【54】发明名称 一种带浓淡煤粉燃烧装置的W形火焰炉

【57】摘要

一种带浓淡煤粉燃烧装置的W形火焰炉，涉及一种燃烧装置。现有的W形火焰炉中存在的燃烧不稳、炉壁结渣和高温腐蚀的问题。本发明提供一种带浓淡煤粉燃烧装置的W形火焰炉，它包括炉拱1、侧墙2，由炉拱1、侧墙2围成的炉膛3和燃烧器4，所述燃烧器4包括浓煤粉气流火嘴4-1-1和淡煤粉气流火嘴4-2-1，所述浓煤粉气流火嘴4-1-1靠近炉膛3的中心，淡煤粉气流火嘴4-2-1靠近侧墙2。本发明大幅提高了入的熔化温度，避免了水冷壁结渣，同时它还破坏了形成高温腐蚀的还原性气氛，防止了高温腐蚀。同时，它还可以达到及时着火和稳定燃烧的目的，从而实现有效地防止炉壁结渣、高温腐蚀和低稳定燃烧。
1. 一种带浓淡煤粉燃烧装置的 W 形火焰炉，它包括炉拱（1）、侧墙（2），由炉拱（1）、侧墙（2）围成的炉膛（3）和燃烧器（4），其特征在于所述燃烧器（4）包括浓煤粉气流火嘴（4-1-1）和淡煤粉气流火嘴（4-2-1），所述浓煤粉气流火嘴（4-1-1）靠近炉膛（3）的中心设置，淡煤粉气流火嘴（4-2-1）靠近侧墙（2）设置。

2. 根据权利要求 1 所述的一种带浓淡煤粉燃烧装置的 W 形火焰炉，其特征在于所述燃烧器（4）的浓煤粉气流火嘴（4-1-1）和淡煤粉气流火嘴（4-2-1）都设置在炉拱（1）上。

3. 根据权利要求 1 所述的一种带浓淡煤粉燃烧装置的 W 形火焰炉，其特征在于所述浓煤粉气流火嘴（4-1-1）设置在炉拱（1）上，所述淡煤粉气流火嘴（4-2-1）设置在侧墙（2）上。

4. 根据权利要求 1、2 或 3 所述的一种带浓淡煤粉燃烧装置的 W 形火焰炉，其特征在于所述浓煤粉气流火嘴（4-1-1）为圆形喷口。

5. 根据权利要求 1、2 或 3 所述的一种带浓淡煤粉燃烧装置的 W 形火焰炉，其特征在于所述燃烧器（4）是由旋风筒（4-1）和乏气管（4-2）相连而成，所述旋风筒（4-1）的下端为浓煤粉气流火嘴（4-1-1），所述乏气管（4-2）的下端为淡煤粉气流火嘴（4-2-1）。

6. 根据权利要求 1、2 或 3 所述的一种带浓淡煤粉燃烧装置的 W 形火焰炉，其特征在于所述旋风筒（4-1）内装有带叶片（5-1）的调节杆（5）。

7. 根据权利要求 1、2 或 3 所述的一种带浓淡煤粉燃烧装置的 W 形火焰炉，其特征在于所述浓煤粉气流火嘴（4-1-1）和淡煤粉气流火嘴（4-2-1）与炉拱（1）边壁存在间隙形成周界风口（10），与周界风口（10）相连的风道（14）上安装有风门挡板（13）。

8. 根据权利要求 1、2 或 3 所述的一种带浓淡煤粉燃烧装置的 W 形火焰炉，其特征在于它还包括大屏（6），过热器（7），省煤器（8）和空气预热器（9），所述大屏（6）和过热器（7）设置在炉膛（3）的上部，省煤器（8）和空气预热器（9）布置在尾部烟道（15）中。
一种带浓淡煤粉燃烧装置的 W 形火焰炉

技术领域:
本发明涉及一种燃烧装置，特别是一种火焰炉。

背景技术:
W 形火焰燃烧技术是一种专门为燃用低挥发分煤而设计的燃烧技术，它可以通过加大火焰行程来促进煤粉的燃尽。这种技术目前已被国内部分电厂的锅炉所采用。而对于锅炉上的燃烧器，很多电厂采用的是圆筒形的旋风分离式圆形浓淡煤粉燃烧装置，圆形浓煤粉气流火焰位于侧墙一侧，而圆形浓煤粉气流火焰位于炉膛中心一侧。由于炉膛中心为高温区域，但靠近高温区域喷入的为淡煤粉气流，浓煤粉气流喷入的则是靠近侧墙的低温区域，因此没有形成高温高浓度区域，煤粉不能及时着火，同时，由于不能形成高温高浓度区域，因而火焰稳定性不好，低负荷下燃能力低下，煤种适应性差。并且由于浓煤粉气流靠近侧墙，还出现结渣和高温腐蚀现象，从而严重影响锅炉的可用率和热效率，威胁到锅炉的工作可靠性。

发明内容:
为解决目前 W 形火焰炉中存在的燃烧不稳、炉壁结渣和高温腐蚀的问题，本发明提供一种带浓淡煤粉燃烧装置的 W 形火焰炉，它包括炉拱 1、侧墙 2，由炉拱 1、侧墙 2 围成的炉膛 3 和燃烧器 4，所述燃烧器 4 包括浓煤粉气流火焰 4-1-1 和淡煤粉气流火焰 4-2-1，所述浓煤粉气流火焰 4-1-1 靠近炉膛 3 的中心设置，淡煤粉气流火焰 4-2-1 靠近侧墙 2 设置。本发明的浓淡煤粉气流经由浓煤粉气流火焰 4-2-1 喷入炉膛中靠近侧墙 2 的区域，由此便在水冷壁附近形成氧化性气氛，大幅提高了灰的熔化温度，避免了水冷壁结渣，同时它还破坏了形成高温腐蚀的还原性气氛，防止了高温腐蚀。在另一侧，浓煤粉气流经过浓煤粉气流火焰 4-1-1 喷入靠近炉膛中心侧区域，由于这部分区域靠近炉膛中心高温区，浓煤粉气流喷入炉膛后能大量卷吸高温烟气，可以达到及时着火和稳定燃烧的目的，从而实现有效地防止炉壁结渣、高温腐蚀和低负荷稳定燃
烧。

附图说明：
图 1 是本实用新型整体结构示意图，图 2 是具体实施方式二的结构示意图，图 3 是具体实施方式三的结构示意图，图 4 是图 2 的 1 处放大图。

具体实施方式：

具体实施方式一：本实施方式包括炉拱 1、侧墙 2，由炉拱 1、侧墙 2 围成的炉膛 3 和燃烧器 4，所述燃烧器 4 包括浓煤粉气流火嘴 4-1-1 和淡煤粉气流火嘴 4-2-1，所述浓煤粉气流火嘴 4-1-1 靠近炉膛 3 的中心设置，淡煤粉气流火嘴 4-2-1 靠近侧墙 2 设置。由于浓煤粉气流火嘴 4-1-1 靠近炉膛 3 的中心，所以喷入的浓煤粉气流靠近炉膛中心高温区域，浓煤粉气流喷入炉膛后能大量卷吸高温烟气，可以达到及时着火和稳定燃烧的目的。由于浓煤粉气流火嘴 4-2-1 靠近侧墙 2，所以喷入的淡煤粉气流靠近炉膛的侧壁，由此便在水冷壁附近形成氧化性气氛，大幅提高了灰的熔化温度，避免了水冷壁结渣，同时它还破坏了形成高温腐蚀的还原性气氛，防止了高温腐蚀。

具体实施方式二：现有的燃烧装置除了存在燃烧不稳、炉壁结渣和高温腐蚀的问题之外，还存在 NOx 排放量降低的效果不明显的问题。参照图 2，本实施方式的燃烧器 4 是由旋风筒 4-1 和乏气管 4-2 相连而成，所述旋风筒 4-1 的下端为浓煤粉气流火嘴 4-1-1，所述乏气管 4-2 的下端为淡煤粉气流火嘴 4-2-1，所述浓煤粉气流火嘴 4-1-1 和淡煤粉气流火嘴 4-2-1 都设置在炉拱 1 上，其中，浓煤粉气流火嘴 4-1-1 靠近炉膛 3 的中心，淡煤粉气流火嘴 4-2-1 靠近侧墙 2，在所述旋风筒 4-1 内装有带叶片 5-1 的调节杆 5 来调节气流旋流度。淡煤粉气流火嘴 4-2-1 的出口和浓煤粉气流火嘴 4-1-1 与炉拱 1 的边壁存在的间隙形成周界风口 10，参照图 4，风箱 11 从周界风口 10 敲入周界风，周界风口的面积很小，喷入的二次风仅起到冷却火嘴的作用，风量很少（不到一次风量的 10%），因而对浓煤粉气流的稀释作用很小，周界风口可以起到冷却浓煤粉气流火嘴 4-1-1 和淡煤粉气流火嘴 4-2-1 的作用。在侧墙 2 上开有多道狭缝 2-1，可由风箱 11 从此处向炉膛 3 内鼓入二次风，二次风受淡
煤粉气流的阻隔，无法马上和浓煤粉气流混合，使煤粉长时间处于远离化学当量比燃烧状态，抑制了NOx的生成，从而使NOx的排放量得到了明显的降低。

从磨煤机经煤粉管道送来的一次风粉混合物经煤粉入口管12切向进入旋风简4-1，其中的煤粉颗粒因旋流而离心分离，使旋风筒4-1中心部分一次风含粉极少。装在旋风筒4-1中心的乏气管4-2将部分含粉极少的一次风（乏气）引出，形成淡煤粉气流（含有约10%的总粉量，50%的一次风量），经由淡煤粉气流火嘴4-2-1喷入炉膛中靠近侧墙2的区域，由在水冷壁附近形成氧化性气氛，大幅提高了灰的熔化温度，避免了水冷壁结渣，同时它还破坏了形高温腐蚀的还原性气氛，防止了高温腐蚀。在另一侧，旋风简4-1内剩余的煤粉气流由乏气的抽取使煤粉浓度得以提高，经浓煤粉气流火嘴4-1-1喷入靠近炉膛中心侧区域，由于这部分区域靠近炉膛中心高温区，浓煤粉气流喷入炉膛后能大量卷吸高温烟气，可以达到及时着火和稳定燃烧的目的。

具体实施方式三：参照图3，本实施方式的浓煤粉气流火嘴4-1-1设置在炉拱1上，所述淡煤粉气流火嘴4-2-1设置在侧墙2上，由此使浓煤粉气流火嘴4-1-1与淡煤粉气流火嘴4-2-1之间的距离进一步增大，推迟了气流的混合，更加加强了浓淡燃烧的效果。

具体实施方式四：现在，有的部分电厂采用的是狭缝式浓淡煤粉燃烧装置，浓淡分离也采用的是旋风分离器，但浓淡煤粉气流火嘴均采用的是狭缝式矩形火嘴，并与矩形的二次风喷口在拱上沿前后墙方向间隔设置。由于狭缝式浓煤粉矩形火嘴与矩形的二次风喷口间隔设置，且紧邻的矩形喷口边都是较长的边，因而一、二次风混合较早，浓煤粉气流很容易被稀释，失去了浓淡燃烧的效果，不能有效地抑制NOx的生成。同时，不能形成高温高浓度区域，因而火焰稳定性不好，低负荷下稳燃能力低，煤种适应性差。并且，浓煤粉气流火嘴狭缝式的结构气流刚性差，为了形成W形火焰，只有靠高速的二次风携带向下冲，而较高的二次风速与一次风混合后，使着火区域浓一次风速提高，不利于煤粉着火和火焰稳定。

本实施方式为了克服上述缺陷，将浓煤粉气流火嘴4-1-1设计为圆
形喷口。浓煤粉尘气流火嘴4-1-1 及其外围的周界风喷口10 都呈圆形，使出口的气流具有较衰刚性，能进一步向深处深入炉膛。增加行程，促进煤粉燃烧及火焰稳定，煤种适应能力增强，提高了燃烧效率，且有效地抑制了NOx的生成。

具体实施方式五：参照图2，本实施方式由旋风筒4-1、乏气管4-2、乏气风门挡板4-3、炉膛侧墙2、拱上周界风门挡板13、煤粉入口管12、调节杆5、炉拱1、消旋叶片5-1、风箱11，圆形浓煤粉尘气流火嘴4-1-1 和淡煤粉尘气流火嘴4-2-1 组成。旋风筒4-1 和乏气管4-2 共同安装于炉拱1 上，圆形浓煤粉尘气流火嘴4-1-1 置于靠近炉膛中心侧，淡煤粉尘气流火嘴4-2-1 置于靠近炉膛侧墙2 侧。淡煤粉尘气流火嘴4-2-1 与圆形浓煤粉尘气流火嘴4-1-1 之间保持一定距离，以避免浓、淡气流的过早混合。两个火嘴均与炉拱1 边壁存在间隙形成周界风口10，与其相连的风道14 上分别安有风门挡板13，调节周界风门挡板13 的开度，可以控制由风箱11 鼓入的周界风量的大小，从而调节燃烧器火嘴的温度，起到冷却火嘴的作用。乏气管4-2 上安有风门挡板4-3，上部从旋风筒4-1 上部中心伸入，旋风筒4-1 上部外侧连有煤粉入口管12，用于导入煤粉气流。同时，旋风筒4-1 中还安装有调节杆5，其靠近圆形浓煤粉尘气流火嘴4-1-1 一侧焊有消旋叶片5-1。消旋叶片5-1 的结构可多种多样，如可采用人字形叶片，通过调节杆5 拉动消旋叶片5-1 上下移动，改变流过叶片5-1 的风量，以此来调节喷入炉膛煤粉气流的旋转强度。

具体实施方式六：本实施方式从整体上对本发明的装置做一概述，参照图1，它包括炉拱1、侧墙2、由炉拱1、侧墙2 围成的炉膛3 和燃烧器4，还包括大屏6，过热器7，省煤器8 和空气预热器9，所述大屏6 和过热器7 设置在炉膛3 的上部，省煤器8 和空气预热器9 布置在尾部烟道15 中。设置在炉拱1 上的燃烧器4 向下喷出煤粉气流在炉膛3 内混合燃烧，放出大量的热量，气流在炉膛3 底部折转上升，形成W形火焰。热烟气继续上升，流经大屏6、过热器7、省煤器8、空气预热器9 对里面的蒸汽、锅炉给水和空气进行加热，最后排出进入烟气处理装置。