Fertilizer granulation method for incorporating urea directly into the matrix of fertilizer pellets. The process involves introducing the urea in a liquid form into the matrix and then progressively cooling the mixture of pellet and urea to recrystallize the urea within the matrix of the pellet. The result is a substantially harder particle relative to pretreatment hardness, reduced solubility for longer lasting pellets and substantially reduced dust and other handling problems of the formed pellets.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
<th>LS</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td>SI</td>
<td>Slovensko</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>Tadjikistan</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


GRANULATION METHOD OF UREA CONTAINING FERTILIZER

TECHNICAL FIELD

The present invention relates to a method for granulating fertilizer products and more particularly, the present invention relates to a method for impregnating urea into a fertilizer material and granulating a pellet.

BACKGROUND ART

The augmentation of fertilizer compounds with a treatment of urea, typically by spraying or aerosol has been practiced in the art. The most undesirable aspect of the treatment stems from the fact that urea is water soluble and since it is currently applied topically, much of the compound is simply wasted by washing away from rain, irrigation etc. This is a costly procedure with limited efficacy. A product and procedure whereby the urea may be mixed or crystallized within the fertilizer matrix is required to overcome the wastage problem. The present invention solves this problem.

INDUSTRIAL APPLICABILITY

The present invention has applicability in the fertilizer industry.

DISCLOSURE OF THE INVENTION

One object of one embodiment of the present invention is to provide an improved fertilizer product and method of incorporating urea from a source thereof into the fertilizer.

A further object of one embodiment of the present invention is to provide a method granulating a fertilizer feedstock, comprising the steps of:

- providing a compound containing urea;
- providing a source of ammonium sulfate in a size distribution of 3 mesh to about 10 mesh;
- introducing the urea and the ammonium sulfate into a drum granulator;
maintaining a temperature in the drum granulator sufficient to keep the compound in a liquid state for mixture with the ammonium sulfate; and cooling the mixture to form urea bearing ammonium sulfate granules.

In order to facilitate easier particle rolling within the drum, the drum may be lined with rubber, Teflon™, neoprene, inter alia.

In view of the fact that the granulated pellets contain a relatively high degree of empty interstitial space by virtue of the crystalline structure, this space provides a particularly useful volume within which to recrystallize urea.

In accordance with a further object of one embodiment of the present invention, there is provided a fertilizer granule, comprising:

a potassium granule containing about 20% empty interstitial volume; and urea in the volume.

In terms of the type of urea compounds that may be used in the practicing of the present invention, examples include urea formaldehyde, urea-ammonium orthophosphate, urea-ammonium polyphosphate, ureaform etc. Other suitable examples which are compatible with the chemistry involved will be appreciated by those skilled in the art.

A still further object of one embodiment of the present invention is to provide a method granulating a fertilizer feedstock, comprising the steps of:

providing a compound containing urea;
providing a source of potassium sulfate in a size distribution of 3 mesh to about 10 mesh;
introducing the urea and the potassium sulfate into a drum granulator;
maintaining a temperature in the drum granulator sufficient to keep the compound in a liquid state for mixture with the potassium sulfate; and cooling the mixture to form urea bearing potassium sulfate granules.

For enhancing wettability of the feedstock, a surfactant may be added. The surfactant lowers the surface tension of the fertilizer product sufficiently so that the
urea can flow into the fertilizer. This is of significant value when the mixture of urea and fertilizer is cooled to above the melting point of the urea since the result is recrystallization of the urea within the matrix of the fertilizer.

A still further object of one embodiment of the present invention is to provide a method granulating a fertilizer feedstock, comprising the steps of:

- providing a compound containing urea;
- providing a source of potassium chloride in a size distribution of 3 mesh to about 10 mesh;
- introducing the urea and the potassium chloride into a drum granulator;
- maintaining a temperature in the drum granulator sufficient to keep the compound in a liquid state for mixture with the potassium chloride; and
- cooling the mixture to form urea bearing potassium chloride granules.

Intra matrix recrystallization of the urea has been found to substantially increase desirable properties of the so formed granules. Typically, the break strength of the urea bearing pellets or granules exceeds 7 kilograms. This feature is beneficial in that hard particles do not create large quantities of dust; do not break, crumble, etc. during shipping; provide a modified solubility and facilitate a use for urea which would not have been possible based on the current methodology in the art.

Yet another object of the present invention is to provide a method granulating a fertilizer feedstock, comprising the steps of:

- providing a compound containing urea;
- providing a source of potassium nitrate in a size distribution of 3 mesh to about 10 mesh;
- introducing the urea and the potassium nitrate into a drum granulator;
- maintaining a temperature in the drum granulator sufficient to keep the compound in a liquid state for mixture with the potassium nitrate; and
- cooling the mixture to form urea bearing potassium nitrate granules.

Having thus generally described the invention, reference will now be made to the accompanying drawings illustrating preferred embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic illustration of the apparatus for practicing the method; and

Figure 2 is a photograph of an ammonium sulfate granule with urea recrystallized therein.

Similar numerals employed in the text denote similar elements.

MODES FOR CARRYING OUT THE INVENTION

Referring now to Figure 1, numeral 10 represents the fertilizer feedstock which may be potassium chloride, potassium sulfate, ammonium sulfate, inter alia. The feedstock 10 is taken from a source thereof, for example, a pan granulation circuit (not shown).

The feedstock 10 is in a size distribution of between about 3 mesh to about 10 mesh. The material is introduced into a drum granulator 12. Suitable drum granulators will be appreciated by those skilled in the art. In addition to the feedstock 10 being introduced into drum 12, there is also introduced a source of urea bearing compound 14. The urea may be introduced into granulator 12 in a liquid state or granulator 12 may be heated sufficiently so that the urea in the urea bearing compound is liquified. As a further possible alternative, the initial feedstock may be heated sufficiently to induce melting of the urea in the compound.

As an optional step, depending upon the nature of the chemistry involved, a suitable surfactant 16 may be introduced into granulator 12 in order to facilitate transportation of the liquid urea into the fertilizer feedstock matrix. The mixture, broadly denoted by numeral 18 is then introduced into a cooling apparatus 20. The apparatus may comprise a further drum granulator, fluidized bed or any other suitable cooling apparatus which facilitates movement of the product as well. In order to induce crystallization of the urea within the feedstock product, cooling fluid is introduced to granulator 20 at inlet 22 in a countercurrent manner. The cooling fluid may comprise
any fluid which is inert relative to the chemistry within the cooling apparatus 20. As an example, air may be introduced to the apparatus 20 for cooling the urea. Crystallization occurs at any point above the melting of urea (typically 110°C) and the cooling air within the apparatus 20 reduces the temperature to approximately 65°C to produce a product exiting the apparatus at 24.

Rotation and inclination of the drum granulator 12 and/or 20 will be appreciated by those skilled in the art. These parameters will depend on the nature of the feedstock among other factors.

The product 24 is photographically illustrated in Figure 2 where the granules are shown in a substantially spherical state as well as in cross section. It is clear from an examination of the cross sections that the urea is crystallized within the matrix of the fertilizer. As is known, the fertilizer granules typically have anywhere from 15% to 25% interstitial empty volume. This provides an ideal opportunity to introduce liquid urea for eventual recrystallization in the feedstock matrix.

It has been found that significant advantages flow from incorporation of the urea, which advantages include, for example, increased particle break strength. The break strength of ammonium sulfate pellets is typically about 2 kilograms to about 3 kilograms, whereas once the urea has been crystallized within the matrix, the break strength of the treated pellet generally exceeds 7 kilograms. In the case of potassium chloride and potassium sulfate, the pretreatment break strength of the granules is from about 2 kilograms to about 3 kilograms and the urea bearing granules demonstrate a break strength from about 7 kilograms to about 8 kilograms.

As illustrated in the graph, urea quickly dissolves. With the augmentation of potassium chloride, the rate of dissolution is significantly reduced, thus providing a longer lasting slow release fertilizer product which does not breakup/disintegrate, but rather is progressively dissolved with a substantially uniform reduction in diameter over time.
As indicated above, there are significant additional advantages that flow from the incorporation of the urea. One of the most attractive advantages with the present invention is the fact that the NPKS ratio can be effectively customized to yield any desired nitrogen, phosphorous, potassium, and sulfur ratio. In the example of Figure 2, the NPKS ratio is 30-0-0-20.

Although embodiments of the invention have been specifically set forth herein, it will be understood that the invention is subject to significant variation without departing from the spirit, nature or scope of the claimed and described invention.
CLAIMS:

1. A method granulating a fertilizer feedstock, comprising the steps of:
   providing a compound containing urea;
   providing a source of ammonium sulfate in a size distribution of 3 mesh to about 10 mesh;
   introducing said urea and said ammonium sulfate into a drum granulator;
   maintaining a temperature in said drum granulator sufficient to keep said compound in a liquid state for mixture with said ammonium sulfate; and
   cooling said mixture to form urea bearing ammonium sulfate granules.

2. The fertilizer as set forth in claim 1, characterized in that said granule has a size distribution of about 5 mesh to about 10 mesh.

3. The fertilizer as set forth in claim 1, characterized in that said urea comprises urea formaldehyde.

4. The fertilizer as set forth in claim 1, characterized in that said urea comprises urea-ammonium orthophosphate.

5. The fertilizer as set forth in claim 1, characterized in that said urea comprises urea-ammonium polyphosphate.

6. The fertilizer as set forth in claim 1, characterized in that said urea comprises ureaform.

7. A fertilizer granule, comprising:
   a potassium granule containing about 20% empty interstitial volume; and
   urea in said volume.

8. The fertilizer as set forth in claim 7, characterized in that said granule has a size distribution of about 3 mesh to about 10 mesh.
9. The fertilizer as set forth in claim 7, characterized in that said urea comprises urea formaldehyde.

10. The fertilizer as set forth in claim 7, characterized in that said urea comprises urea-ammonium orthophosphate.

11. The fertilizer as set forth in claim 7, characterized in that said urea comprises urea-ammonium polyphosphate.

12. The fertilizer as set forth in claim 7, characterized in that said urea comprises ureaform.

13. The fertilizer as set forth in claim 7, characterized in that said potassium granule comprises potassium chloride.

14. The fertilizer as set forth in claim 7, characterized in that said potassium granule comprises potassium sulfate.

15. The fertilizer as set forth in claim 7, characterized in that said potassium granule comprises potassium nitrate.

16. A method granulating a fertilizer feedstock, comprising the steps of:
    providing a compound containing urea;
    providing a source of potassium sulfate in a size distribution of 3 mesh to about 10 mesh;
    introducing said urea and said potassium sulfate into a drum granulator;
    maintaining a temperature in said drum granulator sufficient to keep said compound in a liquid state for mixture with said potassium sulfate; and
    cooling said mixture to form urea bearing potassium sulfate granules.

17. The method as set forth in claim 16, characterized in that said method further includes the step of introducing a surfactant into said drum granulator.
18. The method as set forth in claim 16, characterized in that said mixture is cooled in a second drum granulator by countercurrent contact with cooling air.

19. The method as set forth in claim 16, characterized in that said temperature in said drum granulator is at least the temperature at which said urea compound melts.

20. The method as set forth in claim 16, characterized in that said mixture is cooled sufficiently to solidify said urea compound in said potassium sulfate.

21. The method as set forth in claim 16, characterized in that said granules have a size distribution of about 4 mesh to about 10 mesh.

22. A method granulating a fertilizer feedstock, comprising the steps of:
   providing a compound containing urea;
   providing a source of potassium chloride in a size distribution of 3 mesh to about 10 mesh;
   introducing said urea and said potassium chloride into a drum granulator;
   maintaining a temperature in said drum granulator sufficient to keep said compound in a liquid state for mixture with said potassium chloride; and
   cooling said mixture to form urea bearing potassium chloride granules.

23. The method as set forth in claim 22, characterized in that said method further includes the step of introducing a surfactant into said drum granulator.

24. The method as set forth in claim 22, characterized in that said mixture is cooled in a second drum granulator by countercurrent contact with cooling air.

25. The method as set forth in claim 22, characterized in that said temperature in said drum granulator is at least the temperature at which said urea compound melts.

26. The method as set forth in claim 22, characterized in that said mixture is cooled sufficiently to solidify said urea compound in said potassium chloride.
27. The method as set forth in claim 22, characterized in that said granules have a size distribution of about 5 mesh to about 10 mesh.

28. A method granulating a fertilizer feedstock, comprising the steps of:
   providing a compound containing urea;
   providing a source of potassium nitrate in a size distribution of 3 mesh to about 10 mesh;
   introducing said urea and said potassium nitrate into a drum granulator;
   maintaining a temperature in said drum granulator sufficient to keep said compound in a liquid state for mixture with said potassium nitrate; and
   cooling said mixture to form urea bearing potassium nitrate granules.