agto	: tac	atgg	rttt	atgo	cact	aa t	tacgt	ttctg	480
tcggc	gat	ct t	catt	ggaa	ıg go	caco	gtac	: caa	aatt	act	acco	tttt	ct o	ggact	ggcga	540
tctag	gcac	tc t	gcat	ctag	rc to	tgca	ıggcc	ggt	ctgg	raat	actt	cgcc	at o	ggctg	gegee	600
tgctt	cca	.gg a	acgtt	tgcg	rt tg	ratto	ctac	. cca	igtca	att	tcgt	tttc	gt (cctgo	gtgcc	660
cacat	gtc	ga t	ctto	gege	a go	gcct	tcga	cgt	ttgg	gaa	ctta	atcct	ta t	tgaaa	agccag	720
gagca	ıgaa	at a	atgaa	ıcgat	t gg	ıttca	ıgtgo	: ata	caag	atc	acaa	agta	at 1	tttgc	gattt	780
gttga	ctg	cc t	gegt	ccto	rt ta	tttc	tggt	acc	atct	tcg	tgca	atto	tt (ggttg	jtgggg	840
ttggt	gct	gg g	jcttt	acco	t aa	ıttaa	catt	gto	ctgt	tcg	ccaa	actto	igg a	atcgg	jccatc	900
gcagc	gct	ct c	gttt	atgg	lc cō	gcagt	gctt	cta	ıgaga	ıcga	ctcc	ctto	etg o	catat	tgtgc	960
aatta	tct	ca c	cagaa	ıgact	g ct	acaa	ıgcto	l dcc	gato	lccc	tgtt	tcac	jtc a	aaact	ggatt	1020
gatga	ıgga	ga a	acga	tacc	a aa	agac	acto	ato	rtact	tcc	taca	igaaa	ict (gcago	eagcct	1080
ataac	ctt	ca t	ggct	atga	ıa cç	ıtgtt	tcca	ı ata	ıtctç	ıtgg	gaac	taac	at o	cagto	gtaagc	1140
agatg	ıtgc	cc t	t													1152
<210> <211> <212> <213>	LE TY	NGTH PE:	: 38 PRT	4	ophi	la M	elan	.ogas	ter	DC	R117					
<400>	SE	QUEN	ICE:	46												
Met A 1	qaA	Leu	Arg	Arg 5	Trp	Phe	Pro	Thr	Leu 10	Tyr	Thr	Gln	Ser	Lys 15	Asp	
Ser P	ro	Val	Arg 20	Ser	Arg	Asp	Ala	Thr 25	Leu	Tyr	Leu	Leu	Arg 30	Сув	Val	
Phe L	eu	Met 35	Gly	Val	Arg	Lys	Pro 40	Pro	Ala	Lys	Phe	Phe 45	Val	Ala	Tyr	
Val L 5	eu 50	Trp	Ser	Phe	Ala	Leu 55	Asn	Phe	Cys	Ser	Thr 60	Phe	Tyr	Gln	Pro	
Ile G 65	ly	Phe	Leu	Thr	Gl y 70	Tyr	Ile	Ser	His	Leu 75	Ser	Glu	Phe	Ser	Pro 80	
Gly G	lu	Phe	Leu	Thr 85	Ser	Leu	Gln	Val	Ala 90	Phe	Asn	Ala	Trp	Ser 95	Суѕ	
Ser T	hr	Lys	Val 100	Leu	Ile	Val	Trp	Ala 105	Leu	Val	Lys	Arg	Phe 110	Asp	Glu	
Ala A	sn	Asn	Leu	Leu	Asp	Glu	Met	Asp	Arg	Arg	Ile	Thr	Asp	Pro	Gly	

-continued										
115 120 125										
Glu Arg Leu Gln Ile His Arg Ala Val Ser Leu Ser Asn Arg Ile Phe 130 135 140										
Phe Phe Met Ala Val Tyr Met Val Tyr Ala Thr Asn Thr Phe Leu 145 150 155 160										
Ser Ala Ile Phe Ile Gly Arg Pro Pro Tyr Gln Asn Tyr Tyr Pro Phe 165 170 175										
Leu Asp Trp Arg Ser Ser Thr Leu His Leu Ala Leu Gln Ala Gly Leu 180 185 190										
Glu Tyr Phe Ala Met Ala Gly Ala Cys Phe Gln Asp Val Cys Val Asp 195 200 205										
Cys Tyr Pro Val Asn Phe Val Leu Val Leu Arg Ala His Met Ser Ile 210 215 220										
Phe Ala Glu Arg Leu Arg Leu Gly Thr Tyr Pro Tyr Glu Ser Gln 225 230 235 240										
Glu Gln Lys Tyr Glu Arg Leu Val Gln Cys Ile Gln Asp His Lys Val 245 250 255										
Ile Leu Arg Phe Val Asp Cys Leu Arg Pro Val Ile Ser Gly Thr Ile 260 265 270										
Phe Val Gln Phe Leu Val Val Gly Leu Val Leu Gly Phe Thr Leu Ile 275 280 285										
Asn Ile Val Leu Phe Ala Asn Leu Gly Ser Ala Ile Ala Ala Leu Ser 290 295 300										
Phe Met Ala Ala Val Leu Glu Thr Thr Pro Phe Cys Ile Leu Cys 305 310 315 320										
Asn Tyr Leu Thr Glu Asp Cys Tyr Lys Leu Ala Asp Ala Leu Phe Gln 325 330 335										
Ser Asn Trp Ile Asp Glu Glu Lys Arg Tyr Gln Lys Thr Leu Met Tyr 340 345 350										
Phe Leu Gln Lys Leu Gln Gln Pro Ile Thr Phe Met Ala Met Asn Val 355 360 365										
Phe Pro Ile Ser Val Gly Thr Asn Ile Ser Val Ser Arg Cys Ala Leu 370 375 380										
<210> SEQ ID NO 47 <211> LENGTH: 1116 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR118										
<400> SEQUENCE: 47										
atgaagttta ttggatggct gcccccaag cagggtgtgc tccggtatgt gtacctcacc 60										
tggacgctaa tgacgttcgt gtggtgtaca acgtacctgc cgcttggctt ccttggtagc 120										
tacatgacgc agatcaagtc cttctcccct ggagagtttc tcacttcact										
attaatgoot acggotcato ggtaaaagtt gcaatcacat actocatgot ctggogoott 240										
atcaaggcca agaacatttt ggaccagctg gacctgcgct gcaccgccat ggaggagcgc 300 gaaaagatcc acctagtggt ggcccgcagc aaccatgcct ttctcatctt cacctttgtc 360										
tactgoggat atgooggoto cacctacotg agotoggtto toagogggog toogcootgg 420										
cagctgtaca atccctttat tgattggcat gacggcacac tcaagctctg ggtggcctcc 480										
acgttggagt acatggtgat gtcaggcgcc gttctgcagg atcaactctc ggactcttac 540										

				-0011011	rueu					
ccattgatct	ataccctcat	ccttcgtgct	cacttggaca	tgctaaggga	gcgcatccga	600				
cgcctccgtt	ccgatgagaa	cctgagcgag	gccgagagct	atgaagagct	ggtcaaatgt	660				
gtgatggacc	acaagctcat	tctaagatac	tgcgcgatta	ttaaaccagt	aatccagggg	720				
accatcttca	cacagtttct	gctgatcggc	ctggttctgg	gcttcacgct	gatcaacgtg	780				
tttttcttct	cagacatctg	gacgggcatc	gcatcattta	tgtttgttat	aaccattttg	840				
ctgcagacct	tccccttctg	ctacacatgc	aacctcatca	tggaggactg	cgagtccttg	900				
acccatgcta	ttttccagtc	caactgggtg	gatgccagtc	gtcgctacaa	aacaacacta	960				
ctgtattttc	tccaaaacgt	gcagcagcct	atcgttttca	ttgcaggcgg	tatctttcag	1020				
atatccatga	gcagcaacat	aagtgtggca	aagtttgctt	tctccgtgat	aaccattacc	1080				
aagcaaatga	atatagctga	caaatttaag	acggac			1116				
<210> SEQ ID NO 48 <211> LENGTH: 372 <212> TYPE: PRT										

<213> ORGANISM: Drosophila Melanogaster DOR118

<400> SEQUENCE: 48

Met Lys Phe Ile Gly Trp Leu Pro Pro Lys Gln Gly Val Leu Arg Tyr
1 5 10 15

Val Tyr Leu Thr Trp Thr Leu Met Thr Phe Val Trp Cys Thr Thr Tyr 20 25 30

Leu Pro Leu Gly Phe Leu Gly Ser Tyr Met Thr Gln Ile Lys Ser Phe $35\,$

Ser Pro Gly Glu Phe Leu Thr Ser Leu Gln Val Cys Ile Asn Ala Tyr 50 55 60

Gly Ser Ser Val Lys Val Ala Ile Thr Tyr Ser Met Leu Trp Arg Leu 65 $$ 70 $$ 75 $$ 80

Ile Lys Ala Lys Asn Ile Leu Asp Gln Leu Asp Leu Arg Cys Thr Ala 85 90 95

Met Glu Glu Arg Glu Lys Ile His Leu Val Val Ala Arg Ser Asn His $100 \ \ 105 \ \ 110$

Tyr Leu Ser Ser Val Leu Ser Gly Arg Pro Pro Trp Gln Leu Tyr Asn 130 135 140

Pro Phe Ile Asp Trp His Asp Gly Thr Leu Lys Leu Trp Val Ala Ser 145 $$ 150 $$ 155 $$ 160

Thr Leu Glu Tyr Met Val Met Ser Gly Ala Val Leu Gln Asp Gln Leu 165 \$170\$

Ser Asp Ser Tyr Pro Leu Ile Tyr Thr Leu Ile Leu Arg Ala His Leu 180 \$180\$

Asp Met Leu Arg Glu Arg Ile Arg Arg Leu Arg Ser Asp Glu Asn Leu 195 200

Lys Leu Ile Leu Arg Tyr Cys Ala Ile Ile Lys Pro Val Ile Gl
 Gly 225 230 235 240

Thr Ile Phe Thr Gln Phe Leu Leu Ile Gly Leu Val Leu Gly Phe Thr $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255 \hspace{1.5cm}$

81

-continued

Leu Ile Asn Val Phe Phe Phe Ser Asp Ile Trp Thr Gly Ile Ala Ser 260 265 Phe Met Phe Val Ile Thr Ile Leu Leu Gln Thr Phe Pro Phe Cys Tyr 280 Thr Cys Asn Leu Ile Met Glu Asp Cys Glu Ser Leu Thr His Ala Ile Phe Gln Ser Asn Trp Val Asp Ala Ser Arg Arg Tyr Lys Thr Thr Leu Leu Tyr Phe Leu Gln Asn Val Gln Gln Pro Ile Val Phe Ile Ala Gly Gly Ile Phe Gln Ile Ser Met Ser Ser Asn Ile Ser Val Ala Lys Phe 340 345 Ala Phe Ser Val Ile Thr Ile Thr Lys Gln Met Asn Ile Ala Asp Lys 355 360 Phe Lys Thr Asp <210> SEQ ID NO 49 <211> LENGTH: 1194 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR119 <400> SEQUENCE: 49 atggcggtgt tcaagctaat caaaccggct ccgttgaccg agaaggtgca gtcccgccag 60 qqqaatatat atctqtaccq tqccatqtqq ctcatcqqat qqattccqcc qaaqqaqqqa 120 gtcctgcgct acgtgtatct cttctggacc tgcgtgccct tcgccttcgg ggtgttttac ctgcccgtgg gcttcatcat cagctacgtg caggagttca agaacttcac gccgggcgag ttccttacct cgctgcaggt gtgcatcaat gtgtatggcg cctcggtgaa gtccaccatc 300 acctacctct tcctctggcg actgcgcaag acggagatcc ttctggactc cctggacaag 360 aggctggcga acgacagcga tcgcgagagg atccacaata tggtggcgcg ctgcaactac 420 gcctttctca tctacagctt catctactgc ggatacgcgg gttccacttt cctgtcctac 480 qccctcaqtq qtcqtcctcc qtqqtccqtc tacaatccct tcatcqattq qcqcqatqqc 540 atgggcagcc tgtggatcca ggccatattc gagtacatca ccatgtcctt cgccgtgctg caggaccage tatecgacae gtateccetg atgtteacca ttatgtteeg ggeecacatg gaggtcctca aggatcacgt gcggagcctg cgcatggatc ccgagcgcag tgaggcagac 720 aactatcagg atctggtgaa ctgcgtgctg gaccacaaga ctatactgaa atgctgtgac 780 atgattcgcc ccatgatatc ccgcaccatc ttcgtgcaat tcgcgctgat tggttccgtt 840 ttqqqcctqa ccctqqtqaa cqtqttcttc ttctcqaact tctqqaaqqq cqtqqcctcq 900 ctcctqttcq tcatcaccat cctqctqcaq accttcccqt tctqctacac ctqcaacatq 960 ctgatcgacg atgcccagga tctgtccaac gagattttcc agtccaactg ggtggacgcg 1020 gagccgcgct acaaggcgac gctggtgctc ttcatgcacc atgttcagca gcccataatc 1080 ttcattgccg gaggcatctt tcccatctct atgaacagca acataaccgt ggccaagttc 1140 gccttcagca tcattacaat agtgcgacaa atgaatctgg ccgagcagtt ccag 1194

<210> SEQ ID NO 50

<211> LENGTH: 398

<212> TYPE: PRT

<213> ORGANISM:			Drosophila Melanogaster							DOR119					
<400)> SE	QUEN	ICE:	50											
Met 1	Ala	Val	Phe	L y s 5	Leu	Ile	Lys	Pro	Ala 10	Pro	Leu	Thr	Glu	Lys 15	Val
Gln	Ser	Arg	Gln 20	Gly	Asn	Ile	Tyr	Leu 25	Tyr	Arg	Ala	Met	Trp 30	Leu	Ile
Gly	Trp	Ile 35	Pro	Pro	Lys	Glu	Gly 40	Val	Leu	Arg	Tyr	Val 45	Tyr	Leu	Phe
Trp	Thr 50	Cys	Val	Pro	Phe	Ala 55	Phe	Gly	Val	Phe	Ty r 60	Leu	Pro	Val	Gly
Phe 65	Ile	Ile	Ser	Tyr	Val 70	Gln	Glu	Phe	Lys	Asn 75	Phe	Thr	Pro	Gly	Glu 80
Phe	Leu	Thr	Ser	Leu 85	Gln	Val	Cys	Ile	Asn 90	Val	Tyr	Gly	Ala	Ser 95	Val
Lys	Ser	Thr	Ile 100	Thr	Tyr	Leu	Phe	Leu 105	Trp	Arg	Leu	Arg	Ly s 110	Thr	Glu
Ile	Leu	Leu 115	Asp	Ser	Leu	Asp	L y s 120	Arg	Leu	Ala	Asn	Asp 125	Ser	Asp	Arg
Glu	Arg 130	Ile	His	Asn	Met	Val 135	Ala	Arg	Cys	Asn	Tyr 140	Ala	Phe	Leu	Ile
Tyr 145	Ser	Phe	Ile	Tyr	C y s 150	Gly	Tyr	Ala	Gly	Ser 155	Thr	Phe	Leu	Ser	Ty r 160
Ala	Leu	Ser	Gly	Arg 165	Pro	Pro	Trp	Ser	Val 170	Tyr	Asn	Pro	Phe	Ile 175	Asp
Trp	Arg	Asp	Gly 180	Met	Gly	Ser	Leu	Trp 185	Ile	Gln	Ala	Ile	Phe 190	Glu	Tyr
Ile	Thr	Met 195	Ser	Phe	Ala	Val	Leu 200	Gln	Asp	Gln	Leu	Ser 205	Asp	Thr	Tyr
Pro	Leu 210	Met	Phe	Thr	Ile	Met 215	Phe	Arg	Ala	His	Met 220	Glu	Val	Leu	Lys
Asp 225	His	Val	Arg	Ser	Leu 230	Arg	Met	Asp	Pro	Glu 235	Arg	Ser	Glu	Ala	Asp 240
Asn	Tyr	Gln	Asp	Leu 245	Val	Asn	Cys	Val	Leu 250	Asp	His	Lys	Thr	Ile 255	Leu
Lys	Сув	Cys	Asp 260	Met	Ile	Arg	Pro	Met 265	Ile	Ser	Arg	Thr	Ile 270	Phe	Val
Gln	Phe	Ala 275	Leu	Ile	Gly	Ser	Val 280	Leu	Gly	Leu	Thr	Leu 285	Val	Asn	Val
Phe	Phe 290	Phe	Ser	Asn	Phe	Trp 295	Lys	Gly	Val	Ala	Ser 300	Leu	Leu	Phe	Val
Ile 305	Thr	Ile	Leu	Leu	Gln 310	Thr	Phe	Pro	Phe	Cys 315	Tyr	Thr	Cys	Asn	Met 320
Leu	Ile	Asp	Asp	Ala 325	Gln	Asp	Leu	Ser	Asn 330	Glu	Ile	Phe	Gln	Ser 335	Asn
Trp	Val	Asp	Ala 340	Glu	Pro	Arg	Tyr	Lys 345	Ala	Thr	Leu	Val	Leu 350	Phe	Met
His	His	Val 355	Gln	Gln	Pro	Ile	Ile 360	Phe	Ile	Ala	Gly	Gly 365	Ile	Phe	Pro
Ile	Ser 370	Met	Asn	Ser	Asn	Ile 375	Thr	Val	Ala	Lys	Phe 380	Ala	Phe	Ser	Ile

```
Ile Thr Ile Val Arg Gln Met Asn Leu Ala Glu Gln Phe Gln
385
                    390
                                        395
<210> SEO ID NO 51
<211> LENGTH: 1233
<212> TYPE: DNA
<213> ORGANISM: Drosophila Melanogaster DOR120
<400> SEQUENCE: 51
atgaccaagt tcttcttcaa gcgcctgcaa actgctccac ttgatcagga ggtgagttcc
cttgatgcca gcgactacta ctaccgcatc gcatttttcc tgggctggac cccgcccaag
                                                                     120
ggggctctgc tccgatggat ctactccctg tggactctga ccacgatgtg gctgggtatc
                                                                     180
gtgtacctgc cgctcggact gagcctcacc tatgtgaagc acttcgatag attcacgccg
                                                                     240
acqqaqttcc tqacctccct qcaqqtqqat atcaactqca tcqqqaacqt qatcaaqtca
                                                                     300
tgcgtaactt attcccagat gtggcgtttt cgccggatga atgagcttat ctcgtccctg
                                                                     360
gacaagagat gtgtgactac gacacagcgt cgaattttcc ataagatggt ggcacgggtt
aatctcatcg tgattctgtt cttgtccacg tacttgggct tctgctttct aactctgttc
                                                                     480
acttcggttt tcgctggcaa agctccttgg cagctgtaca acccactggt ggactggcgg
                                                                     540
aaaggccatt ggcagctatg gattgcctcc atcctggagt actgtgtggt ctccattggc
                                                                     600
accatgcagg agttgatgtc cgacacctac gccatagtgt tcatctcctt gttccgctgc
                                                                     660
cacctggcta ttctcagaga tcgcatagct aatctgcggc aggatccgaa actcagtgag
                                                                     720
                                                                     780
atggaacact atgagcagat ggtggcctgc attcaggatc atcgaaccat catacagtgc
tcccagatta ttcgacccat cctgtcgatc actatctttg cccagttcat gctggttggc
attgacttgg gtctggcggc catcagcatc ctcttctttc cgaacaccat ttggacgatc
                                                                     900
atggcaaacg tgtcgttcat cgtggccatc tgtacagagt cctttccatg ctgcatgctc
                                                                     960
tgcgagcatc tgatcgagga ctccgtccat gtgagcaacg ccctgttcca ctcaaactgg
                                                                    1020
ataaccgcgg acaggagcta caagtcggcg gttctgtatt tcctgcaccg ggctcagcaa
                                                                    1080
cccattcaat tcacqqccqq ctccatattt cccatttcqq tqcaqaqcaa cataqccqtq
                                                                    1140
gccaagttcg cgttcacaat catcacaatc gtgaaccaaa tgaatctggg cgagaagttc
                                                                    1200
                                                                     1233
ttcagtgaca ggagcaatgg cgatataaat cct
<210> SEQ ID NO 52
<211> LENGTH: 411
<212> TYPE: PRT
<213> ORGANISM: Drosophila Melanogaster DOR120
<400> SEOUENCE: 52
Met Thr Lys Phe Phe Lys Arg Leu Gln Thr Ala Pro Leu Asp Gln
Glu Val Ser Ser Leu Asp Ala Ser Asp Tyr Tyr Tyr Arg Ile Ala Phe
Phe Leu Gly Trp Thr Pro Pro Lys Gly Ala Leu Leu Arg Trp Ile Tyr
Ser Leu Trp Thr Leu Thr Thr Met Trp Leu Gly Ile Val Tyr Leu Pro
Leu Gly Leu Ser Leu Thr Tyr Val Lys His Phe Asp Arg Phe Thr Pro
```

Thr	Glu	Phe	Leu	Thr 85	Ser	Leu	Gln	Val	Asp 90	Ile	Asn	Cys	Ile	Gly 95	Asn			
Val	Ile	Lys	Ser 100	Cys	Val	Thr	Tyr	Ser 105	Gln	Met	Trp	Arg	Phe 110	Arg	Arg			
Met	Asn	Glu 115	Leu	Ile	Ser	Ser	Leu 120	Asp	Lys	Arg	Cys	Val 125	Thr	Thr	Thr			
Gln	Arg 130	Arg	Ile	Phe	His	Lys 135	Met	Val	Ala	Arg	Val 140	Asn	Leu	Ile	Val			
Ile 145	Leu	Phe	Leu	Ser	Thr 150	Tyr	Leu	Gly	Phe	C y s 155	Phe	Leu	Thr	Leu	Phe 160			
Thr	Ser	Val	Phe	Ala 165	Gly	Lys	Ala	Pro	Trp 170	Gln	Leu	Tyr	Asn	Pro 175	Leu			
Val	Asp	Trp	Arg 180	Lys	Gly	His	Trp	Gln 185	Leu	Trp	Ile	Ala	Ser 190	Ile	Leu			
Glu	Tyr	Cys 195	Val	Val	Ser	Ile	Gly 200	Thr	Met	Gln	Glu	Leu 205	Met	Ser	Asp			
Thr	Tyr 210	Ala	Ile	Val	Phe	Ile 215	Ser	Leu	Phe	Arg	Cys 220	His	Leu	Ala	Ile			
Leu 225	Arg	Asp	Arg	Ile	Ala 230	Asn	Leu	Arg	Gln	Asp 235	Pro	Lys	Leu	Ser	Glu 240			
Met	Glu	His	Tyr	Glu 245	Gln	Met	Val	Ala	Cys 250	Ile	Gln	Asp	His	A rg 255	Thr			
Ile	Ile	Gln	C y s 260	Ser	Gln	Ile	Ile	Arg 265	Pro	Ile	Leu	Ser	Ile 270	Thr	Ile			
Phe	Ala	Gln 275	Phe	Met	Leu	Val	Gl y 280	Ile	Asp	Leu	Gly	Leu 285	Ala	Ala	Ile			
Ser	Ile 290	Leu	Phe	Phe	Pro	Asn 295	Thr	Ile	Trp	Thr	Ile 300	Met	Ala	Asn	Val			
Ser 305	Phe	Ile	Val	Ala	Ile 310	Cys	Thr	Glu	Ser	Phe 315	Pro	Cys	Суѕ	Met	Leu 320			
Сув	Glu	His	Leu	Ile 325	Glu	Asp	Ser	Val	His 330	Val	Ser	Asn	Ala	Leu 335	Phe			
His	Ser	Asn	Trp 340	Ile	Thr	Ala	Asp	Arg 345	Ser	Tyr	Lys	Ser	Ala 350	Val	Leu			
Tyr	Phe	Leu 355	His	Arg	Ala	Gln	Gln 360	Pro	Ile	Gln	Phe	Thr 365	Ala	Gly	Ser			
Thr	Phe 370	Pro	Ile	Ser	Val	Gln 375	Ser	Asn	Ile	Ala	Val 380	Ala	Lys	Phe	Ala			
Phe 385	Thr	Ile	Ile	Thr	Ile 390	Val	Asn	Gln	Met	Asn 395	Leu	Gly	Glu	Lys	Phe 400			
Phe	Ser	Asp	Arg	Ser 405	Asn	Gly	Asp	Ile	Asn 410	Pro								
<212 <212	l> LE 2> TY	ENGTH			sophi	ila N	Melar	nogas	ster	DO	DR12:	L						
<400)> SE	EQUE	NCE:	53														
atgo	ctgad	egg a	acaa	gttc	ct c	cgac	tgca	g tc	cgct	ttat	ttc	geet	tct (cgga	ctcgaa		60	
ttg	ttgca	acg a	agca	ggat	gt t	ggcc	atcg	a ta	tcct	tggc	gca	gcat	ctg (ctgca	attctc	1	20	
teg	gtggo	cca 🤉	gttt	catg	ee e	ctga	ccat	t gc	gttt	ggcc	tgc	aaaa	egt (ccaaa	aatgtg	1	80	

gagcaattaa	ccgactcact	ctgctcggtt	ctcgtggatt	tgctggccct	gtgcaaaatc	240
gggcttttcc	tttggcttta	caaggacttc	aagttcctaa	tagggcagtt	ctattgtgtt	300
ttgcaaacgg	aaacccacac	cgctgtcgct	gaaatgatag	tgaccaggga	aagtcgtcgg	360
gatcagttca	tcagtgctat	gtatgcctac	tgtttcatta	cggctggcct	ttcggcctgc	420
ctgatgtccc	ctctatccat	gctgattagc	taccacgaac	aggtgaattg	cagccgaaat	480
ttccatttcc	cagtgtgtaa	gaaaaagtac	tgcttaatat	ccagaatatt	aagatacagt	540
ttctgcagat	atccctggga	caatatgaag	ctgtccaact	acatcatttc	ctatttctgg	600
aatgtgtgtg	ctgcattggg	cgtggcactg	cccaccgttt	gtgtggacac	actgttctgt	660
tctctgagcc	ataatctctg	tgccctattc	cagattgcca	ggcacaaaat	gatgcacttt	720
gagggcagaa	ataccaaaga	gactcatgag	aacttaaagc	acgtgtttca	actatatgcg	780
ttgtgtttga	acctgggcca	tttcttaaac	gaatatttca	gaccgctcat	ctgccagttt	840
gtggcagcct	cactgcactt	gtgtgtcctg	tgctaccaac	tgtctgccaa	tatcctgcag	900
ccagcgttac	tcttctatgc	cgcatttacg	gcagcagttg	ttggccaggt	gtctatatac	960
tgcttctgcg	gatcgagcat	ccattcggag	tgtcagctat	ttggccaggc	catctacgag	1020
tccagctggc	cccatctgct	gcaggaaaac	ctgcagcttg	taagctcctt	aaaaattgcc	1080
atgatgcgat	cgagtttggg	atgtcccatc	gatggttact	tcttcgaggc	caatcgggag	1140
acgctcatca	cggtgagtaa	agcgtttata	aaagtgtcca	aaaagacacc	tcaagtgaat	1200
gat						1203

<210> SEQ ID NO 54

<211> LENGTH: 401 <212> TYPE: PRT

<213> ORGANISM: Drosophila Melanogaster DOR121

<400> SEQUENCE: 54

Met Leu Thr Asp Lys Phe Leu Arg Leu Gln Ser Ala Leu Phe Arg Leu

Leu Gly Leu Glu Leu His Glu Gln Asp Val Gly His Arg Tyr Pro

Trp Arg Ser Ile Cys Cys Ile Leu Ser Val Ala Ser Phe Met Pro Leu 35 40 45

Thr Ile Ala Phe Gly Leu Gln Asn Val Gln Asn Val Glu Gln Leu Thr 50 60

Asp Ser Leu Cys Ser Val Leu Val Asp Leu Leu Ala Leu Cys Lys Ile 65 70 75 80

Gly Leu Phe Leu Trp Leu Tyr Lys Asp Phe Lys Phe Leu Ile Gly Gln $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Phe Tyr Cys Val Leu Gln Thr Glu Thr His Thr Ala Val Ala Glu Met

Ile Val Thr Arg Glu Ser Arg Arg Asp Gln Phe Ile Ser Ala Met Tyr

Ala Tyr Cys Phe Ile Thr Ala Gly Leu Ser Ala Cys Leu Met Ser Pro

Leu Ser Met Leu Ile Ser Tyr His Glu Gln Val Asn Cys Ser Arg Asn 145 150150155160

Phe His Phe Pro Val Cys Lys Lys Lys Tyr Cys Leu Ile Ser Arg Ile

86

											_	con	tin	ued							
				165					170					175							
Leu	Arg	Tyr	Ser 180	Phe	Суѕ	Arg	Tyr	Pro 185	Trp	Asp	Asn	Met	L y s 190	Leu	Ser						
Asn	Tyr	Ile 195	Ile	Ser	Tyr	Phe	Trp 200	Asn	Val	Cys	Ala	Ala 205	Leu	Gly	Val						
Ala	Leu 210	Pro	Thr	Val	Cys	Val 215	Asp	Thr	Leu	Phe	C y s 220	Ser	Leu	Ser	His						
Asn 225	Leu	Cys	Ala	Leu	Phe 230	Gln	Ile	Ala	Arg	His 235	Lys	Met	Met	His	Phe 240						
Glu	Gly	Arg	Asn	Thr 245	Lys	Glu	Thr	His	Glu 250	Asn	Leu	Lys	His	Val 255	Phe						
Gln	Leu	Tyr	Ala 260	Leu	Cys	Leu	Asn	Leu 265	Gly	His	Phe	Leu	Asn 270	Glu	Tyr						
Phe	Arg	Pro 275		Ile	Сув	Gln	Phe 280		Ala	Ala	Ser	Leu 285		Leu	Cys						
Val	Leu		Tyr	Gln	Leu			Asn	Ile	Leu			Ala	Leu	Leu						
	290 Ty r	Ala	Ala	Phe		295 Ala	Ala	Val	Val	_	300 Gln	Val	Ser	Ile	_						
305 C y s	Phe	Cys	Gly	Ser	310 Ser	Ile	His	Ser	Glu	315 Cys	Gln	Leu	Phe	Gly	320 Gln						
Ala	Ile	Tyr	Glu	325 Ser	Ser	Trp	Pro	His	330 Leu	Leu	Gln	Glu	Asn	335 Leu	Gln						
	Val	_	340					345					350								
		355			_		360					365		_	_						
Pro	11e 370	Asp	Gly	Tyr	Phe	Phe 375	Glu	Ala	Asn	Arg	Glu 380	Thr	Leu	Ile	Thr						
Val 385	Ser	Lys	Ala	Phe	Ile 390	Lys	Val	Ser	Lys	L y s 395	Thr	Pro	Gln	Val	Asn 400						
Asp																					
<213	0> SE L> LE 2> TY 3> OF	ENGTH	H: 13	122	sophi	ila M	Melar	ıogas	ster	DO	DR14										
<400)> SE	EQUE	NCE:	55																	
atg	gacta	acg a	atcg	aatt	cg a	ccgg [.]	tgcg	a tti	tttga	acgg	gag-	tgct	gaa a	atggt	ggcgt		60				
ctc	tggc	cga (ggaa	ggaa [.]	tc g	gtgt	ccaca	a cc	ggac	gga	cta	actg	gca (ggcat	atgcc	1	20				
ttg	cacgt	ttc	catt	taca [.]	tt c	ttgt [.]	ttgt	g tto	gctt	tgt	ggt-	tgga	ggc a	aatca	aagagc	1	80				
agg	gatat	tac a	agca-	tacc	gc c	gatg	tcct	t tt	gatt	gcc	taa	ccac	cac 1	tgcct	tggga	2	40				
ggt	aaagt	tta 1	tcaa	tatc	tg ga	aagt	atgc	c cat	tgtg	gccc	aag	gcati	ttt	gtac	gagtgg	3	00				
agc	acgto	ggg (atct	tttc	ga g	ctga	ggag	c aaa	acag	gaag	tgg	atat	gtg (gcgat	tcgag	3	60				
cat	cgac	gtt 1	tcaa	togt	gt t	ttta [.]	tgtt	t tac	ctgt	tgt	gca	gtgc	tgg 1	tgtaa	atccca	4	20				
ttt	attgt	tga 1	ttca	accg.	tt g	tttg	atato	c cca	aaato	cgat	tgc	cctt	ctg (gatgt	ggaca	4	80				
cca	ttcga	att (ggca	gcag	cc t	gttc	tctt	c tg	gtate	gcat	tca-	tcta	tca (ggcca	acaacc	5	40				
att	cctat	ttg (cctg	tgct	tg c	aacg	taac	c ato	ggac	gctg	tta	attg	gta d	cttga	atgctg	6	00				

catctgtcct tgtgtttgcg tatgttgggc cagcgattga gtaagcttca gcatgatgac

660

aaggatctga	gggagaa	gtt cctgg	aact	gato	ccato	ctgc	acc	agcg	act (caag	caacag	720
gccttgagca	ttgaaat	ctt tattt	cgaa	gago	cacgt	tca	ccc	aaat	tct (ggtc	agttcc	780
cttatcattt	gcttcac	cat ttaca	gcat	g caq	gatgo	gact	tgc	cagg	att ·	tgcc	gccatg	840
atgcagtacc	tagtggc	cat gatca	tgca	g gto	catgo	ctgc	cca	ccata	ata ·	tggt	aacgcc	900
gtcatcgatt	ctgcaaa	tat gttga	ccgat	t tc	catgt	aca	att	cgga-	ttg (gccg	gatatg	960
aattgccgaa	tgcgtcg	cct agttt	taat	g tti	atg	gtgt	act	taaa	tcg (accg	gtgacc	1020
ttaaaagccg	gtggctt	ttt tcata	ttggt	t tta	accto	ctgt	tta	ccaa	ggt -	tgta	tttct	1080
actctggaaa	atccttg	tat aagtt	atcti	t tat	ttca	agac	ca					1122
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 374 : PRT	osophila	Melar	nogas	ster	DO	DR14					
<400> SEQU	ENCE: 56											
Met Asp Ty 1	r Asp Are 5	g Ile Arg	Pro	Val	Arg 10	Phe	Leu	Thr	Gly	Val 15	Leu	
Lys Trp Tr	p Arg Le 20	ı Trp Pro	Arg	Ly s 25	Glu	Ser	Val	Ser	Thr 30	Pro	Asp	
Trp Thr As	n Trp Gl	n Ala Tyr	Ala 40	Leu	His	Val	Pro	Phe 45	Thr	Phe	Leu	
Phe Val Le	u Leu Le	ı Trp Lev 55	Glu	Ala	Ile	Lys	Ser 60	Arg	Asp	Ile	Gln	
His Thr Al	a Asp Va	l Leu Leu 70	Ile	Сув	Leu	Thr 75	Thr	Thr	Ala	Leu	Gl y 80	
Gly Lys Va	l Ile Ası 85	n Ile Trp	Lys	Tyr	Ala 90	His	Val	Ala	Gln	Gly 95	Ile	
Leu Ser Gl	u Trp Se 100	r Thr Trp	Asp	Leu 105	Phe	Glu	Leu	Arg	Ser 110	Lys	Gln	
Glu Val As		o Arg Phe	Glu 120	His	Arg	Arg	Phe	Asn 125	Arg	Val	Phe	
Met Phe Ty	r Cys Le	ı C y s Ser 135		Gly	Val	Ile	Pro 140	Phe	Ile	Val	Ile	
Gln Pro Le 145	u Phe As	p Ile Pro 150	Asn	Arg	Leu	Pro 155	Phe	Trp	Met	Trp	Thr 160	
Pro Phe As	p Trp Gl: 16	_	Val	Leu	Phe 170	Trp	Tyr	Ala	Phe	Ile 175	Tyr	
Gln Ala Th	r Thr Ile 180	e Pro Ile	Ala	C y s 185	Ala	Cys	Asn	Val	Thr 190	Met	Asp	
Ala Val As		r Leu Met	Leu 200	His	Leu	Ser	Leu	C y s 205	Leu	Arg	Met	
Leu Gly Gl 210	n Arg Le	ı Ser Lys 215		Gln	His	Asp	Asp 220	Lys	Asp	Leu	Arg	
Glu Lys Ph 225	e Leu Gl	ı Leu Ile 230	His	Leu	His	Gln 235	Arg	Leu	Lys	Gln	Gln 240	
Ala Leu Se	r Ile Gl		lle	Ser	L y s 250	Ser	Thr	Phe	Thr	Gln 255	Ile	
Leu Val Se	r Ser Le	ı Ile Ile	e Cys	Phe 265	Thr	Ile	Tyr	Ser	Met 270	Gln	Met	

Asp Leu Pro Gly Phe Ala Ala Met Met Gln Tyr Leu Val Ala Met Ile

88

275 280 285	
Met Gln Val Met Leu Pro Thr Ile Tyr Gly Asn Ala Val Ile Asp Ser 290 295 300	
Ala Asn Met Leu Thr Asp Ser Met Tyr Asn Ser Asp Trp Pro Asp Met 305 310 315 320	
Asn Cys Arg Met Arg Arg Leu Val Leu Met Phe Met Val Tyr Leu Asn	
325 330 335	
Arg Pro Val Thr Leu Lys Ala Gly Gly Phe Phe His Ile Gly Leu Pro 340 345 350	
Leu Phe Thr Lys Val Val Phe Ser Thr Leu Glu Asn Pro Cys Ile Ser 355 360 365	
Tyr Leu Tyr Phe Arg Pro 370	
370	
<210> SEQ ID NO 57 <211> LENGTH: 1140	
<212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR16	
<400> SEQUENCE: 57	
atgactgaca gogggcagcc tgccattgcc gaccactttt atcggattcc ccgcatctcc	60
ggcctcattg tcggcctctg gccgcaaagg ataaggggcg ggggcggtcg tccttggcac	120
gcccatctgc tcttcgtgtt cgccttcgcc atggtggtgg tgggtgcggt gggcgaggtg	180
togtacggct gtgtccacct ggacaacctg gtggtggcgc tggaggcctt ctgccccgga	240
accaccaagg cggtctgcgt tttgaagctg tgggtcttct tccgctccaa tcgccggtgg	300
gcggagttgg tccagcgcct gcgggctatt ttgtgggaat cgcggcggca ggaggcccag	360
aggatgctgg tcggactggc caccacggcc aacaggctca gcctgttgtt gctcagctct	420
ggcacggcga caaatgccgc ettcacettg caaccgctga ttatgggtet etaccgctgg	480
attgtgcage tgccaggtca aaccgagetg ceetttaata teatactgce etegtttgce	540
gtgcagccag gagtetttee geteacetae gtgetgetga eegetteegg tgeetgeace	600
gttttegeet teagettegt ggaeggatte tteatttget egtgeeteta eatetgegge	660
gettteegge tggtgeagea ggacattege aggatatttg cegatttgea tggegaetea	720
gtggatgtgt tcaccgagga gatgaacgcg gaggtgcggc acagactggc ccaagttgtc	780
gagoggcaca atgogattat ogatttotgo aoggacotaa caogocagtt caoogttato	840
gttttaatgc atttcctgtc cgccgccttc gtcctctgct cgaccatcct ggacatcatg	900
ttggtgagcc ccttttcaga ggccttcctt tggggcgggt atccttgggt ttgtcgcgcc	960
actggctttt cgcatcgcct gcattcggcg gctgttttaa aagtttttcc ctgttttcac	1020
tgtttgctgt ttttccctgg cttttccagc cgctccgttc tgattcggtt ttcccgattt	1080
gtttgtttgc tttgtggctg cggctgcggc tctctccggt ggcaatttat aagcgcatga	1140
<210> SEQ ID NO 58 <211> LENGTH: 379 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR16	
<400> SEQUENCE: 58	
Met Thr Asp Ser Gly Gln Pro Ala Ile Ala Asp His Phe Tyr Arg Ile 1 5 10 15	

Pro Arg Ile Ser Gly Leu Ile Val Gly Leu Trp Pro Gln Arg Ile Arg Gly Gly Gly Arg Pro Trp His Ala His Leu Leu Phe Val Phe Ala Val His Leu Asp Asn Leu Val Val Ala Leu Glu Ala Phe Cys Pro Gly Asn Arg Arg Trp Ala Glu Leu Val Gln Arg Leu Arg Ala Ile Leu Trp Glu Ser Arg Arg Gln Glu Ala Gln Arg Met Leu Val Gly Leu Ala Thr \$115\$ \$120\$ \$125\$Asn Ala Ala Phe Thr Leu Gln Pro Leu Ile Met Gly Leu Tyr Arg Trp Ile Val Gln Leu Pro Gly Gln Thr Glu Leu Pro Phe Asn Ile Ile Leu 165 170 175170 Pro Ser Phe Ala Val Gln Pro Gly Val Phe Pro Leu Thr Tyr Val Leu \$180\$ \$190\$Leu Thr Ala Ser Gly Ala Cys Thr Val Phe Ala Phe Ser Phe Val Asp Gly Phe Phe Ile Cys Ser Cys Leu Tyr Ile Cys Gly Ala Phe Arg Leu 210 215 220Val Gln Gln Asp Ile Arg Arg Ile Phe Ala Asp Leu His Gly Asp Ser Val Asp Val Phe Thr Glu Glu Met Asn Ala Glu Val Arg His Arg Leu 250 Ala Gln Val Val Glu Arg His Asn Ala Ile Ile Asp Phe Cys Thr Asp Leu Thr Arg Gln Phe Thr Val Ile Val Leu Met His Phe Leu Ser Ala Ala Phe Val Leu Cys Ser Thr Ile Leu Asp Ile Met Leu Val Ser Pro Phe Ser Glu Ala Phe Leu Trp Gly Gly Tyr Pro Trp Val Cys Arg Ala Thr Gly Phe Ser His Arg Leu His Ser Ala Ala Val Leu Lys Val Phe 325 $$ 330 $$ 335 Val Leu Ile Arg Phe Ser Arg Phe Val Cys Leu Leu Cys Gly Cys Gly Cys Gly Ser Leu Arg Trp Gln Phe Ile Ser Ala 370 375

<210> SEQ ID NO 59

<211> LENGTH: 1215

<212> TYPE: DNA

<213> ORGANISM: Drosophila Melanogaster DOR20

<400> SEQUENCE: 59

-continued

<400> SEQUENCE: 59			
atgagcaaag gagtagaaat	cttttacaag ggccagaagg	cattettgaa cateeteteg	60
ttgtggcctc agatagaacg	ccggtggaga atcatccacc	aggtgaacta tgtccacgta	120
attgtgtttt gggtgctgct	ctttgatctc ctcttggtgc	tccatgtgat ggctaatttg	180
agctacatgt ccgaggttgt	gaaagccatc tttatcctgg	ccaccagtgc agggcacacc	240
accaagctgc tgtccataaa	ggcgaacaat gtgcagatgg	aggagetett taggagattg	300
gataacgaag agttccgtcc	tagaggcgcc aacgaagagt	tgatctttgc agcagcctgt	360
gaaagaagta ggaagcttcg	ggacttctat ggagcgcttt	cgtttgccgc cttgagcatg	420
attctcatac cccagttcgc	cttggactgg tcccaccttc	cgctcaaaac atacaatccg	480
cttggcgaga ataccggctc	acctgcttat tggctcctct	actgctatca gtgtctggcc	540
ttgtccgtat cctgcatcac	caacatagga ttcgactcac	tctgctcctc actgttcatc	600
ttcctcaagt gccagctgga	cattctggcc gtgcgactgg	acaagatcgg tcggttaatc	660
actacttctg gtggcactgt	ggaacagcaa cttaaggaaa	atatccgcta tcacatgacc	720
atcgttgaac tgtcgaaaac	cgtggagcgt ctactttgca	agccgatttc ggtgcagatc	780
ttctgctcgg ttttggtgct	gactgccaat ttctatgcca	ttgctgtggt gagctgtgaa	840
ttcgcaacaa gaagactatc	agtatgtgac ctatcaggcg	tgcatgttga ttcagatttt	900
tatattgtgc tactatgccg	ggtgggtatt ccatatccga	aatgcctccc caggccagta	960
atgaatttca tcgtcagtga	ggtaacccag cgcagcctgg	accttccgca cgagctgtac 1	020
aagacctcct gggtggactg	ggactacagg agccgaagga	ttgcgctcct ctttatgcaa 1	080
cgccttcact cgaccttgag	gattaggaca cttaatccaa	gtcttggttt tgacttaatg 1	140
ctcttcagct cggtgagttc	tttccgtgtt ttgacttttt	tgtgcactgt agccaatttc 1	200
cataatgagg ctcat		1:	215
<210> SEQ ID NO 60 <211> LENGTH: 405 <212> TYPE: PRT <213> ORGANISM: Droso	phila Melanogaster DOF	820	
<400> SEQUENCE: 60			
Met Ser Lys Gly Val G 1 5	lu Ile Phe Tyr Lys Gly 10	Gln Lys Ala Phe Leu 15	
Asn Ile Leu Ser Leu T 20	rp Pro Gln Ile Glu Arg 25	Arg Trp Arg Ile Ile 30	
His Gln Val Asn Tyr V	al His Val Ile Val Phe 40	Trp Val Leu Leu Phe 45	
Asp Leu Leu Leu Val L	eu His Val Met Ala Asn 55	Leu Ser Tyr Met Ser	
Glu Val Val Lys Ala I 65 7	le Phe Ile Leu Ala Thr	Ser Ala Gly His Thr	
Thr Lys Leu Leu Ser I	le Lys Ala Asn Asn Val 90	Gln Met Glu Glu Leu 95	
Phe Arg Arg Leu Asp A	sn Glu Glu Phe Arg Pro 105	Arg Gly Ala Asn Glu 110	

Glu Leu Ile Phe Ala Ala Ala Cys Glu Arg Ser Arg Lys Leu Arg Asp 115 120 125

-continued
Phe Tyr Gly Ala Leu Ser Phe Ala Ala Leu Ser Met Ile Leu Ile Pro 130 135 140
Gln Phe Ala Leu Asp Trp Ser His Leu Pro Leu Lys Thr Tyr Asn Pro 145 150 155 160
Leu Gly Glu Asn Thr Gly Ser Pro Ala Tyr Trp Leu Leu Tyr Cys Tyr 165 170 175
Gln Cys Leu Ala Leu Ser Val Ser Cys Ile Thr Asn Ile Gly Phe Asp 180 185 190
Ser Leu Cys Ser Ser Leu Phe Ile Phe Leu Lys Cys Gln Leu Asp Ile 195 200 205
Leu Ala Val Arg Leu Asp Lys Ile Gly Arg Leu Ile Thr Thr Ser Gly 210 215 220
Gly Thr Val Glu Gln Gln Leu Lys Glu Asn Ile Arg Tyr His Met Thr 225 230 235 240
Ile Val Glu Leu Ser Lys Thr Val Glu Arg Leu Leu Cys Lys Pro Ile 245 250 255
Ser Val Gln Ile Phe Cys Ser Val Leu Val Leu Thr Ala Asn Phe Tyr 260 265 270
Ala Ile Ala Val Val Ser Cys Glu Phe Ala Thr Arg Arg Leu Ser Val 275 280 285
Cys Asp Leu Ser Gly Val His Val Asp Ser Asp Phe Tyr Ile Val Leu 290 295 300
Leu Cys Arg Val Gly Ile Pro Tyr Pro Lys Cys Leu Pro Arg Pro Val 305 310 315 320
Met Asn Phe Ile Val Ser Glu Val Thr Gln Arg Ser Leu Asp Leu Pro 325 330 335
His Glu Leu Tyr Lys Thr Ser Trp Val Asp Trp Asp Tyr Arg Ser Arg
Arg Ile Ala Leu Leu Phe Met Gln Arg Leu His Ser Thr Leu Arg Ile 355 360 365
Arg Thr Leu Asn Pro Ser Leu Gly Phe Asp Leu Met Leu Phe Ser Ser
Val Ser Ser Phe Arg Val Leu Thr Phe Leu Cys Thr Val Ala Asn Phe 385 390 395 400
His Asn Glu Ala His 405
403
<210> SEQ ID NO 61 <211> LENGTH: 1203 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR25
<400> SEQUENCE: 61
atgaacgact cgggttatca atcaaatctc agccttctgc gggtttttct cgacgagttc 60
cgatcggttc tgcggcagga aagtcccggt ctcatcccac gcctggcttt ttactatgtt 120
cgcgcctttc tgagcttgcc cctgtaccga tggatcaact tgttcatcat gtgcaatgtg 180
atgaccattt tctggaccat gttcgtggcc ctgcccgagt cgaagaacgt gatcgaaatg 240
ggcgacgact tggtttggat ttcggggatg gcactggtgt tcaccaagat cttttacatg 300
catttgcgtt gcgacgagat cgatgaactt atttcggatt ttgaatacta caaccgggag 360
ctgagacccc ataatatcga tgaggaggtg ttgggttggc agagactgtg ctacgtgata 420

gaatcgggtc	tatatatcaa	ctgcttttgc	ctggtcaact	tcttcagtgc	cgctattttc	480
ctgcaacctc	tgttgggcga	gggaaagctg	cccttccaca	gcgtctatcc	gtttcaatgg	540
catcgcttgg	atctgcatcc	ctacacgttc	tggttcctct	acatctggca	gagtctgacc	600
tcgcagcaca	acctaatgag	cattctaatg	gtggatatgg	taggcatttc	cacgttcctc	660
cagacggcgc	tcaatctcaa	gttgctttgc	atcgagataa	ggaaactggg	ggacatggag	720
gtcagtgata	agaggttcca	cgaggagttt	tgtcgtgtgg	ttcgcttcca	ccagcacatt	780
atcaagttgg	tggggaaagc	caatagagct	ttcaatggcg	ccttcaatgc	acaattaatg	840
gccagtttct	ccctgatttc	catatccact	ttcgagacca	tggctgcagc	ggctgtggat	900
cccaaaatgg	ccgccaagtt	cgtgcttctc	atgctggtgg	cattcattca	actgtcgctt	960
tggtgcgtct	ctggaacttt	ggtttatact	cagtcagtgg	aggtggctca	ggctgctttt	1020
gatatcaacg	attggcacac	caaatcgcca	ggcatccaga	gggatatatc	ctttgtgata	1080
ctacgagccc	agaaacccct	gatgtatgtg	gccgaaccat	ttctgccctt	caccctggga	1140
acctatatgc	ttgtactgaa	gaactgctat	cgtttgctgg	ccctgatgca	agaatcgatg	1200
tag						1203

<210> SEQ ID NO 62

<211> LENGTH: 400

<212> TYPE: PRT

<213> ORGANISM: Drosophila Melanogaster DOR25

<400> SEQUENCE: 62

Met Asn Asp Ser Gly Tyr Gln Ser Asn Leu Ser Leu Leu Arg Val Phe 1 $$ 5 $$ 10 $$ 15

Leu Asp Glu Phe Arg Ser Val Leu Arg Gln Glu Ser Pro Gly Leu Ile $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Pro Arg Leu Ala Phe Tyr Tyr Val Arg Ala Phe Leu Ser Leu Pro Leu 35 40 45

Tyr Arg Trp Ile Asn Leu Phe Ile Met Cys Asn Val Met Thr Ile Phe 50 60

Trp Thr Met Phe Val Ala Leu Pro Glu Ser Lys Asn Val Ile Glu Met 65 70 75 80

Ile Phe Tyr Met His Leu Arg Cys Asp Glu Ile Asp Glu Leu Ile Ser $100 \ \ 105 \ \ \ 110$

Asp Phe Glu Tyr Tyr Asn Arg Glu Leu Arg Pro His Asn Ile Asp Glu 115 120 125

Glu Val Leu Gly Trp Gln Arg Leu Cys Tyr Val Ile Glu Ser Gly Leu 130 135 140

Tyr Ile Asn Cys Phe Cys Leu Val Asn Phe Phe Ser Ala Ala Ile Phe 145 150155160

Leu Gln Pro Leu Leu Gly Glu Gly Lys Leu Pro Phe His Ser Val Tyr 165 170 175

Pro Phe Gln Trp His Arg Leu Asp Leu His Pro Tyr Thr Phe Trp Phe

Leu Tyr Ile Trp Gln Ser Leu Thr Ser Gln His Asn Leu Met Ser Ile $195 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm}$

Leu Met Val Asp Met Val Gly Ile Ser Thr Phe Leu Gln Thr Ala Leu

												-	con	tin	ued			
-		210					215					220						
	Asn 225	Leu	Lys	Leu	Leu	C y s 230	Ile	Glu	Ile	Arg	L y s 235	Leu	Gly	Asp	Met	Glu 240		
7	7al	Ser	Asp	Lys	Arg 245	Phe	His	Glu	Glu	Phe 250	Суѕ	Arg	Val	Val	Arg 255	Phe		
F	Iis	Gln	His	Ile 260	Ile	Lys	Leu	Val	Gl y 265	Lys	Ala	Asn	Arg	Ala 270	Phe	Asn		
C	ly	Ala	Phe 275	Asn	Ala	Gln	Leu	Met 280	Ala	Ser	Phe	Ser	Leu 285	Ile	Ser	Ile		
S	er	Thr 290	Phe	Glu	Thr	Met	Ala 295	Ala	Ala	Ala	Val	Asp 300	Pro	Lys	Met	Ala		
	Ala 805	Lys	Phe	Val	Leu	Leu 310	Met	Leu	Val	Ala	Phe	Ile	Gln	Leu	Ser	Leu 320		
7	rp	Сув	Val	Ser	Gly 325	Thr	Leu	Val	Tyr	Thr	Gln	Ser	Val	Glu	Val 335	Ala		
C	ln	Ala	Ala	Phe	Asp	Ile	Asn	Asp	Trp		Thr	Lys	Ser	Pro 350	Gly	Ile		
C	ln	Arg	Asp 355		Ser	Phe	Val	Ile 360		Arg	Ala	Gln	Lys 365		Leu	Met		
י	'yr	Val 370		Glu	Pro	Phe	Leu 375		Phe	Thr	Leu	Gly 380		Tyr	Met	Leu		
	7al 885		Lys	Asn	Cys	Ty r 390		Leu	Leu	Ala	Leu 395		Gln	Glu	Ser	Met 400		
<	211 212	.> LE ?> TY	EQ II ENGTH (PE: RGAN)	H: 13	368	sophi	ila N	Melar	ıogas	ster	DOF	R28						
<	:400)> SE	EQUE	ICE:	63													
ē	tgt	acto	cac o	egga	agag	gc g	gccg	aact	g aaq	gaggo	gca	acta	atcgo	cag o	catca	agggag	60	
ē	tga	atcc	gac +	tctc	ctata	ac g	gtgg	gctto	c aac	cctgt	tgg	atco	cttc	ccg a	atgc	ggacag	120	
ġ	gtgo	ctca	gaa 1	tctg	gaca	at t	gtcc	ttago	c gt	gagta	agct	tgg	catco	gct t	tate	gggcac	180	
t	ggc	aaat	tgt 1	tago	cagg-	ta c	attca	atgai	t att	cca	gca	ttg	gaga	gac o	eget	ggaact	240	
ġ	jaac	ctgca	agt f	tcct	aaca	tc ga	atago	caaa	g ato	gtggt	act	ttc	tgtti	tgc o	ccata	agacag	300	
ć	tat	acga	aat 1	tgct	acga	aa g	gcgc	gctg	c cat	gaat	tac	tcca	aaaa	gtg t	gago	ctcttt	360	
ġ	gaaa	aggat	tgt (caga	tcta	cc t	gtta	tcaaa	a ga	gatto	gcc	agca	aggti	tga 🤉	gtcca	acgatg	420	
ē	ato	ggta	act o	gggc	cagc	ac to	cgtc	ggcaa	a ati	ctta	atct	atti	tgtad	cag o	ctgta	atttgt	480	
																actaaa	540	
																gagcac	600	
		_	-	_						_				-		tgtat	660	
																catago	720	
																gttcct	780	
																gcgaac	840	
																cttagc	900	
C	ttt	tcaa	act o	3999	cctg	gc c	ttgt	tccaa	a ato	gagc	gtcg	gati	tggg	caa o	caaca	agcagc	960	

atcaccatga tccggatgac catgtacctg gtggcagccg gctatcagat agttgtgtac 1020

tgctacaatg gccagcgatt tgcgactgct agcgaggaga ttgccaacgc cttttaccag	1080
gtgcgatggt acggagagtc cagggagttc cgccacctca tccgcatgat gctgatgcgc	1140
acgaaccggg gattcaggct ggacgtgtcc tggttcatgc aaatgtcctt gcccacactc	1200
atggcggtga gtagcggagc agagcagagc aggggtcctg caggtcctgc aggtcctgca	1260
ggtccacccc caagggtccc ctcctacagc cagttccact tgattgattc gcagatggtc	1320
cggacaagtg gacagtactt cctgctgctg cagaacgtca accagaaa	1368
<210> SEQ ID NO 64 <211> LENGTH: 456 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR28	
<400> SEQUENCE: 64	
Met Tyr Ser Pro Glu Glu Ala Ala Glu Leu Lys Arg Arg Asn Tyr Arg 1 5 10 15	
Ser Ile Arg Glu Met Ile Arg Leu Ser Tyr Thr Val Gly Phe Asn Leu 20 25 30	
Leu Asp Pro Ser Arg Cys Gly Gln Val Leu Arg Ile Trp Thr Ile Val 35 40 45	
Leu Ser Val Ser Ser Leu Ala Ser Leu Tyr Gly His Trp Gln Met Leu 50 60	
Ala Arg Tyr Ile His Asp Ile Pro Arg Ile Gly Glu Thr Ala Gly Thr 65 70 75 80	
Ala Leu Gln Phe Leu Thr Ser Ile Ala Lys Met Trp Tyr Phe Leu Phe 85 90 95	
Ala His Arg Gln Ile Tyr Glu Leu Leu Arg Lys Ala Arg Cys His Glu 100 105 110	
Leu Leu Gln Lys Cys Glu Leu Phe Glu Arg Met Ser Asp Leu Pro Val 115 120 125	
Ile Lys Glu Ile Arg Gln Gln Val Glu Ser Thr Met Asn Arg Tyr Trp 130 135 140	
Ala Ser Thr Arg Arg Gln Ile Leu Ile Tyr Leu Tyr Ser Cys Ile Cys 145 150 155 160	
Ile Thr Thr Asn Tyr Phe Ile Asn Ser Phe Val Ile Asn Leu Tyr Arg 165 170 175	
Tyr Phe Thr Lys Pro Lys Gly Ser Tyr Asp Ile Met Leu Pro Leu Pro 180 185 190	
Ser Leu Tyr Pro Ala Trp Glu His Lys Gly Leu Glu Phe Pro Tyr Tyr 195 200 205	
His Ile Gln Met Tyr Leu Glu Thr Cys Ser Leu Tyr Ile Cys Gly Met 210 215 220	
Cys Ala Val Ser Phe Asp Gly Val Phe Ile Val Leu Cys Leu His Ser 225 230 235 240	
Val Gly Leu Met Arg Ser Leu Asn Gln Met Val Glu Gln Ala Thr Ser 245 250 255	
Glu Leu Val Pro Pro Asp Arg Arg Val Glu Tyr Leu Arg Cys Cys Ile 260 265 270	
Tyr Gln Tyr Gln Arg Val Ala Asn Phe Ala Thr Glu Val Asn Asn Cys 275 280 285	
Phe Arg His Ile Thr Phe Thr Gln Phe Leu Leu Ser Leu Phe Asn Trp	

											-	con	tin	ued					
	290					295					300								
Gly 305	Leu	Ala	Leu	Phe	Gln 310	Met	Ser	Val	Gly	Leu 315	Gly	Asn	Asn	Ser	Ser 320				
Ile	Thr	Met	Ile	Arg 325	Met	Thr	Met	Tyr	Leu 330	Val	Ala	Ala	Gly	Tyr 335	Gln				
Ile	Val	Val	Tyr 340	_	Tyr	Asn	Gly	Gln 345	Arg	Phe	Ala	Thr	Ala 350	Ser	Glu				
Glu	Ile	Ala 355	Asn	Ala	Phe	Tyr	Gln 360	Val	Arg	Trp	Tyr	Gl y 365	Glu	Ser	Arg				
Glu	Phe 370	Arg	His	Leu	Ile	Arg 375	Met	Met	Leu	Met	Arg 380	Thr	Asn	Arg	Gly				
Phe 385	Arg	Leu	Asp	Val	Ser 390	Trp	Phe	Met	Gln	Met 395	Ser	Leu	Pro	Thr	Leu 400				
Met	Ala	Val	Ser	Ser 405	Gly	Ala	Glu	Gln	Ser 410	Arg	Gly	Pro	Ala	Gly 415	Pro				
Ala	Gly	Pro	Ala 420	Gly	Pro	Pro	Pro	Arg 425	Val	Pro	Ser	Tyr	Ser 430	Gln	Phe				
His	Leu	Ile 435	Asp	Ser	Gln	Met	Val 440	Arg	Thr	Ser	Gly	Gln 445	Tyr	Phe	Leu				
Leu	Leu 450	Gln	Asn	Val	Asn	Gln 455	Lys												
<21	0> SI 1> LI 2> TY	ENGTI	H: 12	239															
<213	3> OI	RGAN:	ISM:	Dro	soph:	ila M	Melar	nogas	ster	DC	R30								
	O> SI																		
		_	_	-		_				_	_		_		gcgttt	60			
				-		_			_					_	gaccg	120 180			
			_			-		_	_					-	atggag	240			
	_	_		_			_	_	_						gccaag	300			
			-	_		_				_					geegee	360			
ttg	gatgo	ege (ggtg	cagg	ga a	cagg	agga	g tto	ccaat	tga	tcc	tcga [.]	tgc (ggtga	aggttt	420			
tgca	aacta	atc ·	tggt	atgg	tt c	tacc	agato	c tgo	ctate	gcca	tct	actc	ctc (gtcga	acattt	480			
gtgi	tgcg	cct ·	tcct	gctg	gg c	caac	cgcc	a tai	gaad	ctct	att	tgcc	tgg (cctc	gattgg	540			
cago	cgtto	ccc (agat	gcag	tt c	tgca	tcca	g gc	ctgga	attg	agt	tcct [.]	tat (catga	aactgg	600			
acg	tgaat	tgc (acca	agct	ag c	gatg	atgt	g tao	egec	gtta	tct	atct	gta ·	tgtg	gtccgg	660			
atto	caag	tgc (aatt	gctg	gc c	aggc	gggt	g ga	gaago	ctgg	gca	cgga-	tga -	tagt	ggccag	720			
gtg	gaga	tct (atcc	cgat	ga g	egge	ggca	g gaq	ggago	catt	gcg	egga	act (gcago	egetge	780			
att	gtaga	atc (acca	gacg	at g	ctgc	agct	g cto	cgact	gca	tta	gtcc	cgt (catci	tcgcgt	840			
acca	atat	tcg ·	ttca	gttc	ct g	atca	ccgc	c gco	catca	atgg	gca	ccac	cat (gatca	aacatt	900			
ttca	attt	tcg (ccaa	tacg	aa c	acga	agat	c gca	atcga	atca	ttt	acct	gct	ggcg	gtgacc	960			
ctg	caga	egg (ctcc	atgt	tg c	tatc	aggc	c aco	ctcg	ctga	tgt	tgga	caa (cgaga	aggctg	1020			

gccctggcca tcttccagtg ccagtggctg ggccagagtg cccggttccg taagatgctg 1080

																1110
				_		_	_			_					ttccc	1140
atca	aatci	gg	ccac	gtac	tt c	agta	agco	aaq	gttci	cgt	ttt	eget	cta (cacgo	ctcatc	1200
aag	gggat	-ga	atct	cggc	ga go	cgati	caad	c ago	gacaa	aat						1239
<212 <212	l> LE ?> TY	NGT PE:	O NO H: 41 PRT ISM:	13	sophi	ila N	Melar.	ıogas	ster	DC	DR30					
<400)> SE	QUE	NCE:	66												
Met 1	Ala	Val	Ser	Thr 5	Arg	Val	Ala	Thr	Lys 10	Gln	Glu	Val	Pro	Glu 15	Ser	
Arg	Arg	Ala	Phe 20	Arg	Asn	Leu	Phe	Asn 25	Cys	Phe	Tyr	Ala	Leu 30	Gly	Met	
Gln	Ala	Pro 35	Asp	Gly	Ser	Arg	Pro 40	Thr	Thr	Ser	Ser	Thr 45	Trp	Gln	Arg	
Ile	Ty r 50	Ala	Сув	Phe	Ser	Val 55	Val	Met	Tyr	Val	Trp 60	Gln	Leu	Leu	Leu	
Val 65	Pro	Thr	Phe	Phe	Val 70	Ile	Ser	Tyr	Arg	Ty r 75	Met	Gly	Gly	Met	Glu 80	
Ile	Thr	Gln	Val	Leu 85	Thr	Ser	Ala	Gln	Val 90	Ala	Ile	Asp	Ala	Val 95	Ile	
Leu	Pro	Ala	Lys 100	Ile	Val	Ala	Leu	Ala 105	Trp	Asn	Leu	Pro	Leu 110	Leu	Arg	
Arg	Ala	Glu 115	His	His	Leu	Ala	Ala 120	Leu	Asp	Ala	Arg	C y s 125	Arg	Glu	Gln	
Glu	Glu 130	Phe	Gln	Leu	Ile	Leu 135	Asp	Ala	Val	Arg	Phe 140	Сув	Asn	Tyr	Leu	
Val 145	Trp	Phe	Tyr	Gln	Ile 150	Суѕ	Tyr	Ala	Ile	Ty r 155	Ser	Ser	Ser	Thr	Phe 160	
Val	Суѕ	Ala	Phe	Leu 165	Leu	Gly	Gln	Pro	Pro 170	Tyr	Ala	Leu	Tyr	Leu 175	Pro	
Gly	Leu	Asp	Trp 180	Gln	Arg	Ser	Gln	Met 185	Gln	Phe	Суѕ	Ile	Gln 190	Ala	Trp	
Ile	Glu	Phe 195	Leu	Ile	Met	Asn	Trp 200	Thr	Суѕ	Leu	His	Gln 205	Ala	Ser	Asp	
Asp	Val 210	Tyr	Ala	Val	Ile	Tyr 215	Leu	Tyr	Val	Val	Arg 220	Ile	Gln	Val	Gln	
Leu 225	Leu	Ala	Arg	Arg	Val 230	Glu	Lys	Leu	Gly	Thr 235	Asp	Asp	Ser	Gly	Gln 240	
Val	Glu	Ile	Tyr	Pro 245	Asp	Glu	Arg	Arg	Gln 250	Glu	Glu	His	Cys	Ala 255	Glu	
Leu	Gln	Arg	C y s 260	Ile	Val	Asp	His	Gln 265	Thr	Met	Leu	Gln	Leu 270	Leu	Asp	
Сув	Ile	Ser 275	Pro	Val	Ile	Ser	Arg 280	Thr	Ile	Phe	Val	Gln 285	Phe	Leu	Ile	
Thr	Ala 290	Ala	Ile	Met	Gly	Thr 295	Thr	Met	Ile	Asn	Ile 300	Phe	Ile	Phe	Ala	
Asn 305	Thr	Asn	Thr	Lys	Ile 310	Ala	Ser	Ile	Ile	Tyr 315	Leu	Leu	Ala	Val	Thr 320	
Leu	Gln	Thr	Ala	Pro 325	Cys	Cys	Tyr	Gln	Ala 330	Thr	Ser	Leu	Met	Leu 335	Asp	

Ser Ala Arg Phe Arg Lys Met Leu Leu Tyr Tyr Leu His Arg Ala Gln 355 360 Gln Pro Ile Thr Leu Thr Ala Met Lys Leu Phe Pro Ile Asn Leu Ala Thr Tyr Phe Ser Ile Ala Lys Phe Ser Phe Ser Leu Tyr Thr Leu Ile Lys Gly Met Asn Leu Gly Glu Arg Phe Asn Arg Thr Asn 405 410 <210> SEO ID NO 67 <211> LENGTH: 1191 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR31 <400> SEOUENCE: 67 atgattttta agtacattca agagccagtc cttggatcct tatttcgatc ccgggattcg ctgatctact taaacagatc catagatcaa atgggatgga gactgccgcc acgaactaag 120 ccgtactggt ggctctatta catttggaca ttggtggtca tagtactcgt ctttatcttt 180 ataccctatg gactgataat gactggaata aaggagttca agaacttcac gaccacggat 240 ctqtttacqt atqtccaqqt qccqqttaac accaatqctt cqatcatqaa qqqcattata 300 qtqttqttta tqcqqcqqcq attttcaaqq qctcaqaaqa tqatqqacqc catqqacatt 360 cgatgcacca agatggagga gaaagtccag gtgcaccgag cagcagcctt atgcaatcgt 420 gttgttgtga tttaccattg catatacttc ggctatctat ccatggcctt aaccggagct ctggtgattg ggaagactcc attctgtttg tacaatccac tggttaaccc cgacgatcat 540 600 ttctatctgg ccactgccat tgaatcggtc accatggctg gcattattct ggccaatctc attttggacg tatatcccat catatatgtg gtcgttctgc ggatccacat ggagctcttg 660 agtgagcgaa tcaagacgct gcgtactgat gtggaaaaag gcgacgatca acattatgcc 720 qaqctqqtqq aqtqtqtaaa qqatcacaaq ctaattqtcq aatatqqaaa cactctqcqt 780 cccatgatat ccgccacgat gttcatccaa ctactatccg ttggcttact tttgggtctg 840 gcagcggtgt ccatgcagtt ctataacacc gtaatggagc gtgttgtctc cggggtctac 900 accatagcca ttctatccca gacctttcca ttttgctatg tctgtgagca gctgagcagc 960 gattgcgaat ccctgaccaa cacactgttc cattccaagt ggattggagc tgagcgacga 1020 tacagaacca cgatgttgta cttcattcac aatgttcagc agtcgatttt gttcactgcg 1080 qqcqqaattt tccccatatq tctaaacacc aatataaaqa tqqccaaqtt cqctttctca 1140 gtggtgacca ttgtaaatga gatggacttg gccgagaaat tgagaaggga g 1191 <210> SEQ ID NO 68 <211> LENGTH: 397 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR31 <400> SEQUENCE: 68 Met Ile Phe Lys Tyr Ile Gln Glu Pro Val Leu Gly Ser Leu Phe Arg 10 Ser Arg Asp Ser Leu Ile Tyr Leu Asn Arg Ser Ile Asp Gln Met Gly

Asn Glu Arg Leu Ala Leu Ala Ile Phe Gln Cys Gln Trp Leu Gly Gln

			20					25					30		
Trp	Arg	Leu 35	Pro	Pro	Arg	Thr	Lys 40	Pro	Tyr	Trp	Trp	Leu 45	Tyr	Tyr	Ile
Trp	Thr 50	Leu	Val	Val	Ile	Val 55	Leu	Val	Phe	Ile	Phe 60	Ile	Pro	Tyr	Gly
Leu 65	Ile	Met	Thr	Gly	Ile 70	Lys	Glu	Phe	Lys	Asn 75	Phe	Thr	Thr	Thr	Asp 80
Leu	Phe	Thr	Tyr	Val 85	Gln	Val	Pro	Val	Asn 90	Thr	Asn	Ala	Ser	Ile 95	Met
Lys	Gly	Ile	Ile 100	Val	Leu	Phe	Met	Arg 105	Arg	Arg	Phe	Ser	Arg 110	Ala	Gln
Lys	Met	Met 115	Asp	Ala	Met	Asp	Ile 120	Arg	Сув	Thr	Lys	Met 125	Glu	Glu	Lys
Val	Gln 130	Val	His	Arg	Ala	Ala 135	Ala	Leu	Суѕ	Asn	Arg 140	Val	Val	Val	Ile
Tyr 145	His	Суѕ	Ile	Tyr	Phe 150	Gly	Tyr	Leu	Ser	Met 155	Ala	Leu	Thr	Gly	Ala 160
Leu	Val	Ile	Gly	L y s 165	Thr	Pro	Phe	Cys	Leu 170	Tyr	Asn	Pro	Leu	Val 175	Asn
Pro	Asp	Asp	His 180	Phe	Tyr	Leu	Ala	Thr 185	Ala	Ile	Glu	Ser	Val 190	Thr	Met
Ala	Gly	Ile 195	Ile	Leu	Ala	Asn	Leu 200	Ile	Leu	Asp	Val	Tyr 205	Pro	Ile	Ile
Tyr	Val 210	Val	Val	Leu	Arg	Ile 215	His	Met	Glu	Leu	Leu 220	Ser	Glu	Arg	Ile
L y s 225	Thr	Leu	Arg	Thr	Asp 230	Val	Glu	Lys	Gly	Asp 235	Asp	Gln	His	Tyr	Ala 240
Glu	Leu	Val	Glu	C y s 245	Val	Lys	Asp	His	L y s 250	Leu	Ile	Val	Glu	Tyr 255	Gly
Asn	Thr	Leu	Arg 260	Pro	Met	Ile	Ser	Ala 265	Thr	Met	Phe	Ile	Gln 270	Leu	Leu
Ser	Val	Gly 275	Leu	Leu	Leu	Gly	Leu 280	Ala	Ala	Val	Ser	Met 285	Gln	Phe	Tyr
Asn	Thr 290	Val	Met	Glu	Arg	Val 295	Val	Ser	Gly	Val	Tyr 300	Thr	Ile	Ala	Ile
Leu 305	Ser	Gln	Thr	Phe	Pro 310	Phe	Cys	Tyr	Val	Cys 315	Glu	Gln	Leu	Ser	Ser 320
Asp	Сув	Glu	Ser	Leu 325	Thr	Asn	Thr	Leu	Phe 330	His	Ser	Lys	Trp	Ile 335	Gly
Ala	Glu	Arg	Arg 340	Tyr	Arg	Thr	Thr	Met 345	Leu	Tyr	Phe	Ile	His 350	Asn	Val
Gln	Gln	Ser 355	Ile	Leu	Phe	Thr	Ala 360	Gly	Gly	Ile	Phe	Pro 365	Ile	Cys	Leu
Asn	Thr 370	Asn	Ile	Lys	Met	Ala 375	Lys	Phe	Ala	Phe	Ser 380	Val	Val	Thr	Ile
Val 385	Asn	Glu	Met	Asp	Leu 390	Ala	Glu	Lys	Leu	Arg 395	Arg	Glu			
<213)> SE l> LE	ENGTI	H: 11												

<212> TYPE: DNA
<213> ORGANISM: Drosophila Melanogaster DOR32

<400> SEQUENCE: 69

-continued

TIOU, DEGO.						
atggaacctg	tgcagtacag	ctacgaggat	ttcgctcgat	tgcccacgac	ggtgttctgg	60
atcatgggct	acgacatgct	gggcgttccg	aagacccgct	ctcgcaggat	actatactgg	120
atatatcgtt	tcctctgtct	cgccagccat	ggggtctgtg	taggagtcat	ggtatttcgt	180
atggtggagg	caaagaccat	tgacaatgtt	tcgctgatca	tgcggtatgc	cactctggtc	240
acctatatca	tcaactcgga	tacgaaattc	gcaactgtct	tacaaaggag	tgcaattcaa	300
agtctaaact	caaaactggc	cgaactatat	ccgaagacca	cgctggacag	gatctatcac	360
cgggtgaatg	atcactattg	gaccaagtca	tttgtatatt	tggttattat	ctacattggt	420
tcgtcgatta	tggttgttat	tggaccgatt	attacgtcga	ttatagctta	cttcacgcac	480
aacgttttca	cctacatgca	ctgctatccg	tactttttgt	atgatcctga	gaaggatccg	540
gtttggatct	acatcagcat	ctatgctctg	gaatggttgc	acagcacaca	gatggtcatt	600
tcgaacattg	gcgcggatat	ctggctgctg	tactttcagg	tgcagataaa	tctccacttc	660
aggggcatta	tacgatcact	ggcggatcac	aagcccagtg	tgaagcacga	ccaggaggac	720
aggaaattca	ttgcgaaaat	tgtcgacaag	caggtgcacc	tggtcagttt	gcaaaacgat	780
ctgaatggta	tctttggaaa	atcgctgctt	ctaagcctgc	tgaccaccgc	agcggttatc	840
tgcacggtgg	cggtgtacac	tctgattcag	ggtcccacct	tggagggctt	cacctatgtg	900
atcttcatcg	ggacttctgt	gatgcaggtc	: tacctggtgt	gctattacgg	tcagcaagtt	960
ctcgacttga	gcggcgaggt	ggcccacgcc	gtgtacaatc	atgattttca	cgatgcttct	1020
atagcgtaca	agaggtacct	gctcataatc	attatcaggg	cgcagcagcc	cgtggaactt	1080
aatgccatgg	gctacctgtc	catttcgctg	gacaccttta	aacagctgat	gagcgtctcc	1140
taccgggtta	taaccatgct	catgcagatg	attcag			1176
<210> SEQ : <211> LENG: <212> TYPE <213> ORGAI	ГН: 392	phila Melan	ogaster DO	DR32		
<400> SEQUI	ENCE: 70					
Met Glu Pro 1	o Val Gln T 5	yr Ser Tyr	Glu Asp Phe 10	Ala Arg Le	Pro Thr	
Thr Val Ph	e Trp Ile M 20	et Gly Tyr	Asp Met Leu 25	Gly Val Pro	Lys Thr	
Arg Ser Ar	g Arg Ile L	eu Tyr Trp 40	Ile Tyr Arg	Phe Leu Cys 45	s Leu Ala	
Ser His Gl	y Val Cys V	al Gly Val 55	Met Val Phe	Arg Met Val	l Glu Ala	
L y s Thr Il	e Asp Asn V 7		Ile Met Arg 75	Tyr Ala Thi	Leu Val	
Thr Tyr Il	e Ile Asn S 85	er Asp Thr	L y s Phe Ala 90	Thr Val Let	ı Gln Arg 95	
Ser Ala Il	e Gln Ser L 100	eu Asn Ser	Lys Leu Ala 105	Glu Leu Ty		
Thr Thr Le		le Tyr His 120	Arg Val Asn	Asp His Tyr 125	Trp Thr	

Lys Ser Phe Val Tyr Leu Val Ile Ile Tyr Ile Gly Ser Ser Ile Met

-continued													
130 135 140													
Val Val Ile Gly Pro Ile Ile Thr Ser Ile Ile Ala Tyr Phe Thr His 145 150 155 160													
Asn Val Phe Thr Tyr Met His Cys Tyr Pro Tyr Phe Leu Tyr Asp Pro 165 170 175													
Glu Lys Asp Pro Val Trp Ile Tyr Ile Ser Ile Tyr Ala Leu Glu Trp 180 185 190													
Leu His Ser Thr Gln Met Val Ile Ser Asn Ile Gly Ala Asp Ile Trp 195 200 205													
Leu Leu Tyr Phe Gln Val Gln Ile Asn Leu His Phe Arg Gly Ile Ile 210 215 220													
Arg Ser Leu Ala Asp His Lys Pro Ser Val Lys His Asp Gln Glu Asp 225 230 235 240													
Arg Lys Phe Ile Ala Lys Ile Val Asp Lys Gln Val His Leu Val Ser 245 250 255													
Leu Gln Asn Asp Leu Asn Gly Ile Phe Gly Lys Ser Leu Leu Ser 260 265 270													
Leu Leu Thr Thr Ala Ala Val Ile Cys Thr Val Ala Val Tyr Thr Leu 275 280 285													
Ile Gln Gly Pro Thr Leu Glu Gly Phe Thr Tyr Val Ile Phe Ile Gly 290 295 300													
Thr Ser Val Met Gln Val Tyr Leu Val Cys Tyr Tyr Gly Gln Gln Val 305 310 315 320													
Leu Asp Leu Ser Gly Glu Val Ala His Ala Val Tyr Asn His Asp Phe 325 330 335													
His Asp Ala Ser Ile Ala Tyr Lys Arg Tyr Leu Leu Ile Ile Ile Ile 340 345 350													
Arg Ala Gln Gln Pro Val Glu Leu Asn Ala Met Gly Tyr Leu Ser Ile 355 360 365													
Ser Leu Asp Thr Phe Lys Gln Leu Met Ser Val Ser Tyr Arg Val Ile 370 375 380													
Thr Met Leu Met Gln Met Ile Gln 385 390													
<210> SEQ ID NO 71 <211> LENGTH: 795 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR38													
<400> SEQUENCE: 71													
atgogtttga toaaaattto atattoggoa ottaatgagg tgtgogtttg gotgaaactg 60													
aatggttett ggecattaac egaateateg aggeeatgga ggageeaate ettattggee 120													
accgcctaca tcgtgtgggc gtggtacgtc attgcatctg tgggcataac aatcagctat 180 cagacggcct ttttgctgaa caacctttcg gacattatta tcaccacgga aaattgttgc 240													
accacettta tgggtgteet gaactttgte egacteatee atettegeet caateagagg 300													
aaattccgcc agcttattga gaacttttcc tacgaaattt ggatacctaa ttcttccaaa 360													
aacaatgttg ccgccgagtg tcgcagacgc atggttacct tcagcataat gacatccttg 420													
ctagcgtgcc tgatcataat gtattgtgtc ctgccgctgg tggagatctt ctttggaccc 480													

gccttcgatg cacagaacaa gccgtttccc tacaagatga tctttccgta cgatgcccag

540

-continued														
agcagttgga tccgatatgt gatgacctac atcttcacct cctacgcggg aatctgtgtg 600														
gtcaccacct tgtttgcaga ggacaccatt cttggcttct tcataaccta cacttgtggc 660														
caatttcatt tgctacacca acgaatcgca ggtttatttg cgggttccaa tgcggaattg 720														
gccgagagca ttcagctgga gcgactcaaa cgtattgtgg aaaaacacaa caatattatc 780														
agcgcaaatt ctgta 795														
<210> SEQ ID NO 72 <211> LENGTH: 265 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR38														
<400> SEQUENCE: 72														
Met Arg Leu Ile Lys Ile Ser Tyr Ser Ala Leu Asn Glu Val Cys Val 1 5 10 15														
Trp Leu Lys Leu Asn Gly Ser Trp Pro Leu Thr Glu Ser Ser Arg Pro 20 25 30														
Trp Arg Ser Gln Ser Leu Leu Ala Thr Ala Tyr Ile Val Trp Ala Trp 35 40 45														
Tyr Val Ile Ala Ser Val Gly Ile Thr Ile Ser Tyr Gln Thr Ala Phe 50 55 60														
Leu Leu Asn Asn Leu Ser Asp Ile Ile Ile Thr Thr Glu Asn Cys Cys 65 70 75 80														
Thr Thr Phe Met Gly Val Leu Asn Phe Val Arg Leu Ile His Leu Arg 85 90 95														
Leu Asn Gln Arg Lys Phe Arg Gln Leu Ile Glu Asn Phe Ser Tyr Glu 100 105 110														
Ile Trp Ile Pro Asn Ser Ser Lys Asn Asn Val Ala Ala Glu Cys Arg 115 120 125														
Arg Arg Met Val Thr Phe Ser Ile Met Thr Ser Leu Leu Ala Cys Leu 130 135 140														
Ile Ile Met Tyr Cys Val Leu Pro Leu Val Glu Ile Phe Phe Gly Pro 145 150 155 160														
Ala Phe Asp Ala Gln Asn Lys Pro Phe Pro Tyr Lys Met Ile Phe Pro 165 170 175														
Tyr Asp Ala Gln Ser Ser Trp Ile Arg Tyr Val Met Thr Tyr Ile Phe 180 185 190														
Thr Ser Tyr Ala Gly Ile Cys Val Val Thr Thr Leu Phe Ala Glu Asp 195 200 205														
Thr Ile Leu Gly Phe Phe Ile Thr Tyr Thr Cys Gly Gln Phe His Leu 210 215 220														
Leu His Gln Arg Ile Ala Gly Leu Phe Ala Gly Ser Asn Ala Glu Leu 225 230 235 240														
Ala Glu Ser Ile Gln Leu Glu Arg Leu Lys Arg Ile Val Glu Lys His 245 250 255														
Asn Asn Ile Ile Ser Ala Asn Ser Val 260 265														
<210> SEQ ID NO 73 <211> LENGTH: 1409 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR48														

<400> SEQUENCE: 73

atggagcgcc attattcat ggtgccaaag tttgcattat cgctgattgg tttttatccc 60 qaacaqaaqc qaacqqtttt qqtqaaactt tqqaqtttct tcaacttttt catcctcacc 120 tacggctgtt atgcagaggc ttactatggc atacactata taccgattaa catagccact 180 gcattggatg ccctttgtcc tgtggcctcc agcattttgt cgctggtgaa aatggtcgcc 240 atttggtggt atcaagatga attaaggagt ttgatagagc gggtaagatt tttaacagag caacagaagt ccaagaggaa actgggctat aagaagaggt tctatacact ggcaacgcaa ctaacattcc tgctactatg ctgtggattt tgcaccagta cttcctattc cgtcagacat 420 ttgattgata atatootgag acgcacccat ggcaaggact ggatctacga gactccgttc 480 540 tgatctaaac aagatgcact tttttttagg ttccccgatc ttctcctgcg tttgccactc 600 tatcccatca cctatatact cgtgcattgg catggctaca ttactgtggt ttgttttgtc 660 ggcgcggatg gtttcttcct ggggttctgt ttgtacttca ctgttttgct gctctgtctg 780 caggacgatg tttgtgattt actagaggtt gaaaacatcg agaagagtcc ctccgaagcg gaggaagctc gcatagttcg ggaaatggaa aaactggtgg accggcataa cgaggtggcc 840 gagctgacag aaagattgtc gggtgttatg gtggaaataa cactggccca ctttgttact 900 tcgagtttga taatcggaac cagcgtggtg gatattttat tagtgggtat ttacatttga 960 1020 ttagatcctt tcgatatatg ttcttaaatt ctagttttcc ggcctgggaa tcattgtgta 1080 tgtggtctac acttgtgccg taggtgtgga aatatttcta tactgtttag gaggatctca tattatggaa gcggtatatt cataagaaac tactataaag ttacttttaa attcattgca tttcttagtg ttccaatcta gcgcgctcca cattttccag ccactggtat ggccacagtg ttcgggtcca aaagatgacc cttttgatgg tagctcgtgc tcaacgagtt ctcacaatta 1260 aaattoottt ottttoocca toattagaga ototaactto ggtaagotta tgogaaaatg 1320 $\verb|ttatggtaca|| cacaagtcta|| catttctatg|| aggtcttgta|| gattttgcgc|| ttcactggat||$ 1380 ctctgattgc cctggcaaag tcggttata 1409

```
<210> SEQ ID NO 74
```

<400> SEOUENCE: 74

Met Glu Arg His Tyr Phe Met Val Pro Lys Phe Ala Leu Ser Leu Ile 1 5 10 15

Gly Phe Tyr Pro Glu Gln Lys Arg Thr Val Leu Val Lys Leu Trp Ser 20 25 30

Phe Phe Asn Phe Phe Ile Leu Thr Tyr Gly Cys Tyr Ala Glu Ala Tyr 35 40 45

Tyr Gly Ile His Tyr Ile Pro Ile Asn Ile Ala Thr Ala Leu Asp Ala 50 60

Leu Cys Pro Val Ala Ser Ser Ile Leu Ser Leu Val Lys Met Val Ala 65 70 75 80

Ile Trp Trp Tyr Gln Asp Glu Leu Arg Ser Leu Ile Glu Arg Arg Phe 85 90 95

Tyr Thr Leu Ala Thr Gln Leu Thr Phe Leu Leu Cys Cys Gly Phe

<211> LENGTH: 369

<212> TYPE: PRT

<213> ORGANISM: Drosophila Melanogaster DOR48

-continued																	
			100					105					110				
Сув	Thr	Ser 115	Thr	Ser	Tyr	Ser	Val 120	Arg	His	Leu	Ile	Asp 125	Asn	Ile	Leu		
Arg	Arg 130	Thr	His	Gly	Lys	Asp 135	Trp	Ile	Tyr	Glu	Thr 140	Pro	Phe	Lys	Met		
Met 145	Phe	Pro	Asp	Leu	Leu 150	Leu	Arg	Leu	Pro	Leu 155	Tyr	Pro	Ile	Thr	Tyr 160		
Ile	Leu	Val	His	Trp 165	His	Gly	Tyr	Ile	Thr 170	Val	Val	Cys	Phe	Val 175	Gly		
Ala	Asp	Gly	Phe	Phe	Leu	Gly	Phe	Cys 185	Leu	Tyr	Phe	Thr	Val 190	Leu	Leu		
Leu	Cys	Leu 195	Gln	Asp	Asp	Val	C y s 200	Asp	Leu	Leu	Glu	Val 205	Glu	Asn	Ile		
Glu	Lys 210	Ser	Pro	Ser	Glu	Ala 215	Glu	Glu	Ala	Arg	Ile 220	Val	Arg	Glu	Met		
Glu 225	Lys	Leu	Val	Asp	Arg 230	His	Asn	Glu	Val	Ala 235	Glu	Leu	Thr	Glu	Arg 240		
Leu	Ser	Gly	Val	Met 245	Val	Glu	Ile	Thr	Leu 250	Ala	His	Phe	Val	Thr 255	Ser		
Ser	Leu	Ile	Ile 260	Gly	Thr	Ser	Val	Val 265	Asp	Ile	Leu	Leu	Phe 270	Ser	Gly		
Leu	Gly	Ile 275	Ile	Val	Tyr	Val	Val 280	Tyr	Thr	Cys	Ala	Val 285	Gly	Val	Glu		
Ile	Phe 290	Leu	Tyr	Cys	Leu	Gly 295	Gly	Ser	His	Ile	Met 300	Glu	Ala	Сув	Ser		
Asn 305	Leu	Ala	Arg	Ser	Thr	Phe	Ser	Ser	His	Trp 315	Tyr	Gly	His	Ser	Val 320		
Arg	Val	Gln	Lys	Met 325	Thr	Leu	Leu	Met	Val 330	Ala	Arg	Ala	Gln	Arg 335	Val		
Leu	Thr	Ile	Lys 340	Ile	Pro	Phe	Phe	Ser 345	Pro	Ser	Leu	Glu	Thr 350	Leu	Thr		
Ser	Ile	Leu 355	Arg	Phe	Thr	Gly	Ser 360	Leu	Ile	Ala	Leu	Ala 365	Lys	Ser	Val		
Ile																	
<210)> SE	:O TT) NO	75													
<21	l> LE 2> TY	NGTH	H: 89														
				Dros	soph:	ila M	Melar	nogas	ster	DO	DR56						
<400)> SE	QUEN	ICE:	75													
atg	gatco	cgg t	tgga	gatg	cc c	attt	ttgg	t ago	cacto	ctga	agc	taat	gaa q	gttct	tggtca	60	
tato	ctgtt	tg t	ttcad	caac	tg g	cgcc	gcta	t gto	cgcaa	atga	ctc	cgta	cat o	catta	atcaac	120	
tgt	actca	agt a	atgt	ggat	at a	tatc [.]	tgag	c ac	cgaa+	tcct	tgg	actt	tat d	catca	agaaat	180	
															gtacag	240	
															tggtg	300	
															tatggc	360	
															acatg	420 480	
2 - 30					, C C		-555	, cg			454	(uug	100	

-continued																	
gtagtg	jacat	ttac	cctt	tt c	gccat	ttctc	c ato	gtgto	gag	tgt	tgca	aca ·	taagt	ttgaga		540	
agccta	igaaa	agct	gaaa	aa t	gaaca	aagta	a cgt	ggt	jaaa	tcg	ctca	aac	aatt	gctcag		600	
accgto	atag	tcat	cgca-	ta c	atggt	taato	g ata	attt	gcca	acaç	gtgt	agt	cctt	tactac		660	
gtggcc	aatg	agct	atac	tt to	caaa	gcttt	t gat	att	jcca	ttg	ctgc	cta ·	tgaga	agcaat		720	
tggatg	gact	ttga	tgtg	ga c	acaca	aaaa	g act	ttga	agt	tcct	tcat	cat	gcgct	cgcaa		780	
aagccc	ttgg	cgag	tctg	gt g	ggtg	gcaca	a tat	ccca	atga	acti	tgaa	aat	gctto	cagtca		840	
ctactaaatg ccatttactc cttcttcacc cttctgcgtc gcgtttacgg c 8															891		
	LENG TYPE ORGA	TH: 29 : PRT NISM:	taccetttt egecattete atgtgtegag tgttgeaaca taagttgaga getgaaaaa tgaacaagta egtggtgaaa tegeteaaca aattgeteag getgaaaaa tgaacaagta egtggtgaaa tegeteaaca aattgeteag getatactt teaaagettt gatattgeea ttgetgeeta tgagageaat 720 tgatgtgga cacacaaaaag actttgaagt teeteateat gegetegeaa 780 gagtetggt gggtggeaca tateceatga acttgaaaat getteagtea gagtetggt gggtggeaca tateceatga acttgaaaat getteagtea 840 catttacte ettetteace ettetgegte gegtttaegg c 891 NO 76 297 RRT SM: Drosophila Melanogaster DOR56 CE: 76 Val Glu Met Pro Ile Phe Gly Ser Thr Leu Lys Leu Met 5 10 15 Ser Tyr Leu Phe Val His Asn Trp Arg Arg Tyr Val Ala 20 Tyr Ile Ile Ile Asn Cys Thr Gln Tyr Val Asp Ile Tyr 40 Glu Ser Leu Asp Phe Ile Ile Arg Asn Val Tyr Leu Ala 55 Thr Asn Thr Val Val Arg Gly Val Leu Leu Cys Val Gln 70 Tyr Glu Arg Phe Ile Asn Ile Leu Lys Ser Phe Tyr Ile 85 90 Val Ser Thr Glu Arg Leu Ser Gln Lys Cys Ile Leu His 100 Val Leu Pro Tyr Gly Met Tyr Leu Pro Thr Ile Asp Glu 125 Ala Ser Pro Tyr Tyr Glu Ile Phe Phe Val Ile Gln Ala 135 Pro Met Gly Cys Cys Met Tyr Ile Pro Tyr Thr Asn Met 150 Phe Thr Leu Phe Ala Ile Leu Met Cys Arg Val Leu Gln 165 Arg Ser Leu Glu Lys Leu Lys Asn Glu Gln Val Arg Gly														
				Met	Pro	Tle	Phe	Glv	Ser	Thr	T.eu	T.vs	T.e.11	Met			
1	,p 11	o vai		ncc	110	110	Inc	_	DCI		Lea	цуь		nec			
Lys Ph	e Tr	p Ser 20	Tyr	Leu	Phe	Val		Asn	Trp	Arg	Arg	_	Val	Ala			
Met Th	r Pr 35	o Tyr	Ile	Ile	Ile		Cys	Thr	Gln	Tyr		Asp	Ile	Tyr			
Leu Se		r Glu	Ser	Leu	_	Phe	Ile	Ile	Arg		Val	Tyr	Leu	Ala			
Val Le	eu Ph	e Thr	Asn		Val	Val	Arg	Gly		Leu	Leu	Cys	Val				
Arg Ph	ie Se	r T y r		Arg	Phe	Ile	Asn		Leu	Lys	Ser	Phe	_	Ile			
Glu Le	eu Le	u Val 100	Ser	Thr	Glu	Arg		Ser	Gln	Lys	Cys		Leu	His			
Lys Tr	p Al 11		Leu	Pro	Tyr		Met	Tyr	Leu	Pro		Ile	Asp	Glu			
Tyr Ly 13		r Ala	Ser	Pro		Tyr	Glu	Ile	Phe		Val	Ile	Gln	Ala			
Ile Me	et Al	a Pro	Met		Cys	Cys	Met	Tyr		Pro	Tyr	Thr	Asn				
Val Va	l Th	r Phe		Leu	Phe	Ala	Ile		Met	Cys	Arg	Val		Gln			
His Ly	s Le	u Arg 180	Ser	Leu	Glu	Lys		Lys	Asn	Glu	Gln		Arg	Gly			
Glu Il	e Al 19		Thr	Ile	Ala		Thr	Val	Ile	Val		Ala	Tyr	Met			
Val Me		e Phe	Ala	Asn		Val	Val	Leu	Tyr	_	Val	Ala	Asn	Glu			
Leu Ty 225	r Ph	e Gln	Ser	Phe 230	Asp	Ile	Ala	Ile	Ala 235	Ala	Tyr	Glu	Ser	Asn 240			
Trp Me	et As	p Phe	Asp 245	Val	Asp	Thr	Gln	L y s 250	Thr	Leu	Lys	Phe	Leu 255	Ile			
Met Ar	g Se	r Gln 260	Lys	Pro	Leu	Ala	Ser 265	Leu	Val	Gly	Gly	Thr 270	Tyr	Pro			
Met As	n Le 27		Met	Leu	Gln	Ser 280	Leu	Leu	Asn	Ala	Ile 285	Tyr	Ser	Phe			

```
Phe Thr Leu Leu Arg Arg Val Tyr Gly
    290
                        295
<210> SEO ID NO 77
<211> LENGTH: 1134
<212> TYPE: DNA
<213> ORGANISM: Drosophila Melanogaster DOR58
<400> SEQUENCE: 77
atggacgcca gctactttgc cgtccagaga agagctctgg aaatagttgg attcgatccc
agtactccgc aactgagtct gaaacatccc atctgggccg ggattctcat cctgtccttg
                                                                      120
atctctcaca actggcccat ggtagtctat gccctgcagg atctctccga cttgacccgt
                                                                      180
ctgacggaca actttgcggt gtttatgcaa ggatcacaga gcaccttcaa gttcctggtc
                                                                      240
atgatggcga aacgaaggcg cattggatcg ttgattcacc gtttgcataa gctaaaccag
                                                                      300
                                                                      360
qcqqccaqtq ccacqcccaa tcacctqqaq aaqatcqaqa qqqaaaacca actqqataqq
tatgtcgcca ggtcctttag aaatgccgcc tacggagtga tttgtgcctc ggccatagcg
                                                                      480
cccatgttgc ttggcctgtg gggatatgtg gagacgggtg tatttacccc caccacaccc
\verb|atggagttca|| acttctggct|| ggacgagcga|| aagcctcact|| tttattggcc|| catctacgtt||
                                                                      540
tggggcgtac tgggcgtggc agctgccgcc tggttggcca ttgcaacgga caccctgttc
                                                                      600
tcctggctga ctcacaatgt ggtgattcag ttccaactac tggagcttgt tctcgaagag
                                                                      660
aaggatetga atggeggaga etetegeetg acegggtttg ttagtegtea tegtataget
                                                                      720
                                                                      780
ctggatttgg ccaaggaact aagttcgatt ttcggggaga tcgtctttgt gaaatacatg
ctcagttacc tgcaactctg catgttggcc tttcgcttca gccgcagtgg ctggagtgcc
caggtgccat ttagagccac cttcctagtg gccatcatca tccaactgag ttcgtattgc
tatggaggcg agtatataaa gcagcaaagt ttggccatcg cacaagccgt ttatggtcaa
                                                                      960
atcaattggc cagaaatgac gccaaagaaa agaagactct ggcaaatggt gatcatgagg
                                                                     1020
gcgcagcgac cggctaagat ttttggattc atgttcgttg tggacttgcc actgctgctt
                                                                     1080
tgggtcatca gaactgcggg ctcatttctg gccatgctta ggactttcga gcgt
                                                                     1134
<210> SEQ ID NO 78
<211> LENGTH: 378
<212> TYPE: PRT
<213> ORGANISM: Drosophila Melanogaster DOR58
<400> SEOUENCE: 78
Met Asp Ala Ser Tyr Phe Ala Val Gln Arg Arg Ala Leu Glu Ile Val
Gly Phe Asp Pro Ser Thr Pro Gln Leu Ser Leu Lys His Pro Ile Trp
Ala Gly Ile Leu Ile Leu Ser Leu Ile Ser His Asn Trp Pro Met Val
Val Tyr Ala Leu Gln Asp Leu Ser Asp Leu Thr Arg Leu Thr Asp Asn
Phe Ala Val Phe Met Gln Gly Ser Gln Ser Thr Phe Lys Phe Leu Val
Met Met Ala Lys Arg Arg Ile Gly Ser Leu Ile His Arg Leu His
                85
                                    90
Lys Leu Asn Gln Ala Ala Ser Ala Thr Pro Asn His Leu Glu Lys Ile
```

											-	con	tin	ued						
			100					105					110							
Glu	Arg	Glu 115	Asn	Gln	Leu	Asp	A rg 120	Tyr	Val	Ala	Arg	Ser 125	Phe	Arg	Asn					
Ala	Ala 130	Tyr	Gly	Val	Ile	Cys 135	Ala	Ser	Ala	Ile	Ala 140	Pro	Met	Leu	Leu					
Gl y 145	Leu	Trp	Gly	Tyr	Val 150	Glu	Thr	Gly	Val	Phe 155	Thr	Pro	Thr	Thr	Pro 160					
Met	Glu	Phe	Asn	Phe 165	Trp	Leu	Asp	Glu	Arg 170	Lys	Pro	His	Phe	Ty r 175	Trp					
Pro	Ile	Tyr	Val 180	Trp	Gly	Val	Leu	Gly 185	Val	Ala	Ala	Ala	Ala 190	Trp	Leu					
Ala	Ile	Ala 195	Thr	Asp	Thr	Leu	Phe 200	Ser	Trp	Leu	Thr	His 205	Asn	Val	Val					
Ile	Gln 210	Phe	Gln	Leu	Leu	Glu 215	Leu	Val	Leu	Glu	Glu 220	Lys	Asp	Leu	Asn					
Gl y 225	Gly	Asp	Ser	Arg	Leu 230	Thr	Gly	Phe	Val	Ser 235	Arg	His	Arg	Ile	Ala 240					
Leu	Asp	Leu	Ala	L y s 245	Glu	Leu	Ser	Ser	Ile 250	Phe	Gly	Glu	Ile	Val 255	Phe					
Val	Lys	Tyr	Met 260	Leu	Ser	Tyr	Leu	Gln 265	Leu	Cys	Met	Leu	Ala 270	Phe	Arg					
Phe	Ser	Arg 275	Ser	Gly	Trp	Ser	Ala 280	Gln	Val	Pro	Phe	Arg 285	Ala	Thr	Phe					
Leu	Val 290	Ala	Ile	Ile	Ile	Gln 295	Leu	Ser	Ser	Tyr	C y s 300	Tyr	Gly	Gly	Glu					
Ty r 305	Ile	Lys	Gln	Gln	Ser 310	Leu	Ala	Ile	Ala	Gln 315	Ala	Val	Tyr	Gly	Gln 320					
Ile	Asn	Trp	Pro	Glu 325	Met	Thr	Pro	Lys	Lys 330	Arg	Arg	Leu	Trp	Gln 335	Met					
Val	Ile	Met	Arg 340	Ala	Gln	Arg	Pro	Ala 345	Lys	Ile	Phe	Gly	Phe 350	Met	Phe					
Val	Val	Asp 355	Leu	Pro	Leu	Leu	Leu 360	Trp	Val	Ile	Arg	Thr 365	Ala	Gly	Ser					
Phe	Leu 370	Ala	Met	Leu	Arg	Thr 375	Phe	Glu	Arg											
<211	> LE	EQ II	H: 80																	
		(PE: RGANI		Dros	soph:	ila M	Melar	nogas	ster	DO	DR59									
<400)> SE	EQUEN	ICE:	79																
atgo	cacga	aag o	caga-	taat	cg g	gaga	tgga	a cti	tttg	gtcg	cca	ctca	ggc 1	ttata	acacga	60				
acca	attac	ccc t	tgtt	gatc	tg g	atac	catc	g gt	tatt	gctg	gcc.	taat	ggc (ctatt	cagac	120				
tgca	atcta	aca 🤉	ggag-	tctg	tt t	ctgc	cgaa	a to	ggtti	ttca	atg	tgcc	agc 1	tgtgd	cgacgt	180				
ggt	gagga	agc a	atcc	catt	ct g	ctat	ttca	g ct	gttt	ccct	tcg	gaga	act 1	ttgc	gataac	240				
ttc	gttgt	ttg q	gata	cttg	gg a	cctt	ggta	t gc1	tctg	ggcc	tgg	gaat	cac (ggcta	atccca	300				
ttgt	ggca	aca d	cctt	tatc	ac t	tgcc [.]	tcat	g aa	gtac	gtaa	atc	tcaa	gct (gcaaa	atactc	360				
aaca	aagco	gag t	tgga	ggag	at g	gata [.]	ttac	c cga	actta	aatt	cca	aatt	ggt a	aatto	ggtcgc	420				
ctaa	actgo	cca q	gtga	gtta	ac c	ttct	ggca	a ate	gcaa	ctct	tca	agga	att 1	tgtaa	aaggaa	480				

												CO11	CIII	ueu		
cago	ctga	gga t	ttcg	aaaa-	tt t	gtaca	aggaa	a cta	acag	tatc	tga-	tttg	cgt (gcct	gtgatg	540
gca	gatt	ca t	ttat	cttc	tc g	gttci	tcati	t tgo	cttt	ctct	ttt	ttgc	ctt	gaca	gttggc	600
cac	gatga	aac 1	tgag	cctt	gc ti	tacti	tttct	t tgo	cgga	tggt	aca	actt	cga a	aatgo	cctttg	660
caga	aaaa	gc 1	tggt	tttt	at g	atgat	tgcat	t gc	ccaa	aggc	cga-	tgaa	gat (gcgc	gccctg	720
ctg	gtcg	att 1	tgaa	tctg	ag ga	accti	tcata	a gad	catte	ggcc	gtg	gagc	cta (cagct	tacttc	780
aati	ttgc	ge (gtag	ctcc	ca c	ttgta	at									807
<211 <212 <213	L> LE 2> TY 3> OF	NGTH PE:	ISM:	59 Dros	sophi	ila N	1elar	ıogas	ster	DC	DR59					
			NCE:													
Met 1	His	Glu	Ala	Asp 5	Asn	Arg	Glu	Met	Glu 10	Leu	Leu	Val	Ala	Thr 15	Gln	
Ala	Tyr	Thr	Arg 20	Thr	Ile	Thr	Leu	Leu 25	Ile	Trp	Ile	Pro	Ser 30	Val	Ile	
Ala	Gly	Leu 35	Met	Ala	Tyr	Ser	Asp 40	Сув	Ile	Tyr	Arg	Ser 45	Leu	Phe	Leu	
Pro	Lys 50	Ser	Val	Phe	Asn	Val 55	Pro	Ala	Val	Arg	Arg 60	Gly	Glu	Glu	His	
Pro 65	Ile	Leu	Leu	Phe	Gln 70	Leu	Phe	Pro	Phe	Gly 75	Glu	Leu	Сув	Asp	Asn 80	
Phe	Val	Val	Gly	Ty r 85	Leu	Gly	Pro	Trp	Ty r 90	Ala	Leu	Gly	Leu	Gly 95	Ile	
Thr	Ala	Ile	Pro	Leu	Trp	His	Thr	Phe	Ile	Thr	Сув	Leu	Met 110	Lys	Tyr	
Val	Asn	Leu 115	Lys	Leu	Gln	Ile	Leu 120	Asn	Lys	Arg	Val	Glu 125	Glu	Met	Asp	
Ile	Thr	Arg	Leu	Asn	Ser	Lys 135	Leu	Val	Ile	Gly	Arg 140	Leu	Thr	Ala	Ser	
Glu 145	Leu	Thr	Phe	Trp	Gln 150	Met	Gln	Leu	Phe	Lys 155	Glu	Phe	Val	Lys	Glu 160	
	Leu	Arg	Ile	Arg 165	Lys	Phe	Val	Gln	Glu 170	Leu	Gln	Tyr	Leu	Ile 175	Cys	
Val	Pro	Val	Met 180	Ala	Asp	Phe	Ile	Ile 185		Ser	Val	Leu	Ile 190		Phe	
Leu	Phe	Phe		Leu	Thr	Val	Gly 200		Asp	Glu	Leu	Ser 205		Ala	Tyr	
Phe	Ser 210		Gly	Trp	Tyr	Asn 215		Glu	Met	Pro	Leu 220		Lys	Met	Leu	
Val 225		Met	Met	Met	His 230		Gln	Arg	Pro	Met 235		Met	Arg	Ala	Leu 240	
	Val	Asp	Leu	Asn 245		Arg	Thr	Phe	Ile 250		Ile	Gly	Arg	Gly 255		
Tyr	Ser	Tyr	Phe 260	Asn	Leu	Leu	Arg	Ser 265		His	Leu	Tyr				

<210> SEQ ID NO 81 <211> LENGTH: 1143 <212> TYPE: DNA

<213> ORGANISM: Drosophila	a Melanogaster DC	DR68	
<400> SEQUENCE: 81			
atgtcaaagc taatcgaggt gtt	tctgggt aatctgtgga	cccagcgttt taccttcgcc	60
cgaatgggtt tggatttgca gcc	cgataaa aagggcaatg	ttttgcgatc tccgcttctt	120
tattgtatta tgtgtctgac aac	aagcttt gagctctgca	ccgtgtgcgc ctttatggtc	180
caaaatcgca accaaatcgt gct	ttgttcc gaggccctga	tgcacggact acagatggtc	240
tectegetae tgaagatgge tate	attcttg gccaaatctc	acgacctggt ggacctaatt	300
caacagattc agtcgccttt tac	agaggag gatcttgtag	gtacagagtg gagatcccaa	360
aatcaaaggg gacaactaat ggc	tgccatt tactttatga	tgtgtgccgg tacgagtgtg	420
tcatttctgt tgatgccagt ggc	tttgacc atgcttaagt	accattccac tggggaattc	480
gcgcctgtca gctcgttccg ggt	tctgctt ccatacgatg	tgacacaacc gcatgtttat	540
gccatggact gctgcttgat ggt	atttgtg ttaagttttt	tttgctgctc caccaccgga	600
gtggatacct tatatggatg gtg	tgcttta ggcgtgagtt	tacaataccg tcgcctcggt	660
caacaactta aaaggatacc ctc	ctgtttc aatccatctc	ggtctgactt tggattaagt	720
gggatttttg tggagcatgc tcg	tctgctt aaaatagtcc	aacattttaa ttatagtttt	780
atggagatcg catttgtgga ggt	tgttata atctgtggac	tctattgctc agtaatttgt	840
cagtatataa tgccacacac caa	ccaaaac ttcgcctttc	tgggtttctt ttcattggta	900
gttaccacac agctgtgcat cta	tcttttc ggtgccgaac	aggtccgttt ggaggctgag	960
cgattttccc ggctgctata cga	agtaatt ccttggcaaa	accttcctcc taaacaccgg	1020
aaacttttcc tttttccaat tga	gcgcgcc caacgagaaa	ctgttctcgg tgcttatttc	1080
ttcgaactag gcagacctct tct	tgtttgg gtaagcatat	tcctttttat tgtattatta	1140
ttt			1143
<pre><210> SEQ ID NO 82 <211> LENGTH: 381 <212> TYPE: PRT <213> ORGANISM: Drosophila <400> SEQUENCE: 82</pre>	a Melanogaster DC	DR68	
Met Ser Lys Leu Ile Glu Vo	al Phe Leu Gl y Asn	Leu Trp Thr Gln Arg	
Phe Thr Phe Ala Arg Met G	ly Leu Asp Leu Gln 25	Pro Asp Lys Lys Gly	
Asn Val Leu Arg Ser Pro Lo	eu Leu Tyr Cys Ile 40	Met Cys Leu Thr Thr	
Ser Phe Glu Leu Cys Thr Vo	-	Val Gln Asn Arg Asn	
Gln Ile Val Leu Cys Ser G	lu Ala Leu Met His 75	Gly Leu Gln Met Val	
Ser Ser Leu Leu Lys Met A	la Ile Phe Leu Ala 90	Lys Ser His Asp Leu 95	
Val Asp Leu Ile Gln Gln I.	le Gln Ser Pro Phe 105	Thr Glu Glu Asp Leu	
Val Gly Thr Glu Trp Arg So			

-continued
Ala Ile Tyr Phe Met Met Cys Ala Gly Thr Ser Val Ser Phe Leu Leu 130 135 140
Met Pro Val Ala Leu Thr Met Leu Lys Tyr His Ser Thr Gly Glu Phe 145 150 155 160
Ala Pro Val Ser Ser Phe Arg Val Leu Leu Pro Tyr Asp Val Thr Gln 165 170 175
Pro His Val Tyr Ala Met Asp Cys Cys Leu Met Val Phe Val Leu Ser 180 185 190
Phe Phe Cys Cys Ser Thr Thr Gly Val Asp Thr Leu Tyr Gly Trp Cys 195 200 205
Ala Leu Gly Val Ser Leu Gln Tyr Arg Arg Leu Gly Gln Gln Leu Lys 210 215 220
Arg Ile Pro Ser Cys Phe Asn Pro Ser Arg Ser Asp Phe Gly Leu Ser 225 230 235 240
Gly Ile Phe Val Glu His Ala Arg Leu Leu Lys Ile Val Gln His Phe 245 250 255
Asn Tyr Ser Phe Met Glu Ile Ala Phe Val Glu Val Val Ile Ile Cys 260 265 270
Gly Leu Tyr Cys Ser Val Ile Cys Gln Tyr Ile Met Pro His Thr Asn 275 280 285
Gln Asn Phe Ala Phe Leu Gly Phe Phe Ser Leu Val Val Thr Thr Gln 290 295 300
Leu Cys Ile Tyr Leu Phe Gly Ala Glu Gln Val Arg Leu Glu Ala Glu 305 310 315 320
Arg Phe Ser Arg Leu Leu Tyr Glu Val Ile Pro Trp Gln Asn Leu Pro 325 330 335
Pro Lys His Arg Lys Leu Phe Leu Phe Pro Ile Glu Arg Ala Gln Arg 340 345 350
Glu Thr Val Leu Gly Ala Tyr Phe Phe Glu Leu Gly Arg Pro Leu Leu 355 360 365
Val Trp Val Ser Ile Phe Leu Phe Ile Val Leu Leu Phe 370 375 380
<210> SEQ ID NO 83 <211> LENGTH: 927 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR77
<400> SEQUENCE: 83
atggaattga tgcgagtgcc agtacagttt tacagaacga ttggagagga tatctacgcc 60
catcgatcca cgaatcccct aaaatcgctt ctcttcaaga tctatctata tgcgggattc 120
ataaatttta atctgttggt aatcggtgaa ctggtgttct tctacaactc aattcaggac 180
tttgaaacca ttcgattggc catcgcggtg gctccatgta tcggattttc tctggttgct 240
gattttaaac aagctgccat gattagaggc aagaaaacac taattatgct actcgatgat 300
ttggagaaca tgcatccgaa aaccctggca aagcaaatgg aatacaaatt gccggacttt 360
gaaaagacca tgaaacgtgt gatcaatata ttcacctttc tctgcttggc ctatacgact 420
acgttctcct tttatccggc catcaaggca tccgtgaaat ttaatttctt gggctacgac 480
acctttgatc gaaattttgg tttcctcatc tggtttccct tcgatgcaac aaggaataat 540

ttgatatact ggatcatgta ctgggacata gcccatgggg cctatctagc ggcctttcag 600

660720780840900

											con	tin	uea	
gtcaccga	aat c	caaca	agtg	ga a	gtga	ttatt	t att	tact	gca	ttt	tttt	gat o	gacci	tcgatg
gttcaggt	at t	tate	ggtgt	tg c	tacta	atgg	g gat	acti	taa	ttg	ccgc	gag (cttga	aaagtg
ggcgatgo	ccg c	cttac	caaco	ca a	aagt	ggttt	t ca	gtgca	agca	aato	ccta	ttg (cacca	atgttg
aagttgct	aa t	cate	gagga	ag to	caga	aacca	a gct	tcaa	ataa	gac	egee	gac 1	tttt	ccccc
atatcctt	gg t	taco	ctata	at g	aagaa	atcco	tto	caaca	aatc	taco	ccaa	aca d	cagct	tcttcc
ctgcaaat	ca a	acgco	caato	eg e	tata	tc								
<210> SE <211> LE <212> TY <213> OF	NGTH PE:	: 30 PRT SM:)9 Dros	sophi	ila N	Melan	ıogas	ster	DO	DR77				
<400> SE	_													
Met Glu 1	Leu	Met	Arg 5	Val	Pro	Val	Gln	Phe 10	Tyr	Arg	Thr	Ile	Gly 15	Glu
Asp Ile	Tyr	Ala 20	His	Arg	Ser	Thr	Asn 25	Pro	Leu	Lys	Ser	Leu 30	Leu	Phe
Lys Ile	Ty r 35	Leu	Tyr	Ala	Gly	Phe 40	Ile	Asn	Phe	Asn	Leu 45	Leu	Val	Ile
Gly Glu 50	Leu	Val	Phe	Phe	Tyr 55	Asn	Ser	Ile	Gln	Asp 60	Phe	Glu	Thr	Ile
Arg Leu 65	Ala	Ile	Ala	Val 70	Ala	Pro	Cys	Ile	Gl y 75	Phe	Ser	Leu	Val	Ala 80
Asp Phe	Lys	Gln	Ala 85	Ala	Met	Ile	Arg	Gl y 90	Lys	Lys	Thr	Leu	Ile 95	Met
Leu Leu	Asp	Asp 100	Leu	Glu	Asn	Met	His 105	Pro	Lys	Thr	Leu	Ala 110	Lys	Gln
Met Glu	Tyr 115	Lys	Leu	Pro	Asp	Phe 120	Glu	Lys	Thr	Met	L y s 125	Arg	Val	Ile
Asn Ile 130	Phe	Thr	Phe	Leu	C y s 135	Leu	Ala	Tyr	Thr	Thr 140	Thr	Phe	Ser	Phe
Tyr Pro 145	Ala	Ile	Lys	Ala 150	Ser	Val	Lys	Phe	Asn 155	Phe	Leu	Gly	Tyr	Asp 160
Thr Phe	Asp	Arg	Asn 165	Phe	Gly	Phe	Leu	Ile 170	Trp	Phe	Pro	Phe	Asp 175	Ala
Thr Arg		Asn 180		Ile	Tyr		Ile 185		Tyr	Trp		Ile 190	Ala	His
Gly Ala	Ty r 195	Leu	Ala	Ala	Phe	Gln 200	Val	Thr	Glu	Ser	Thr 205	Val	Glu	Val
Ile Ile 210	Ile	Tyr	Cys	Ile	Phe 215	Leu	Met	Thr	Ser	Met 220	Val	Gln	Val	Phe
Met Val 225	Cys	Tyr	Tyr	Gly 230	Asp	Thr	Leu	Ile	Ala 235	Ala	Ser	Leu	Lys	Val 240
Gly Asp	Ala	Ala	Tyr 245	Asn	Gln	Lys	Trp	Phe 250	Gln	Суѕ	Ser	Lys	Ser 255	Tyr
Cys Thr	Met	Leu 260	Lys	Leu	Leu	Ile	Met 265	Arg	Ser	Gln	Lys	Pro 270	Ala	Ser
Ile Arg	Pro 275	Pro	Thr	Phe	Pro	Pro 280	Ile	Ser	Leu	Val	Thr 285	Tyr	Met	Lys
Asn Pro 290	Phe	Asn	Asn	Leu	Pro 295	Lys	His	Ser	Ser	Ser 300	Leu	Gln	Ile	Asn

```
Ala Asn Arg Tyr Ile
305
<210> SEQ ID NO 85
<211> LENGTH: 1152
<212> TYPE: DNA
<213> ORGANISM: Drosophila Melanogaster DOR78
<400> SEQUENCE: 85
atgaagttca tgaagtacgc agttttcttt tacacatcgg tgggcattga gccgtatacg
                                                                      60
attgactcgc ggtccaaaaa agcgagccta tggtcacatc ttctcttctg ggccaatgtg
                                                                     120
atcaatttaa gtgtcattgt tttcggagag atcctctatc tgggagtggc ctattccgat
                                                                     180
ggaaagttca ttgatgccgt cactgtactg tcatatatcg gattcgtaat cgtgggcatg
                                                                     240
agcaagatgt tcttcatatg gtggaagaag accgatctaa gcgatttggt taaggaattg
                                                                     300
gagcacatct atccaaatgg caaagctgag gaggagatgt atcggttgga taggtatctg
cgatcttgtt cacgaattag cattacctat gcactactct actccgtact catctggacc
ttcaatctgt tcagtatcat gcaattcctt gtctatgaaa agttgcttaa aatccgagtg
                                                                     480
gtcggccaaa cgctgccata tttgatgtac tttccctgga actggcatga aaactggacg
                                                                     540
tattatgtgc tgctgttctg tcaaaacttc gcaggacata cttcggcatc gggacagatc
                                                                     600
tctacqqatc ttttqctttq tqctqttqct acccaqqtqq taatqcactt cqattacttq
                                                                     660
qccaqaqtqq tqqaaaaaca aqtqttaqat cqcqattqqa qcqaaaactc caqatttttq
                                                                     720
gcaaaaactg tacaatatca tcagcgcatt cttcggctaa tggacgttct caacgatata
ttcgggatac cgctactgct taactttatg gtctccacat ttgtcatctg ctttgtggga
ttccaaatga ccgtgggtgt cccgccggac atcatgatta agctcttctt gttcctgttc
                                                                     900
tcgtccttgt cgcaagtgta cttgatatgc cactacggcc agctgattgc cgatgcggta
                                                                     960
agagactttc gaagctctag cttatcgatt tctgcatata agcagaattg gcaaaatgct
                                                                    1020
qacattcqct atcqtcqqqc tctqqtattc tttataqctc qacctcaqaq qacaacttat
                                                                    1080
ctaaaaqcta caattttcat qaatataaca aqqqccacca tqacqqacqt aaqatacaat
                                                                    1140
ttgaaatgtc at
                                                                    1152
<210> SEQ ID NO 86
<211> LENGTH: 384
<212> TYPE: PRT
<213> ORGANISM: Drosophila Melanogaster
                                           DOR78
<400> SEOUENCE: 86
Met Lys Phe Met Lys Tyr Ala Val Phe Phe Tyr Thr Ser Val Gly Ile
Glu Pro Tyr Thr Ile Asp Ser Arg Ser Lys Lys Ala Ser Leu Trp Ser
His Leu Leu Phe Trp Ala Asn Val Ile Asn Leu Ser Val Ile Val Phe
Gly Glu Ile Leu Tyr Leu Gly Val Ala Tyr Ser Asp Gly Lys Phe Ile
Asp Ala Val Thr Val Leu Ser Tyr Ile Gly Phe Val Ile Val Gly Met
Ser Lys Met Phe Phe Ile Trp Trp Lys Lys Thr Asp Leu Ser Asp Leu
```

-concinued	
85 90 95	
Val Lys Glu Leu Glu His Ile Tyr Pro Asn Gly Lys Ala Glu Glu Glu 100 105 110	
Met Tyr Arg Leu Asp Arg Tyr Leu Arg Ser Cys Ser Arg Ile Ser Ile 115 120 125	
Thr Tyr Ala Leu Leu Tyr Ser Val Leu Ile Trp Thr Phe Asn Leu Phe 130 135 140	
Ser Ile Met Gln Phe Leu Val Tyr Glu Lys Leu Leu Lys Ile Arg Val 145 150 155 160	
Val Gly Gln Thr Leu Pro Tyr Leu Met Tyr Phe Pro Trp Asn Trp His 165 170 175	
Glu Asn Trp Thr Tyr Tyr Val Leu Leu Phe Cys Gln Asn Phe Ala Gly 180 185 190	
His Thr Ser Ala Ser Gly Gln Ile Ser Thr Asp Leu Leu Cys Ala 195 200 205	
Val Ala Thr Gln Val Val Met His Phe Asp Tyr Leu Ala Arg Val Val 210 215 220	
Glu Lys Gln Val Leu Asp Arg Asp Trp Ser Glu Asn Ser Arg Phe Leu 225 230 235 240	
Ala Lys Thr Val Gln Tyr His Gln Arg Ile Leu Arg Leu Met Asp Val 245 250 255	
Leu Asn Asp Ile Phe Gly Ile Pro Leu Leu Leu Asn Phe Met Val Ser 260 265 270	
Thr Phe Val Ile Cys Phe Val Gly Phe Gln Met Thr Val Gly Val Pro 275 280 285	
Pro Asp Ile Met Ile Lys Leu Phe Leu Phe Leu Phe Ser Ser Leu Ser 290 295 300	
Gln Val Tyr Leu Ile Cys His Tyr Gly Gln Leu Ile Ala Asp Ala Val 305 310 315 320	
Arg Asp Phe Arg Ser Ser Ser Leu Ser Ile Ser Ala Tyr Lys Gln Asn 325 330 335	
Trp Gln Asn Ala Asp Ile Arg Tyr Arg Arg Ala Leu Val Phe Phe Ile 340 345 350	
Ala Arg Pro Gln Arg Thr Thr Tyr Leu Lys Ala Thr Ile Phe Met Asn 355 360 365	
Ile Thr Arg Ala Thr Met Thr Asp Val Arg Tyr Asn Leu Lys Cys His 370 375 380	
<210> SEQ ID NO 87 <211> LENGTH: 1203 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR81	
<400> SEQUENCE: 87	
atgatggaga cgctgcgaaa ttcgggcttg aatttgaaga acgatttcgg tataggccgc	c 60
aagatttgga gggtgttttc gttcacctac aatatggtga tacttcccgt aagtttccca	a 120
atcaactatg tgatacatct ggcggagttc ccgccggagc tgctgctgca atccctgcaa	a 180
ctgtgcctca acacttggtg cttcgctctg aagttcttca ctctgatcgt ctatacgcac	c 240
cgcttggagc tggccaacaa gcactttgac gaattggata agtactgcgt gaagccggc	g 300
gagaagcgca aggttcgcga catggtggcc actattacaa gactgtacct gaccttcgtc	c 360

gtggtctacg	tcctctacgc	cacctccacg	ctactggacg	gactactgca	ccaccgtgtt	420
ccctacaata	cgtactatcc	gttcataaac	tggcgagtcg	atcggaccca	gatgtacatc	480
cagagttttc	tggagtactt	caccgtgggt	tatgccatat	atgtggccac	cgccaccgat	540
tcctaccctg	tgatttacgt	ggcagccctg	cgaactcata	ttctcttgct	caaggaccgt	600
atcatttact	tgggcgatcc	cagcaacgag	ggtagcagcg	acccgagcta	catgtttaaa	660
tcgttggtgg	attgtatcaa	ggcacacaga	accatgctaa	agtgcagttt	ttgtgatgcc	720
attcaaccaa	tcatctctgg	cacgatattt	gcccaattca	tcatatgcgg	atcgatcctg	780
ggcataatta	tgatcaacat	ggtattgttc	gctgatcaat	cgacccgatt	cggcatagtc	840
atctacgtta	tggccgtcct	tctgcagact	tttccgcttt	gcttctactg	caacgccatc	900
gtggacgact	gcaaagaact	ggcccacgca	cttttccatt	ccgcctggtg	ggtgcaggac	960
aagcgatacc	agcggactgt	catccagttc	ctgcagaaac	tgcagcagcc	catgaccttc	1020
accgccatga	acatatttaa	cattaatttg	gccactaaca	tcaatgtaag	tccactgctc	1080
tcggttagaa	cggggaagga	agcaaagtcc	gaacttcaat	ccttgcaggt	agccaagttc	1140
gccttcaccg	tgtacgccat	cgcgagcggt	atgaacctgg	accaaaagtt	aagcattaag	1200
gaa						1203

<210> SEQ ID NO 88 <211> LENGTH: 399

<212> TYPE: PRT

<213> ORGANISM: Drosophila Melanogaster DOR81

<400> SEQUENCE: 88

Met Met Glu Thr Leu Arg Asn Ser Gly Leu Asn Leu Lys Asn Asp Phe 1 $$ 10 $$ 15

Gly Ile Gly Arg Lys Ile Trp Arg Val Phe Ser Phe Thr Tyr Asn Met $20 \\ 25 \\ 30$

Val Ile Leu Pro Val Ser Phe Pro Ile Asn Tyr Val Ile His Leu Ala 35 404045

Glu Phe Pro Pro Glu Leu Leu Gln Ser Leu Gln Leu Cys Leu Asn 50 60

Thr Trp Cys Phe Ala Leu Lys Phe Phe Thr Leu Ile Val Tyr Thr His 65 70 75 80

Arg Leu Glu Leu Ala Asn Lys His Phe Asp Glu Leu Asp Lys Tyr Cys 85 90 95

Val Lys Pro Ala Glu Lys Arg Lys Val Arg Asp Met Val Ala Thr Ile $100 \hspace{1.5cm} 100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Thr Arg Leu Tyr Leu Thr Phe Val Val Val Tyr Val Leu Tyr Ala Thr $115 \ \ 120 \ \ 125$

Tyr Tyr Pro Phe Ile Asn Trp Arg Val Asp Arg Thr Gln Met Tyr Ile 145 150150155155

Gln Ser Phe Leu Glu Tyr Phe Thr Val Gly Tyr Ala Ile Tyr Val Ala 165 170 175

Thr Ala Thr Asp Ser Tyr Pro Val Ile Tyr Val Ala Ala Leu Arg Thr 185

His Ile Leu Leu Leu Lys Asp Arg Ile Ile Tyr Leu Gly Asp Pro Ser $195 \hspace{1.5cm} 200 \hspace{1.5cm} 200 \hspace{1.5cm} 205 \hspace{1.5cm}$

Asn Glu Gly Ser Ser Asp Pro Ser Tyr Met Phe Lys Ser Leu Val Asp Cys Ile Lys Ala His Arg Thr Met Leu Asn Phe Cys Asp Ala Ile Gln 235 Pro Ile Ile Ser Gly Thr Ile Phe Ala Gln Phe Ile Ile Cys Gly Ser Ile Leu Gly Ile Ile Met Ile Asn Met Val Leu Phe Ala Asp Gln Ser Thr Arg Phe Gly Ile Val Ile Tyr Val Met Ala Val Leu Leu Gln Thr 275 280 285 Phe Pro Leu Cys Phe Tyr Cys Asn Ala Ile Val Asp Asp Cys Lys Glu Leu Ala His Ala Leu Phe His Ser Ala Trp Trp Val Gln Asp Lys Arg Tyr Gln Arg Thr Val Ile Gln Phe Leu Gln Lys Leu Gln Gln Pro Met Thr Phe Thr Ala Met Asn Ile Phe Asn Ile Asn Leu Ala Thr Asn Ile Asn Val Ser Pro Leu Leu Ser Val Arg Thr Gly Lys Glu Ala Lys Ser Glu Leu Gln Ser Leu Gln Val Ala Lys Phe Ala Phe Thr Val Tyr Ala Ile Ala Ser Gly Met Asn Leu Asp Gln Lys Leu Ser Ile Lys Glu <210> SEQ ID NO 89 <211> LENGTH: 1179 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR82 <400> SEOUENCE: 89 atggcatgca taccaagata tcaatggaaa ggacgcccta ctgaaagaca gttctacgct 60 toggagcaaa ggatagtgtt cottottgga accatttgcc agatattcca gattactgga 120 qtqcttatct attqqtattq caatqqccqt cttqccacqq aaacqqqcac ctttqtqqca 180 caattatctg aaatgtgcag ttctttttgt ctaacatttg tgggattctg taacgtttat gcgatctcta caaaccgcaa tcaaattgaa acattactcg aggagcttca tcagatatat 300 ccgagataca ggaaaaatca ctatcgctgc cagcattatt ttgacatggc catgacaata 360 atgagaattg agtttctttt ctatatgatc ttgtacgtgt actacaatag tgcaccatta 420 tgggtgcttc tttgggaaca cttgcacgag gaatatgatc ttagcttcaa gacgcagacc 480 aacacttggt ttccatggaa agtccatggg tcggcacttg gatttggtat ggctgtacta 540 agcataaccq tqqqatcctt tqtqqqcqta qqtttcaqta ttqtcaccca qaatcttatc 600 tgtttgttaa ccttccaact aaagttgcac tacgatggaa tatccagtca gttagtatct ctcgattgcc gtcgtcctgg agctcataag gagttgagca tcctcatcgc ccaccacagc cgaatccttc agctgggcga ccaagtcaat gacataatga actttgtatt cggctctagc 780 ctagtaggtg ccactattgc catttgtatg tcaagtgttt ctataatgct actggactta 840 gcatctgcct tcaaatatgc cagtggtcta gtggcattcg tcctctacaa ctttgtcatc 900 tgctacatgg gaaccgaggt cactttagct gtgaagattg gttcatatat ggacggaagg 960

cggtggatac ccaaagattc gttgctgaga tctcagaggc tacaggtgct cgtcgcagt	t 1020
ggatttttta atatatgtgt cctctcgaat cgtcgtccta aaattgaaat tttgcttag.	a 1080
tattattacc atattatgtt ttattcattt aaattatatt tttctttaag gaaaggtag	1140
ctttggaaaa tcttgtcttc tttcacctta ttgaggatc	1179
<210> SEQ ID NO 90 <211> LENGTH: 393 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR82	
<400> SEQUENCE: 90	
Met Ala Cys Ile Pro Arg Tyr Gln Trp Lys Gly Arg Pro Thr Glu Arg 1 5 10 15	
Gln Phe Tyr Ala Ser Glu Gln Arg Ile Val Phe Leu Leu Gly Thr Ile 20 25 30	
Cys Gln Ile Phe Gln Ile Thr Gly Val Leu Ile Tyr Trp Tyr Cys Asn 35 40 45	
Gly Arg Leu Ala Thr Glu Thr Gly Thr Phe Val Ala Gln Leu Ser Glu 50 60	
Met Cys Ser Ser Phe Cys Leu Thr Phe Val Gly Phe Cys Asn Val Tyr 65 70 70 80	
Ala Ile Ser Thr Asn Arg Asn Gln Ile Glu Thr Leu Leu Glu Glu Leu 85 90 95	
His Gln Ile Tyr Pro Arg Tyr Arg Lys Asn His Tyr Arg Cys Gln His	
Tyr Phe Asp Met Ala Met Thr Ile Met Arg Ile Glu Phe Leu Phe Tyr 115 120 125	
Met Ile Leu Tyr Val Tyr Tyr Asn Ser Ala Pro Leu Trp Val Leu Leu 130 135 140	
Trp Glu His Leu His Glu Glu Tyr Asp Leu Ser Phe Lys Thr Gln Thr 145 150 150 155 160	
Asn Thr Trp Phe Pro Trp Lys Val His Gly Ser Ala Leu Gly Phe Gly 165 170 175	
Met Ala Val Leu Ser Ile Thr Val Gly Ser Phe Val Gly Val Gly Phe 180 185 190	
Ser Ile Val Thr Gln Asn Leu Ile Cys Leu Leu Thr Phe Gln Leu Lys 195 200 205	
Leu His Tyr Asp Gly Ile Ser Ser Gln Leu Val Ser Leu Asp Cys Arg 210 215 220	
Arg Pro Gly Ala His Lys Glu Leu Ser Ile Leu Ile Ala His His Ser 225 230 235 240	
Arg Ile Leu Gln Leu Gly Asp Gln Val Asn Asp Ile Met Asn Phe Val 245 250 255	
Phe Gly Ser Ser Leu Val Gly Ala Thr Ile Ala Ile Cys Met Ser Ser 260 265 270	
Val Ser Ile Met Leu Leu Asp Leu Ala Ser Ala Phe Lys Tyr Ala Ser 275 280 285	
Gly Leu Val Ala Phe Val Leu Tyr Asn Phe Val Ile Cys Tyr Met Gly 290 295 300	
Thr Glu Val Thr Leu Ala Val Lys Ile Gly Ser Tyr Met Asp Gly Arg 305 310 315 320	

Arg Trp Ile Pro Lys Asp Ser Leu Leu Arg Ser Gln Arg Leu Gln Val Leu Val Ala Val Gly Phe Phe Asn Ile Cys Val Leu Ser Asn Arg Arg 340 345 Pro Lys Ile Glu Ile Leu Leu Arg Tyr Tyr Tyr His Ile Met Phe Tyr Ser Phe Lys Leu Tyr Phe Ser Leu Arg Lys Gly Ser Leu Trp Lys Ile Leu Ser Ser Phe Thr Leu Leu Arg Ile 390 <210> SEO ID NO 91 <211> LENGTH: 1209 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR83 <400> SEQUENCE: 91 atgcagttgg aggactttat gcggtacccg gacctcgtgt gtcaagcggc ccaacttccc agatacacgt ggaatggcag acgatccttg gaagttaaac gcaacttggc aaaacgcatt 120 180 atcttctggc ttggagcagt aaatttggtt tatcacaata ttggctgcgt catgtatggc tatttcggtg atggaagaac aaaggatcca attgcgtatt tagctgaatt ggcatctgtg 240 qccaqcatqc ttqqtttcac cattqtqqqc accctcaact tqtqqaaqat qctqaqcctt 300 aaqacccatt ttqaqaacct actaaatqaa ttcqaqqaat tatttcaact aatcaaqcac 360 agggcgtatc gcatacacca ctatcaagaa aagtatacgc gtcatatacg aaatacattt 420 attttccata cctctgccgt tgtctactac aactcactac caattcttct aatgattcgg gaacatttct cgaactcaca gcagttgggc tatagaattc agagtaatac ctggtatccc 540 tggcaggttc agggatcaat tcctggattt tttgctgcag tcgcctgtca aatcttttcg 600 ${\tt tgccaaacca\ atatgtgcgt\ caatatgttt\ atccagtttc\ tgatcaactt\ ttttggtatc}$ 660 cagctagaaa tacacttcga tggtttggcc aggcagctgg agaccatcga tgcccgcaat 720 ccccatqcca aggatcaatt qaaqtatctq attqtatatc acacaaaatt qcttaatcta 780 gccgacagag ttaatcgatc gtttaacttt acgtttctca taagtctgtc ggtatccatg 840 atatccaact gttttctggc attttccatg accatgttcg actttggcac ctctctaaaa 900 catttactcg gacttttgct attcatcaca tataattttt caatgtgccg cagtggtacg 960 cacttgattt taacgagtgg caaagtattg ccagcggcct tttataacaa ttggtatgaa 1020 ggcgatcttg tttatcgaag gatgctcctc atcctgatga tgcgtgctac gaaaccttat 1080 atgtqqaaaa cctacaaqct qqcacctqta tccataacta catatatqqc aqaatqcaaa 1140 acaaaaqaaq cccatqaaca acqccatttt aqacqccatq aaaqacaaaa acctcqqqtt 1200 gcacgaata 1209 <210> SEQ ID NO 92 <211> LENGTH: 403 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR83 <400> SEQUENCE: 92 Met Gln Leu Glu Asp Phe Met Arg Tyr Pro Asp Leu Val Cys Gln Ala

10

117

Oct. 2, 2003

Ala Gln Leu Pro Arg Tyr Thr Trp Asn Gly Arg Arg Ser Leu Glu Val Lys Arg Asn Leu Ala Lys Arg Ile Ile Phe Trp Leu Gly Ala Val Asn 35 40 45 Gly Arg Thr Lys Asp Pro Ile Ala Tyr Leu Ala Glu Leu Ala Ser Val 65 70 75 80 Ala Ser Met Leu Gly Phe Thr Ile Val Gly Thr Leu Asn Leu Trp Lys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ Met Leu Ser Leu Lys Thr His Phe Glu Asn Leu Leu Asn Glu Phe Glu Glu Leu Phe Gln Leu Ile Lys His Arg Ala Tyr Arg Ile His His Tyr 115 120 125 Gln Glu Lys Tyr Thr Arg His Ile Arg Asn Thr Phe Ile Phe His Thr Ser Ala Val Val Tyr Tyr Asn Ser Leu Pro Ile Leu Leu Met Ile Arg 145 150150155155 Glu His Phe Ser Asn Ser Gln Gln Leu Gly Tyr Arg Ile Gln Ser Asn 165 \$170\$Thr Trp Tyr Pro Trp Gln Val Gln Gly Ser Ile Pro Gly Phe Phe Ala \$180\$Ala Val Ala Cys Gln Ile Phe Ser Cys Gln Thr Asn Met Cys Val Asn Met Phe Ile Gln Phe Leu Ile Asn Phe Phe Gly Ile Gln Leu Glu Ile His Phe Asp Gly Leu Ala Arg Gln Leu Glu Thr Ile Asp Ala Arg Asn Pro His Ala Lys Asp Gln Leu Lys Tyr Leu Ile Val Tyr His Thr Lys 245 250 255 250 Leu Leu Asn Leu Ala Asp Arg Val Asn Arg Ser Phe Asn Phe Thr Phe Leu Ile Ser Leu Ser Val Ser Met Ile Ser Asn Cys Phe Leu Ala Phe Ser Met Thr Met Phe Asp Phe Gly Thr Ser Leu Lys His Leu Leu Gly 290 295 300Leu Leu Phe Ile Thr Tyr Asn Phe Ser Met Cys Arg Ser Gly Thr 305 310 315 320 Asn Trp Tyr Glu Gly Asp Leu Val Tyr Arg Arg Met Leu Leu Ile Leu 340 \$345Met Met Arg Ala Thr Lys Pro Tyr Met Trp Lys Thr Tyr Lys Leu Ala 355 360 365 Pro Val Ser Ile Thr Thr Tyr Met Ala Glu Cys Lys Thr Lys Glu Ala His Glu Gln Arg His Phe Arg Arg His Glu Arg Gln Lys Pro Arg Val Ala Arg Ile

```
<211> LENGTH: 858
<212> TYPE: DNA
<213> ORGANISM: Drosophila Melanogaster DOR84
<400> SEOUENCE: 93
atggtgttta gtttttatgc cgaggtagcg actctggtgg acaggttacg cgataatgaa
                                                                      60
aattttctcg agagctgcat cttactgagc tacgtgtcct ttgtggtcat gggcctctcc
aagataggtg ctgtaatgaa aaaaaagcca aaaatgacag ctttggtcag gcaattggag
acctgctttc cgtcgccaag tgcaaaggtt caagaggaat atgctgtgaa gtcctggctg
                                                                     240
aaacgctgcc atatatacac aaagggattt ggtggtctct tcatgatcat gtatttcgct
                                                                     300
cacgetetga ttecettatt catatactte atteaaagag tgetgeteea etateeggat
                                                                     360
qccaaqcaqa ttatqccqtt ttaccaactc qaaccttqqq aatttcqcqa ctcctqqttq
                                                                     420
ttttatccaa gctattttca ccagtcgtcg gccggatata cggctacatg tggatccatt
                                                                     480
gccggtgacc taatgatctt cgctgtggtc ctgcaggtca tcatgcacta cgaaagactg
                                                                     600
gccaaggttc ttagggagtt taagattcaa gcccataacg cacccaatgg agctaaggag
gatataagga agttgcagtc cctagtcgcc aatcacattg atatacttcg actcactgat
                                                                     660
ctgatgaacg aggtctttgg aattcccttg ttgctaaact ttattgcatc tgcgctgctg
                                                                     720
gtctgcctgg tgggagttca attaaccatc gctttaagtc cagagtattt ttgcaagcag
                                                                     780
atgctatttc tgatttccgt actgcttgag gtctatctcc tttgctcctt cagccagagg
                                                                     840
ttaatagatg ctgtatgt
<210> SEQ ID NO 94
<211> LENGTH: 286
<212> TYPE: PRT
<213> ORGANISM: Drosophila Melanogaster DOR84
<400> SEOUENCE: 94
Met Val Phe Ser Phe Tyr Ala Glu Val Ala Thr Leu Val Asp Arg Leu
Arg Asp Asn Glu Asn Phe Leu Glu Ser Cys Ile Leu Leu Ser Tyr Val
Ser Phe Val Val Met Gly Leu Ser Lys Ile Gly Ala Val Met Lys Lys
Lys Pro Lys Met Thr Ala Leu Val Arg Gln Leu Glu Thr Cys Phe Pro
Ser Pro Ser Ala Lys Val Gln Glu Glu Tyr Ala Val Lys Ser Trp Leu
Lys Arg Cys His Ile Tyr Thr Lys Gly Phe Gly Gly Leu Phe Met Ile
Met Tyr Phe Ala His Ala Leu Ile Pro Leu Phe Ile Tyr Phe Ile Gln
Arg Val Leu Leu His Tyr Pro Asp Ala Lys Gln Ile Met Pro Phe Tyr
Gln Leu Glu Pro Trp Glu Phe Arg Asp Ser Trp Leu Phe Tyr Pro Ser
                        135
Tyr Phe His Gln Ser Ser Ala Gly Tyr Thr Ala Thr Cys Gly Ser Ile
145
                   150
                                        155
Ala Gly Asp Leu Met Ile Phe Ala Val Val Leu Gln Val Ile Met His
```

<210> SEQ ID NO 93

119

165 170 175	
Tyr Glu Arg Leu Ala Lys Val Leu Arg Glu Phe Lys Ile Gln Ala His 180 185 190	
Asn Ala Pro Asn Gly Ala Lys Glu Asp Ile Arg Lys Leu Gln Ser Leu 195 200 205	
Val Ala Asn His Ile Asp Ile Leu Arg Leu Thr Asp Leu Met Asn Glu 210 215 220	
Val Phe Gly Ile Pro Leu Leu Leu Asn Phe Ile Ala Ser Ala Leu Leu 225 230 235 240	
Val Cys Leu Val Gly Val Gln Leu Thr Ile Ala Leu Ser Pro Glu Tyr 245 250 255	
Phe Cys Lys Gln Met Leu Phe Leu Ile Ser Val Leu Leu Glu Val Tyr 260 265 270	
Leu Leu Cys Ser Phe Ser Gln Arg Leu Ile Asp Ala Val Cys 275 280 285	
<210> SEQ ID NO 95 <211> LENGTH: 1155 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR91	
<400> SEQUENCE: 95	
atggttcgtt acgtgccccg gttcgctgat ggtcagaaag taaagttggc ttggcccttg	60
gcggtttttc ggttaaatca catattctgg ccattggatc cgagcacagg gaaatggggc	120
cgatatctgg acaaggttct agctgttgcg atgtccttgg tttttatgca acacaacgat	180
gcagagctga ggtacttgcg cttcgaggca agtaatcgga atttggatgc ctttctcaca	240
ggaatgccaa cgtatttaat cctcgtggag gctcaattta gaagtcttca cattctactg	300
cacttcgaga agcttcagaa gtttttagaa atattctacg caaatattta tattgatccc	360
cgtaaggaac ccgaaatgtt tcgaaaagtg gatggaaaga tgataattaa cagattagtt	420
toggocatgt acggtgcagt tatctctctg tatctaatcg cacccgtttt ttccatcatt	480
aaccaaagca aagattttct atactctatg atctttccgt tcgattcgga tcccttgtac	540
atatttgtgc cactgctttt gacaaacgta tgggttggca ttgtaataga taccatgatg	600
ttcggggaga cgaatttgtt gtgtgaacta attgtccacc taaatggtag ttatatgttg	660
ctcaagaggg acttgcagtt ggccattgaa aagatattag ttgcaaggga ccgtccgcat	720
atggccaaac agctaaaggt tttaattaca aaaactctcc gaaagaatgt ggctctaaat	780
cagtttggcc agcagctgga ggctcagtat actgtgcggg tttttattat gtttgcattc	840
gctgcgggcc ttttatgtgc tctttctttt aaggcttata cgacggattc cctcagcaca	900
atgtactacc ttacccattg ggagcaaatc ctgcagtact ctacaaatcc cagcgaaaat	960
ctgcgattac taaagctcat taacttggcc attgagatga acagcaagcc cttctatgtg	1020
acagggctaa aatattttcg cgttagtctg caggctggct taaaacgtca aaagtttctg	1080
cggtctgcca gctcatccac ccttagcacc gctgatgtgt tggcatttgc ttttgctttt	1140
actcgctggc tgctt	1155
<210> SEQ ID NO 96	

<210> SEQ ID NO 96 <211> LENGTH: 385 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR91

<400)> SE	QUEN	ICE:	96											
Met 1	Val	Arg	Tyr	Val 5	Pro	Arg	Phe	Ala	Asp 10	Gly	Gln	Lys	Val	Lys 15	Leu
Ala	Trp	Pro	Leu 20	Ala	Val	Phe	Arg	Leu 25	Asn	His	Ile	Phe	Trp 30	Pro	Leu
Asp	Pro	Ser 35	Thr	Gly	Lys	Trp	Gly 40	Arg	Tyr	Leu	Asp	Lys 45	Val	Leu	Ala
Val	Ala 50	Met	Ser	Leu	Val	Phe 55	Met	Gln	His	Asn	Asp 60	Ala	Glu	Leu	Arg
Tyr 65	Leu	Arg	Phe	Glu	Ala 70	Ser	Asn	Arg	Asn	Leu 75	Asp	Ala	Phe	Leu	Thr 80
Gly	Met	Pro	Thr	Ty r 85	Leu	Ile	Leu	Val	Glu 90	Ala	Gln	Phe	Arg	Ser 95	Leu
His	Ile	Leu	Leu 100	His	Phe	Glu	Lys	Leu 105	Gln	Lys	Phe	Leu	Glu 110	Ile	Phe
Tyr	Ala	Asn 115	Ile	Tyr	Ile	Asp	Pro 120	Arg	Lys	Glu	Pro	Glu 125	Met	Phe	Arg
Lys	Val 130	Asp	Gly	Lys	Met	Ile 135	Ile	Asn	Arg	Leu	Val 140	Ser	Ala	Met	Tyr
Gly 145	Ala	Val	Ile	Ser	Leu 150	Tyr	Leu	Ile	Ala	Pro 155	Val	Phe	Ser	Ile	Ile 160
Asn	Gln	Ser	Lys	Asp 165	Phe	Leu	Tyr	Ser	Met 170	Ile	Phe	Pro	Phe	Asp 175	Ser
Asp	Pro	Leu	T y r 180	Ile	Phe	Val	Pro	Leu 185	Leu	Leu	Thr	Asn	Val 190	Trp	Val
Gly	Ile	Val 195	Ile	Asp	Thr	Met	Met 200	Phe	Gly	Glu	Thr	Asn 205	Leu	Leu	Cys
Glu	Leu 210	Ile	Val	His	Leu	Asn 215	Gly	Ser	Tyr	Met	Leu 220	Leu	Lys	Arg	Asp
Leu 225	Gln	Leu	Ala	Ile	Glu 230	Lys	Ile	Leu	Val	Ala 235	Arg	Asp	Arg	Pro	His 240
Met	Ala	Lys	Gln	Leu 245	Lys	Val	Leu	Ile	Thr 250	Lys	Thr	Leu	Arg	Lys 255	Asn
Val	Ala	Leu	Asn 260	Gln	Phe	Gly	Gln	Gln 265	Leu	Glu	Ala	Gln	Ty r 270	Thr	Val
Arg	Val	Phe 275	Ile	Met	Phe	Ala	Phe 280	Ala	Ala	Gly	Leu	Leu 285	Сув	Ala	Leu
Ser	Phe 290	Lys	Ala	Tyr	Thr	Thr 295	Asp	Ser	Leu	Ser	Thr 300	Met	Tyr	Tyr	Leu
Thr 305	His	Trp	Glu	Gln	Ile 310	Leu	Gln	Tyr	Ser	Thr 315	Asn	Pro	Ser	Glu	Asn 320
Leu	Arg	Leu	Leu	L y s 325	Leu	Ile	Asn	Leu	Ala 330	Ile	Glu	Met	Asn	Ser 335	Lys
Pro	Phe	Tyr	Val 340	Thr	Gly	Leu	Lys	Tyr 345	Phe	Arg	Val	Ser	Leu 350	Gln	Ala
Gly	Leu	L y s 355	Arg	Gln	Lys	Phe	Leu 360	Arg	Ser	Ala	Ser	Ser 365	Ser	Thr	Leu
Ser	Thr 370	Ala	Asp	Val	Leu	Ala 375	Phe	Ala	Phe	Ala	Phe 380	Thr	Arg	Trp	Leu
_															

Leu

```
385
<210> SEQ ID NO 97
<211> LENGTH: 1218
<212> TYPE: DNA
<213> ORGANISM: Drosophila Melanogaster DOR92
<400> SEQUENCE: 97
atgtccgagt ggttacgctt tctgaaacgc gatcaacagc tggatgtgta cttttttgca
gtgccccgct tgagtttaga cataatgggc tattggccgg gcaaaactgg tgatacatgg
                                                                     120
ccctggagat ccctgattca cttcgcaatc ctggccattg gcgtggccac cgaactgcat
                                                                     180
gctggcatgt gttttctaga ccgacagcag attaccttgg cactggagac cctctgtcca
                                                                     240
gctggcacat cggcggtcac gctgctcaag atgttcctaa tgctgcgctt tcgtcaggat
                                                                     300
ctctccatta tgtggaaccg cctgaggggc ctgctcttcg atcccaactg ggagcgaccc
                                                                     360
gagcagcggg acatccggct aaagcactcg gccatggcgg ctcgcatcaa tttctggccc
ctgtcagccg gattcttcac atgcaccacc tacaacctaa agccgatact gatcgcaatg
atattgtatc tccagaatcg ttacgaggac ttcgtttggt ttacaccctt caatatgact
                                                                     540
atgcccaaag ttctgctaaa ctatccattt tttcccctga cctacatatt tattgcctat
                                                                     600
acgggctatg tgaccatctt tatgttcggc ggctgtgatg gtttttattt cgagttctgt
                                                                     660
qcccacctat caqctctttt cqaaqtqctc caqqcqqaqa taqaatcaat qtttaqaccc
                                                                     720
tacactgatc acttggaact gtcgccagtg cagctttaca ttttagagca aaagatgcga
                                                                     780
tcagtaatca ttaggcacaa tgccatcatc gatttgacca gattttttcg tgatcgctat
accattatta ccctggccca ttttgtgtcc gccgccatgg tgattggatt cagcatggtt
                                                                     900
aatctcctga cattgggcaa taatggtctg ggcgcaatgc tctatgtggc ctacacggtt
                                                                     960
gccgctttga gccaactgct ggtttattgc tatggcggaa ctctggtggc cgaaagtagc
                                                                    1020
actggtctgt gccgagccat gttctcctgt ccgtggcagc tttttaagcc taaacaacgt
                                                                    1080
cqactcqttc aqcttttqat tctcaqatcq caqcqtcctq tttccatqqc aqtqccattc
                                                                    1140
ttttcqccat cqttqqctac ctttqctqcq attcttcaaa cttcqqqttc cataattqcq
                                                                    1200
ctggttaagt cctttcag
                                                                    1218
<210> SEQ ID NO 98
<211> LENGTH: 406
<212> TYPE: PRT
<213> ORGANISM: Drosophila Melanogaster DOR92
<400> SEQUENCE: 98
Met Ser Glu Trp Leu Arg Phe Leu Lys Arg Asp Gln Gln Leu Asp Val
Tyr Phe Phe Ala Val Pro Arg Leu Ser Leu Asp Ile Met Gly Tyr Trp
Pro Gly Lys Thr Gly Asp Thr Trp Pro Trp Arg Ser Leu Ile His Phe
Ala Ile Leu Ala Ile Gly Val Ala Thr Glu Leu His Ala Gly Met Cys
Phe Leu Asp Arg Gln Gln Ile Thr Leu Ala Leu Glu Thr Leu Cys Pro
                                        75
Ala Gly Thr Ser Ala Val Thr Leu Leu Lys Met Phe Leu Met Leu Arg
```

-continued
85 90 95
Phe Arg Gln Asp Leu Ser Ile Met Trp Asn Arg Leu Arg Gly Leu Leu 100 105 110
Phe Asp Pro Asn Trp Glu Arg Pro Glu Gln Arg Asp Ile Arg Leu Lys 115 120 125
His Ser Ala Met Ala Ala Arg Ile Asn Phe Trp Pro Leu Ser Ala Gly 130 135 140
Phe Phe Thr Cys Thr Thr Tyr Asn Leu Lys Pro Ile Leu Ile Ala Met 145 150 155 160
Ile Leu Tyr Leu Gln Asn Arg Tyr Glu Asp Phe Val Trp Phe Thr Pro 165 170 175
Phe Asn Met Thr Met Pro Lys Val Leu Leu Asn Tyr Pro Phe Phe Pro 180 185 190
Leu Thr Tyr Ile Phe Ile Ala Tyr Thr Gly Tyr Val Thr Ile Phe Met 195 200 205
Phe Gly Gly Cys Asp Gly Phe Tyr Phe Glu Phe Cys Ala His Leu Ser 210 215 220
Ala Leu Phe Glu Val Leu Gln Ala Glu Ile Glu Ser Met Phe Arg Pro 225 230 235 240
Tyr Thr Asp His Leu Glu Leu Ser Pro Val Gln Leu Tyr Ile Leu Glu 245 250 255
Gln Lys Met Arg Ser Val Ile Ile Arg His Asn Ala Ile Ile Asp Leu 260 265 270
Thr Arg Phe Phe Arg Asp Arg Tyr Thr Ile Ile Thr Leu Ala His Phe 275 280 285
Val Ser Ala Ala Met Val Ile Gly Phe Ser Met Val Asn Leu Leu Thr 290 295 300
Leu Gly Asn Asn Gly Leu Gly Ala Met Leu Tyr Val Ala Tyr Thr Val 305 310 315 320
Ala Ala Leu Ser Gln Leu Leu Val Tyr Cys Tyr Gly Gly Thr Leu Val 325 330 335
Ala Glu Ser Ser Thr Gly Leu Cys Arg Ala Met Phe Ser Cys Pro Trp 340 345 350
Gln Leu Phe Lys Pro Lys Gln Arg Arg Leu Val Gln Leu Leu Ile Leu 355 360 365
Arg Ser Gln Arg Pro Val Ser Met Ala Val Pro Phe Phe Ser Pro Ser 370 375 380
Leu Ala Thr Phe Ala Ala Ile Leu Gln Thr Ser Gly Ser Ile Ile Ala 385 390 395 400
Leu Val Lys Ser Phe Gln 405
<210> SEQ ID NO 99 <211> LENGTH: 1176 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR95
<400> SEQUENCE: 99
atgagcgaca aggtgaaggg aaaaaagcag gaggaaaagg atcaatcctt gcgggtgcaa 60
attotogttt atogotgoat gggoatogat ttgtggagoo coacgatggo gaatgacogo 120
ccgtggctga cctttgtcac aatgggacca cttttcctgt ttatggtgcc catgttcctg 180

gccgcccacg	agtacatcac	ccaggtgagc	ctgctctccg	acaccctggg	ctccaccttc	240
gccagcatgc	tcaccctggt	caaattcctg	ctcttctgct	atcatcgcaa	ggagttcgtc	300
ggcctgatct	accacatcag	ggccattctg	gctaaagaaa	tcgaagtgtg	gcctgatgcg	360
cgggaaatca	tcgaggtgga	gaaccaaagt	gaccaaatgc	tcagtcttac	gtacactcgc	420
tgttttggac	tggctggaat	ctttgcggcc	ctgaagccct	ttgtgggcat	catactctcc	480
tcgattcgcg	gcgacgagat	tcacctggag	ctgccccaca	acggcgttta	cccgtacgat	540
ctccaggtgg	tcatgtttta	tgtgcccacc	tatctgtgga	atgtgatggc	cagctatagt	600
gctgtaacca	tggcactctg	cgtggactcg	ctgctcttct	ttttcaccta	caacgtgtgc	660
gccattttca	agatcgccaa	gcaccggatg	atccatctgc	cggcggtggg	cggaaaggag	720
gagctggagg	ggctcgtcca	ggtgctgctg	ctgcaccaga	agggcctcca	gatcgccgat	780
cacattgcgg	acaagtaccg	gccgctgatc	tttttgcagt	tctttctgtc	cgccttgcag	840
atctgcttca	ttggattcca	ggtggctgat	ctgtttccca	atccgcagag	tctctacttt	900
atcgcctttg	tgggctcgct	gctcatcgca	ctgttcatct	actcgaagtg	cggcgaaaat	960
atcaagagtg	ccagcctgga	tttcggaaac	gggctgtacg	agaccaactg	gaccgacttc	1020
tegecaceca	ctaaaagagc	cctcctcatt	gccgccatgc	gcgcccagcg	accttgccag	1080
atgaagggct	actttttcga	ggccagcatg	gccaccttct	cgacgattgt	tcgctctgcc	1140
gtgtcgtaca	tcatgatgtt	gcgctccttt	aatgcc			1176

<210> SEQ ID NO 100

<211> LENGTH: 392

212> TYPE: PRT

<213> ORGANISM: Drosophila Melanogaster DOR95

<400> SEQUENCE: 100

Met Ser Asp Lys Val Lys Gly Lys Lys Gln Glu Glu Lys Asp Gln Ser 1 $$ 10 $$ 15

Leu Arg Val Gln Ile Leu Val Tyr Arg Cys Met Gly Ile Asp Leu Trp \$20\$ \$25\$ 30

Tyr Ile Thr Gln Val Ser Leu Leu Ser Asp Thr Leu Gly Ser Thr Phe 65 70 75 80

Ala Ser Met Leu Thr Leu Val Lys Phe Leu Leu Phe Cys Tyr His Arg $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Lys Glu Phe Val Gly Leu Ile Tyr His Ile Arg Ala Ile Leu Ala Lys 100 105 110

Gln Ser Asp Gln Met Leu Ser Leu Thr Tyr Thr Arg Cys Phe Gly Leu 130 135 140

Ala Gly Ile Phe Ala Ala Leu Lys Pro Phe Val Gly Ile Ile Leu Ser 145 150 155 160

Ser Ile Arg Gly Asp Glu Ile His Leu Glu Leu Pro His Asn Gly Val 165 170 175

Tyr Pro Tyr Asp Leu Gln Val Val Met Phe Tyr Val Pro Thr Tyr Leu

-continued
180 185 190
Trp Asn Val Met Ala Ser Tyr Ser Ala Val Thr Met Ala Leu Cys Val 195 200 205
Asp Ser Leu Leu Phe Phe Phe Thr Tyr Asn Val Cys Ala Ile Phe Lys 210 215 220
Ile Ala Lys His Arg Met Ile His Leu Pro Ala Val Gly Gly Lys Glu 225 230 235 240
Glu Leu Glu Gly Leu Val Gln Val Leu Leu His Gln Lys Gly Leu 245 250 255
Gln Ile Ala Asp His Ile Ala Asp Lys Tyr Arg Pro Leu Ile Phe Leu 260 265 270
Gln Phe Phe Leu Ser Ala Leu Gln Ile Cys Phe Ile Gly Phe Gln Val 275 280 285
Ala Asp Leu Phe Pro Asn Pro Gln Ser Leu Tyr Phe Ile Ala Phe Val 290 295 300
Gly Ser Leu Leu Ile Ala Leu Phe Ile Tyr Ser Lys Cys Gly Glu Asn 305 310 315 320
Ile Lys Ser Ala Ser Leu Asp Phe Gly Asn Gly Leu Tyr Glu Thr Asn 325 330 335
Trp Thr Asp Phe Ser Pro Pro Thr Lys Arg Ala Leu Leu Ile Ala Ala 340 345 350
Met Arg Ala Gln Arg Pro Cys Gln Met Lys Gly Tyr Phe Phe Glu Ala 355 360 365
Ser Met Ala Thr Phe Ser Thr Ile Val Arg Ser Ala Val Ser Tyr Ile 370 375 380
Met Met Leu Arg Ser Phe Asn Ala 385 390
<210> SEQ ID NO 101 <211> LENGTH: 1170 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DOR99
<400> SEQUENCE: 101
atggaggagt ttctgcgtcc gcagatgttc caggaggtgg ctcagatggt gcatttccag 60
tggcggagaa atccggtgga caacagcatg gtgaacgcat ccatggtccc cttctgcttg 120
teggegttte ttaatgteet gtttttegge tgeaatggtt gggacateat aggacatttt 180
tggctgggac atcctgccaa ccagaatccg cccgtgctta gcatcaccat ttacttctcg 240
atcaggggat tgatgctata cctgaaacga aaggaaatcg ttgagtttgt taacgacttg 300
gatcgggagt gtccgcggga cttggtcagc cagttggaca tgcaaatgga tgagacgtac 360
cgaaactttt ggcagcgcta tcgcttcatc cgtatctact cccatttggg tggtccgatg 420
ttctgcgttg tgccattagc tctattcctc ctgacccacg agggtaaaga tactcctgtt 480
gcccagcacg agcagctcct tggaggatgg ctgccatgcg gtgtgcgaaa ggacccaaat 540
ttctaccttt tagtctggtc cttcgacctg atgtgcacca cttgcggcgt ctcctttttc 600
gttaccttcg acaacctatt caatgtgatg cagggacatt tggtcatgca tttgggccat 660
cttgctcgcc agttttcggc catcgatcct cgacagagtt tgaccgatga gaagcgattc 720
tttgtggatc ttaggttatt agttcagagg cagcagcttc ttaatggatt gtgcagaaaa 780

tacaacgaca tctttaaagt ggccttcctg gtgagcaatt ttgtaggcgc cggttccctc 840

	000
tgcttctacc tctttatgct ctcggagaca tcagatgtcc ttatcatcgc ccagtatata	900
ttacccactt tggtcctggt gggcttcaca tttgagattt gtctacgggg aacccaactg	960
gaaaaggcgt cggagggact ggaatcgtcg ttgcgaagcc aggaatggta tttgggaagt	1020
aggoggtaco ggaagttota tttgototgg acgoaatatt gccagogaac acagoaactg	1080
ggcgcctttg ggctaatcca agtcaatatg gtgcacttca ctgaaataat gcagctggcc	1140
tatagactct tcacttttct caaatctcat	1170
<210> SEQ ID NO 102 <211> LENGTH: 390	
<212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DOR99	
<400> SEQUENCE: 102	
Met Glu Glu Phe Leu Arg Pro Gln Met Phe Gln Glu Val Ala Gln Met	
1 5 10 15	
Val His Phe Gln Trp Arg Arg Asn Pro Val Asp Asn Ser Met Val Asn 20 25 30	
Ala Ser Met Val Pro Phe Cys Leu Ser Ala Phe Leu Asn Val Leu Phe 35 40 45	
Phe Gly Cys Asn Gly Trp Asp Ile Ile Gly His Phe Trp Leu Gly His 50 55 60	
Pro Ala Asn Gln Asn Pro Pro Val Leu Ser Ile Thr Ile Tyr Phe Ser 65 70 75 80	
Ile Arg Gly Leu Met Leu Tyr Leu Lys Arg Lys Glu Ile Val Glu Phe 85 90 95	
Val Asn Asp Leu Asp Arg Glu Cys Pro Arg Asp Leu Val Ser Gln Leu 100 105 110	
Asp Met Gln Met Asp Glu Thr Tyr Arg Asn Phe Trp Gln Arg Tyr Arg 115 120 125	
Phe Ile Arg Ile Tyr Ser His Leu Gly Gly Pro Met Phe Cys Val Val 130 135 140	
Pro Leu Ala Leu Phe Leu Leu Thr His Glu Gly Lys Asp Thr Pro Val 145 150 155 160	
Ala Gln His Glu Gln Leu Leu Gly Gly Trp Leu Pro Cys Gly Val Arg 165 170 175	
Lys Asp Pro Asn Phe Tyr Leu Leu Val Trp Ser Phe Asp Leu Met Cys 180 185 190	
Thr Thr Cys Gly Val Ser Phe Phe Val Thr Phe Asp Asn Leu Phe Asn 195 200 205	
Val Met Gln Gly His Leu Val Met His Leu Gly His Leu Ala Arg Gln 210 215 220	
Phe Ser Ala Ile Asp Pro Arg Gln Ser Leu Thr Asp Glu Lys Arg Phe	
225 230 235 240	
Phe Val Asp Leu Arg Leu Leu Val Gln Arg Gln Gln Leu Leu Asn Gly 245 250 255	
Leu Cys Arg Lys Tyr Asn Asp Ile Phe Lys Val Ala Phe Leu Val Ser 260 265 270	
Asn Phe Val Gly Ala Gly Ser Leu Cys Phe Tyr Leu Phe Met Leu Ser 275 280 285	
Glu Thr Ser Asp Val Leu Ile Ile Ala Gln Tyr Ile Leu Pro Thr Leu	

-continued	
290 295 300	
Val Leu Val Gly Phe Thr Phe Glu Ile Cys Leu Arg Gly Thr Gln Leu 305 310 315	
Glu Lys Ala Ser Glu Gly Leu Glu Ser Ser Leu Arg Ser Gln Glu Trp 325 330 335	
Tyr Leu Gly Ser Arg Arg Tyr Arg Lys Phe Tyr Leu Leu Trp Thr Gln 340 345 350	
Tyr Cys Gln Arg Thr Gln Gln Leu Gly Ala Phe Gly Leu Ile Gln Val 355 360 365	
Asn Met Val His Phe Thr Glu Ile Met Gln Leu Ala Tyr Arg Leu Phe 370 375 380	
Thr Phe Leu Lys Ser His 385 390	
<210> SEQ ID NO 103 <211> LENGTH: 1917 <212> TYPE: DNA <213> ORGANISM: Drosophila Melanogaster DORA45	
<400> SEQUENCE: 103	
ggcacgagct ggttccggaa agcctcatat ctcgtatctt aaagtatccc ggttaagcct	60
taaagagtga aatgattgcc tagacgattg ctgcattact ggcactcaat taacccaagt	120
gtaccagaca acaattacat ttgtattttt aaagttcaat agcaaggatg acaacctcga	180
tgcagccgag caagtacacg ggcctggtcg ccgacctgat gcccaacatc cgggcgatga	240
agtactccgg cctgttcatg cacaacttca cgggcggcag tgccttcatg aagaaggtgt	300
actcctccgt gcacctggtg ttcctcctca tgcagttcac cttcatcctg gtcaacatgg	360
ccctgaacgc cgaggaggtc aacgagctgt cgggcaacac gatcacgacc ctcttcttca	420
cccactgcat cacgaagttt atctacctgg ctgttaacca gaagaatttc tacagaacat	480
tgaatatatg gaaccaggtg aacacgcatc ccttgttcgc cgagtcggat gctcgttacc	540
attcgatcgc actggcgaag atgaggaagc tgttctttct ggtgatgctg accacagtcg	600
cctcggccac cgcctggacc acgatcacct tctttggcga cagcgtaaaa atggtggtgg	660
accatgagac gaactccagc atcccggtgg agataccccg gctgccgatt aagtccttct	720
accegtggaa egecageeac ggeatgttet acatgateag etttgeettt eagatetaet	780
acgtgctctt ctcgatgatc cactccaatc tatgcgacgt gatgttctgc tcttggctga	840
tattcgcctg cgagcagctg cagcacttga agggcatcat gaagccgctg atggagctgt	900
cogectoget ggacacetae aggeceaact eggeggeeet etteaggtee etgteggeea	960
actocaagto ggagotaatt cataatgaag aaaaggatoo oggoacogao atggacatgt	1020
cgggcatcta cagctcgaaa gcggattggg gcgctcagtt tcgagcaccc tcgacactgc	1080
agtcctttgg cgggaacggg ggcggaggca acgggttggt gaacggcgct aatcccaacg	1140
ggctgaccaa aaagcaggag atgatggtgc gcagtgccat caagtactgg gtcgagcggc	1200
acaagcacgt ggtgcgactg gtggctgcca tcggcgatac ttacggagcc gccctcctcc	1260
tccacatgct gacctcgacc atcaagctga ccctgctggc ataccaggcc accaaaatca	1320
acggagtgaa tgtctacgcc ttcacagtcg tcggatacct aggatacgcg ctggcccagg	1380

 ${\tt tgttccactt\ ttgcatcttt\ ggcaatcgtc\ tgattgaaga\ gagttcatcc\ gtcatggagg} \qquad 1440$

0011021111011	
ccgcctactc gtgccactgg tacgatggct ccgaggaggc caagaccttc gtccagatcg	1500
tgtgccagca gtgccagaag gcgatgagca tatcgggagc gaaattcttc accgtctccc	1560
tggatttgtt tgcttcggtt ctgggtgccg tcgtcaccta ctttatggtg ctggtgcagc	1620
tcaagtaagt tgctgcgaag ctgatggatt tttgtaccag aaaagcgaat gccaagaagc	1680
cacctaccgc cccttgcccc ctccgcactg tgcaaccagc aatatcacag agcaattata	1740
acgcaaatta tatattttat acctgcgacg agcgagcctc gtggggcata atggagacat	1800
tctggggcac atagaagcct gcaaatactt atcgattttg tacacgcgta gagcttttaa	1860
tgtaaactca agatgcaaac taaataaatg tgtagtgaaa aaaaaaaaa aaaaaaa	1917
<210> SEQ ID NO 104 <211> LENGTH: 486 <212> TYPE: PRT <213> ORGANISM: Drosophila Melanogaster DORA45	
<400> SEQUENCE: 104	
Met Thr Thr Ser Met Gln Pro Ser Lys Tyr Thr Gly Leu Val Ala Asp 1 5 10 15	
Leu Met Pro Asn Ile Arg Ala Met Lys Tyr Ser Gly Leu Phe Met His 20 25 30	
Asn Phe Thr Gly Gly Ser Ala Phe Met Lys Lys Val Tyr Ser Ser Val 35 40 45	
His Leu Val Phe Leu Leu Met Gln Phe Thr Phe Ile Leu Val Asn Met 50 55 60	
Ala Leu Asn Ala Glu Glu Val Asn Glu Leu Ser Gly Asn Thr Ile Thr 65 70 75 80	
Thr Leu Phe Phe Thr His Cys Ile Thr Lys Phe Ile Tyr Leu Ala Val	
Asn Gln Lys Asn Phe Tyr Arg Thr Leu Asn Ile Trp Asn Gln Val Asn 100 105 110	
Thr His Pro Leu Phe Ala Glu Ser Asp Ala Arg Tyr His Ser Ile Ala 115 120 125	
Leu Ala Lys Met Arg Lys Leu Phe Phe Leu Val Met Leu Thr Thr Val 130 135 140	
Ala Ser Ala Thr Ala Trp Thr Thr Ile Thr Phe Phe Gly Asp Ser Val 145 150 155 160	
Lys Met Val Val Asp His Glu Thr Asn Ser Ser Ile Pro Val Glu Ile 165 170 175	
Pro Arg Leu Pro Ile Lys Ser Phe Tyr Pro Trp Asn Ala Ser His Gly 180 185 190	
Met Phe Tyr Met Ile Ser Phe Ala Phe Gln Ile Tyr Tyr Val Leu Phe 195 200 205	
Ser Met Ile His Ser Asn Leu Cys Asp Val Met Phe Cys Ser Trp Leu 210 215 220	
Ile Phe Ala Cys Glu Gln Leu Gln His Leu Lys Gly Ile Met Lys Pro 225 230 235 240	
Leu Met Glu Leu Ser Ala Ser Leu Asp Thr Tyr Arg Pro Asn Ser Ala 245 250 255	
Ala Leu Phe Arg Ser Leu Ser Ala Asn Ser Lys Ser Glu Leu Ile His 260 265 270	
Asn Glu Glu Lys Asp Pro Gly Thr Asp Met Asp Met Ser Gly Ile Tyr	

-continued
275 280 285
Ser Ser Lys Ala Asp Trp Gly Ala Gln Phe Arg Ala Pro Ser Thr Leu 290 295 300
Gln Ser Phe Gly Gly Asn Gly Gly Gly Asn Gly Leu Val Asn Gly 305 310 315 320
Ala Asn Pro Asn Gly Leu Thr Lys Lys Gln Glu Met Met Val Arg Ser 325 330 335
Ala Ile Lys Tyr Trp Val Glu Arg His Lys His Val Val Arg Leu Val 340 345 350
Ala Ala Ile Gly Asp Thr Tyr Gly Ala Ala Leu Leu Leu His Met Leu 355 360 365
Thr Ser Thr Ile Lys Leu Thr Leu Leu Ala Tyr Gln Ala Thr Lys Ile 370 375 380
Asn Gly Val Asn Val Tyr Ala Phe Thr Val Val Gly Tyr Leu Gly Tyr 385 390 395 400
Ala Leu Ala Gln Val Phe His Phe Cys Ile Phe Gly Asn Arg Leu Ile 405 410 415
Glu Glu Ser Ser Ser Val Met Glu Ala Ala Tyr Ser Cys His Trp Tyr 420 425 430
Asp Gly Ser Glu Glu Ala Lys Thr Phe Val Gln Ile Val Cys Gln Gln 435 440 445
Cys Gln Lys Ala Met Ser Ile Ser Gly Ala Lys Phe Phe Thr Val Ser 450 455 460
Leu Asp Leu Phe Ala Ser Val Leu Gly Ala Val Val Thr Tyr Phe Met 465 470 475 480
Val Leu Val Gln Leu Lys 485
<210> SEQ ID NO 105 <211> LENGTH: 1317 <212> TYPE: DNA <213> ORGANISM: Drosophila melanogaster DOR44
<400> SEQUENCE: 105
atgaagagca cattcaagga agaaaggatt aaggacgact ccaagcgtcg cgacctgttt 60
gtattcgtga ggcaaaccat gtgtatagcg gccatgtatc ccttcggtta ctacgtgaat 120
ggatctggag tcctggccgt tctggtgcga ttctgtgact tgacctacga gctctttaac 180
tacttegttt eggtacacat agetggeetg tacatetgea ecatetacat caactatggg 240
caaggogatt tggacttott cgtgaactgt ttgatacaaa ccattattta totgtggaca 300
atagcgatga aactctactt tcggaggttc agacctggtt tgttgaatac cattctgtcc 360
aacatcaatg atgagtacga gacacgttcg gctgtgggat tcagtttcgt cacaatggcg 420
ggatcctatc ggatgtccaa gctatggatc aaaacctatg tgtattgctg ctacataggc 480
accattttct ggctggctct tcccattgcc taccgggata ggagtcttcc tcttgcctgc 540
tggtatccct ttgactatac acaacccggt gtctatgagg tagtgttcct tctccaggcg 600
atgggacaga tccaagtggc cgcatccttt gcctcctcca gtggcctgca tatggtgctt 660
tgtgtgctga tatcagggca gtacgatgtc ctcttttgca gtctcaagaa tgtattagcc 720
agcagctatg tccttatggg agccaatatg acggaactga atcaattgca ggctgagcaa 780

tctgcggccg atgtcgagcc aggtcagtat gcttactccg tggaggagga gacacctttg 840

caagaacttc taaaagttgg gagctcaatg gacttctcct ccgcattcag gctgtctttt	900
gtgcggtgca ttcagcacca tcgatacata gtggcggcac tgaagaaaat tgagagtttc	960
tacagtccca tatggttcgt gaagattggc gaagtcacct ttcttatgtg cctggtagcc	1020
ttcgtctcca cgaagagcac cgcggccaac tcattcatgc gaatggtctc cttgggccag	1080
tacctgctct tagttctcta cgagctgttc atcatctgct acttcgcgga catcgttttt	1140
cagaacagcc agcggtgcgg tgaagccctc tggcgaagtc cttggcagcg acatttgaag	1200
gatgttcgca gtgattacat gttctttatg ctgaattccc gcaggcagtt ccaacttacg	1260
gccggaaaaa taagcaatct aaacgtggat cgtttcagag gggtgggtat ccttact	1317
<210> SEQ ID NO 106 <211> LENGTH: 439 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster DOR44	
<400> SEQUENCE: 106	
Met Lys Ser Thr Phe Lys Glu Glu Arg Ile Lys Asp Asp Ser Lys Arg 1 5 10 15	
Arg Asp Leu Phe Val Phe Val Arg Gln Thr Met Cys Ile Ala Ala Met 20 25 30	
Tyr Pro Phe Gly Tyr Tyr Val Asn Gly Ser Gly Val Leu Ala Val Leu 35 40 45	
Val Arg Phe Cys Asp Leu Thr Tyr Glu Leu Phe Asn Tyr Phe Val Ser 50 55 60	
Val His Ile Ala Gly Leu Tyr Ile Cys Thr Ile Tyr Ile Asn Tyr Gly 65 70 75 80	
Gln Gly Asp Leu Asp Phe Phe Val Asn Cys Leu Ile Gln Thr Ile Ile 85 90 95	
Tyr Leu Trp Thr Ile Ala Met Lys Leu Tyr Phe Arg Arg Phe Arg Pro	
Gly Leu Leu Asn Thr Ile Leu Ser Asn Ile Asn Asp Glu Tyr Glu Thr 115 120 125	
Arg Ser Ala Val Gly Phe Ser Phe Val Thr Met Ala Gly Ser Tyr Arg 130 135 140	
Met Ser Lys Leu Trp Ile Lys Thr Tyr Val Tyr Cys Cys Tyr Ile Gly 145 150 155 160	
Thr Ile Phe Trp Leu Ala Leu Pro Ile Ala Tyr Arg Asp Arg Ser Leu 165 170 175	
Pro Leu Ala Cys Trp Tyr Pro Phe Asp Tyr Thr Gln Pro Gly Val Tyr 180 185 190	
Glu Val Val Phe Leu Leu Gln Ala Met Gly Gln Ile Gln Val Ala Ala 195 200 205	
Ser Phe Ala Ser Ser Ser Gly Leu His Met Val Leu Cys Val Leu Ile 210 215 220	
Ser Gly Gln Tyr Asp Val Leu Phe Cys Ser Leu Lys Asn Val Leu Ala 225 230 230 235 240	
Ser Ser Tyr Val Leu Met Gly Ala Asn Met Thr Glu Leu Asn Gln Leu 245 250 255	
Gln Ala Glu Gln Ser Ala Ala Asp Val Glu Pro Gly Gln Tyr Ala Tyr 260 265 270	

Ser	Val	Glu 275	Glu	Glu	Thr	Pro	Leu 280	Gln	Glu	Leu	Leu	L y s 285	Val	Gly	Ser
Ser	Met 290	Asp	Phe	Ser	Ser	Ala 295	Phe	Arg	Leu	Ser	Phe 300	Val	Arg	Суѕ	Ile
Gln 305	His	His	Arg	Tyr	Ile 310	Val	Ala	Ala	Leu	Lys 315	Lys	Ile	Glu	Ser	Phe 320
Tyr	Ser	Pro	Ile	Trp 325	Phe	Val	Lys	Ile	Gly 330	Glu	Val	Thr	Phe	Leu 335	Met
Cys	Leu	Val	Ala 340	Phe	Val	Ser	Thr	Lys 345	Ser	Thr	Ala	Ala	Asn 350	Ser	Phe
Met	Arg	Met 355	Val	Ser	Leu	Gly	Gln 360	Tyr	Leu	Leu	Leu	Val 365	Leu	Tyr	Glu
Leu	Phe 370	Ile	Ile	Cys	Tyr	Phe 375	Ala	Asp	Ile	Val	Phe 380	Gln	Asn	Ser	Gln
Arg 385	Cys	Gly	Glu	Ala	Leu 390	Trp	Arg	Ser	Pro	Trp 395	Gln	Arg	His	Leu	L y s 400
Asp	Val	Arg	Ser	Asp 405	Tyr	Met	Phe	Phe	Met 410	Leu	Asn	Ser	Arg	Arg 415	Gln
Phe	Gln	Leu	Thr 420	Ala	Gly	Lys	Ile	Ser 425	Asn	Leu	Asn	Val	Asp 430	Arg	Phe
Arg	Gly	Val 435	Gly	Ile	Leu	Thr									
<211 <212)> SE .> LE !> TY	NGTH PE:	: 36 PRT	3											
					OPHI	LA N	IELAN	IOGAS	TER	DORE	0.1				
-100	∖ ⊂ਸ	מידווחי	CE •	107											
			ICE:		Asp	Met	Asp	Ser	Thr	Asp	Ser	Thr	Ala	Leu	Ser
					Asp	Met	Asp	Ser	Thr 10	Asp	Ser	Thr	Ala	Leu 15	Ser
Met 1	Gly	His	Lys	Asp 5					10						
Met 1 Leu	Gly Lys	His His	Lys Ile 20	Asp 5 Ser	Ser	Leu	Ile	Phe 25	10 Val	Ile	Ser	Ala	Gln 30	15	Pro
Met 1 Leu Leu	Gly Lys Ile	His His Ser 35	Lys Ile 20 Tyr	Asp 5 Ser Val	Ser Ala	Leu Tyr	Ile Asn 40	Phe 25 Arg	10 Val Asn	Ile Asp	Ser Met	Ala Glu 45	Gln 30 Lys	15 Tyr	Pro Thr
Met 1 Leu Leu	Gly Lys Ile Cys 50	His His Ser 35 Leu	Lys Ile 20 Tyr Ser	Asp 5 Ser Val	Ser Ala Val	Leu Tyr Phe 55	Ile Asn 40 Thr	Phe 25 Arg Asn	10 Val Asn Met	Ile Asp Leu	Ser Met Thr	Ala Glu 45 Val	Gln 30 Lys Ile	15 Tyr Val	Pro Thr
Met 1 Leu Leu Ala Ser 65	Gly Lys Ile Cys 50	His His Ser 35 Leu Phe	Lys Ile 20 Tyr Ser	Asp 5 Ser Val Val	Ser Ala Val Asn 70	Leu Tyr Phe 55 Arg	Ile Asn 40 Thr	Phe 25 Arg Asn	10 Val Asn Met	Ile Asp Leu Trp 75	Ser Met Thr 60 Glu	Ala Glu 45 Val Met	Gln 30 Lys Ile	15 Tyr Val Lys	Pro Thr Ile Arg
Met 1 Leu Leu Ala Ser 65	Gly Lys Ile Cys 50 Thr	His Ser 35 Leu Phe Lys	Lys Ile 20 Tyr Ser Leu Met	Asp 5 Ser Val Ala His 85	Ser Ala Val Asn 70 Glu	Leu Tyr Phe 55 Arg	Ile Asn 40 Thr Lys	Phe 25 Arg Asn Asp	10 Val Asn Met Phe Tyr 90	Ile Asp Leu Trp 75 Arg	Ser Met Thr 60 Glu	Ala Glu 45 Val Met	Gln 30 Lys Ile Ile	15 Tyr Val Lys His	Pro Thr Ile Arg 80 Tyr
Met 1 Leu Leu Ala Ser 65 Phe	Gly Lys Ile Cys 50 Thr Arg	His His Ser 35 Leu Phe Lys	Lys Ile 20 Tyr Ser Leu Met Ala 100	Asp 5 Ser Val Ala His 85 Asn	Ser Ala Val Asn 70 Glu Lys	Leu Tyr Phe 55 Arg Gln	Ile Asn 40 Thr Lys Cys	Phe 25 Arg Asn Asp Lys Ser 105	10 Val Asn Met Phe Tyr 90 Phe	Ile Asp Leu Trp 75 Arg	Ser Met Thr 60 Glu Glu	Ala Glu 45 Val Met Gly	Gln 30 Lys Ile Leu Ala 110	15 Tyr Val Lys His Asp	Pro Thr Ile Arg 80 Tyr Cys
Met 1 Leu Leu Ala Ser 65 Phe Val	Gly Lys Ile Cys 50 Thr Arg Ala	His Ser 35 Leu Phe Lys Glu Cys 115	Lys Ile 20 Tyr Ser Leu Met Ala 100 Gly	Asp 5 Ser Val Val Ala His 85 Asn	Ser Ala Val Asn 70 Glu Lys	Leu Tyr Phe 55 Arg Gln Leu Gly	Ile Asn 40 Thr Lys Cys Ala Leu 120	Phe 25 Arg Asn Asp Lys Ser 105 Tyr	10 Val Asn Met Phe Tyr 90 Phe	Ile Asp Leu Trp 75 Arg Leu Met	Ser Met Thr 60 Glu Glu Gly Leu	Ala Glu 45 Val Met Gly Arg Gly 125	Gln 30 Lys Ile Ile Leu Ala 110	15 Tyr Val Lys His Asp 95 Tyr	Pro Thr Ile Arg 80 Tyr Cys
Met 1 Leu Leu Ala Ser 65 Phe Val Val	Cys 50 Thr Arg Ala Ser Ile 130	His His Ser 35 Leu Phe Lys Glu Cys 115 Gly	Lys Ile 20 Tyr Ser Leu Met Ala 100 Gly Val	Asp 5 Ser Val Val Ala His 85 Asn Leu Cys	Ser Ala Val Asn 70 Glu Lys Thr	Leu Tyr Phe 55 Arg Gln Leu Gly Trp 135	Ile Asn 40 Thr Lys Cys Ala Leu 120 His	Phe 25 Arg Asn Asp Lys Ser 105 Tyr	10 Val Asn Met Phe Tyr 90 Phe Thr	Ile Asp Leu Trp 75 Arg Leu Met	Ser Met Thr 60 Glu Glu Gly Leu Cys 140	Ala Glu 45 Val Met Gly Arg Gly 125 Asp	Gln 30 Lys Ile Ile Leu Ala 110 Pro	15 Tyr Val Lys His Asp 95 Tyr	Pro Thr Ile Arg 80 Tyr Cys Val
Met 1 Leu Leu Ala Ser 65 Phe Val Lys Pro 145	Cys 50 Thr Arg Ala Ser Ile 130 Met	His His Ser 35 Leu Phe Lys Glu Cys 115 Gly Pro	Lys Ile 20 Tyr Ser Leu Met Ala 100 Gly Val	Asp 5 Ser Val Val Ala His 85 Asn Leu Cys	Ser Ala Val Asn 70 Glu Lys Thr Arg	Leu Tyr Phe 55 Arg Gln Leu Gly Trp 135 Pro	Ile Asn 40 Thr Lys Cys Ala Leu 120 His	Phe 25 Arg Asn Asp Lys Serr 105 Tyr Gly Asn	10 Val Asn Met Phe Tyr 90 Phe Thr Asp	Ile Asp Leu Trp 75 Arg Leu Met Thr	Ser Met Thr 60 Glu Glu Gly Leu Cys 140 Glu	Ala Glu 45 Val Met Gly Arg Gly 125 Asp	Gln 30 Lys Ile Ile Leu Ala 110 Pro Lys	15 Tyr Val Lys His Asp 95 Tyr Ile Glu	Pro Thr Ile Arg 80 Tyr Cys Val Leu Tyr 160

Arg Ala	His 195	Phe	Gln	Thr	Leu	Gln 200	Arg	Gln	Ile	Glu	Asn 205	Trp	Glu	Phe
Pro Ser 210	Ser	Glu	Pro	Asp	Thr 215	Gln	Ile	Arg	Leu	L y s 220	Ser	Ile	Val	Glu
Tyr His 225	Val	Leu	Leu	Leu 230	Ser	Leu	Ser	Arg	Lys 235	Leu	Arg	Ser	Ile	Tyr 240
Thr Pro	Thr	Val	Met 245	Gly	Gln	Phe	Val	Ile 250	Thr	Ser	Leu	Gln	Val 255	Gly
Val Ile	Ile	Tyr 260	Gln	Leu	Val	Thr	Asn 265	Met	Asp	Ser	Val	Met 270	Asp	Leu
Leu Leu	Ty r 275	Ala	Ser	Phe	Phe	Gl y 280	Ser	Ile	Met	Leu	Gln 285	Leu	Phe	Ile
Tyr Cys 290	Tyr	Gly	Gly	Glu	Ile 295	Ile	Lys	Ala	Glu	Ser 300	Leu	Gln	Val	Asp
Thr Ala 305	Val	Arg	Leu	Ser 310	Asn	Trp	His	Leu	Ala 315	Ser	Pro	Lys	Thr	Arg 320
Thr Ser	Leu	Ser	Leu 325	Ile	Ile	Leu	Gln	Ser 330	Gln	Lys	Glu	Val	Leu 335	Ile
Arg Ala	Gly	Phe 340	Phe	Val	Ala	Ser	Leu 345	Ala	Asn	Phe	Pro	Ty r 350	Arg	Leu
Ile Thr	Leu 355	Ile	Lys	Ser	Ile	Asp 360	Ser	Ile	Суѕ					
<212> TY <213> OF <220> FF	RGANI	SM:	Dros	ophi	.la M	1elan	ogas	ter	DOR3	37				
<213> OF CONTROL OF CO	RGANI EATUF AME/K OCATI THER AME/K OCATI	SM: RE: CEY: CON: INFO CEY: CON: INFO	UNSU (243 (243 UNSU (256 (256	JRE S) • • (TION: JRE S) • • (243) Unk 256)	nown	1	ster	DOR3	37				
<213> OF <220> FF <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <400> SI	RGANI EATUF AME / K OCATI THER AME / K OCATI THER THER	RE: RE: CON: INFO CON: INFO	UNSU (243 ORMAT UNSU (256 ORMAT	JRE S)(SION: JRE S)(SION:	243) Unk 256) Unk	n known known	1	Asn			Arg	Ile		Arg
<213> OF <220> FF <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <400> SE	RGANI EATUF AME / K OCATI THER AME / K OCATI THER EQUEN ASP	SM: RE: CEY: CON: INFO INFO ICE: Ser	UNSU (243) RMAT UNSU (256) RMAT 108 Thr	JRE B)(PION: JRE B)(PION: Arg	243) Unk 256) Unk	known known Leu	val	Asn 10	His	Trp		Gly	15	_
<213> OF <220> FF <221> NA <222> LC <223> OT <222> LC <223> OT <222> LC <223> OT <400> SI <400> SI	RGANI EATUF AME / R OCATI THER AME / R OCATI THER CATI THER CATI THER COLEN Asp	SM: RE: CEY: CON: INFO CEY: CON: INFO ICE: Ser	UNSU (243 ORMAT UNSU (256 ORMAT 108 Thr 5	JRE S)(FION: JRE S)(FION: Arg	243) Unk 256) Unk Ala	known known Leu Gly	Val	Asn 10 Arg	His Thr	Trp Phe	Trp	Gly 30	15 Arg	His
<213> OF <220> FI <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <400> SF <400> SF Lys Val 1 Ile Met	RGANI AME/K AME/K AME/K AME/K CATI FHER AME/K CATI FHER Gly Ala 35	ESM: RE: CEY: CON: INFO CEY: CON: INFO CEY: TYT	UNSU (243 RMAT UNSU (256 RMAT 108 Thr 5 His	WRE SOLUTION: WRE SOLUTION: Arg Pro Met	243) Unk 256) Unk Ala Pro	known Leu Gly Trp 40	Val Lys 25	Asn 10 Arg Val	His Thr	Trp Phe	Trp His 45	Gly 30	15 Arg Cys	His Ile
<pre><213> OB <220> FI <221> NA <222> LO <223> OT <221> NA <222> LO <223> OT <400> SB Lys Val 1 Ile Met Tyr Thr</pre>	RGANI EATUF MME/F MCATIT PHER PAME/F CCATIT PHER GQUEN Asp Gly Ala 35 Ser	SM: (EY: (ON: INFO (CE: Ser Ile 20 Tyr	UNSU (243 RMAT UNSU (256 RMAT 108 Thr 5 His	Wal	243) Unk 256) Unk Ala Pro Val Asn 55	Leu Gly Trp 40	Val Lys 25 Asn	Asn 10 Arg Val	His Thr Thr	Trp Phe Phe Asn 60	Trp His 45 Ser	Gly 30 Ile Leu	15 Arg Cys Glu	His Ile Thr
<pre><213> OB <220> FT <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <400> SB Lys Val 1 Ile Met Tyr Thr Trp Val 50 Phe Cys</pre>	RGANI EATUF MME/F MME/F MME/F CCATI THER AME/F CATI THER ASP Gly Ala 35 Ser Glu	ESM: EE: EEY: CON: INFO EEY: CON: INFO EY: TYF Phe Ser	UNSU (243 MATERIAL (256 MATERI	Pro Met Val	243) Unk 256) Unk Ala Pro Val Asn 55	known Leu Gly Trp 40 Leu Thr	Val Lys 25 Asn Leu	Asn 10 Arg Val Gln Pro	His Thr Thr Ser His 75	Trp Phe Phe Asn 60	Trp His 45 Ser	Gly 30 Ile Leu	15 Arg Cys Glu Met	His Ile Thr Leu 80
<pre><213> OB <220> FI <220> FI <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <400> SI Lys Val 1</pre>	RGANI EATUF ME/K ME/K CCATI THER AME/K CCATI THER CQUEN Asp Gly Ala 35 Ser Glu	SM: (E: (E: (E: (E: (E: (E: (E: (E: (E: (E	UNSU (243 UNSU (256 RMAT 108 Thr 5 His Ser Leu Val	URE Output	243) Unk 256) Unk Ala Pro Val Asn 55 Val	chown chown Leu Gly Trp 40 Leu Thr	Val Lys 25 Asn Leu Met	Asn 10 Arg Val Gln Pro Gly 90	His Thr Thr Ser His 75 Gln	Trp Phe Phe Asn 60 Thr	Trp His 45 Ser Leu Ile	Gly 30 Ile Leu Tyr	15 Arg Cys Glu Met Ser 95	His Ile Thr Leu 80
<pre><213> OB <220> FI <221> NA <222> LC <223> OT <221> NA <222> LC <223> OT <400> SI Lys Val 1</pre>	RGANIDATION AND AND AND AND AND AND AND AND AND AN	SM: (E: (EY: (CON: INFO (CON: INFO (CEY: INF	UNSU (243 RMAT UNSU (256 RMAT 108 Thr 5 His Ser Leu Val 85 Leu	IRE ISP. ITON: ITON: IRE INC	243) Unk 256) Unk Ala Pro Val Asn 55 Val	tnown Leu Gly Trp 40 Leu Thr Met	Val Lys 25 Asn Leu Met Arg	Asn 10 Arg Val Gln Pro Gly 90 Leu	His Thr Thr Ser His 75 Gln	Trp Phe Phe Asn 60 Thr Met Cys	Trp His 45 Ser Leu Ile Asp	Gly 30 Ile Leu Tyr Ser Asp	15 Arg Cys Glu Met Ser 95 Glu	His Ile Thr Leu 80 His

Ser 145	Ala	Ser	Ser	Glu	Pro 150	Thr	Leu	Met	Tyr	Pro 155	Thr	Trp	Ile	Pro	Trp 160
Asr	Trp	Arg	Asp	Ser 165	Thr	Ser	Ala	Tyr	Leu 170	Ala	Thr	Ala	Met	Leu 175	His
Thr	Thr	Ala	Leu 180	Met	Ala	Asn	Ala	Thr 185	Leu	Val	Leu	Asn	Leu 190	Ser	Ser
Туг	Pro	Gly 195	Thr	Tyr	Leu	Ile	Leu 200	Val	Ser	Val	His	Thr 205	Lys	Ala	Leu
Ala	Leu 210	Arg	Val	Ser	Lys	Leu 215	Gly	Tyr	Gly	Ala	Pro 220	Leu	Pro	Ala	Val
Arc 225	Met	Gln	Ala	Ile	Leu 230	Val	Gly	Tyr	Ile	His 235	Asp	His	Gln	Ile	Ile 240
Leu	a Arg	Xaa	Val	Ser 245	Gly	Asn	Leu	Ile	Ser 250	Gln	Cys	Lys	Asn	Phe 255	Xaa
Ser	Ile	Ser	Gly 260	Val	Leu	Thr	Phe	Ile 265	Glu	Arg	Arg	Met	Ty r 270	Thr	His
Phe	Gly	Val 275	Pro	Asn	Ile	Phe	Ile 280	Val	Ile	Glu	Asp	Ty r 285	Tyr	Ile	Leu
Phe	290	Asn	Tyr	Ser	Leu	Phe 295	Lys	Ser	Leu	Glu	Arg 300	Ser	Leu	Ser	Met
Thr 305	Cys	Phe	Leu	Gln	Phe 310	Phe	Ser	Thr	Ala	Cys 315	Ala	Gln	Cys	Thr	Ile 320
Суя	Tyr	Phe	Leu	Leu 325	Phe	Gly	Asn	Val	Gly 330	Ile	Met	Arg	Phe	Met 335	Asn
Met	: Leu	Phe	Leu 340	Leu	Val	Ile	Leu	Thr 345	Thr	Glu	Thr	Leu	Leu 350	Leu	Cys
Туг	Thr	Ala 355	Glu	Leu	Pro	Cys	Lys 360	Glu	Gly	Glu	Ser	Leu 365	Leu	Thr	Ala
Va]	. Ty r 370	Ser	Cys	Asn	Trp	Leu 375	Ser	Gln	Ser	Val	Asn 380	Phe	Arg	Arg	Leu
Leu 385	Leu	Leu	Met	Leu	Ala 390	Arg	Сув	Gln	Ile	Pro 395	Met	Ile	Leu	Val	Ser 400
Gly	v Val	Ile	Val	Pro 405	Ile	Ser	Met	Lys	Thr 410	Phe					

What is claimed is:

- 1. An isolated nucleic acid molecule encoding an insect odorant receptor.
- 2. An isolated DNA, cDNA, genomic DNA, synthetic DNA or RNA of claim 1.
- 3. An isolated nucleic acid molecule of claim 1, wherein the nucleic acid molecule encodes a Drosophila odorant receptor.
- **4.** The isolated nucleic acid molecule of claim 3 which comprise:
 - (a) one of the nucleic acid sequences as set forth in **FIG.** 8,
 - (b) a sequence being degenerated to a sequence of (a) as a result of the genetic code; or
 - (c) a sequence encoding one of the amino acid sequences as set forth in FIG. 8.

- **5**. A nucleic acid molecule of at least 12 nucleotides capable of specifically hybridizing with the sequence of a nucleic acid molecule of claim 1.
- 6. A DNA, cDNA, genomic DNA, synthetic DNA or RNA of claim 5.
- 7. A vector which comprises the isolated nucleic acid molecule of claim 1, or 5.
- **8**. An isolated nucleic acid molecule of claim 7 operatively linked to a regulatory element.
 - **9**. A plasmid of claim 8.
- 10. A host vector system for the production of a polypeptide having the biological activity of an insect odorant receptor which comprises the vector of claim 7 and a suitable host.
- 11. A host vector system of claim 10, wherein the suitable host is a bacterial cell, yeast cell, insect cell, or animal cell.
- 12. A method of producing a polypeptide having the biological activity of an insect odorant receptor which comprising growing the host vector system of claim 11

under conditions permitting production of the polypeptide and recovering the polypeptide so produced.

- 13. A purified, insect odorant receptor.
- **14**. A polypeptide encoded by the isolated nucleic acid molecule of claim 1.
- 15. An antibody capable of specifically binding to an insect odorant receptor.
- **16**. An antibody capable of competitively inhibiting the binding of the antibody of claim 15.
 - 17. A monoclonal antibody of claim 15 or 16.
- **18**. A method for identifying cDNA inserts encoding an insect odorant receptors comprising:
 - (a) generating a cDNA library which contains clones carrying cDNA inserts from antennal or maxillary palp sensory neurons;
 - (b) hybridizing nucleic acid molecules of the clones from the cDNA libraries generated in step (a) with probes prepared from the antenna or maxillary palp neurons and probes from heads lacking antenna or maxillary palp neurons or from virgin female body tissue;
 - (c) selecting clones which hybridized with probes from the antenna or maxillary palp neurons but not from head lacking antenna or maxillary palp neurons or virgin female body tissue; and
 - (d) isolating clones which carry the hybridized inserts, thereby identifying the inserts encoding odorant receptors.
- 19. A method of claim 18, after step (c), further comprising:
 - (a) amplifying the inserts from the selected clones by polymerase chain reaction;
 - (b) hybridizing the amplified inserts with probes from the antennal or maxillary palp neurons; and
 - (c) isolating the clones which carry the hybridized inserts, thereby identifying the inserts encoding the odorant receptors.
- 20. A method of claim 19, wherein the probes are cDNA probes.
- 21. The cDNA inserts identified by the method of claim 18 or 19.
- 22. A method for identifying DNA inserts encoding an insect odorant receptors comprising:
 - (a) generating DNA libraries which contain clones carrying inserts from a sample which contains at least one antennal or maxillary palp neuron;
 - (b) contacting clones from the cDNA libraries generated in step (a) with nucleic acid molecule of claim 5 in appropriate conditions permitting the hybridization of the nucleic acid molecules of the clones and the nucleic acid molecule:
 - (c) selecting clones which hybridized with the nucleic acid molecule; and
 - (d) isolating the clones which carry the hybridized inserts, thereby identifying the inserts encoding the odorant receptors.
- **23**. A method to identify DNA inserts encoding an insect odorant receptors comprising:

- (a) generating DNA libraries which contain clones with inserts from a sample which contains at least one antenna or maxillary palp sensory neuron;
- (b) contacting the clones from the DNA libraries generated in step (a) with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding odorant receptors in appropriate conditions permitting the amplification of the hybridized inserts by polymerase chain reaction;
- (c) selecting the amplified inserts; and
- (d) isolating the amplified inserts, thereby identifying the inserts encoding the odorant receptors.
- **24**. A method to isolate DNA molecules encoding insect odorant receptors comprising:
 - (a) contacting a biological sample known to contain nucleic acids with appropriate polymerase chain reaction primers capable of specifically binding to nucleic acid molecules encoding insect odorant receptors in appropriate conditions permitting the amplification of the hybridized molecules by polymerase chain reaction;
 - (b) isolating the amplified molecules, thereby identifying the DNA molecules encoding the insect odorant receptors
- **25**. A method of transforming cells which comprises transfecting a host cell with a suitable vector of claim 7.
- **26**. Transformed cells produced by the method of claim 25.
- 27. The transformed cells of claim 26, wherein the host cells are not usually expressing odorant receptors.
- **28**. The transformed cells of claim 26, wherein the host cells are expressing odorant receptors.
- 29. A method of identifying a compound capable of specifically bind to an insect odorant receptor which comprises contacting a transfected cells or membrane fractions of the transfected cells of claim 26 with an appropriate amount of the compound under conditions permitting binding of the compound to such receptor, detecting the presence of any such compound Specifically bound to the receptor, and thereby determining whether the compound specifically binds to the receptor.
- **30.** A method of identifying a compound capable of specifically bind to an insect odorant receptor which comprises contacting an appropriate amount of the purified odorant receptor of claim 13 with an appropriate amount of the compound under conditions permitting binding of the compound to such purified receptor, detecting the presence of any such compound specifically bound to the receptor, and thereby determining whether the compound specifically binds to the receptor.
- **31**. A method of claim 30, wherein the purified receptor is embedded in a lipid bilayer.
- 32. A method of identifying a compound capable of activating the activity of an insect odorant receptor which comprises contacting the transfected cells or membrane fractions of the transfected cells of claim 26 with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is capable of activating the activity of a odorant receptor.
- 33. A method of identifying a compound capable of activating the activity of an odorant receptor which com-

prises contacting a purified odorant receptor of claim 13 with the compound under conditions permitting the activation of a functional odorant receptor response, the activation of the receptor indicating that the compound is capable of activating the activity of a odorant receptor.

- **34**. A method of claim 33, wherein the purified receptor is embedded in a lipid bilayer.
- 35. A method of identifying a compound capable of inhibiting the activity of a odorant receptor which comprises contacting the transfected cells or membrane fractions of the transfected cells of claim 26 with an appropriate amount of the compound under conditions permitting the inhibition of a functional odorant receptor response, the inhibition of the receptor response indicating that the compound is capable of inhibiting the activity of a odorant receptor.
- **36.** A method of identifying a compound capable of inhibiting the activity of a odorant receptor which comprises contacting an appropriate amount of the purified odorant receptor of claim 13 with an appropriated amount of the compound under conditions permitting the inhibition of a

- functional odorant receptor response, the inhibition of the receptor response indicating that the compound is capable of activating the activity of a odorant receptor.
- **37**. A method of claim 30, wherein the purified receptor is embedded in a lipid bilayer.
- 38. A method of claims 29, 30, 31, 32, 33, 34, 35, 36, or 37 wherein the compound is not previously known.
 - **39**. The compound identified by the method of claim 38.
- **40.** A method of controlling pest populations which comprises identifying odorant ligands by the method of claims **29**, **30**, **31**, **32**, **33**, **34**, **35**, **36**, or **37** which are alarm odorant ligands and spraying the desired area with the identified odorant ligands.
- 41. A method of controlling a pest population which comprises identifying odorant ligands by the method of claims 29, 30, 31, 32, 33, 34, 35, 36, or 37 which interfere with the interaction between the odorant ligands and the odorant receptors which are associated with fertility.

* * * * *