

(43) International Publication Date
22 May 2014 (22.05.2014)(10) International Publication Number
WO 2014/076473 A1(51) International Patent Classification:
G01J 1/42 (2006.01) *G01J 1/04* (2006.01)

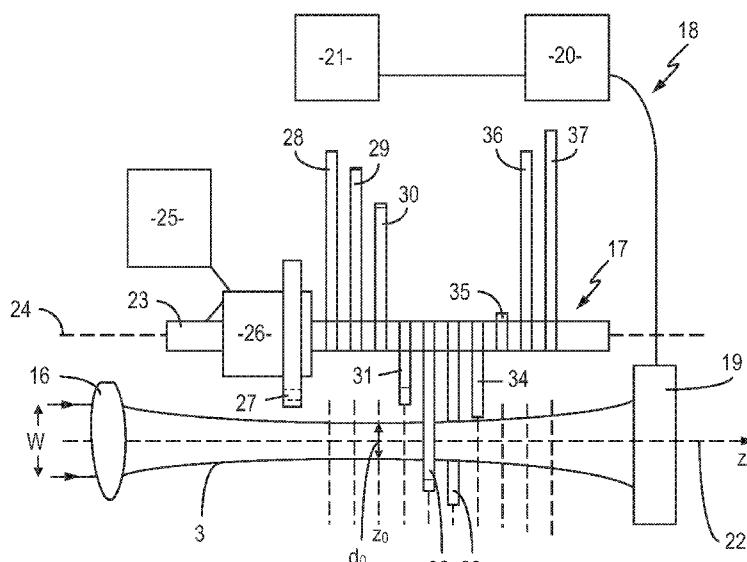
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/GB2013/052991(22) International Filing Date:
13 November 2013 (13.11.2013)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
1220416.0 13 November 2012 (13.11.2012) GB(71) Applicant: **M SQUARED LASERS LIMITED** [GB/GB]; Venture Building, 1 Kelvin Campus, Maryhill Road, West of Scotland Science Park, Maryhill Road, Glasgow G20 0SP (GB).(72) Inventor: **ROBERTSON, Gordon**; Venture Building, 1 Kelvin Campus, Maryhill Road, West of Scotland Science Park, Glasgow Strathclyde G20 0SP (GB).(74) Agent: **LINCOLN IP**; 9 Victoria Street, Aberdeen, Aberdeenshire AB10 1XB (GB).


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: BEAM PROFILER

Fig. 4(a)

(57) Abstract: An M^2 value beam profiling apparatus and method is described. The M^2 value beam profiler comprises an optical axis defined by a focussing lens assembly and a detector, wherein the focussing lens acts to create an artificial waist within an optical field propagating along the optical axis. The beam profiler also comprises a multiple blade assembly having a first set of blades located at an artificial waist position and a second set of blades longitudinally separated along the optical axis from the artificial waist position. The multiple blade assembly therefore provides a means for selectively passing the blades through the location of the optical field. Employing these measured widths allows for the M^2 value of the optical field to be determined.

1 Beam Profiler

2

3 The present invention relates to the field of optics. More specifically, the present invention
4 concerns an apparatus and method for measuring the beam profile of the output field of a
5 laser and in particular the M^2 value of the output field.

6

7 There are many applications of lasers in which the beam profile of its output field is of
8 critical importance. With these applications it is usually necessary to measure the beam
9 profile to ensure that a desired profile is present. For some lasers, and their applications,
10 this may only be necessary during the initial design or fabrication phase of the laser.
11 However, in other cases it may be necessary to monitor the beam profile of the output field
12 continuously during the operation of the laser.

13

14 The beam profile of the output field is significant because it directly affects the energy
15 density, the concentration, and the collimation of the output field. Furthermore, the
16 propagation of the output field through space is significantly affected by the beam profile.
17 It is known to those skilled in the art that the output field of a laser can comprise a variety
18 of beam profiles, a Gaussian beam profile or "top hat" beam profile being two such
19 examples. The Gaussian beam profile is perhaps the most common profile required since

1 it allows for the highest concentration of focused light, whereas a flat top beam allows for
2 very uniform distribution of the energy across a given area.

3

4 In practice, the output field of a laser rarely exhibits a uniform irradiance profile. For
5 example it is not uncommon for Gaussian beam profiles to be highly structured. The
6 significance of a distorted or non-uniform beam profile varies with the application. In many
7 applications nonlinear processes are typically proportional to the irradiance of the output
8 field squared or cubed. Thus a non-uniform Gaussian profile may have a peak energy that
9 is significantly lower than that provided by a corresponding uniform Gaussian beam profile
10 under the same conditions of total power or energy. As a result, the desired nonlinear
11 process may be significantly weaker than that predicted theoretically.

12

13 It has therefore become increasingly important to be able to characterise the quality of the
14 output field of a laser. A summary of some of the known apparatus and techniques
15 employed to profile such output fields is provided in a paper by Roundy, Carlos B. "*Current*
16 *technology of laser beam profile measurements*" available on:
17 <http://aries.ucsd.edu/LMI/TUTORIALS/profile-tutorial.pdf> (1995).

18

19 One of the most useful beam profile parameters known to those skilled in the art for
20 characterising the quality of an output field of a laser is its M^2 value. In many applications,
21 especially those in which a Gaussian beam is the desired profile, the M^2 value is in fact the
22 most important characteristic for describing the quality of the beam. Indeed International
23 Standard, ISO 11146-2:2005, specifies the M^2 value as the fundamental quality parameter
24 for an output field of a laser.

25

26 To help illustrate the concept of the M^2 value Figure 1 presents a schematic illustration of
27 the propagation through a lens 1, of a first output field 2, having a uniform Gaussian profile
28 i.e. one operating at the fundamental transverse mode or TEM_{00} mode and a second
29 output field 3 having a non-uniform Gaussian profile i.e. one composed of modes other
30 than the fundamental transverse mode.

31

32 If the output beam of the laser has a beam width of W as it reaches the lens 1 then the
33 focused spot size of a uniform Gaussian profile 2, d_{00} , is defined by the following equation:

34

35
$$d_{00} = 4\lambda f / \pi W \quad (1)$$

1

2 where λ represents the wavelength of the output field 2 and f the focal length of the lens 1.
3 For a non-uniform Gaussian profile 3 the focused spot size d_0 is defined by the following
4 equation:

5

$$d_0 = M4\lambda f/\pi W \quad (2)$$

6

7 In practice, the output field 3 on the non-uniform Gaussian profile focuses to a larger spot
8 size, namely M times larger than the focused spot size the uniform Gaussian profile, d_{00} .

9

10 In addition to defining the minimum spot size, the M^2 value also predicts the divergence of
11 the output field after the focus plane. Specifically, the non-uniform Gaussian profile 3 will
12 diverge M times faster than an equivalent TEM_{00} field 2 of the same width. It will be
13 appreciated by those skilled in the art that although Figure 1 illustrates the situation where
14 the output fields 2 and 3 propagate through a focusing lens 1 the same principles apply if
15 no lens is present i.e. the field with non-uniform Gaussian profile 3 will diverge more
16 rapidly by a factor of M than if it were true TEM_{00} field 2.

17

18 Measuring the M^2 value is not a simple process since it cannot be found by measuring the
19 output field width W at any single point. Theoretically, the M^2 value can be calculated by
20 taking a first measurement of the width W_1 of the output field 3 at the beam waist so as to obtain
21 the waist diameter d_0 and a second measurement W_2 in the far field so as to obtain
22 a value for the divergence of the output field 3. These two values W_1 and W_2 can then be
23 used to calculate the M^2 value. In practice it is found that using just these two measured
24 values does not provide a particularly accurate calculation of the M^2 value.

25

26 A further complication arises from the fact that there exist at least five definitions of
27 measured beam width d_0 employed by those skilled in the art, namely $D4\sigma$, 10/90 or 20/80
28 knife-edge, $1/e^2$, full width half maximum (FWHM), and D86 values. The accuracy
29 between measurements therefore requires consistency between which definition of the
30 beam width is employed.

31

32 In order to address these issues of accuracy the ISO standard has adopted the $D4\sigma$
33 definition as the standard definition for the beam width value d_0 . The M^2 value of the

1 output field of a laser 3 is then determined experimentally by employing the following
2 methodology:

3

4 1. Measure the D4 σ widths at five axial positions near the beam waist d_0 ;
5 2. Measure the D4 σ widths at five axial positions at least one Rayleigh length away
6 from the waist position, z_0 .
7 3. Fitting the ten measured data points to the following equation

8

9
$$\sigma^2(z) = \sigma_0^2 + M^2 \left(\frac{z}{z_0} \right)^2 (z - z_0)^2 \quad (3)$$

10

11 where $\sigma^2(z)$ represents the D4 σ beam width.

12

13 Fitting the measured data points to equation (3) allows for the accurate calculations of the
14 M^2 , z_0 and σ_0 values to be made.

15

16 A schematic representation of a beam profiler 4 known in the art is presented in Figure 2.
17 This beam profiler 4 design comprises a rotating drum 5 containing a knife-edge, slit, or
18 pinhole 6 that moves in front of a single element detector 7. Optically coupled on the
19 opposite side of the rotating drum 5 to the detector 7 is an automated focusing lens
20 assembly 8. During operation the focusing lens assembly 8 is initially employed to place
21 the internal focused beam waist d_0 of an incident laser output field 3 at the centre of the
22 rotating drum 5. It can be seen that the beam profiler 4 of Figure 2 has two knife edges 6a
23 and 6b oriented at 90° to each other such that when the rotating drum 5 spins, the knife
24 edges 6a and 6b rapidly scan the incident laser output field 3 in orthogonal directions. The
25 transmitted light is then measured by the detector 7 before the detected signal data is sent
26 to a computer (not shown) which derives the beam profile both axis perpendicular to the
27 optical axis 9 of the profiler 4. By scanning the focusing lens assembly 8 along the
28 direction of the optical axis 9 the beam profiles at multiple planes can be recorded thus
29 allowing the M^2 value for the output field of the laser 3 to be derived.

30

31 The beam profiler 4 of Figure 2 exhibits a number of practical disadvantages. In the first
32 instance the employment of the automated focusing lens assembly 8 means that it can
33 take up to a minute to perform a scan and thus derive the desired the M^2 value. Once the
34 laser system being analysed is adjusted so as to attempt improve the corresponding the
35 M^2 value then a full scan is again required to see if the M^2 value has improved or

1 deteriorated. It will be obvious to the skilled reader that repeating these steps results in an
2 overall process that can be very time consuming.

3

4 Secondly, in order to achieve accurate results it is necessary to align the beam profiler's
5 optical axis 9 with that of the laser field to be analysed. This requires a significant degree
6 of skill and effort on the part of the operator.

7

8 Another significant disadvantage of this profiler 4 is the fact that in order to operate
9 correctly the incident field 3 to be analysed must remain constant over the time that it
10 takes to make a single scan of the field 3, otherwise spurious results will occur. The rate
11 of drum rotation and the detector response time limits the system to measuring beams that
12 are either true continuous wave (CW), or pulsed at repetition rates of greater than 10MHz.

13

14 An alternative beam profiler 10 design known in the art for measuring the M^2 value of the
15 output field of a laser 3 is present schematically in Figure 3. This apparatus again
16 comprises a focussing lens assembly 11 employed to create an artificial waist d_0 within the
17 optical field 3 to be measured. However, unlike the previously described system 4 the
18 focussing lens assembly 11 is not translated along the propagation axis 12 of the optical
19 field 3. Instead ten reflective surfaces 13 are located in the optical field 3 to be measured
20 at predetermined positions along the propagation axis 12. These reflective surfaces 13
21 are employed to form simultaneous images of the optical field 3 at ten locations on a CCD
22 array camera 14. With the data from all ten measurement positions acquired the detected
23 signals are then sent to a computer in order to calculate the desired beam parameters e.g.
24 the M^2 value.

25

26 The beam profiler 10 exhibits significantly faster operating times than the beam profiler 4
27 described with reference to Figure 2. Furthermore the design is suitable for the
28 measurement of both CW and certain pulsed lasers output fields 3. There are however
29 still a number of disadvantages to the design of the beam profiler 10.

30

31 The main disadvantage of such beam profilers 10 resides in the employment of the CCD
32 array camera 14. Typical CCD array cameras 14 are generally expensive components
33 and those commercially available devices are limited in what operating wavelengths they
34 can detect. Furthermore, the costs of these components increases not insignificantly the
35 higher the wavelengths desired to be detected. This makes beam profilers 10 made to

1 such designs expensive to manufacture. In addition, neutral density filters or UV filters are
2 often required to be employed in conjunction with these components in order to reduce the
3 power of the incident laser field 3 and so protect the CCD array camera 14 from accidental
4 damage. This increases the degree of skill and effort required by the operator in order to
5 correctly deploy such beam profilers 10.

6

7 It is therefore an object of an aspect of the present invention to obviate or at least mitigate
8 the foregoing disadvantages of the beam profilers known in the art.

9

10 Summary of Invention

11

12 According to a first aspect of the present invention there is provided an M^2 value beam
13 profiler comprising: an optical axis defined by a focussing lens assembly and a detector,
14 wherein the focussing lens acts to create an artificial waist within an optical field
15 propagating along the optical axis; a multiple blade assembly having a first set of blades
16 located at an artificial waist position and a second set of blades longitudinally separated
17 along the optical axis from the artificial waist position, wherein the multiple blade assembly
18 provides a means for selectively passing the blades through the location of the optical
19 axis.

20

21 The term blade is employed to refer to any mechanical means capable of preventing the
22 propagation of a beam along the optical axis e.g. by absorbing and or reflecting the optical
23 field of the beam.

24

25 Preferably the multiple blade assembly also provides a means for successively passing
26 the blades through the location of the optical axis. In the context of the present application
27 the term successively includes in turn or following in an uninterrupted order.

28

29 Most preferably multiple blade assembly comprises ten or more blades longitudinally
30 separated along the length of the assembly.

31

32 The ten or more blades may be equally spaced along the length of the assembly.

33

1 The multiple blade assembly may comprise a rotatable multiple blade assembly wherein
2 the blades are mounted upon a rotatable shaft. Preferably the rotatable shaft defines an
3 axis of rotation for the rotatable multiple blade assembly.

4

5 Most preferably the blades are mounted upon a rotatable shaft such that the blades
6 occupy a unique rotational position.

7

8 It is preferable for the rotatable multiple blade assembly to further comprise a reference
9 that provides a means for determining the rotational orientation of the rotatable multiple
10 blade assembly relative to the axis of rotation.

11

12 Alternatively the multiple blade assembly comprises a mechanical actuator. In this
13 embodiment the blades are mounted on the mechanical actuator which then selectively
14 passes the blades through the optical axis. The blades may also be successively passed
15 through the optical axis.

16

17 According to a second aspect of the present invention there is provided method of profiling
18 an output field from a laser the method comprising

19 - propagating the output field along an optical axis;
20 - focussing the output field to form an artificial waist;
21 - locating a first set of blades at an artificial waist position;
22 - locating a second set of blades longitudinally separated along the optical axis from
23 the artificial waist position;
24 - measuring the width of the output field at the position of the first and the second set
25 of blades by selectively passing the blades through the optical axis to prevent the
26 propagation of the output field; and
27 - employing the measured widths to determine the M^2 value of the output field.

28

29 Preferably measuring the width of the output field further comprises successively passing
30 the blades through the location of the optical axis.

31

32 Preferably measuring the width of the output field comprises measuring the width of the
33 output field at ten or more positions along the optical axis by selectively passing ten or
34 more blades through the optical axis to prevent the propagation of the output field.

35

- 1 Preferably the ten or more blades are equally spaced along the optical axis.
- 2
- 3 Most preferably the first and second sets of blades are separated by a distance greater
- 4 than or equal to the Rayleigh length of the output field.
- 5
- 6 Preferably the first and second sets of blades are passed through the optical axis by
- 7 rotation of a shaft.
- 8
- 9 Alternatively the first and second sets of blades are passed through the optical axis by the
- 10 translational movement of a mechanical actuator.
- 11
- 12 Optionally the measured widths of the output field are employed to calculate a beam waist
- 13 z_0 value for the output field.
- 14
- 15 Embodiments of the second aspect of the invention may comprise features to implement
- 16 the preferred or optional features of the first aspect of the invention or vice versa.
- 17
- 18 According to a third aspect of the present invention there is provided a beam profiler
- 19 having an optical axis and comprising a multiple blade assembly having first and second
- 20 blades longitudinally separated along the length of the assembly wherein the multiple
- 21 blade assembly provides a means for selectively passing the blades through the location
- 22 of the optical axis.
- 23
- 24 Preferably the optical axis is defined by a focussing lens assembly and a detector.
- 25
- 26 Embodiments of the third aspect of the invention may comprise features to implement the
- 27 preferred or optional features of the first or second aspects of the invention or vice versa.
- 28
- 29 According to a fourth aspect of the present invention there is provided method of profiling
- 30 an output field from a laser the method comprising
- 31 - propagating the output field along an optical axis;
- 32 - measuring the width of the output field at two or more positions along the optical
- 33 axis by selectively passing two or more blades through the optical axis to prevent
- 34 the propagation of the output field; and

1 - employing the measured widths to determine one or more parameters of the output
2 field.

3

4 Most preferably measured widths of the output field are employed to calculate an M^2 value
5 for the output field.

6

7 Embodiments of the fourth aspect of the invention may comprise features to implement the
8 preferred or optional features of the first, second or third aspects of the invention or vice
9 versa.

10

11 Brief Description of Drawings

12

13 Aspects and advantages of the present invention will become apparent upon reading the
14 following detailed description and upon reference to the following drawings in which:

15

16 Figure 1 presents a schematic illustration of the propagation of a uniform Gaussian profiled
17 optical field and a non-uniform Gaussian profiled optical field through a focusing lens;

18

19 Figure 2 presents a schematic representation of a beam profiler known in the art;

20

21 Figure 3 presents a schematic representation of an alternative beam profiler known in the
22 art;

23

24 Figure 4 presents a schematic (a) side view and (b) rear view of a beam profiler in
25 accordance with an embodiment of the present invention;

26

27 Figure 5 presents a flow chart of the methodology involved in operating the beam profiler
28 of Figure 4;

29

30 Figure 6 presents a schematic experimental trace obtained by the beam profiler of Figure
31 4;

32

33 Figure 7 presents a schematic representation of an alternative multiple blade assembly;
34 and

35

1 Figure 8 presents a schematic representation of a further alternative multiple blade
2 assembly.

3

4 Detailed Description

5

6 A beam profiler in accordance with an embodiment of the present invention, and generally
7 depicted by reference numeral 15, will now be described with reference to Figures 4 to 6.
8 The beam profiler 15 can be seen to comprise a focussing lens assembly 16, a rotatable
9 multiple blade assembly 17 and a signal detection and processing system 18.

10

11 In the presently described embodiment, the signal detection and processing system 18
12 comprises a detector 19, an oscilloscope 20 connected to the detector 19 and a CPU 21
13 connected to the oscilloscope 20.

14

15 An optical axis 22 of the beam profiler 15 is defined by the location of the focusing lens
16 assembly 16 and the detector 19.

17

18 The rotatable multiple blade assembly 17 can be seen to comprise a central shaft 23 that
19 defines an axis of rotation 24 for the assembly 17. The axis of rotation 24 can be seen to
20 be parallel to, but offset from, the optical axis 22. Attached to a proximal end of the shaft
21 23 is a motor 25 that provide a means for rotating the shaft 23 about the axis of rotation
22 24.

23

24 Moving along the shaft 23 from the proximal end there is located a shaft head 26 upon
25 which is mounted a reference aperture 27. The reference aperture 27 provides the beam
26 profiler 15 with a means for determining the rotational orientation of the rotatable multiple
27 blade assembly 17 relative to the axis of rotation 24.

28

29 Also located on the shaft 23 are ten blades, as depicted by reference numerals 28, 29, 30,
30 31, 32, 33, 34, 35, 36, and 37, respectively. In the embodiment presented in Figure 4(a)
31 the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 are spaced along the shaft 23. The
32 blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 may be equally spaced along the shaft 23.

33

34 It should be noted that the detector 19 has been omitted from Figure 4(b) for ease of
35 understanding of the orientation of the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37.

1

2 The blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 may be equal in length. Irrespective
3 of the actual length of the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 they each must
4 have a length greater than the offset distance between the axis of rotation 24 and the
5 optical axis 22 so as to allow the beam profiler 15 to function correctly.

6

7 As well as the ten blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 being spaced
8 longitudinally along the shaft 23 they each also occupy a unique rotational position about
9 the axis of rotation 24. In the presently described embodiment the ten blades 28, 29, 30,
10 31, 32, 33, 34, 35, 36 and 37 are arranged to form a helical array from one end of the shaft
11 23 to the other.

12

13 Method of Beam Profiling

14

15 The operation of the beam profiler 15 will now be described again with reference to
16 Figures 4 to 6. In the first instance the beam profiler 15 is deployed by arranging for the
17 output field 3 of the laser to be analysed to propagate along the optical axis 22. The
18 focussing lens assembly 16 acts to focus an output field 3 having a diameter W down to a
19 waist d_0 . The output field 3 then propagates along the optical axis 22 so as to be incident
20 on the detector 19.

21

22 Deployment of the beam profiler 5 may further comprise adjusting the position of the
23 focusing lens assembly 16 and or the position of one or more of the blades 28, 29, 30, 31,
24 32, 33, 34, 35, 36 and 37 such that they form a first set of blades 38 located about the
25 position of the waist z_0 and a second set of blades 39 positioned at a distance z_R that is
26 greater than or equal to a Rayleigh length of an output field 3.

27

28 The motor is then employed to rotate the rotatable multiple blade assembly 17 such that
29 each of the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 in turn acts to block the output
30 field 3 from reaching the detector 19. A typical experimental trace 40 obtained by the
31 detector 19 and recorded by the oscilloscope 20 is presented in Figure 6. It can be seen
32 that the transmission profile 40 obtained by the detector 19 comprises ten absorption
33 features 41, 42, 43, 44, 45 and 46, 47, 48, 49, 50 one each corresponding to each of the
34 blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 passing through the output field 3. The
35 width of each absorption feature 41, 42, 43, 44, 45, 46, 47, 48, 49 and 50 is directly related

1 to the width of the of the output field 3 at the position z along the optical axis
2 corresponding to the longitudinal position of the corresponding blade 28, 29, 30, 31, 32,
3 33, 34, 35, 36 and 37.

4
5 In order to obtain the experimental trace it is necessary for the response speed of the
6 detector 19 to be correlated with the speed of rotation of the rotatable multiple blade
7 assembly 17. Apart from this criterion there is a large flexibility in the choice of detector 19
8 employed by the signal and detection processing system 18 since all that is required is for
9 the detector 19 to be capable of measuring the presence and absence of the output field
10 as dictated by the rotational position of the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and
11 37. Indeed a thermal detector could be employed if the speed of rotation of the rotatable
12 multiple blade assembly 17 were slowed to an appropriate value to correlate with its
13 response speed. This flexibility of the choice of detectors means the beam profiler 15 can
14 operate over a greater range of the electromagnetic spectrum e.g. from the ultraviolet
15 region through to the terahertz region, although this may require the use of different
16 focusing lens assemblies.

17
18 The signal detection and processing system 18 is then employed to determine the widths
19 of the output field 3 at the ten different positions along the optical axis 22. This information
20 can then be used to provide accurate calculations of the M^2 value for the output field 3 as
21 well as other beam parameters e.g. the position of the beam waist z_0 . Preferably these
22 calculations involve employing $D4\sigma$ values for the width of the output field 3 at the ten
23 different positions along the optical axis 22 and then fitting these measured data points to
24 equation (3) above.

25
26 An alternative embodiment of the beam profiler is presented in Figure 7, as depicted
27 generally by reference numeral 15b. The difference between the beam profiler 15b and
28 that presented in Figure 4 is that the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 have
29 been separated into first 38 and second 39 sets of blades. The first 38 and second 39 set
30 of blades are separated by a distance z_R along the length of the shaft 23. It is preferable
31 for the distance z_R to be greater than the Rayleigh length of an output field 3 to be
32 analysed by the beam profilier15.

33

1 It will be appreciated by the skilled reader that the first 38 and second 39 set of blades
2 may comprise more or less than five blades and that each 38 and second 39 need not
3 contain the same number of blades.

4

5 In a further alternative embodiment presented in Figure 8 the blades 28, 29, 30, 31, 32, 33,
6 34, 35, 36 and 37 may be mounted longitudinally along the length of a mechanical actuator
7 51 instead of on the rotatable shaft 23. The mechanical actuator 51 provides a means for
8 selectively passing each of the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37, preferably
9 successively or in turn, through the location of the optical axis 22 e.g. the blades 28, 29,
10 30, 31, 32, 33, 34, 35, 36 and 37 are passed in turn down through the location of the
11 optical axis 22 and then in turn back up through the optical axis 22. This process may
12 then be repeated in a cyclic motion so as to replicate the rotation of the blades 28, 29, 30,
13 31, 32, 33, 34, 35, 36 and 37 of the rotatable multiple blade assembly 17 through the
14 optical axis. In this embodiment it is necessary for the response speed of the detector 19
15 to be correlated with the period of the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37
16 passing through the optical axis 22.

17

18 It will be appreciated that in all of the above described embodiments the number order of
19 the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 may be altered. Furthermore, the
20 relative longitudinal and rotational position of the blades 28, 29, 30, 31, 32, 33, 34, 35, 36
21 and 37 may also be varied. A minimum of two blades are required to exploit the inherent
22 advantages of the invention as described below. However, the upper limit is set by the
23 length of the shaft 23 and the ability to have the blades rotationally separated about the
24 axis of rotation 24. Thus what is important for the operation of the beam profilers 15 and
25 15b is that the blades 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 occupy a unique
26 longitudinal position along the shaft 23, a unique rotational position about the axis of
27 rotation 24 and that this information is provided to the signal detection and processing
28 system 18 so as to allow for the analyses of an output field 3 of a laser to be performed.

29

30 The beam profilers described above have many advantages over those systems known in
31 the art. In the first instance the beam profiler is significantly quicker than those profilers in
32 the art that employ an automated focusing lens assembly. Results can be achieved in a
33 matter of seconds rather than minutes.

34

1 Since the detector is simply required to measure the presence and absence of the output
2 field, as dictated by the rotational position of the blades, then there is no need to employ
3 expensive CCD camera arrays and a reduced requirement to employ power density filters.
4 As a result the beam profiler is significantly cheaper to produce and can be employed over
5 a greater range of wavelengths and powers when compared to profilers known in the art.
6 These reduced operational requirements on the detector also mean that the beam profiler
7 can be employed to analyse CW and pulsed optical fields.

8

9 Furthermore, by the appropriate selection of the length of the blades and the offset
10 distance between the optical axis and the axis of rotation the beam profiler can also be
11 employed to operate with a greater range of beam widths than those able to be achieved
12 with the systems known in the art.

13

14 The beam profiler is relatively easy to align and so requires less skill and effort on the part
15 of the operator than those systems known in the art.

16

17 An M^2 value beam profiling apparatus and method is described. The M^2 value beam
18 profiler comprises an optical axis defined by a focussing lens assembly and a detector,
19 wherein the focussing lens acts to create an artificial waist within an optical field
20 propagating along the optical axis. The beam profiler also comprises a multiple blade
21 assembly having a first set of blades located at an artificial waist position and a second set
22 of blades longitudinally separated along the optical axis from the artificial waist position.
23 The multiple blade assembly therefore provides a means for selectively passing the blades
24 through the location of the optical axis. Employing these measured widths allows for the
25 M^2 value of the optical field to be determined.

26

27 The foregoing description of the invention has been presented for purposes of illustration
28 and description and is not intended to be exhaustive or to limit the invention to the precise
29 form disclosed. The described embodiments were chosen and described in order to best
30 explain the principles of the invention and its practical application to thereby enable others
31 skilled in the art to best utilise the invention in various embodiments and with various
32 modifications as are suited to the particular use contemplated. Therefore, further
33 modifications or improvements may be incorporated without departing from the scope of
34 the invention as defined by the appended claims.

35

1 Claims

2

3 1) An M^2 value beam profiler comprising: an optical axis defined by a focussing lens
4 assembly and a detector, wherein the focussing lens acts to create an artificial waist
5 within an optical field propagating along the optical axis; a multiple blade assembly
6 having a first set of blades located at an artificial waist position and a second set of
7 blades longitudinally separated along the optical axis from the artificial waist position,
8 wherein the multiple blade assembly provides a means for selectively passing the
9 blades through the location of the optical axis.

10

11 2) An M^2 value beam profiler as claimed in claim 1 wherein the multiple blade assembly
12 also provides a means for successively passing the blades through the location of
13 the optical axis.

14

15 3) An M^2 value beam profiler as claimed in either of claim 1 or claim 2 wherein the
16 multiple blade assembly comprises ten or more blades longitudinally separated
17 along the length of the assembly.

18

19 4) An M^2 value beam profiler as claimed in claim 3 wherein the ten or more blades are
20 equally spaced along the length of the assembly.

21

22 5) An M^2 value beam profiler as claimed in any of the preceding claims wherein the
23 multiple blade assembly comprises a rotatable multiple blade assembly.

24

25 6) An M^2 value beam profiler as claimed in claim 5 wherein the blades are mounted
26 upon a rotatable shaft.

27

28 7) An M^2 value beam profiler as claimed in claim 6 wherein the rotatable shaft defines
29 an axis of rotation for the rotatable multiple blade assembly.

30

31 8) An M^2 value beam profiler as claimed in either of claims 6 or 7 wherein the blades
32 are mounted upon the rotatable shaft and occupy a unique rotational position.

33

34 9) An M^2 value beam profiler as claimed in either of claims 7 or 8 wherein the rotatable
35 multiple blade assembly further comprises a reference that provides a means for

1 determining the rotational orientation of the rotatable multiple blade assembly
2 relative to the axis of rotation.

3

4 10) An M^2 value beam profiler as claimed in any of claims 1 to 4 wherein the multiple
5 blade assembly comprises a mechanical actuator.

6

7 11) A method of profiling an output field from a laser the method comprising
8 - propagating the output field along an optical axis;
9 - focussing the output field to form an artificial waist;
10 - locating a first set of blades at an artificial waist position;
11 - locating a second set of blades longitudinally separated along the optical axis from
12 the artificial waist position;
13 - measuring the width of the output field at the position of the first and the second set
14 of blades by selectively passing the blades through the optical axis to prevent the
15 propagation of the output field; and
16 - employing the measured widths to determine the M^2 value of the output field.

17

18 12) A method of profiling an output field as claimed in claim 11 wherein measuring the
19 width of the output field further comprises successively passing the blades through
20 the location of the optical axis.

21

22 13) A method of profiling an output field as claimed in either of claims 11 or 12 wherein
23 measuring the width of the output field comprises measuring the width of the output
24 field at ten or more positions along the optical axis by selectively passing ten or more
25 blades through the optical axis to prevent the propagation of the output field.

26

27 14) A method of profiling an output field as claimed in claim 13 wherein the ten or more
28 blades are equally spaced along the optical axis.

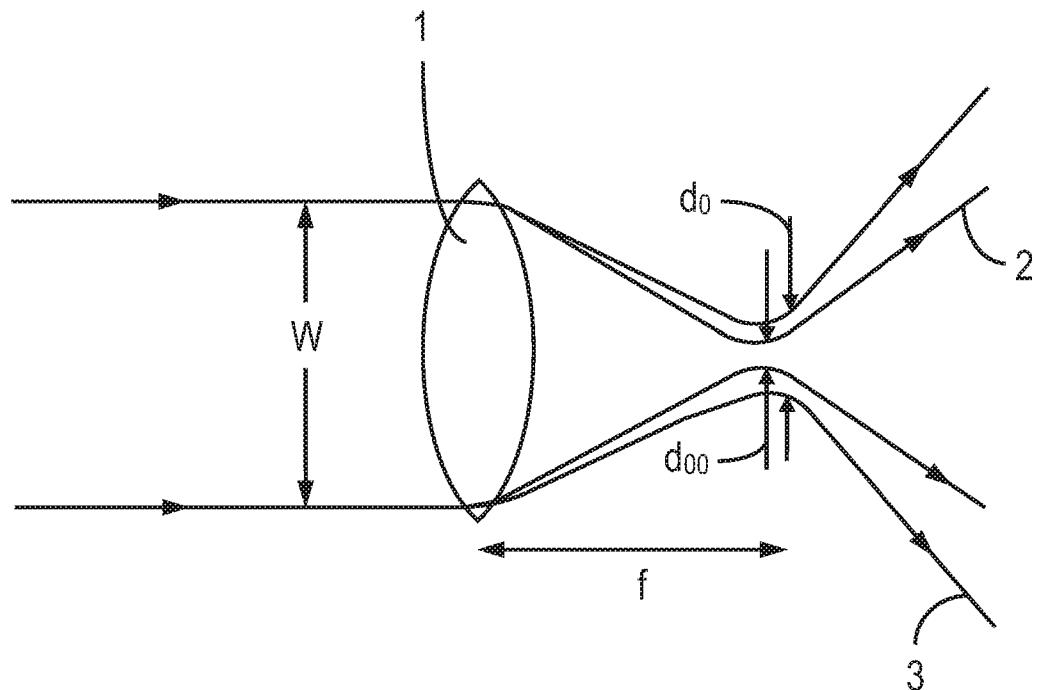
29

30 15) A method of profiling an output field as claimed in any of claims 11 to 15 wherein the
31 first and second set of blades are separated by a distance greater than or equal to
32 the Rayleigh length of the output field.

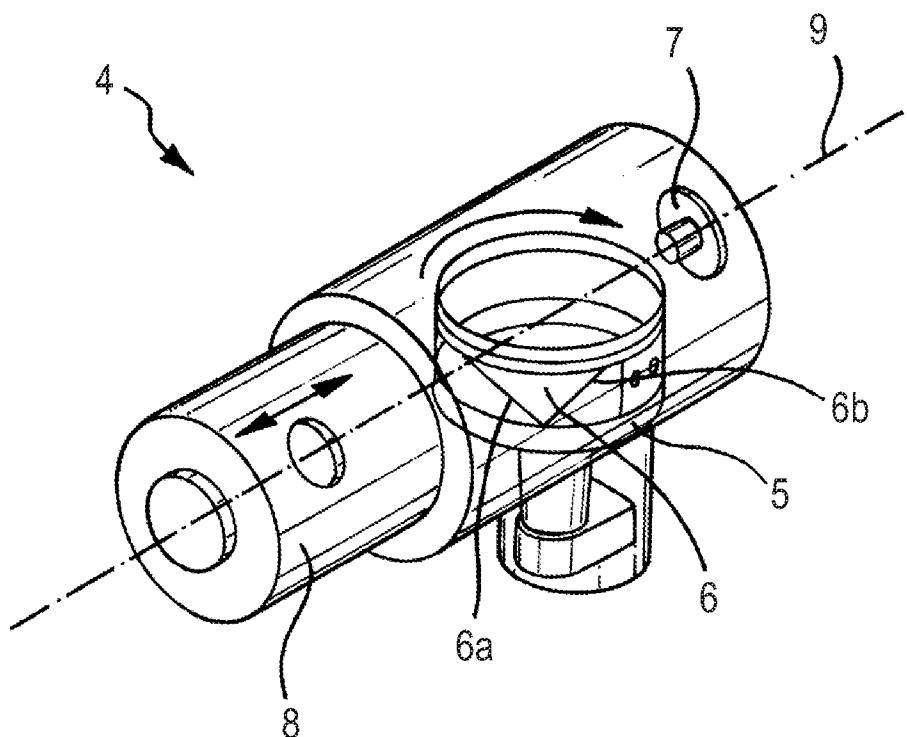
33

1 16) A method of profiling an output field as claimed in any of claims 11 to 15 wherein the
2 first and second sets of blades are passed through the optical axis by rotation of a
3 shaft.

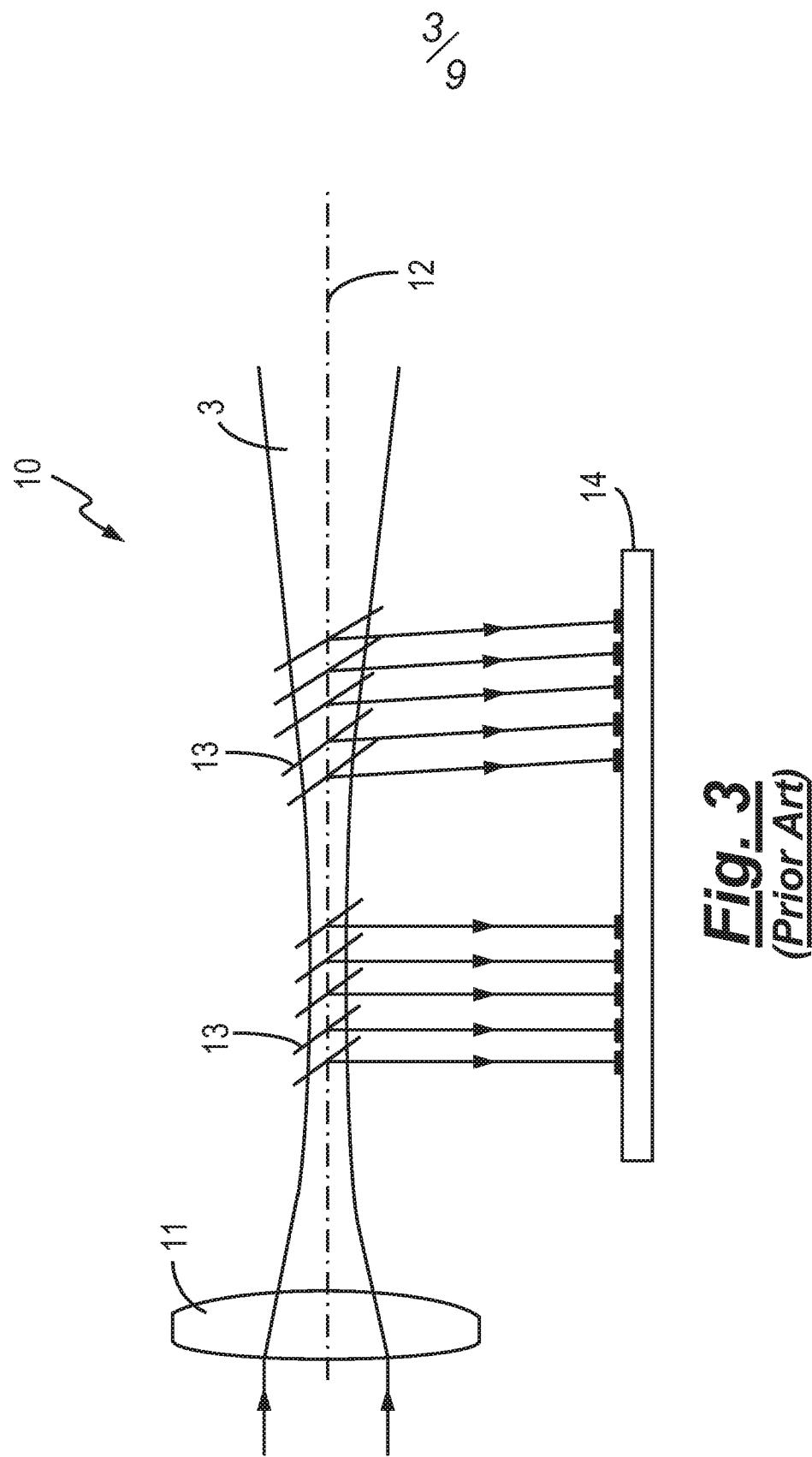
4

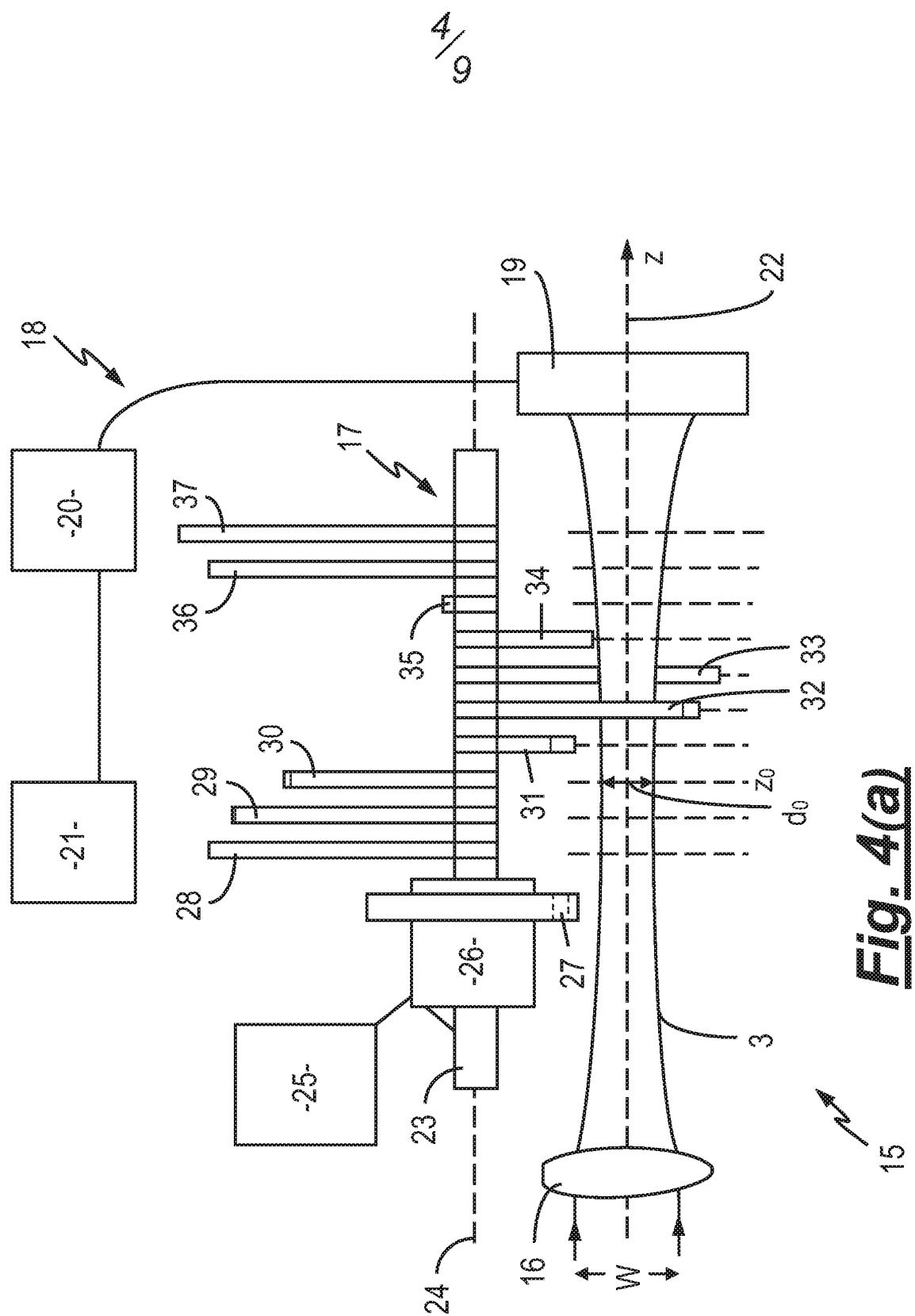

5 17) A method of profiling an output field as claimed in any of claims 11 to 15 wherein the
6 first and second sets of blades are passed through the optical axis by the
7 translational movement of a mechanical actuator.

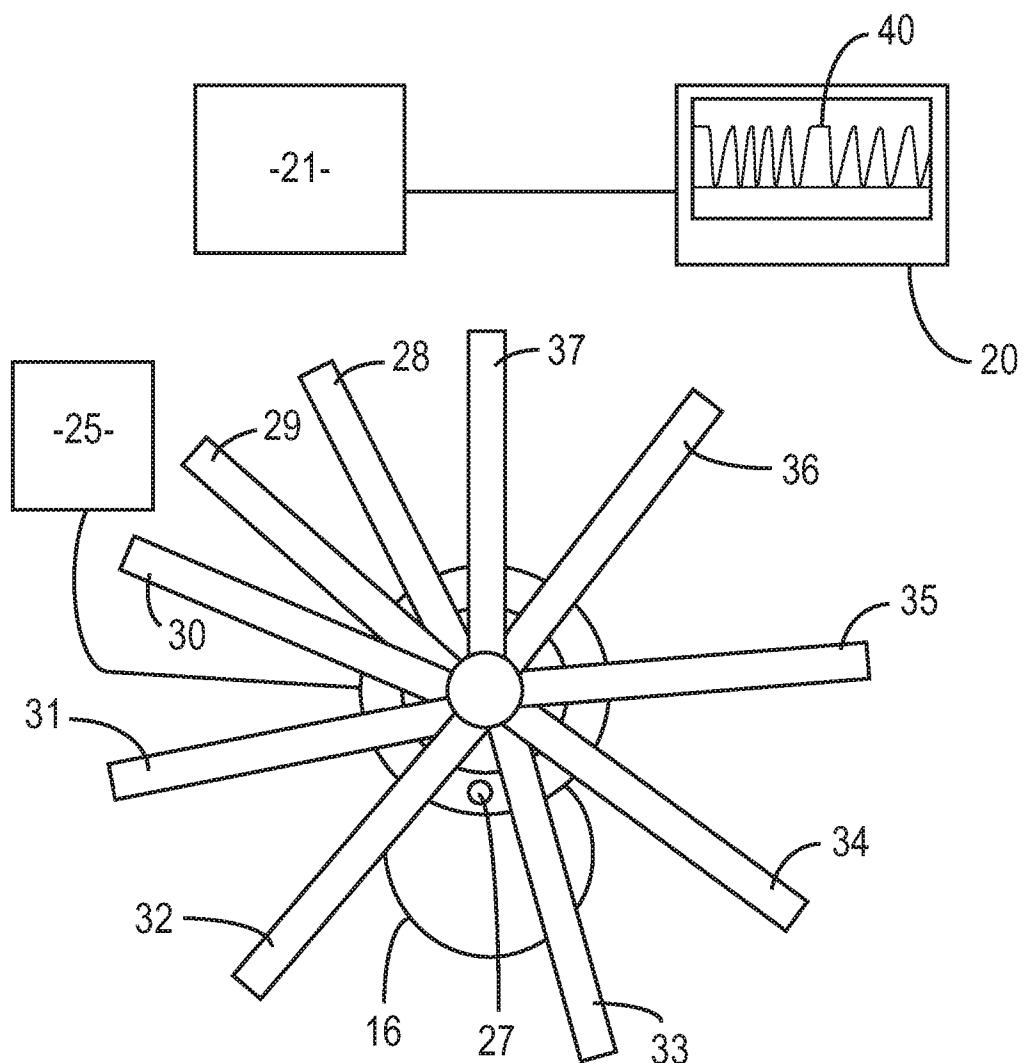
8


9 18) A method of profiling an output field as claimed in any of claims 11 to 17 wherein the
10 measured widths of the output field are employed to calculate a beam waist value for
11 the output field.

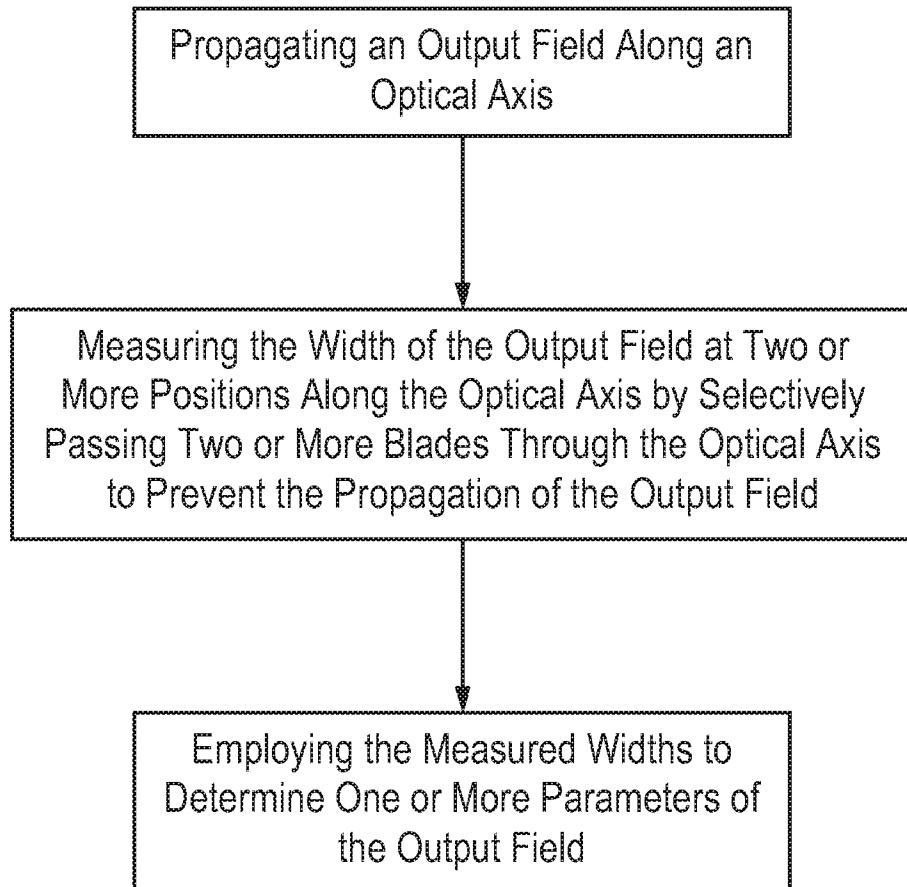
12


1/9




Fig. 1

2/
9


Fig. 2
(Prior Art)

5/
9

Fig. 4(b)

6
9**Fig. 5**

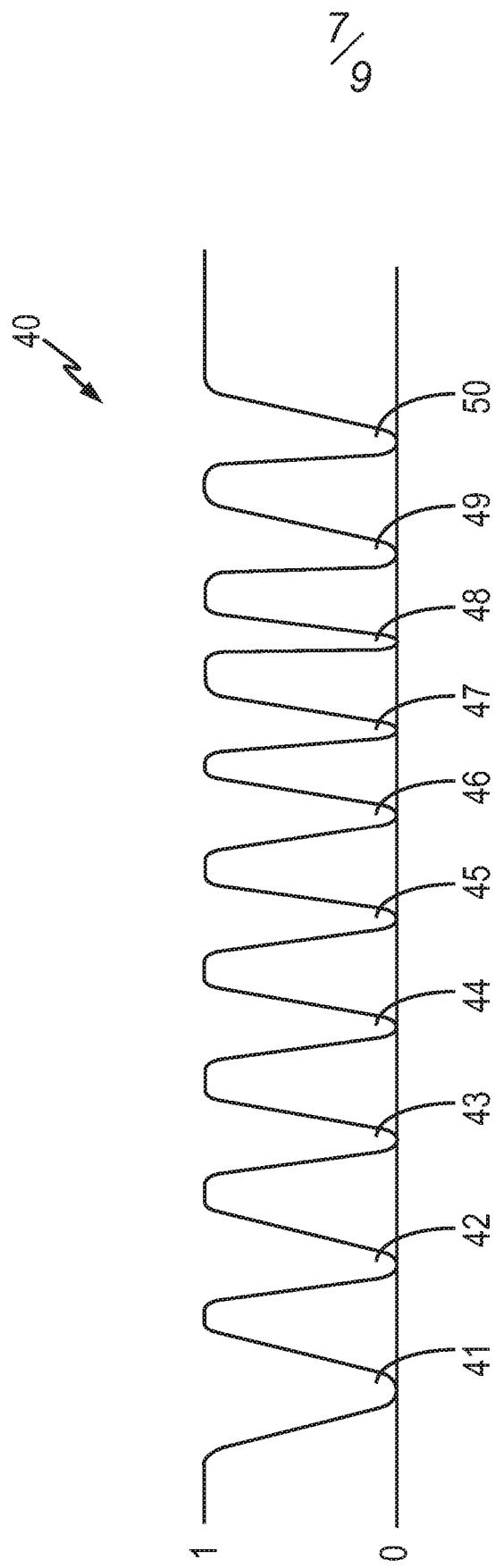


Fig. 6

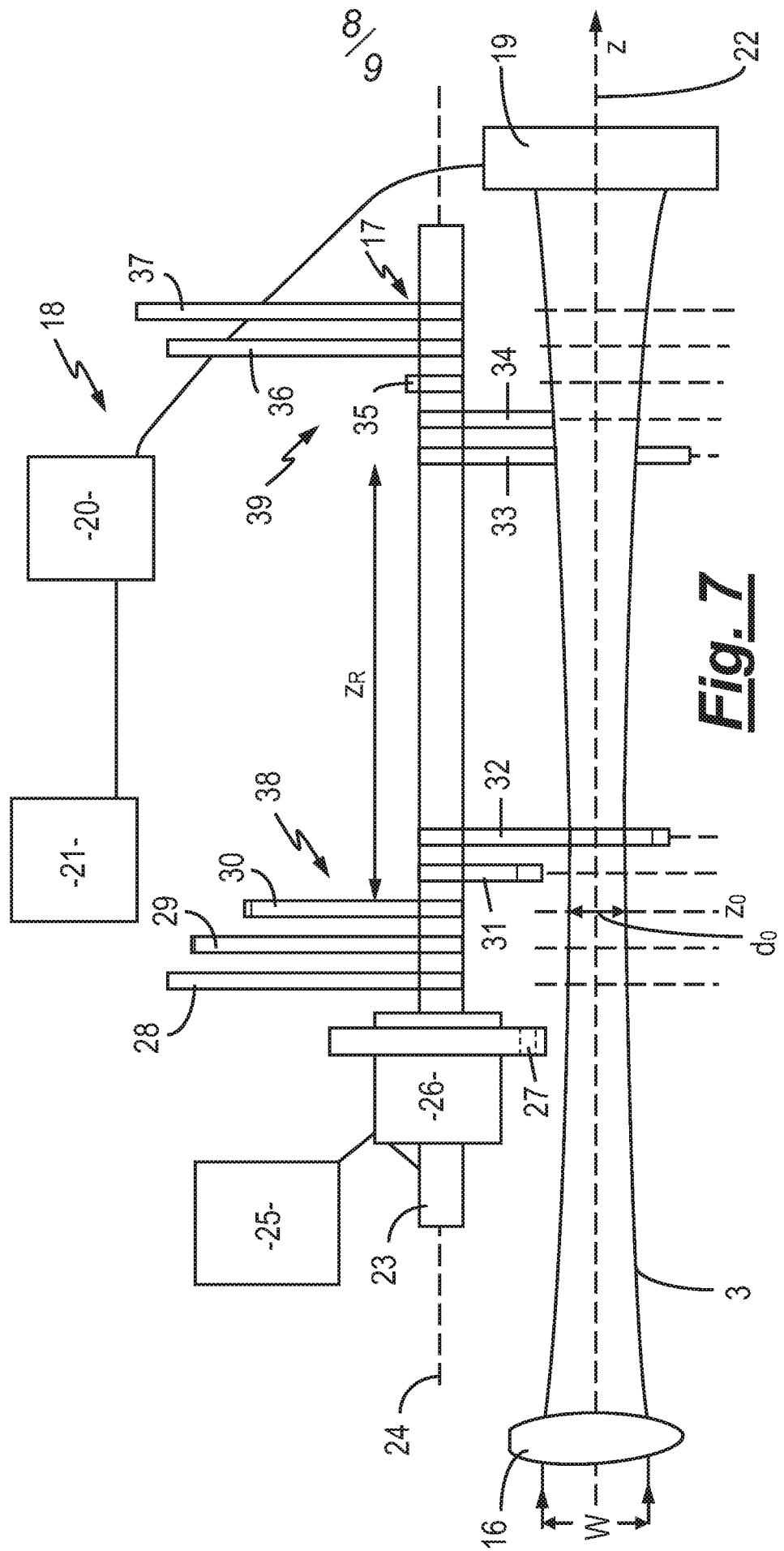
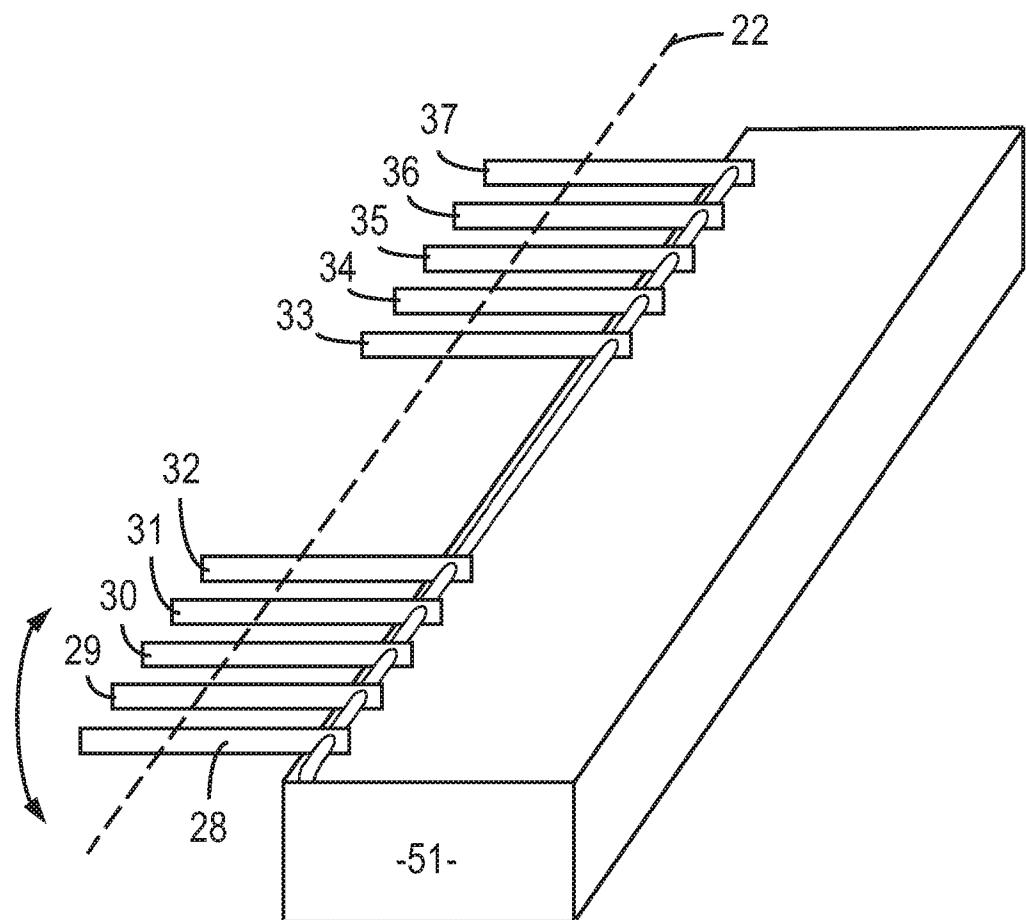



Fig. 7

9/
9

Fig. 8

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2013/052991

A. CLASSIFICATION OF SUBJECT MATTER
 INV. G01J1/42 G01J1/04
 ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 3 617 755 A (ARNAUD JACQUES A) 2 November 1971 (1971-11-02) column 4, line 51 - line 58; figures 1,4 ----- US 6 313 910 B1 (GARVEY STEVEN E [US] ET AL) 6 November 2001 (2001-11-06) column 3, line 41 - column 6, line 14; figures 7a, 7b column 9, line 42 - column 10, line 7 ----- US 5 214 485 A (SASNETT MICHAEL W [US] ET AL) 25 May 1993 (1993-05-25) column 7, line 22 - column 11, line 55; figures 2,15 -----	1-18
X		1-18
X		1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

10 March 2014

19/03/2014

Name and mailing address of the ISA/
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040,
 Fax: (+31-70) 340-3016

Authorized officer

Schmidt, Charlotte

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/GB2013/052991

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 3617755	A 02-11-1971	NONE	
US 6313910	B1 06-11-2001	NONE	
US 5214485	A 25-05-1993	NONE	