发明名称
一种无水过氧乙酸的制备方法

摘要
本发明公开了一种无水过氧乙酸的制备方法。本发明以醇为原料，双氧水氧化生成过氧乙酸。用本发明制备方法得到的过氧乙酸相对于双氧水的摩尔收率可达90%以上，产品过氧乙酸浓度在20~46%之间，且过氧乙酸浓度稳定。同时产品中不含强酸，含水量在0.5%及以下，过氧化氢含量在0.2%及以下。本发明与现有技术相比较，以更安全和简便的方法得到了无水无强酸的过氧乙酸产品，适于工业化生产。该过氧乙酸溶液可用于有机合成中的环氧化反应，尤其是己内酯和戊内酯的合成。
1. 一种无水过氧乙酸的制备方法，其特征在于包括如下步骤：向反应器中加入双氧水
并搅拌，预热双氧水至一定温度，在冷却下缓慢滴入醋酐；滴完后在相同温度保温反应一段时间。

2. 根据权利要求1所述的一种无水过氧乙酸的制备方法，其特征在于：双氧水的水溶液
中过氧化氢含量在50%~90%，质量百分数。

3. 根据权利要求2所述的一种无水过氧乙酸的制备方法，其特征在于：双氧水的水溶液
中过氧化氢含量优选70%~90%，质量百分数。

4. 根据权利要求1所述的一种无水过氧乙酸的制备方法，其特征在于：原料中的双氧
水和水的摩尔数之和与醋酐摩尔数比值在0.8~1：1。

5. 根据权利要求4所述的一种无水过氧乙酸的制备方法，其特征在于：原料中的双氧
水和水的摩尔数之和与醋酐摩尔数比值优选0.9~0.98：1。

6. 根据权利要求1所述的一种无水过氧乙酸的制备方法，其特征在于：所述的反应温
度为20~70℃，保温反应时间为0.2~20小时。

7. 根据权利要求6所述的一种无水过氧乙酸的制备方法，其特征在于：所述的反应温
度优选为30~60℃，保温反应时间为0.5~5小时。

8. 根据权利要求1所述的一种无水过氧乙酸的制备方法，其特征在于：制备过程中不
需加入任何催化剂。
一种无水过氧乙酸的制备方法

技术领域：
[0001] 本发明涉及一种过氧乙酸的制备方法。

背景技术：
[0002] 过氧乙酸（CH₃COOHO）有广泛的工业用途，主要用作纺织品、纸张、油脂、石蜡和淀粉的漂白剂，医药中的杀菌剂，饮用水和食品的消毒。有机合成中用作氧化剂和环氧化剂，如用于环丙烷、甘油、己内酰胺、环氧增塑剂、戊内酯和己内酯等的合成。
[0003] 传统的过氧乙酸生产工艺是将醋酸和双氧水按摩尔比1:0.44混合，加硫酸作为催化剂，在常温下反应20小时，所得产品过氧乙酸21%，硫酸5%，醋酸47%，双氧水6%、水21%。反应式如下。而该过氧乙酸产品中强酸和水含量很高，不适合直接用作有机合成中的氧化剂。

\[
\text{CH}_3\text{COOH} + \text{H}_2\text{O}_2 \rightleftharpoons \text{CH}_3\text{COOOH} + \text{H}_2\text{O}
\]

[0004] 郑晓兵和周新群等人在专利CN101284809A中，采用25-33%的双氧水与醋酸反应，生产摩尔比为1:1；添加反应物重量2-4%的苯磺酸或不含铁离子的固体酸作为催化剂，在45-55℃反应1-3小时，真空采出过氧乙酸；过氧乙酸含量可达50%，但同时采出的还有39%的水。虽然此专利中过氧乙酸不含强酸催化剂，但高水含量的产品显然不宜于有机合成中的氧化反应。

[0005] 要制备无水过氧乙酸，国内外通常采用的方法是在过氧乙酸的水溶液中添加共沸剂，共沸除去水份。如专利US4338260A中制备无水过氧乙酸的方法如下：双氧水与醋酸在硼酸的催化下，在能与水共沸的溶剂中通过连续的共沸蒸馏除去而得到无水醋酸；其中所指的水份包括双氧水中带入的水份和反应生成的水份。然而，该专利的方法过程中涉及过磷酸的蒸馏，对过氧化物的蒸馏易导致安全隐患；且依靠共沸蒸馏除去水的过程耗时长，影响无水过氧乙酸的生产效率。

发明内容
[0007] 本发明的目的在于提供一种无强酸无水且生产安全性好，适用于有机合成中作为氧化剂的过氧乙酸生产方法。

[0008] 本发明的技术解决方案是：
[0009] 醋酐与双氧水反应生成过氧乙酸，同时酯酐与水反应生成醛酸，其化学反应式如下；因酯酐能与双氧水和水充分反应，使得过氧乙酸溶液中双氧水含量在0.2%及以下，同时水份含量在0.5%及以下。

[0010] (CH₃CO)₂O+H₂O₂ → CH₃COOOH+CH₃COOH

[0011] (CH₃CO)₂O+H₂O → 2CH₃COOH

[0012] 本发明中使用充分的酯酐与双氧水和其中带入的水反应，制备过氧乙酸过程中不需共沸蒸馏除去水份，解决了生产安全问题。制备过氧乙酸的过程中无需引入水的共沸剂
和其他溶剂，降低了后续过程的分离纯化成本。制备过氧乙酸的过程中无需外加催化剂，因而产品中不含强酸。以本发明方法所制得的产品过氧乙酸溶液中含过氧乙酸20-46%，含醋酸78-53%；含水分0.5%以下；含双氧水0.2%以下。

[0013] 本发明具有下列优点：
[0014] （1）常压即可生产，不需蒸馏，操作安全。
[0015] （2）产品过氧乙酸中无水无强酸，可用于有机合成中环氧化反应。
[0016] （3）产品过氧乙酸收率高且稳定性好。

具体实施方式

[0017] 下面结合本发明的实施例和比较例对本发明做进一步说明。
[0018] 实施例1：
[0019] 在带有加热、搅拌、温度计、回流冷凝管的1000ml反应器中加入浓度为70%的双氧水121g，水浴加热并保持溶液温度恒定在40-45℃，滴入醋酐492g，滴加时间控制在1-1.5小时，滴完后以相同温度反应1小时以上。检测滴加完后1小时、2小时、3小时和10小时后生成的产品过氧乙酸的含量、双氧水和水份的残余，结果列于表1中。滴加完醋酐后1小时和2小时，由表格中数值可计算出，过氧化氢的转化率分别为98.91%和99.49%，过氧乙酸相应于双氧水的摩尔收率为89.33%和90.26%。

对照例1：
[0020] 在带有加热、搅拌、温度计、回流冷凝管的1000ml反应器中加入浓度为70%的双氧水132g，水浴加热并保持溶液温度恒定在40-45℃，滴入醋酐492g，滴加时间控制在1-1.5小时，滴完后以相同温度反应1小时以上。检测滴加完后1小时、2小时、3小时和10小时后生成的产品过氧乙酸的含量、双氧水和水份的残余，结果列于表1中。滴加完醋酐后1小时和2小时，由表格中数值可计算出，过氧化氢的转化率为90.01%和93.85%，过氧乙酸相应于双氧水的摩尔收率为71.76和68.71%。

<table>
<thead>
<tr>
<th>时间</th>
<th>实施例1</th>
<th>对照例1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>过氧乙酸</td>
<td>双氧水</td>
</tr>
<tr>
<td>1小时</td>
<td>27.60</td>
<td>0.15</td>
</tr>
<tr>
<td>2小时</td>
<td>27.89</td>
<td>0.07</td>
</tr>
<tr>
<td>3小时</td>
<td>27.70</td>
<td>0.04</td>
</tr>
<tr>
<td>10小时</td>
<td>26.82</td>
<td>0.03</td>
</tr>
</tbody>
</table>